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ABSTRACT

In this thesis we generalize the Lazard correspondence, introduced by Lazard in [28], to a correspondence
up to isoclinism. The original Lazard correspondence is a correspondence between some groups and some Lie
rings. The Lazard correspondence up to isoclinism is a correspondence between some equivalence classes of
groups and some equivalence classes of Lie rings, where the equivalence relation on both sides is isoclinism.
By relaxing the objects on both sides of the correspondence to equivalence classes up to isoclinism, we are
able to generalize the domain of the correspondence somewhat. An overview of our proof strategy is in
Section [2] and our final results are described in Section

A typical application of the original Lazard correspondence is the situation where, for some prime p, the
group is a finite p-group of nilpotency class at most p — 1 and the Lie ring is a finite p-Lie ringﬂ of nilpotency
class at most p — 1.

A typical application of the generalization we describe is the situation where the group is a finite p-group
of nilpotency class at most p and the Lie ring is a finite p-Lie ring of nilpotency class at most p. Knowledge
of either (the group or the Lie ring) determines the other only up to isoclinism and not up to isomorphism.
Therefore, this correspondence is suited only for the study of attributes (of groups or Lie rings) that are
invariant under isoclinism.

In cases where the original Lazard correspondence applies, it refines the Lazard correspondence up to
isoclinism: if a group and Lie ring are in Lazard correspondence, then they are also in Lazard correspondence
up to isoclinism. The interesting case covered by our correspondence is the case of finite p-groups of nilpotency
class exactly p and finite p-Lie rings of nilpotency class exactly p. The original Lazard correspondence no

longer applies in this situationﬂ so our generalization adds value.

IThis means that the additive group of the Lie ring is a finite p-group. In other words, the Lie ring is a Lie algebra over Z/p*Z
for some positive integer k.
2There is a subtle distinction between the global and the 3-local Lazard correspondence that we omit for the abstract, but
describe in detail later
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BACKGROUND AND NOTATION

0.1. Background assumed. This document assumes that the reader is comfortable with group theory at
an advanced undergraduate or beginning graduate student level. At minimum, the reader’s knowledge should
be approximately equivalent to the first six chapters of [9]. A knowledge of the material in [39] would make
the document easy reading. There will be particular emphasis on knowledge of the structure of p-groups and
nilpotent groups, including knowledge of the interplay between the upper central series and lower central
series. A review of the most important definitions and basic results is available in the Appendix, Section

Rudimentary familiarity with the ideas of universal algebra and category theory will be helpful in under-
standing the motivating ideas. A review of the most important ideas is available in the Appendix, Sections
B and B4

It is assumed that the reader is familiar with the idea of Lie rings, which can be viewed as Lie algebras
over Z, the ring of integers. However, familiarity with Lie algebras over the real numbers or complex numbers
will also be sufficient. A review of some basic definitions from the theory of Lie rings can be found in the
Appendix, Section [A74]

0.2. Group and subgroup notation. Let G be a group. We will use the following notation throughout

this document.

e We will use 1 to denote the trivial subgroup of G. Note that the same letter 1 will be used to denote
both the trivial group as an abstract group and the trivial subgroup in all groups.

e We will also use 1 to denote the identity element of G.

e When working with groups that are known to be abelian groups, we will use additive notation: 0 to
denote the trivial group and + to denote the group operation. However, we will use multiplicative
notation when dealing with abelian subgroups inside a (possibly) non-abelian group.

e H < G will be understood to mean that H is a subgroup of G.

o Z(G) will refer to the center of G.

e G’ and [G, G] both refer to the derived subgroup of G.

e 7.(G) refers to the ¢ member of the lower central series of G, given as follows: 7,(G) = G,
Y2(G) = G, and vi11(G) = [G,7:(G)].

e Z¢(G) refers to the ¢ member of the upper central series of G, given as follows: Z°(G) is the trivial
subgroup, Z1(G) = Z(G), and Z7(G)/Z1(G) = Z(G/Z (@) for i > 1.

e G denotes the i*" member of the derived series of G, given by G0 = G, GV = G, and GUtD =
(GO, G0

e Inn(G) is the inner automorphism group of G. It is canonically isomorphic to the quotient group
G/Z(G), and we will often abuse notation by treating Inn(G) as set-theoretically identical with
G/Z(G).

o Aut(G) is the automorphism group of G. We treat Inn(G) naturally as a subgroup of Aut(G). In
fact, Inn(G) is a normal subgroup of Aut(G).

e End(G) is the endomorphism monoid of G, i.e., the set of endomorphisms of G with the monoid

structure given by composition.

0.3. Lie ring and subring notation. Let L be a Lie ring, i.e., a Lie algebra over Z, the ring of integers.

We will use the following notation throughout this document.
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e We will use 0 to denote the zero subring of L. Note that 0 is used to describe both the abstract zero
Lie ring and the zero subring in every Lie ring.

e We will also use 0 to denote the zero element of L.

e M < L will be understood to mean that M is a Lie subring of L. This means that it is an additive
subgroup of L and is closed under the Lie bracket.

e Z(L) denotes the center of L, i.e., the subring of L comprising those elements whose Lie bracket
with any element of L is zero.

e [’ and [L, L] both refer to the derived subring of L.

e 7.(L) refers to the ¢'* member of the lower central series of L, given as follows: 71 (L) = L, y2(L) = L',
and yi41(L) = [L, % (L)]-

o Z¢(L) refers to the c* member of the upper central series of L, given as follows: Z°(L) is the trivial
subring, Z1(L) = Z(L), and Z**Y(L)/Z*(L) = Z(L/Z'(L)) for i > 1.

e L denotes the i*" member of the derived series of L, given by L(®) = L, L(Y) = [/, and LG+ =
[L®), LO)].

e Inn(L) is the Lie ring of inner derivations of L. It is canonically isomorphic to the quotient Lie
ring L/Z(L), and we will often abuse notation by treating Inn(L) as set-theoretically identical with
L/Z(L).

e Der(L) is the Lie ring of all derivations of L. We treat Inn(L) naturally as a Lie subring of Der(L).
In fact, Inn(L) is an ideal in Der(L).

e Aut(L) is the automorphism group of L.

e End(L) is the endomorphism monoid of L considered as a Lie ring. Note that this is not necessarily
closed under addition.

e Endy(L) is the endomorphism ring of the underlying additive group of L. To avoid confusion, we
will explicitly specify that we are looking at all additive group endomorphisms whenever we use this

notation.

0.4. Other conventions. We will adopt these conventions:

e As a general rule, when dealing with homomorphisms and other similar functions, we will apply
functions on the left, in keeping with the convention used in most mathematics texts. Thus, f o g is
to be interpreted as saying that the function g is applied first and the function f is applied later.

e For the action of a group on itself, we denote by 9x the action of g by conjugation on = as a left
action, i.e., grg~—'. We denote by 9 the action of g by conjugation on z as a right action, i.e., g~ 'zg.
When stating results whose formulation is sensitive to whether we use the left-action convention or
the right-action convention, we will explicitly state the result using both conventions.

e If using the left-action convention, the group commutator [z, y] is defined as zyx~1y~!. If using the

right-action convention, the group commutator [x,y] is defined as z =1y~ lay.

1. INTRODUCTION

1.1. The difference in tractability between groups and abelian groups. The structure theorem for
finitely generated abelian groups, which in turn leads to a classification of all finite abelian groups, shows that
the structure of abelian groups is fairly easy to understand and control. On the other hand, the structure of
groups in general is wild. Even classifying finite groups is extremely difficult.
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The difficulty is two-fold. On the one hand, the finite simple groups (which can be thought of as the
building blocks of finite groups) have required a lot of effort to classify. While the original classification was
believed to have been completed around 1980, some holes in parts of the proof were discovered later and it
is believed that these holes were fixed only around 2004. The only finite simple abelian groups are the cyclic
groups of order p. However, there are 17 infinite families and 26 sporadic groups among the finite simple
non-abelian groups. For a quick background on the classification, see [2].

At the other extreme from finite simple groups are the finite p-groups. It is well known that any finite
group of order p™ (for a prime p and natural number n) must be a nilpotent group and therefore it has
n composition factors that are all cyclic groups of order p. In other words, there is no mystery about the
building blocks of these groups. Despite this, the multiplicity of ways of putting the building blocks together
makes it very difficult to obtain a concise description of all the groups of order p™. The general consensus
among people who have studied p-groups is that it is futile to even attempt to obtain a concise description of
all the isomorphism types of groups of order p™, and that it is likely that no such description exists. Rather,
the goal of the study of p-groups is to identify methods that enable us to better understand the totality
of p-groups, including aspects that are common to all of them and aspects that differentiate some p-groups
from others. For a description of the state of knowledge regarding p-groups, see [30]ﬂ

This thesis is focused on one small part of the study of finite p-groups.

1.2. Nilpotent groups and their relation with abelian groups. A group is termed nilpotent if it has a
central series of finite length. Nilpotent groups are considerably more diverse in nature than abelian groups,
and as alluded to in the preceding section, even the finite nilpotent groups are difficult to classify.

A group is termed solvable if it has a normal series where all the quotient groups are abelian groups.
Solvable groups are considerably more diverse than nilpotent groups.

Generally, statements that are true for abelian groups fall into one of these four classes:

(1) The statement does not generalize much further from abelian groups
(2) The statement generalizes all the way to nilpotent groups but not much further
(3) The statement generalizes all the way to solvable groups but not much further

(4) The statement generalizes to all groups, or to a fairly large class of groups

It might be worthwhile to attempt to understand why the properties of being nilpotent and being solvable
differ qualitatively, and why the former is far closer to being abelian than the latter. In an abelian group, the
commutativity relation holds precisely: ab = ba for all @ and b in the group. In general, ab and ba “differ”
by a commutator, i.e., ab = [a, blba if we use the left action convention for commutators.

When we consider expressions in a group and try to rearrange the terms of the expression, the process
of rearrangement introduces commutators. These commutators themselves need to be moved past existing
terms, which introduces commutators between the commutators and existing terms. In a nilpotent group,
we eventually reach a stage where the iterated commutators that we obtain are central, and therefore can
be freely moved past existing terms. In a solvable group, such a stage may never arise.

An alternative perspective is that of iterative algorithms, a common class of algorithms found in numerical
analysis and other parts of mathematics. An iterative algorithm attempts to find a solution to a problem
by guessing an initial solution and iteratively refining the guess by identifying and correcting the error in
the initial solution. There are many iterative algorithms that are guaranteed to terminate only for nilpotent
groups, and where the number of steps in which the algorithm is guaranteed to terminate is bounded by

5A1though the article was published in 1999, progress has been modest since then.
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the nilpotency class of the group. These algorithms work in a single step for abelian groups, because
commutativity allows for the necessary manipulations to happen immediately. For non-abelian nilpotent
groups, the algorithms work by gradually refining guesses modulo members of a suitable central series (such

as the upper central series or lower central series).

1.3. The Lie correspondence: general remarks. The non-abelianness of groups makes it comparatively
difficult to keep track of group elements and to study the groups. It would be very helpful to come up with
an alternate description of the structure of a group that replaces the (noncommutative) group multiplica-
tion with a commutative group multiplication, and stores the noncommutativity in the form of a separate
operation. A Lie ring (defined in the Appendix, Section is an example of such a structure.

For readers familiar with the concept of Lie algebras over R or C, note that the definition of Lie ring is
similar, except that the underlying additive group is just an abelian group (rather than being a R-vector
space or C-vector space) and the Lie bracket is just Z-bilinear rather than being R-bilinear or C-bilinear. In
particular, any Lie algebra over R or C is a Lie ring, but not every Lie ring is a Lie algebra over R or C, and
even if it is, there may be multiple ways of giving it such a Lie algebra structure.

The Lie correspondence is an important correspondence in the theory of real Lie groups. For an elementary
exposition of this correspondence, see [42]. We recall here some of the key features of the correspondence.

To any finite-dimensional real Lie group, we can functorially associate a R-Lie algebra called the Lie
algebra of the Lie group. The underlying vector space of the Lie algebra is the tangent space at the identity
to the Lie group, or equivalently, the space of left-invariant vector fields, and the Lie bracket is defined using
the Lie bracket of vector fields. Note that the Lie algebra of a Lie group depends only on the connected
component of the identity.

Additionally, there exists a map, called the exponential map, from the Lie algebra to the Lie group. This
map need not be bijective globally, but it must be bijective in a small neighborhood of the identity. The
inverse of the map, again defined in a small neighborhood of the identity, is the logarithm map. Note that
the exponential map is globally defined, but the logarithm map is defined only locally.

The association is not quite a correspondence. The problem is that different Lie groups could give rise to
isomorphic Lie algebras. However, if we restrict attention to connected simply connected Lie groups, then the
association becomes a correspondence, and we can construct a functor in the reverse direction. Explicitly,

the Lie correspondence is the following correspondence, functorial in both directions:

Connected simply connected finite-dimensional real Lie groups « Finite-dimensional real Lie algebras

1.4. The Lie algebra for the general linear group. Denote by GL(n,R) the general linear group of
degree n over the field of real numbers, i.e., the group of all invertible n X n matrices with real entries.
Denote by gl(n,R) the “general linear Lie algebra” of degree n over R. Explicitly, gl(n,R) is the vector space
of all n x n matrices over R, and the Lie bracket is defined as [z,y] := xy — yz.

gl(n,R) is the Lie algebra of GL(n,R). The exponential and logarithm maps in this case are the usual

matrix exponential and matrix logarithm maps. The exponential map:

exp : gl(n,R) — GL(n,R)

is defined as:
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The matrix exponential is defined for all matrices. However, the exponential map is neither injective nor
surjective:

e The exponential map is not surjective for any n. For n = 1, this is because the exponential of any
real number is a positive real number. A similar observation holds for larger n, once we observe that
the image of the exponential map is inside GL*(n,R), the subgroup of GL(n,R) comprising the
matrices of positive determinant. However, for n > 1, the exponential map is not surjective even to

GL*(n,R). For instance, the following matrix is not the exponential of any matrix with real entries:

-1 1
0 -1
e The exponential map is not injective for n > 1. For instance, for any positive integer m, the following

matrix has exponential equal to the identity matrix:

0 1
—4m?7? 0

Nonetheless, we can find an open neighborhood U of the zero matrix in gl(n,R) and an open neighbor-
hood V of the identity matrix in GL(n,R) such that the exponential map is bijective (and in fact, is a
homeomorphism) from U to V.

Note that GL(n,R) is not a connected simply connected Lie group, so the above is not an instance of the

Lie correspondence.

1.5. The nilpotent case of the Lie correspondence. The example of gl(n,R) and GL(n,R) illustrates
that the exponential map does not always behave nicely. However, it turns out that the exponential map
behaves much better when we apply the Lie correspondence in the nilpotent case. Explicitly, the nilpotent

case of the Lie correspondence is a correspondence:

Connected simply connected finite-dimensional nilpotent real Lie groups < Finite-dimensional nilpotent

real Lie algebras

In the nilpotent case, it will turn out that the exponential map is bijective, and in fact, it defines a
homeomorphism from the Lie algebra to the Lie group. Thus, we can define its inverse, the logarithm map,
globally.

We now turn to an example.

1.6. The example of the unitriangular matrix group. A special case of interest for us is the corre-
spondence between the Lie ring NT'(n,R) of n x n strictly upper triangular matrices over R and the group
UT(n,R) of n x n upper triangular matrices over R with all the diagonal entries equal to 1. This corre-
spondence gives a bijection between the underlying sets of NT(n,R) and UT'(n,R) via the exponential map.

Explicitly, the matrix exponential defines a bijective set map:

exp: NT(n,R) — UT(n,R)

given explicitly as:
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Note that this coincides with the usual matrix exponential because ™ = 0 and all higher powers of x are

exp(z) =€ =1+z+

therefore also zero. In other words, this exponential map is the restriction to NT'(n,R) of the exponential

map described in the preceding section:

exp : gl(n,R) — GL(n,R)
However, unlike the case of GL(n,R), the exponential map from NT'(n,R) to UT(n,R) is bijective, and
in fact, is a homeomorphism. Topologically, both NT'(n,R) and UT (n,R) are homemorphic (i.e., isomorphic
in the category of topological spaces) to the vector space R().

The inverse set map is the matrix logarithm, now defined globally:

log : UT(n,R) — NT(n,R)

given explicitly as:

T — 2 T — 3 —1)"(x — n—1
log:c::(x—l)—( 21) +( 31> —~-~+( 1)7(1711)

1.7. The Malcev correspondence and Lazard correspondence. The Malcev correspondence is a gen-
eralization of the nilpotent case of the Lie correspondence that applies to algebras over the field of rational

numbers. Explicitly, the correspondence is:
Rationally powered nilpotent groups < Nilpotent Q-Lie algebras

We will define “rationally powered” in Section but a quick definition for our purpose is that every
element has a unique n*" root for every positive integer n. The Malcev correspondence is a purely algebraic
correspondence that does not deal with topological structure. Note that any R-Lie algebra is a Q-Lie algebra
as well. It turns out that for any nilpotent R-Lie algebra, the Lie correspondence coincides with the Malcev
correspondence. Thus, for instance, under the Malcev correspondence, the group associated with NT'(n,R)
is UT(n,R).

The Malcev correspondence has a slight further generalization called the Lazard correspondence, intro-
duced by Lazard in [28]. The Lazard correspondence relaxes the assumption of being “rationally powered”
and replaces it with the assumption that unique division by specific primes (namely, primes that are less
than or equal to the nilpotency class) is possible.

If we use the Lazard correspondence in the direction from groups to Lie rings, then it allows us to convert
(a suitable type of) abstract nilpotent group to a nilpotent Lie ring. The addition operation of the Lie ring
captures the abelian part of the group multiplication, whereas the Lie bracket captures the non-abelian part
of the group multiplication.

Unfortunately, the Lazard correspondence applies only to some nilpotent groups and some nilpotent Lie
rings. Specifically, for finite p-groups, it only works for finite p-groups where any subset of size three generates
a subgroup of nilpotency class at most p — 1. For the bulk of this document, we will restrict our attention to
the case of small global class, i.e., the subcorrespondence that applies to finite p-groups of nilpotency class
at most p — 1.

This means that groups that have higher nilpotency class (a way of saying that the groups are relatively

more non-abelian) cannot be studied directly using the Lazard correspondence.
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We will describe the Malcev correspondence and the Lazard correspondence in detail in Sections
and For a textbook-style presentation of the correspondence, see Khukhro’s book [27], Chapters 9 and
10.

1.8. Our generalization of the Lazard correspondence. The goal of this document is to describe a
generalization of the Lazard correspondence that works for all p-groups of nilpotency class at most p. In
other words, it allows us to generalize the Lazard correspondence to a slightly bigger collection of groups.
The limitation of this generalization is that the correspondence only works between equivalence classes of
groups and equivalence classes of Lie rings, with each equivalence class containing multiple isomorphism
types. The equivalence relation of interest here is the equivalence relation of isoclinism. Informally, two
groups are isoclinic if their commutator maps are equivalent, and two Lie rings are isoclinic if their Lie

bracket maps are equivalent.

1.9. Similarities and differences between groups and Lie rings. The theories of groups and Lie rings
are structurally similar. For many concepts related to groups, there are analogously defined concepts for Lie
rings. In most cases, the analogous definition suggests itself naturally. Often, even the proofs are similar. In
some cases, proofs are easier for Lie rings than for groups, primarily because the Lie bracket is bilinear.

There are some concepts that make sense only on the group side, and some concepts that make sense only
on the Lie ring side. Similarly, there are some facts that are true only on the group side, and some facts
that are true only on the Lie ring side.

The closer we are to abelianness, the more structurally similar the theory for groups is to the theory for
Lie rings. In many cases, a fact is true for nilpotent Lie rings if and only if the “analogous” fact is true for
nilpotent groups. There are many facts that are true in general for Lie rings and are not true in general for
groups, but they are true for nilpotent groups.

In addition to structural similarity, we will also see some instances of bijective correspondences between
certain types of groups and certain types of Lie rings (including the Lie correspondence and the Lazard
correspondence). It will turn out that analogous concepts become bijectively correspondent under these
correspondences. For instance, normal subgroups of groups are analogous to ideals in Lie rings. The Lazard
correspondence between groups and Lie rings establishes a bijective correspondence between (certain kinds

of) normal subgroups of the group and (certain kinds of) ideals of the Lie ring.

1.10. Our central tool: Schur multipliers. Our goal is to extend the domain of the Lazard correspon-
dence by relaxing its strictness (from a correspondence up to isomorphism to a correspondence up to isoclin-
ism). In particular, we are interested in extending the Lazard correspondence to nilpotency class one higher
than where it applies. Thus, the groups (respectively, Lie rings) of interest to us arise as central extensions
where the quotient group (respectively, quotient Lie ring) is in the domain of the Lazard correspondence.
Rather than directly trying to study the groups and Lie rings, we study the theory of central extensions
for groups and Lie rings. We first develop the general theory of such central extensions. Then, we apply that
general theory to the case where the quotient group (respectively quotient Lie ring) of the central extension
lies in the domain of the Lazard correspondence. In the edge case of interest where the group is in the
domain of the Lazard correspondence but its central extensions are “just outside” the domain, we can obtain
new insights. For instance, if G is a p-group of nilpotency class exactly p — 1, it is a Lazard Lie group. The
central extensions with quotient group G are p-groups of nilpotency class either p — 1 or p. The latter may

lie outside the domain of the Lazard correspondence.
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On both the group side and the Lie ring side, the theory of central extensions is governed by an abelian
group called the Schur multiplier. There is a rich theory behind the Schur multiplier, and it connects with
important ideas from algebraic topology and homological algebra. We will explore the necessary facets
of this theory. Eventually, we will prove (in Theorem that if a Lie ring and a group are in Lazard
correspondence, then their Schur multipliers are isomorphic. A version of the statement for finite p-groups
appeared as a conjecture in the paper [I2] by Eick, Horn, and Zandi in September 2012, stated informally
after Theorem 2 of the paperﬁ Once the Schur multipliers are established to be isomorphic, it is easy to

establish the Lazard correspondence up to isoclinism.

1.11. Globally and locally nilpotent. The numbers 2 and 3 are particularly significant in the context of
the axiomatization of groups and Lie rings, and they also play an important role in the Lazard correspon-
dence. 2 is the maximum of the aritieeﬂ of the operations used in the definition of groups. In particular, this
means that if a function between groups restricts to a homomorphism on every subgroup generated by at
most 2 elements, then the function is globally a homomorphism.

3 is the maximum of the number of variables that appear in the identities that define a group. In
particular, this means that if an algebra has the same signature as a group (i.e., a 0-ary operation for the
identity, a unary operation for the inverse map, and a binary operation for the group multiplication), and
every subalgebra of the algebra generated by at most 3 elements is a group, then the algebra is globally a
group.

The same is true for Lie rings: the maximum of the arities of the operations is 2, and the maximum of
the number of terms that appear in the defining identities is 3. Thus, any function between Lie rings that
restricts to a homomorphism on subrings generated by sets of size at most 2 is globally a homomorphism.
Further, given an algebra with the same signature as a Lie ring, such that every subalgebra generated by at
most 3 elements becomes a Lie ring with the induced operations, the algebra as a whole is a Lie ring.

The formulas used in the Lazard correspondence describe the group operations in terms of the Lie ring
operations, and conversely describe the Lie ring operations in terms of the group operations. The formulas
themselves refer to a maximum of two elements at a time. However, the verification that these formulas
work (i.e., that starting from a Lie ring, we end up with a group, or that starting from a group, we end
up with a Lie ring) relies on looking at three elements at a time. For instance, to verify that a formula
describing group operations in terms of Lie ring operations does indeed define a group structure, we need to
verify the associativity identity for three arbitrary elements. Similarly, to verify that a formula describing
Lie ring operations in terms of group operations does indeed define a Lie ring structure, we need to verify the
associativity of addition, bilinearity, and Jacobi identity for the Lie ring operations. Each of these identities
requires considering three arbitrary elements at a time.

Thus, the conditions that we work out on groups (respectively, Lie rings) pertaining to the Lazard corre-
spondence are 3-local conditions: they are conditions on what subgroups (respectively, Lie subrings) gener-

ated by subsets of size at most three look like.

6The authors write: “Based on various example computations, see also [7], we believe that Theorems 1 and 2 also hold for finite
p-groups of class p — 1. However, our proofs do not extend to this case.” The reference [7] alluded to by the authors has not
yet been published or made available online. For a more detailed discussion, see Section

"The arity of an operation is the number of inputs it takes. For instance, group multiplication has arity 2. Arity is discussed
in more detail in the Appendix, Section @
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1.12. The structure of this document. The document is quite long despite the fact that the eventual
proofs are relatively short and simple. The reason is that the existing literature we draw upon is fragmented.

We draw on literature with these five broad themes:

e Isoclinism and homoclinism.

e Schur multiplier and the relation with group extension theory.
e Exterior square and its generalizations.

e The Lazard correspondence.

e The behavior of groups and Lie rings where we can divide by specific primes.

Each of these themes has a well-developed body of literature. However, the connections between these
ideas are not emphasized in the literature, and it often requires a careful reading to glean them. Thus, it
would not be sufficient to simply cite the relevant literature. We use the next few sections to develop all the
necessary background material in preparation for our results.

Our presentation will follow these features:

e For the foundational sections, we will systematically alternate sections between groups and Lie rings.
A section about groups will develop a concept or construct in the context of groups. The next section
about Lie rings will develop the analogous concept or construct in the context of Lie rings. To the
extent possible, we will follow parallel modes of presentation in the two sections. Differences between
the sections will be noted at the beginnings of the relevant sections.

e For the foundational sections, we will often begin by discussing a concept in the context of groups
or Lie rings in the abstract, and then discuss an analogous concept in the context of extensions of
groups or Lie rings. This will be done somewhat in reverse in the later sections, where we sometimes
prove a result in the context of extensions (of groups or Lie rings) and then apply that to prove the
result in the context of groups or Lie rings. This will be our modus operandi for the crucial proofs.

e Our key results involve generalizing certain correspondences (the Baer correspondence and Lazard
correspondence) to a larger domain, but with a coarser equivalence relation (of isoclinism). For each
correspondence that we generalize, we first explicitly describe the known correspondence and its key

attributes (in one or more sections), and then describe our generalization.

1.13. For a quick reading. For readers who wish to understand the main results without delving into

background concepts in unnecessary depth, the following reading sequence will work:

(1) Chapter 1 (Introduction, outline, and preliminaries):

e Section [2] contains the outline of our main proof techniques. It is worth reading in its entirety.

e Section [3| (The abelian Lie correspondence): The contents of this section are straightforward,
but it is worth reading because the methods used in this section form a template for later, more
complicated, correspondences.

(2) Chapter 2 (Isoclinism and homoclinism: basic theory):

e Section [4] (Isoclinism and homoclinism of groups): It suffices to read Sections [4.1]- and the
statements of the theorems in Section Readers already familiar with the definitions can
skip this section and return if needed.

e Section [5| (Isoclinism and homoclinism of Lie rings): It suffices to read Section Readers

already familiar with the definitions can skip this section and return if needed. Readers who
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thoroughly understand the general analogy between groups and Lie rings can extrapolate the

definitions and results of this section from the preceding one, and hence may skip this section.

(3) Chapter 3 (Extension theory):

Section |§| (Short exact sequences of groups): Readers already familiar with the basics of short
exact sequences and central extensions can read Sections and

Section [7] (Short exact sequences and central extensions of Lie rings): Readers who understood
the preceding section (Section @, and understand how the analogy between groups and Lie
rings works, can skip this section.

Section [§| (Explicit description of second cohomology group): This section can be skipped
without loss of continuity. The material in this section helps with understanding Section 24.9]
However, the latter can also be skipped without loss of continuity.

Section@ (Exterior square, Schur multiplier, and homoclinism): This section is important to un-
derstand because it lays the foundation for later material, and the presentation is non-standard.
Readers may skip proofs, many of which are tedious, and focus on the statements of the results.
Section (Exterior square, Schur multiplier, and homoclinism for Lie rings): Apart from
Section this section is mostly analogous to the preceding section. Hence, the rest of the
section can be skipped.

Section [[I} This section is important to understand because it lays the foundation for later
material, and the presentation is non-standard. Readers may skip proofs, many of which are
tedious, and focus on the statements of the results.

Section This section may be skipped by readers who have a thorough understanding of the
preceding section and understand how the analogy between groups and Lie rings works.
Sections [13| and [14] (Exterior and tensor products for groups and Lie rings respectively): These
sections can be skipped without loss of continuity, and interested readers can refer back to the
explicit descriptions as needed later.

Sections [T5] and These are worth skimming for their main results.

(4) Chapter 4 (Powering over sets of primes):

Section (Groups powered over sets of primes): Readers would benefit by reading the part
of Section [I7] up to and including Section [I7.5] in order to familiarize themselves with the
definitions. Some of the results presented in the rest of the section are useful, but they can be
revisited as necessary.

Section [1§| (Lie rings powered over sets of primes): It suffices to read Section m

Section [19] (Free powered groups and powering functors): The results in Sections and
are the most important. The rest of the section may be skimmed.

Section (Free powered Lie rings and powering functors): The results here are analogous to
the preceding section, though the proofs are more straightforward. The section can be skipped

and returned to as needed.

(5) Chapter 5 (Baer correspondence):

Sections [21] and [22| (Baer correspondence): It suffices to read Sections [21.1 and Section
[22:4] However, readers may benefit from skimming both sections in their entirety in order to
get a better sense.

Section 23] may be skipped without loss of continuity.
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e Section (Baer correspondence up to isoclinism): Reading the whole section is strongly rec-
ommended, but readers may skip Section without loss of continuity.

e Section 25| contains interesting examples worth reading but may be skipped without loss of
continuity.

(6) Chapter 6 (The Malcev and Lazard correspondences):

° Sectionsand (adjoint groups, exponential and logarithm maps, and free nilpotent groups):
These sections may be skimmed without reading the proofs. They provide technical background
for Section 28

e Section (Baker-Campbell-Hausdorff formula): This section should be read in its entirety.
Readers may benefit from concentrating on the statements of the theorems and skimming the
proofs.

e Section This section is partly analogous to Section so aside from the introduction, it
may be skimmed.

e Sections and (Malcev correspondence, global Lazard correspondence, and Lazard
correspondence): These sections are worth reading, though people familiar with the correspon-
dences may skim them.

(7) Chapter 7 (Generalizing the Lazard correspondence to a correspondence up to isoclinism):

Section [33]| (Group commutator and Lie bracket in terms of each other) is important.
Section [34] may be skimmed.

The theorems in Section [35|are important as stepping stones for the main results. However, the

proofs are unilluminative and may be skipped.

The results in Sections [36] and [37] are important, but the proofs may again be skipped.

Sections and are extremely important and should be read carefully, though the proofs

may be skimmed.

(8) Chapter 8 (Applications and possible extensions): Sections 40| and [41{ may be of interest to readers
who want to understand potential applications.

(9) Readers may refer to the sections in the Appendix based on their level of interest. Sections

and [C] cover technical background at the advanced undergraduate or beginning graduate level that

is useful for understanding the main results of the thesis. Section [E] covers a general theory that is

helpful for understanding potential generalizations of the results presented here.

2. OUTLINE OF OUR MAIN RESULTS

This section provides an overview of our main results and the strategy we will use to prove these results.
Some of the technical details in this section may be accessible only to people with a strong background in
group theory and some prior familiarity with the Lazard correspondence. However, all readers should be

able to understand the ideas at a broad level.

2.1. The Lazard correspondence: a rapid review. The Lazard correspondence is a correspondence
between certain kinds of groups and certain kinds of Lie rings. The groups, called Lazard Lie groups, satisfy
a condition relating the set of primes over which they are powered and the nilpotency class of subgroups
generated by subsets of size at most three. The Lie rings, called Lazard Lie rings, satisfy a similar condition
relating the set of primes over which they are powered and the nilpotency class of Lie subrings generated

by subsets of size at most three. The precise definition of the Lazard correspondence is in Section A
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somewhat easier case of the correspondence, called the global Lazard correspondence, is described in Section
The global Lazard correspondence imposes a restriction on the nilpotency class of the whole group and
of the whole Lie ring. It is more narrow than the Lazard correspondence but easier to deal with.

For a Lie ring L, the corresponding group, exp(L), has the same underlying set as L, and the group
operations are defined in terms of the Lie ring operations based on fixed formulas. Explicitly, the group
multiplication is defined in terms of the Lie ring operations using the Baker-Campbell-Hausdorff formula.
The Baker-Campbell-Hausdorff formula is described in detail in Section [28] Technically, the formula is
different for different values of the (3-local) nilpotency class, but we can use a single infinite series whose
truncations give all the formulas.

For a group G, the corresponding Lie ring, denoted log(G), has the same underlying set as G, and the Lie
ring operations are defined in terms of the group operations based on fixed formulas called the inverse Baker-
Campbell-Hausdorff formulas (one formula describing the Lie ring addition and another formula describing
the Lie bracket in terms of the group operations). The inverse Baker-Campbell-Hausdorfl formulas are
described in Section

exp and log define functors between appropriately defined subcategories of the category of groups and
the category of Lie rings, and the functors are two-sided inverses of each other. Thus, they establish an
isomorphism of categories over the category of setﬂ between the relevant subcategories of the category of

groups and the category of Lie rings.

2.2. Isoclinism: a rapid review. An isoclinism of groups is a pair of group isomorphisms, one between
their inner automorphism groups and the other between their derived subgroups, that are compatible with
the commutator map. Intuitively, we can think of an isoclinism of groups as an equivalence between the
commutator structures of the two groups. We will define and discuss isoclinisms in Section [4]

There is a similar notion of isoclinism of Lie rings (that uses the inner derivation Lie ring, the derived
subring, and the Lie bracket) that we will define and discuss in Section Intuitively, we can think of an
isoclinism of Lie rings as an equivalence between the Lie bracket structures of the Lie rings.

We can use isoclinism of groups to define an equivalence relation on the collection of groups. Analogously,

we can use isoclinism of Lie rings to define an equivalence relation on the collection of Lie rings.

2.3. The Lazard correspondence up to isoclinism. The Lazard correspondence up to isoclinism com-
bines the idea of the Lazard correspondence and the idea of isoclinism. For a Lie ring L and a group G, a

Lazard correspondence up to isoclinism includes two pieces of data satisfying a compatibility condition:

e A Lazard correspondence up to isomorphism between Inn(L) and Inn(G). This can be viewed as an
isomorphism of groups between exp(Inn(L)) and Inn(G) or as an isomorphism of Lie rings between
Inn(L) and log(Inn(Q)).

e A Lazard correspondence up to isomorphism between L’ and G’. This can be viewed as an iso-
morphism of groups between exp(L’) and G’ or as an isomorphism of Lie rings between L’ and
log(G").

The compatibility condition is tricky to specify. Naively, we might expect that the compatibility condition
would say that the isomorphism converts the Lie bracket map Inn(L) x Inn(L) — L’ to the commutator map
Inn(G) x Inn(G) — G'. The problem with this naive specification is that even with the ordinary Lazard

correspondence, the Lie bracket of the Lie ring does not coincide with the commutator of the group. They

8This means an isomorphism of categories that preserves the underlying set
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do coincide when the class is at most two, and we discuss this special case, the Baer correspondence up to
isoclinism, in Section

To handle higher class, we need to first derive a formula valid for the usual Lazard correspondence that
expresses the Lie bracket in terms of the commutator, and in the reverse direction, we need to derive a formula
valid for the usual Lazard correspondence that expresses the commutator in terms of the Lie bracket. The
compatibility condition we impose will make use of these formulas. The formulas themselves are described

in Section [33] The compatibility condition based on these formulas is described in detail in Section [39]

2.4. The existence question. Defining the Lazard correspondence up to isoclinism is relatively easy. The
harder part is establishing sufficient conditions for the existence of objects on the other side, i.e., establishing
sufficient conditions for the existence of groups that are in Lazard correspondence up to isoclinism with a given
Lie ring, and establishing sufficient conditions for the existence of Lie rings that are in Lazard correspondence
up to isoclinism with a given group.

The results that we would like to aim for are:

e For a Lie ring L, if both Inn(L) and L’ are Lazard Lie rings, then we can find a group G such that
L is in Lazard correspondence up to isoclinism with G.
e For a group G, if both Inn(G) and G’ are Lazard Lie groups, then we can find a Lie ring L such that

L is in Lazard correspondence up to isoclinism with G.

Unfortunately, the proofs of these statements at a general level require more machinery than we can
manage in this thesis. We therefore restrict our proofs here to the case of the global Lazard correspondence.
The precise statements of the results we will prove are in Section Essentially, we restrict attention to
groups that satisfy global assumptions on the set of primes over which they powered, and for which the inner
automorphism group and derived subgroup are both in the domain of the global Lazard correspondence.

The strategy that we use to demonstrate these facts is somewhat roundabout. Instead of trying to answer
the question directly, we try to answer the question in the more general context of central extensions of
groups and Lie rings. We will then apply the results that we obtain to the central extensions with short

exact sequences:

0-2ZG) —-G—-G/Z(G)—1

and

0—Z(L)—L—L/Z(L)—0

We outline below the argument in the direction from Lie rings to groups.

We begin by viewing L as an extension with central subring Z(L) and quotient ring L/Z(L) = Inn(L).
We obtain the corresponding Lie bracket map Inn(L) x Inn(L) — L’. We then obtain a desired commutator
map exp(Inn(L)) x exp(Inn(L)) — exp(L’) by using the formula describing the commutator map in terms
of the Lie bracket map. Finally, we demonstrate the existence of a group G that realizes this commutator

map.

2.5. The realization of isoclinism types. We will show that equivalence classes of groups up to isoclinism
can be described by storing the commutator structure in an abstract fashion, without reference to an actual

group in that equivalence class.
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This will be useful to the final step of our proof of existence established above: instead of directly trying
to construct the groups in the equivalence class up to isoclinism, we construct the commutator structure. In
the notation above, we construct the desired commutator map exp(Inn(L)) x exp(Inn(L)) — exp(L’).

Below, we provide a few more details about how we store the commutator structure abstractly. This
discussion may be accessible only to people familiar either with group cohomology or with some other type
of cohomology theory that is structurally similar. Note also that the group G that we use here is not the
same as the group G used in Section [2:4] In fact, to apply what we discuss below to Section [2:4] we would
need to set the group A below to exp(Z(L)) and set the group G below to exp(L/Z(L)).

Technical details: In Sections[9]and [I1] we will show that we can classify central extensions up to isoclinism
using a homomorphism from the Schur multiplier. Explicitly, when considering central extensions with
central subgroup A and quotient group G, we can determine the type of the extension up to isoclinism by
considering the induced map M(G) — A where M (G) is the Schur multiplier of G. We will relate this to

the universal coefficient theorem short exact sequence described in Section [11.4

0 — Exty,(G*, A) — H?*(G; A) — Hom(M(G), A) — 0
The key aspect of the above short exact sequence that is relevant for the existence question is the surjec-

tivity of the map:

H?*(G; A) — Hom(M(G), A)
Thus, the homomorphism from M (G) to A describes the equivalence class of extensions up to isoclinism,

and every homomorphism from M (G) to A describes some eqiuvalence class of extensions.

For results in the opposite direction, we develop a similar theory for Lie rings.

2.6. Powering assumptions. One complication that arises in the discussion of the Lazard correspondence
and its generalizations is that the formulas involved require taking p** roots for some primes p. Thus, in
order to make sense of these expressions, we need to develop a basic theory of groups and Lie rings where

these operations make sense. We develop that basic theory in Sections|17|and [L9| (for groups) and in Sections

and [20] (for Lie rings).

2.7. Global Lazard correspondence preserves Schur multipliers. To complete the proof, we need to
demonstrate that the global Lazard correspondence behaves well with respect to the structures that we use
to classify extensions up to isoclinism. Explicitly, we need to show that if L = log(G) and G = exp(L), then
the Schur multipliers M (L) and M (G) are canonically isomorphic, and also that the exterior squares L A L
and G AG are in Lazard correspondence. We will demonstrate these facts in Sections |36| and [39| (specifically,
in Theorem . A version of the statement for finite p-groups appeared as a conjecture in the paper [12]
by Eick, Horn, and Zandi in September 2012, stated informally after Theorem 2 of the paper. Some technical
details of our proof idea follow.

Technical details: The key idea behind our proof is to express our group as a quotient group of a free
powered nilpotent group of class one more. Using a nilpotency class of one more allows us to use a variant of
the Hopf formula to calculate the Schur multiplier, as described in[I1.10| and We can perform a similar
construction on the Lie ring side. We now show that the groups used to compute the Schur multiplier of
the group are in Lazard correspondence with the Lie rings used to compute the Schur multiplier of the Lie

ring. The reason this is nontrivial is that the free nilpotent group and free nilpotent Lie ring of class one
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more need not themselves be in Lazard correspondence. We need to show that despite this, the groups that

we eventually use in the formula for computing the Schur multiplier are in Lazard correspondence.

3. THE ABELIAN LIE CORRESPONDENCE

This section describes an obvious and straightforward correspondence: the correspondence between
abelian groups and abelian Lie rings. An abelian Lie ring is a Lie ring that has trivial Lie bracket. Basic
definitions related to Lie rings can be found in the Appendix, Section

All assertions made here are trivial to prove. The purpose of this section is to set up a basic prototype

for the Lazard correspondence.

3.1. Abelian groups correspond to abelian Lie rings. We establish the abelian Lie correspondence:
Abelian groups < Abelian Lie rings
The correspondence works as follows.

e From groups to Lie rings: Given an abelian group G, the corresponding abelian Lie ring log G is
defined as the Lie ring whose underlying additive group coincides with G, and where the Lie bracket
is trivial.

e From Lie rings to groups: Given an abelian Lie ring L, the corresponding abelian group exp L is

defined as the underlying additive group of L.

Note that the symbols exp and log here are being used as abstract symbols. They do not describe
exponential and logarithm maps in the conventional sense of the term. The relationship with the usual
notions of exponential and logarithm will become clearer in subsequent sections leading up to the definition

of the Lazard correspondence.

3.2. Preservation of homomorphisms: viewing exp and log as functors. The following observations

follow immediately from the definitions:

e log defines a functor from abelian groups to abelian Lie rings: Suppose G and G5 are abelian groups
and ¢ : G; — (s is a group homomorphism. Then, there exists a unique Lie ring homomorphism
log(y) : log(G1) — log(G2) that has the same underlying set map as .

e exp defines a functor from abelian Lie rings to abelian groups: Suppose L; and Ly are abelian Lie
rings and ¢ : L1 — Lo is a Lie ring homomorphism. Then, there exists a unique group homomorphism
exp(yp) : exp(L1) — exp(Ls) that has the same underlying set map as .

e The log and exp functors are two-sided inverses of each other: This assertion has four parts:

— For every abelian group G, G = exp(log(Q)).
— For every abelian Lie ring L, L = log(exp(L)).
— For every group homomorphism ¢ : G; — G2 of abelian groups, exp(log(¢)) = ¢.
— For every Lie ring homomorphism ¢ : Ly — Lo of abelian Lie rings, log(exp(¢)) = ¢.
The upshot of these is that the category of abelian groups and the category of abelian Lie rings are

isomorphic categories, with the log and exp functors providing the isomorphisms.

3.3. Isomorphism over Set. Consider the following two categories:

e The category of abelian groups, with the forgetful functor to the category of sets that sends each

abelian group to its underlying set.
28



e The category of abelian Lie rings, with the forgetful functor to the category of sets that sends each

abelian Lie ring to its underlying set.

The correspondence we established above (in Sectionsand 3.2)) establishes an isomorphism of categories

over Set between the two categories. There are two parts to this statement:

e The correspondence establishes an isomorphism between the category of abelian groups and the
category of abelian Lie rings: The functor in the direction from groups to Lie rings is the log
functor. The functor in the direction from Lie rings to groups is the exp functor. The details are in
the preceding section (Section [3.2)).

e This isomorphism has the property that applying it and then applying the forgetful functor to the
category of sets gives the same result as directly applying the forgetful functor to the category of
sets. This is a category-theoretic way of saying that the abelian group and abelian Lie ring have the
same underlying set, and that the set maps that are group homomorphisms are precisely the same

as the set maps that are Lie ring homomorphisms.

3.4. Equality of endomorphism monoids and of automorphism groups. Suppose L is an abelian
Lie ring and G = exp(L), so that L = log(G). The functors exp and log are isomorphisms of categories,
hence they induce isomorphisms between the endomorphism monoids. Further, since these isomorphisms
of categories preserve the underlying set, the isomorphism between the endomorphism monoids sends each
Lie ring endomorphism to a corresponding group endomorphism that is the same as a set map. Explicitly,
the map exp : End(L) — End(G) is an isomorphism. Further, for ¢ € End(L), the corresponding map
exp(¢) € End(G) coincides with ¢ as a set map. The isomorphism induced by exp between the endomorphism
monoids End(L) and End(G) restricts to an isomorphism between the automorphism groups Aut(L) and

Aut(Q).

3.5. The correspondence up to isomorphism. We have so far considered the correspondence at the

level of individual groups and Lie rings:
Abelian groups < Abelian Lie rings

The correspondence defines an isomorphism of categories, and thus it descends to a correspondence

between equivalence classes up to isomorphism on both sides, giving a correspondence:
Isomorphism classes of abelian groups < Isomorphism classes of abelian Lie rings

Suppose L is an abelian Lie ring and G is an abelian group. Specifying an abelian Lie correspondence up

to isomorphism between L and G amounts to specifying one of the following two equivalent pieces of data:

e An isomorphism of groups from exp L to G.

e An isomorphism of Lie rings from log G to L.
A common convention used to provide this data is to provide one of these:

e A set map exp : L — G that, viewed as a set map from exp(L) to G, becomes a group isomorphism.

e A setmap log : G — L that, viewed as a set map from log(G) to L, becomes a Lie ring isomorphism.

In other words, we can specify the data in the form of one of these set maps:

exp: L — G,log: G — L

The set maps log and exp are two-sided inverses of each other.
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It will turn out, later, that actual exponential and logarithm maps, with the usual power series expansions,
occurring inside an associative ring, provide examples of an abelian Lie correspondence up to isomorphism.
In cases where we want to emphasize that we are talking of the abelian Lie correspondence and not the
abelian Lie correspondence up to isomorphism, we will talk of the strict abelian Lie correspondence. In this
section, our focus will be on the strict abelian Lie correspondence because that provides for an easier way

to formulate our statements.

3.6. Isomorphism of categories versus equivalence of categories. When discussing what it means
for two categories to be essentially the same, category theorists typically rely on a weaker notion than
isomorphism of categories. An equivalence of categories C and D and a pair of functors F : C — D and
G : D — C along with natural isomorphism € : F oG — Idp and n : G o F — Ide. Two categories C
and D are said to be equivalent if there exists an equivalence of categories between them. An alternative
characterization is that two categories C and D are equivalent if there exists a functor F : C — D such that
F is full, faithful, and essentially surjective. Here, essentially surjective means that for every object B € D,
there exists A € C such that F(A) is isomorphic to B.

The difference between the definitions of isomorphism of categories and equivalence of categories arises
from the distinction between a functor being bijective (in the sense that every object is in the image of the
functor and has a unique pre-image under the functor) and the functor being essentially surjective (in the
sense that every object is isomorphic to an object in the image of the functor). Equivalence of categories
is a more robust and useful notion because it is less sensitive to how strictly we define equality of objects.
Thus, even though the correspondences we define are isomorphisms of categories over the category of sets,
it will often be more helpful to think of them as equivalences of categories.

Note that any equivalence of categories establishes a bijective correspondence between isomorphism classes
of objects in the two categories (in this case, the two categories are respectively the category of abelian groups
and the category of abelian Lie rings). However, the equivalence of categories also includes additional data
that allows us to identify homomorphism sets on both sides (in this case, identify abelian group homomor-

phisms with abelian Lie ring homomorphisms).

3.7. Subgroups, quotients, and direct products. The collection of abelian groups is a subvariety of the
variety of groups (see the Appendix, Section for the definition of variety). There are three parts to this

assertion:

e Every subgroup of an abelian group is abelian.
e Every quotient group of an abelian group is abelian.

e A direct product of (finitely or infinitely many) abelian groups is abelian.

Similarly, the collection of abelian Lie rings is a subvariety of the variety of Lie rings. There are three

parts to this assertion:

e Every subring of an abelian Lie ring is abelian.
e Every quotient ring of an abelian Lie ring is abelian.

e A direct product of (finitely or infinitely many) abelian Lie rings is abelian.

A natural question is whether the abelian Lie correspondence behaves nicely with respect to taking
subalgebras (subgroups and subrings respectively), quotient algebras (quotient groups and quotient rings

respectively), and direct products. The answer is yes. Specifically, the following are true:
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e Subgroups correspond to subrings: Suppose an abelian Lie ring L is in abelian Lie correspondence
with an abelian group G, i.e., L = log(G) and G = exp(L). Then, for every subgroup H of G, log(H)
is a subring of L, and the inclusion map of log(H) in L is obtained by applying the log functor to the
inclusion map of H in G. In the opposite direction, for every subring M of L, exp(M) is a subgroup
of G, and the inclusion map of exp(M) in G is obtained by applying the exp functor to the inclusion

map of M in L. The abelian Lie correspondence thus gives rise to a correspondence:
Subgroups of G« Subrings of L

e Quotient groups correspond to quotient rings: Suppose an abelian Lie ring L is in abelian Lie cor-
respondence with an abelian group G. Then, for every normal subgroup H of Gﬂ log(G/H) is a
quotient Lie ring of L, and the quotient map L — log(G/H) is obtained by applying the log functor
to the quotient map G — G/H. In the opposite direction, for every ideal I of L, exp(L/I) is a
quotient group of G, and the quotient map G — exp(L/I) is obtained by applying the exp functor
to the quotient map L — L/I. The abelian Lie correspondence thus gives rise to correspondences:

Normal subgroups of G < Ideals of L
Quotient groups of G < Quotient rings of L

e Direct products correspond to direct products: Suppose I is an indexing set, and G;,7 € I is a
collection of abelian groups. For each i € I, let L; = log(G;). Then, the external direct product
;1 Gi- Moreover, the

projection maps from the direct product to the individual factors are in abelian Lie correspondence.

[I;c; Ls is in abelian Lie correspondence with the external direct product []

Also, the inclusion maps of each direct factor in the direct product are in abelian Lie correspondence.

3.8. Characteristic and fully invariant. Suppose an abelian group G is in abelian Lie correspondence
with an abelian Lie ring L. In Section we saw that G and L have the same automorphism group as
each other and the same endomorphism monoid as each other (where “same” here means that the actions
agree on the underlying set). In Section we saw that the abelian Lie correspondence induces a bijective
correspondence between subgroups of G and subrings of L. Combining these ideas, we obtain two additional

bijective correspondences:
Characteristic subgroups of G « Characteristic subrings of L
Fully invariant subgroups of G < Fully invariant subrings of L

Here, characteristic means invariant under all automorphisms and fully invariant means invariant under

all endomorphisms.

3.9. How the template will be reused. The steps that we have outlined above will be used to construct

and study a number of similar correspondences. The steps will be as follows:

e We will describe a way of writing group operations in terms of Lie ring operations and a way of
describing Lie ring operations in terms of group operations, such that the formulas used satisfy the
axioms for groups and Lie rings by definition, and such that the formulas are inverses of each other.

o We will then use this to construct a correspondence that defines an isomorphism over the category

of sets between a full subcategory of the category of groups and a full subcategory of the category

9Note that since G is abelian, every subgroup is normal. However, we deliberately state the result in this fashion so that
parallels with later generalizations are clearer.
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of Lie rings. We will use log to denote the functor from the group side to the Lie ring side, and exp
to denote the functor from the Lie ring side to the group side.

o We will deduce that if a group and Lie ring are in correspondence, then their endomorphism monoids
are naturally isomorphic, and their automorphism groups are naturally isomorphic.

e The correspondence can be weakened to a correspondence between isomorphism classes in the full
subcategories.

e An instance of the correspondence up to isomorphism between a group G and a Lie ring L can
be described by specifying the isomorphism from log(G) to L or by specifying the isomorphism
from exp(L) to G. We will describe the correspondence in terms of the set map log : G — L or,
equivalently, the set map exp : L — G.

e Of the results in Section [3.7] the results for the direct product generalizes for each correspondence
(note that this does not follow category-theoretically, but rather, it follows from the nature of the
correspondence). The results for the correspondence between subgroups and subrings and the corre-
spondence between quotient groups and quoitent rings generalize but only after we impose restrictions

on the types of subgroups, subrings, quotient groups, and quotient rings under consideration.

For brevity, we will not repeat these steps in every instance. Rather, our focus will be on the first step:

establishing that the formulas used make sense, satisfy the axioms, and are inverses of each other.

4. ISOCLINISM AND HOMOCLINISM FOR GROUPS

The goal of this section is to establish the basic theory of isoclinism and homoclinism for groups. In-
formally, a homoclinism of groups is a homomorphism between the commutator structures of the groups.
Informally, two groups are isoclinic if their commutator maps are equivalent. Isoclinism defines an equiva-
lence relation on the collection of groups. Under this equivalence relation, all abelian groups are equivalent
to the trivial group.

The original results that we present later (Section [24] and describe bijective correspondences between
certain equivalence classes of groups and certain equivalence classes of Lie rings. The equivalence classes of
groups are based on the equivalence relation of isoclinism.

Readers already familiar with the definitions of isoclinism and homoclinism may skip this section and
return to it later if needed. Readers who want the bare minimum necessary for later sections can read
Sections [4.1 and the statements of the theorems in Section The proofs of the theorems in Section
[4:6] can be skipped.

4.1. Isoclinism of groups: definition. The concept of isoclinism as introduced here was first defined in
1937 by Philip Hall in [21]. It was used by Philip Hall as an aid to the classification of finite groups of small
prime power order. Hall’s work was later extended by Marshall Hall and Senior, who published detailed
information on the groups of order 2", n < 6 in [20]. The basic definition and most of the elementary facts
stated here about isoclinism can be found on Page 93 of Suzuki’s group theory text [41].

For any group G, denote by Inn(G) the inner automorphism group of G, denote by G’ the derived subgroup
of G, and denote by Z(G) the center of G (this and related notation used in this document are described in
Section [0.2). Note that Inn(G) = G/Z(G).

For any group G, the commutator map in G descends to a map of sets:

wg : Inn(G) x Inn(G) — G’
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This map is well-defined because the commutator of two elements depends only on their cosets modulo
the center. Note that this map is only a set map at this stage, not a homomorphism. Later, in Section [9.1
we will introduce the concept of the exterior square of a group, and we will be able to interpret wg as a
homomorphism in that context.

Suppose now that G; and G5 are groups. The commutator maps in the groups define the following

respective maps:

wg, : Inn(G1) x Inn(G1) — G}

wg, : Inn(Gs) x Inn(Gs) — GY

An isoclinism from G to G3 is a pair of isomorphisms (, ¢) where ¢ is an isomorphism from Inn(G) to

Inn(G2) and ¢ is an isomorphism from G to G4, satisfying the condition that:

(1) ¥ o wa, :szo(CXC)

More explicitly, for any z,y € Inn(G1), we require that:

(2) p(wa, (7,y)) = wa, (C(x),((y))

In other words, taking the commutator and then applying the isomorphism of derived subgroups is equiv-
alent to applying the isomorphism between inner automorphism groups and then taking the commutator.

Pictorially, this can be represented as saying that the following diagram commutes:

Inn(G;) x Inn(Gy) ¢ Inn(G2) x Inn(G2)
@ |we
el 4 G
Note that both the inner automorphism group and the derived subgroup are quantitative measurements
of the “non-abelianness” of the group. The notion of isoclinism can thus properly be thought of as saying
“equivalent modulo the subvariety of abelian groups.” In particular, a group is abelian if and only if it is
isoclinic to the trivial group.
There is a precise way of formulating this using the more general notion of isologism, which we describe
in the Appendix, Section [E]

4.2. Homoclinism of groups. The notion of homoclinism of groups relates to isoclinism of groups in the
same way as homomorphism of groups relates to isomorphism of groups. We have not been able to confirm
the first use of the term, but a somewhat more general definition called n-homoclinism appears in [22].
We have chosen this presentation, despite its being non-standard, because it is a convenient framework for
understanding later results. Although the presentation is non-standard, none of the results in this or the
next few sections are substantively different from results available in the literature.

Suppose G1 and Gq are groups. A homoclinism of groups from G1 to G5 is a pair of homomorphisms (¢, )
where ¢ is a homomorphism from Inn(G;) to Inn(G2) and ¢ is a homomorphism from G} to G}, satisfying
Equation [1| (that can alternatively be stated as .

Pictorially, this can be represented as saying that the following diagram commutes:
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Inn(G1) x Inn(G1) et Inn(G3) x Inn(Gs)
lel lez
el e G
Note that this is the same as the diagram for isoclinisms. The only difference is that the horizontal maps

are no longer required to be bijective.

4.3. Composition of homoclinisms. Suppose G1, G2, and G35 are groups. Suppose ({12, ¢12) is a homo-
clinism from G; to Ga and ({23, p23) is a homoclinism from Gs to G3. We then define the composite of these

homoclinisms to be the following homoclinism from G; to Gjs:

(G235 23) © (C12, p12) = (C23 © (12, P23 © P12)

To see that this composite is indeed a homoclinism, we need to check that both the component maps are
homomorphisms, and that the corresponding diagram commutes. The component maps are homomorphisms
because a composite of homomorphisms is a homomorphism. The fact that the diagram commutes can be
seen from the full diagram below. The left square commutes because ({12, ¢12) is a homoclinism. The right

square commutes because ({23, p23) is a homoclinism. Thus, the overall diagram commutes.

Inn(G1) x Inn(Gy) Graxgr2 Inn(G2) x Inn(Gs) b23x 28 Inn(G3) x Inn(Gs)
\Lwcl leQ leS
G/l P12 G/2 $23 Gé

4.4. Category of groups with homoclinisms. We define a category that will be useful to work with.

Definition (Category of groups with homoclinisms). The category of groups with homoclinisms is defined

as the following category:

The objects of the category are groups.

The morphisms of the category are homoclinisms.

Composition of morphisms is composition of homoclinisms.

e The identity morphism is the identity homoclinism: it is the identity map on both the inner auto-

morphism group and the derived subgroup.

In the category of groups with homoclinisms, the isomorphisms (i.e., the invertible morphisms) are pre-

cisely the isoclinisms.

4.5. Homomorphisms and homoclinisms. Suppose G; and G5 are groups and 0 : G; — G5 is a homo-
morphism of groups. If 6 satisfies the property that 6(Z(G1)) < Z(G2), then 6 induces a homoclinism of
groups. Explicitly the homoclinism induced by 6 is defined as ({, ¢) where ¢ and ¢ are as defined below.
e Since 0(Z(G1)) < Z(G2), 6 descends to a homomorphism from G1/Z(G1) = Inn(G1) to G2 /Z(G3) =
Inn(Gs). Denote by ¢ the induced homomorphism Inn(G1) — Inn(Gs).
e The restriction of # to G} maps inside G%. Denote by ¢ the induced map G} — G5.

It is easy to verify that ({, ) defines a homoclinism.

Note that the condition 8(Z(G1)) < Z(G3) is necessary in order to be able to construct (.
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The following are true:

e Every surjective homomorphism 0 : G; — G satisfies the condition that 8(Z(G1)) < Z(G2). Thus,
every surjective homomorphism induces a homoclinism.
e The inclusion of a subgroup H in a group G satisfies the condition if and only if Z(H) < Z(G), or

equivalently, Z(H) = HNZ(G). Thus, these are the subgroups whose inclusions induce homoclinisms.

4.6. Miscellaneous results on homoclinisms and words.

Lemma 4.1. Suppose ({, ¢) is a homoclinism of groups G and Ga, where ¢ : Inn(G1) — Inn(G2) and ¢ :
G — G are the component homomorphisms. Denote by 6; : G} — Inn(G7) the composite of the inclusion
of G} in G; and the projection from Gy to G1/Z(G1) = Inn(Gy). Similarly define 63 : G4 — Inn(G2). Then,

we have:

(ol =000

or equivalently, for any w € G}:

((01(w)) = O2(p(w))

Proof. To show the equality of the two expressions, it suffices to show equality on a generating set for G.
By definition, the set of commutators of elements in Gy is a generating set for Gj. Thus, it suffices to show
that:

C(01([u, v])) = O2(p([u, v])) V u, v € Gy

This is equivalent to showing that:

((01(we, (7,9))) = O2(p(wa, (7, y))) V 2,y € Inn(G1)

Let us examine the left and right sides separately.

The left side: The expression 6, (wg, (z,y)) first computes the commutator of lifts of x and y in Gy,
then projects to G1/Z(G1). This is equivalent to directly computing the commutator in G1/Z(G1), so
01(wa, (x,y)) = [x,y]. Thus, the left side becomes (([z, y]).

The right side: By the definition of homoclinism, ¢(wg, (x,y)) = we,(((x),{(y)). The right side now
becomes 65 (we, (((x),((y))). In other words, we are taking the lifts of {(z) and ((y) in G2, then computing
the commutator, then projecting to G2/Z(G2). This is equivalent to directly computing the commutator in
G2/Z(Gs), so the right side simplifies to [¢(z),((y)]. Since ¢ is a homomorphism, this is equal to {([z,y]),
and hence agrees with the left side. |

We state two important theorems. Both theorems reference the concept of a word map. The concept
is defined and some of the properties of word maps are described in the Appendix, Section [E.I] and the
subsequent sections. However, we do not use any nontrivial facts about word maps, so it is not necessary to

read that section to understand the theorems that follow.
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Theorem 4.2. Suppose w(g1,92,---,9n) is a word in n letters with the property that w evaluates to
the identity element in any abelian group. This is equivalent to saying that w, viewed as an element of the
free group on g1, ¢, ..., gn, is in the derived subgroup. Then, for any group G, the word map w: G" — G

obtained by evaluating w descends to a map:

Xw,c : (Inn(@))" — G’

Any word w that is an iterated commutator (with any bracketing) satisfies this condition.

Proof. Denote by v : G — Inn(G) the quotient map.

w can be written in the form (note that the product is in general noncommutative):

m

w(917927 o 7971) = H[ui(glaQQa s agn)avi(ghg% s 7977,)]
i=1
where u;,v;,1 < i < m are words. Suppose y; € G are elements for which v(y;) = x;. Then:

m

w(ylay27 cee 7yn) = H[ui(ylayQa s ayn)7vi(ylay27 .. ayn)]
i=1

We have that:

V(ui(y17y27 s 7yn)) = ui(‘x17x27 s axn)a V(Ui(ylay27 R 7yn)) = Ui(x17x27 B ;xn)

Thus, we obtain that:

[ui(y17y27 cee 7yn)a Ui(yhyZa e 7y’n)] = WG(Ui($17$2, e ,xn),’l}i($17x2, e 7(En))
In particular, the expression [u;(y1, Y2, .-, Yn), Vi(Y1, Y2, - -, Yn)] depends only on z1, xa, ..., x, and not
on the choice of lifts y;. Thus, the product w(y1,ys,...,y,) also depends only on the values of z;, and we

obtain the function:

m
XUJ,G(Ilava s 71'") = HwG(ui(Ith? e 7mn)avi(x17x27 e 71'7,))
i=1

Theorem 4.3. Suppose ((, ) is a homoclinism of groups G; and G2, where ¢ : Inn(G1) — Inn(G3) and
¢ : G} — G} are the component homomorphisms. Then for any word w(g1, ga, - . -, g, ) that is trivial in every

abelian group (as described above), we have:

Xw,Go (C(xl)a C($2)7 R C(Zn)) = QP(XM,Gl (xla T2,y 71'77,))
for all z1,xa,...,z, € Inn(G).
Any word w that is an iterated commutator (with any order of bracketing) satisfies this condition, and

the theorem applies to such word maps.
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Proof. Denote by v1 : G; — Inn(G1) and v : G2 — Inn(G2) the canonical quotient maps.
We use the same notation and steps in the proof of the preceding theorem, replacing G by G;. We obtain:

m

w(917927 cee ,gn) = H[ui(ghg% s 7gn)7vi(917927 cee vgn)]
i=1
where u;,v;,1 <1i < m are words. Suppose y; € G are elements for which v (y;) = z;. As demonstrated

in the proof of the preceding theorem:

m

(1) Xw,Gy (T1,Z2, ..., Tp) = HWGl (ui(z1, 22, ..., 2n), vi(z1, 22, ..., Tp))
i=1

Suppose z; € G5 are elements for which v(z;) = ((x;). Similar reasoning to the above yields that:

(1) Xuw,G2 (C(21), C(22), ..., ((xn)) = HwGQ(Ui(C(Il),C(M)w--,C(xn)),vi(c(ml),C(wz), - C(n)))

Apply ¢ to both sides of (), use the defining property of homoclinisms, and compare with ({1) to obtain
the result. ]

4.7. Isoclinic groups: how similar are they? We say that groups Gy and G are isoclinic groups if there

exists an isoclinism from G to G3. The relation of being isoclinic is an equivalence relation. Briefly:

e The relation of being isoclinic is reflexive because we can choose both the isomorphisms to be the
respective identity maps. Explicitly, for any group G, (idmn(q),ide) defines an isoclinism from G
to itself.

e The relation of being isoclinic is symmetric because we can take the inverse isomorphisms to both the
isomorphisms. Explicitly, if ({, ¢) describes the isoclinism from G to Ga, then ({71, ~1) describes
the isoclinism from G5 to Gj.

e The relation of being isoclinic is transitive because we can compose both kinds of isomorphisms
separately. Explicitly, if ({12, p12) describes the isoclinism from G; to G2 and ((a3, p23) describes

the isomorphism from Gy to G, then ({23 o (12, Y23 0 ¢12) describes the isoclinism from G; to Gs.

Here is an alternative way of seeing that being isoclinic is an equivalence relation: isoclinisms are precisely
the isomorphisms in the category of groups with homoclinisms, and being isomorphic in any category is an
equivalence relation.

We first list some very obvious similarities between isoclinic groups.

e They have isomorphic derived subgroups: This is direct from the definition, which includes an
isomorphism between the derived subgroups.

e They have isomorphic inner automorphism groups: This is direct from the definition, which includes
an isomorphism between the inner automorphism groups.

e They have precisely the same non-abelian composition factors (if the composition factors do exist):
Since the center is abelian, all the non-abelian composition factors occur inside the inner automor-
phism group for both, which we know to be isomorphic.

e If one is nilpotent, so is the other, and they have the same nilpotency class (with the exception of
class zero getting conflated with class one): The nilpotency class is one more than the nilpotency

class of the inner automorphism group.
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e If one is solvable, so is the other, and they have the same derived length (with the exception of length
zero getting conflated with length one): The derived length is one more than the derived length of
the derived subgroup.

We move to the first straightforward but somewhat non-obvious fact: isoclinic finite groups have the same
proportions of conjugacy class sizes. The statement of the theorem is below. The proof can be found in the
Appendix, Section [H]

Theorem 4.4. Suppose G; and G4 are isoclinic finite groups. Suppose c is a positive integer. Let m;
be the number of conjugacy classes in G of size ¢ (so that the total number of elements in such conjugacy
classes is myc). Let mg be the number of conjugacy classes in Go of size ¢ (so that the total number of
elements in such conjugacy classes is moc). Then, m; is nonzero if and only if ms is nonzero, and if so,
my/me = |G1|/|Ga|.

In particular, if G; and G additionally have the same order, then they have precisely the same multiset

of conjugacy class sizes.

The next theorem is a similar result for the degrees of irreducible representations. The proof of this is

also in the Appendix, Section [H]

Theorem 4.5. Suppose G; and G5 are isoclinic finite groups. Suppose d is a positive integer. Let m;y
denote the number of equivalence classes of irreducible representations of G; over C that have degree d. Let
msy denote the number of equivalence classes of irreducible representations of G5 over C that have degree d.
Then, m; is nonzero if and only if mg is nonzero, and if so, my/ms = |G1]/|G2].

In particular, if G; and G additionally have the same order, then they have precisely the same multiset

of degrees of irreducible representations.

Theorem 4.6. (1) Suppose G1 and G2 are isoclinic finite groups. Then, the ratio of the number of
conjugacy classes in 7 to the number of conjugacy classes in Gs is |G1]/|G2|. In particular, if G,
and G2 also have the same order, they have the same number of conjugacy classes.

(2) Suppose G; and G are isoclinic finite groups. Then, the centers of their respective group algebras
over C are both algebras that are direct products of copies of C. The ratio of the number of copies
used for G and for Gy is |G1]/|G2|. In particular, if G; and G2 also have the same order, then the

centers of their group algebras are isomorphic.

Proof. These follow quite directly from either of the preceding theorems. More specifically, the proof for
part (1) can be deduced from either Theorem or Theorem Note that we can use the latter because
the number of conjugacy classes equals the number of irreducible representations.

For (2), note that the center of the group algebra is a direct product of as many copies of C as the number

of conjugacy classes. We can use the conjugacy class element sums as a basis. Alternatively, we can use the
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centers of the irreducible constituents in a direct sum decomposition into two-sided ideals as a basis. Thus,
(2) follows directly from (1). O

4.8. Isoclinism defines a correspondence between some subgroups. Suppose G; and G» are isoclinic
groups with an isoclinism (¢, ¢) : G1 — Ga where ¢ : Inn(G1) — Inn(G2) and ¢ : G| — G4 are the component

isomorphisms. Then, ( gives a correspondence:
Subgroups of Gy that contain Z(G1) < Subgroups of Gs that contain Z(G3)

This correspondence does not preserve the isomorphism type of the subgroup, but it preserves some related
structure. Explicitly, the following hold whenever a subgroup H; of G; containing Z(G;) corresponds with
a subgroup Hs of G containing Z(Gs):

e Hy/Z(G4) is isomorphic to Hs/Z(G3).

e H; and H, are isoclinic.

e My isnormal in G if and only if Hs is normal in Go, and if so, then G1/H; is isomorphic to G2/ Ho.
We have a similar correspondence given by ¢:
Subgroups of G; that are contained in G} « Subgroups of G2 that are contained in GY%

This correspondence preserves a number of structural features. Explicitly, the following hold if a subgroup
H, of G is in correspondence with a subgroup Hs of G:
e Hi is isomorphic to Hy
e H; is normal in G if and only if Hy is normal in G%, and if so, then G} /H; is isomorphic to G5/ Ho.
e H, is normal in G; if and only if Hs is normal in Ga, and if so, then Gy/H; is isoclinic to G2/ Hs.
The two correspondences discussed above may partially overlap, and they agree with each other wherever
they overlap. Explicitly, if Hy is a subgroup of G that satisfies both the conditions (it contains Z(G1) and

is contained in GY}), then the subgroup Hs obtained by both correspondences is identical.

4.9. Characteristic subgroups, quotient groups, and subquotients determined by the group up
to isoclinism. The vast majority of characteristic subgroups that we see defined (particularly for p-groups)
are either contained in the derived subgroup or contain the center. The exceptions are those such as the socle
and Frattini subgroup, which are smaller than the center and larger than the derived subgroup respectively.

Based on the correspondences discussed in the preceding section, we can deduce the following regarding
important subgroups, quotients, and subquotients of a group G that are determined up to isomorphism by

knowing G up to isoclinism:

o All lower central series member subgroups v.(G), ¢ > 2. Note that v;(G) = G needs to be excluded.
Further, the isomorphism types of successive quotients between lower central series members of the
form 7, (G)/v;(G) with j > i > 2 are also determined by the knowledge of G up to isoclinism. Note
that the quotient groups G/v.(G) are in general determined only up to isoclinism and not up to
isomorphism.

o All derived series member subgroups GV, i > 1. Note that we need to exclude G(©) = G. Further,
the isomorphism types of quotients between derived series members of the form G® /G(j) with
j > 1> 1 are also determined by the knowledge of G up to isoclinism. Note that the quotient groups
G/ G are determined only up to isoclinism and not up to isomorphism.

e Quotients G/Z¢(G) for all upper central series member subgroups Z¢(G), ¢ > 1. We need to exclude

¢ = 0 which would give G/Z°(G) = G. Further, the isomorphism types of subquotients of the form
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ZYG)/ZI(G) where i > j > 1 are also determined up to isomorphism by the knowledge of G' up to
isoclinism. Note that the subgroups Z?(G) themselves are determined only up to isoclinism and not

up to isomorphism.

4.10. Correspondence between abelian subgroups. Suppose GG; and G4 are isoclinic groups. The

following are true:

e The isoclinism establishes a correspondence between abelian subgroups of G; containing Z(G1) and
abelian subgroups of G2 containing Z(G2). Note that the abelian subgroups that are in correspon-
dence are not necessarily isomorphic to each other. In fact, unless Z(G1) and Z(G3) have the same
order, the abelian subgroups in correspondence need not even have the same order as each other.

e The isoclinism establishes a correspondence between the abelian subgroups of G that are self-
centralizing and the abelian subgroups of Go that are self-centralizing. A self-centralizing abelian
subgroup is an abelian subgroup that equals its own centralizer, or equivalently, it is a subgroup that
is maximal among abelian subgroups of the group.

e In the case that Gy and (G5 are both finite, the isoclinism establishes a correspondence between
abelian subgroups of maximum order in GG; and abelian subgroups of maximum order in Gs.

e Each of the correspondences above preserves normality.

e If G; and G5 are both finite, then each of the correspondences above preserves the index of the

subgroups.

In particular, this means that isoclinic finite p-groups of the same order have the same value for the
maximum order of abelian subgroup, the same value for the maximum order of abelian normal subgroup,

and the same values for the orders of self-centralizing abelian normal subgroups.

4.11. Constructing isoclinic groups. Here are some ways of constructing groups isoclinic to a given
group:

e Take a direct product with an abelian group.

e Find a subgroup whose product with the center is the whole group. In symbols, if H is a subgroup
of G and HZ(G) = G (where Z(G) denotes the center of G), then H is isoclinic to G. Note that
for finite groups, this is the only way to find isoclinic subgroups to the whole group: a subgroup is
isoclinic to the whole group if and only if its product with the center of the whole group is the whole

group.

4.12. Hall’s purpose in introducing isoclinism. Although this is not directly relevant, it might be
helpful for historical motivation to understand why Philip Hall introduced the concept of isoclinism. At
the time that Hall wrote his paper [21], very few systematic lists of finite p-groups of small order were
available. Existing classifications tended to be ad hoc and use a bunch of invariants. In hindsight, many
of these invariants were invariants up to isoclinism. As we saw in the preceding section, this is true for
information about conjugacy classes and irreducible representations, and many important attributes related
to characteristic subgroups and their quotient groups. However, since they were purely numerical invariants
rather than invariants capturing structural information, they were too weak to meaningfully distinguish
groups once the orders got large. Below are some invariants that are “good enough” to uniquely determine
groups up to isoclinism for small orders, but fail at larger orders. The second column gives the smallest n
for which there exist groups of order 2™ that have the same value of the invariant but are not isoclinic to

each other.
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TABLE 1. The smallest n for which a given isoclinism-invariant fails to classify groups of
order 2" up to isoclinism

Isoclinism-invariant (fixed order) Smallest n where it fails to classify
Derived length

Nilpotency class

Conjugacy class sizes

Degrees of irreducible representations

Inner automorphism group

Derived subgroup

Inner automorphism group, derived subgroup

S| O O O O O o~

As the orders get bigger, numerical invariants becomes progressively more inadequate in describing the
structure. They are also not helpful to computing the algebraic structure of the group.

As indicated in the table above, even knowledge of the inner automorphism group and the derived subgroup
up to isomorphism does not determine the group uniquely up to isoclinism, with the smallest counterexamples
occurring for order 26. The commutator map is crucial to describing the group structure up to isoclinism.

Hall sought to introduce a systematic procedure that could be used to generate all the p-groups of a
particular order based on smaller groups, and group them together in ways that made it easy to compute
and remember important invariants (such as their nilpotency class, number of conjugacy classes, etc.)

The use of isoclinism allows for a recursive procedure to go from order p"~! to p™. In broad strokes, the
idea is as follows:

e Assume we have classified all the groups of order up to p" ', and we need to classify groups of order

T

p".

e First, we need to identify the equivalence classes up to isoclinism for groups of order p™. This involves
identifying candidate pairs of inner automorphism group and derived subgroup with a candidate for
the commutator map. Note that the concept of “candidate for the commutator map” is somewhat
problematic without reference to the ambient group, but we will see later that it can be made precise
using the concept of exterior squares. Hall did not have this formalism at his disposal, but used a
similar idea in a more ad hoc fashion in his classification efforts.

e For each such equivalence class up to isoclinism, identify all the groups of order p™ up to isomorphism

in that equivalence class up to isoclinism.

Our purpose differs somewhat from Hall’s, but is broadly in the same spirit. Instead of classifying groups,
we are interested in identifying some regular aspects of their behavior.

For a detailed classification that builds on Hall’s ideas, see [20], which classifies groups of order 2™ for n < 6.
The classification of groups of order 2™ for n > 7 was done using somewhat different methods. Specifically,
the focus shifted from using isoclinism (which is based on the central series) to using the exponent-p central
series, and computing immediate descendants based on the exponent-p central series. This is more amenable
to computation because we are working with central extensions where the base group is elementary abelian.
Algorithms in this genre are termed nilpotent quotient algorithms. See [25] (classification for order 27 = 128),
[35] (classification for order 28 = 256), and [13] (general description of the classification strategy) for more
details.
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4.13. Stem groups for a given equivalence class under isoclinism. Every equivalence class of groups
under isoclinism contains one or more stem groups. A group G is a stem group if Z(G) < G'. All stem
groups for a given equivalence class under isoclinism have the same order, and the order of any isoclinic
group is a multiple of this order.

Hall stated this fact, with a sketch of a proof, in his 1937 paper introducing isoclinism. We will provide
a proof of the statement in Section [L1.7] using modern language.

Here are some examples of stem groups:

e For the class of abelian groups, the unique stem group is the trivial group.

e For groups of class two with inner automorphism group a Klein four-group and derived subgroup of
order two, there are two possibilities for the stem group: the dihedral group of order eight and the
quaternion group of order eight.

Unlike what one might naively expect, it is not true that all groups in the equivalence class under isoclinism
contain a stem group as a subquotient. For instance, the group Mg = M4(2) given as {a,z | a® = 22 =
1,zaz = a®) is a non-abelian group of order 16H This group is isoclinic to the dihedral group of order
eight and the quaternion group of order eight, which are the only stem groups in that equivalence class up
to isoclinism. However, Mig does not have any subgroup, quotient, or subquotient isomorphic to either of

these groups. In fact, every proper subquotient of Mg is abelian.

4.14. Some low order classification information. In this section, we provide a quick summary of the
classification of groups of order 2™ and groups of order p™ (for odd p) for small n, based on isoclinism. A
detailed exposition can be found in [20] and also in some online sources included in the appendix. is also
possible to explore these groups using a computational algebra package such as GAP or Magma. More
information about exploring group information in GAP is available in the appendix.

The most salient information is provided below.

For groups of order 2™: Note that the last column is the number of equivalence classes up to isoclinism
of the preceding column. It can be computed by subtracting from the value of the preceding column the

value in the row above for the preceding column.

TABLE 2. Number of equivalence classes up to isoclinism for groups of order 2"

n | 2" | Number of groups | Number up to isoclinism | “New” equivalence classes
01 1 1 1

112 1 1 0

2|4 2 1 0

318 5 2 1

4116 |14 3 1

5132 |51 8 5

6 | 64 | 267 27 19

7| 128 | 2328 115 88

For groups of order p", p > 3: The details depend on p, but the classification up to p* is independent

of p, so we construct the table for n up to 4:

10The group has ID (16,6) in the SmallGroups library available for GAP and Magma.
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TABLE 3. Number of equivalence classes up to isoclinism for groups of order p™

n | p™ | Number of groups | Number up to isoclinism | “New” equivalence classes
0|1 |1 1 1
112 |1 1 0
214 |2 1 0
318 |5 2 1
4116 |15 3 1

5. ISOCLINISM AND HOMOCLINISM FOR LIE RINGS

The goal of this section is to establish the basic theory of isoclinism and homoclinism for Lie rings. The
theory is analogous to the theory for groups developed in the preceding section (Section

Informally, a homoclinism of Lie rings is a homomorphism between the Lie bracket structures of the Lie
rings. Informally, two Lie rings are isoclinic if their Lie bracket maps are equivalent. Isoclinism defines an
equivalence relation on the collection of Lie rings. Under this equivalence relation, all abelian Lie rings are
equivalent to the trivial group.

The original results that we present later (Section [24] and describe bijective correspondences between
certain equivalence classes of groups and certain equivalence classes of Lie rings. The equivalence classes of

Lie rings are based on the equivalence relation of isoclinism of Lie rings.

5.1. Definitions of homoclinism and isoclinism. The notion of isoclinism of Lie algebras seems to have
been introduced by Moneyhun in [34]. We introduce a corresponding notion of homoclinism to parallel the
notion for groups. The historical origin of the notion of homoclinism for Lie rings is unclear, but it appears
for instance in the paper [36] published in 2011.

For simplicity, we restrict attention to the case of Lie rings, which are Lie algebras over the ring of integers.
All our definitions and theorems here have very natural analogues in Lie algebras over other commutative
unital rings. Note that if two Lie algebras over a commutative unital ring are isoclinic as Lie algebras over
that ring, they are also isoclinic as Lie rings. In the Appendix, Section [A.4] we describe the theory of Lie
algebras over arbitrary commutative unital rings, and how the general theory of Lie algebras relates to the
theory of Lie rings.

For a Lie ring L, denote by Inn(L) the inner derivation Lie ring of L, denote by L’ the derived subring of
L, and denote by Z(L) the center of L. Inn(L) is canonically isomorphic to the quotient ring L/Z(L). (For
other notation related to Lie rings that we use in this document, see Section .

The Lie bracket map in L descends to a map:

wr, : Inn(L) x Inn(L) — L'

Note that wy, is Z-bilinear, but the additional structure on it (that is forced from its arising as a Lie
bracket) is hard to describe explicitly. In Section we will describe a structure called the exterior square
of a Lie ring and reframe the condition on wy, as being a bilinear map that induces a homomorphism from
the exterior square. This situation is similar to the situation for groups we discussed earlier, but somewhat
easier to describe because of the underlying additive group structure.

Suppose L; and Ly are Lie rings. The Lie brackets of Ly and Lo respectively induce Z-bilinear maps:

wr, :Inn(Ly) x Inn(Ly) — L
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wr, : Inn(Lg) x Inn(Ly) — L)

A homoclinism from L; to Lo is a pair of homomorphisms ({, ¢) where ( is a homomorphism from Inn(ZL4)

to Inn(Lg) and ¢ is an homomorphism from L} to L}, satisfying the condition that:

powr, :szo(CXC)

More explicitly, for any x,y € Inn(L;), we require that:

CP(LULl (x; y)) = WL, (C(x)’ C(y))

Pictorially, the following diagram commutes:

Inn(Ly) x Inn(Ly) ¢ Inn(Ls) x Inn(Ls)
@ 1“E2
L 4 L
The homoclinism (¢, ¢) from Lq to Lo is termed an isoclinism if both ¢ and ¢ are isomorphisms of Lie
rings.
We compose homoclinisms of Lie rings by separately composing the homomorphisms on the inner deriva-
tion Lie rings and on the derived subrings. Explicitly, suppose ({12, ¢12) is a homoclinism from L; to
Ly and suppose ({23, p23) is a homoclinism from Ls to Ls. Then, the composite ({3, ¢23) © ((12,912) 18

(23 0 (12,923 © p12). The proof that this works follows from the commutativity of this diagram.

Inn(L;) x Inn(L;) C12xl12 Inn(Ly) x Inn(Ly) C23 % L3 Inn(L3) x Inn(L3)
lwgl lez lu)c:}
L4 o2 L, oz Ly

As was the case with groups, we can define a category where the morphisms are homoclinisms.

Definition (Category of Lie rings with homoclinisms). The category of Lie rings with homoclinisms is

defined as the following category:

The objects of the category are Lie rings.

The morphisms of the category are homoclinisms of Lie rings.

Composition of morphisms is composition of homoclinisms.

The identity morphism is the identity homoclinism: it is the identity map both on the inner derivation

Lie ring and on the derived subring.

In the category of Lie rings with homoclinisms, the isomorphisms (i.e., the invertible morphisms) are

precisely the isoclinisms.

5.2. Homomorphisms and homoclinisms. Suppose L; and Lo are Lie rings and 6 : L1 — Lo is a
homomorphism of Lie rings. If 6 satisfies the property that 6(Z(L1)) < Z(L2), then 6 induces a homoclinism

of Lie rings. Explicitly the homoclinism induced by 6 is defined as ({, p) where ¢ and ¢ are as defined below.
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e Since (Z(L1)) < Z(Lz), 0 descends to a homomorphism from Ly /Z(Ly) = Inn(Ly) to La/Z(Lg) =
Inn(Ls). Denote by ¢ the induced homomorphism Inn(L;) — Inn(Ls).
e The restriction of # to L} maps inside L}. Denote by ¢ the induced map L] — Lj.

It is easy to verify that ({, ) defines a homoclinism.
Note that the condition §(Z(L;)) < Z(Ls) is necessary in order to be able to construct (.
The following are true:

e Every surjective homomorphism 6 : Ly — Lo satisfies the condition that 6(Z(L1)) < Z(L2). Thus,
every surjective homomorphism induces a homoclinism.
e The inclusion of a Lie subring M in a Lie ring L satisfies the condition if and only if Z(M) < Z(L), or

equivalently, Z(M) = MNZ(L). Thus, these are the subrings whose inclusions induce homoclinisms.

5.3. Miscellaneous results on homoclinisms and words.

Lemma 5.1. Suppose (¢, ) is a homoclinism of Lie rings Ly and Lo, where ¢ : Inn(L;) — Inn(Ls)
and ¢ : L} — L} are the component homomorphisms. Denote by 6, : L} — Inn(L;) the composite of the
inclusion of L} in L; and the projection from L; to L1/Z(Ly) = Inn(L). Similarly define 05 : L5 — Inn(Ls).
Then, we have:

(ol =000

or equivalently, for any w € L}:

((O1(w)) = O2(p(w))

Proof. To show the equality of the two expressions, it suffices to show equality on a generating set for L.
By definition, the set of Lie brackets of elements in L; is a generating set for L}. Thus, it suffices to show
that:

C(0r([u, v])) = O2(p([u, v])) ¥ u,v € Ly

This is equivalent to showing that:

((01(wr, (z,9))) = b2(p(wr, (x,9))) ¥V 2,y € Inn(Ly)

Let us examine the left and right sides separately.

The left side: The expression 0 (wr, (x,y)) first computes the Lie bracket of lifts of  and y in Ly,
then projects to Li/Z(Lq). This is equivalent to directly computing the Lie bracket in L;/Z(L1), so
01(wr, (z,y)) = [x,y]. Thus, the left side becomes {([x, y]).

The right side: By the definition of homoclinism, ¢(wr, (x,y)) = wr,(¢(z),((y)). The right side now
becomes 0 (wr, (¢(z),((y))). In other words, we are taking the lifts of {(«) and ((y) in Ls, then computing
the Lie bracket, then projecting to La/Z(Lg). This is equivalent to directly computing the Lie bracket in
Lo/Z(Ls), so the right side simplifies to [((x),((y)]. Since ¢ is a homomorphism, this is equal to {([z,y]),

and hence agrees with the left side. O
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We state two important theorems.

Theorem 5.2. Suppose w(gi, ga,- .., ¢gn) is a word in n letters with the property that w evaluates to the
zero element in any abelian Lie ring. This is equivalent to saying that w, viewed as an element of the free
Lie ring on g1, g2, ..., gn, is in the derived subring. Then, for any Lie ring L, the word map w : L™ — L

obtained by evaluating w descends to a map:

Xw.r : (Inn(L))" — L'

Any word w that is an iterated Lie bracket (with any bracketing) satisfies this condition.

Proof. Denote by v : L — Inn(L) the quotient map.

w can be written in the form:

m

w(917927 e 7gn) = Z[ui(glag% cee agn)avi(glag% cee 7gn)]
=1

where u;,v;,1 < i < m are words. Suppose y; € L are elements for which v(y;) = ;. Then:

m

w(ylvaa s ayn) = § [ui(ylayZa ce 7yn)7vi(y1»y2v v 7yn)]
=1
We have that:

V(Ui(y17y27 s 7yn)) = Ui(fﬂl,ﬂ:g, B .,I‘n), V(Ui(ylay27 s ayn)) = ’Ui($1,1‘2, . .,I‘n)

Thus, we obtain that:

[wi(y1,y2, -« Yn)s Vi(Y1, Y2, - -y Yn)] = wr(ui(1, 2, . ., Tpn ), vi (21, T2y ...y Tp))

In particular, the expression [u;(y1, Y2, .-, Yn), Vi(Y1, Y2, - -, Yn)] depends only on z1, xa, ..., ©, and not
on the choice of lifts y;. Thus, the sum w(y1,y2, ..., yn) also depends only on the values of z;, and we obtain
the function:

m
Xw,L(Z1,Z2,...,&n) = ZWL(Ui(xl,I'Q, ces @), vi(T1, Ty . o, Ty)
i=1

Theorem 5.3. Suppose (¢, ) is a homoclinism of Lie rings L; and Lo, where ¢ : Inn(L;) — Inn(Ls)
and ¢ : L} — L} are the component homomorphisms. Then for any word w(g1, g2, - .., gn) that is trivial in

every abelian Lie ring (as described above), we have:

Xw, L2 (C(ml)v C(‘rQ)v cey C(xn)) = ‘p(Xw,Ll (xlv Z2,. .. 71'?1))

for all z1,x9,...,z, € Inn(L).
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Any word w that is an iterated Lie bracket (with any order of bracketing) satisfies this condition, and the

theorem applies to such word maps.

Proof. Denote by v1 : Ly — Inn(L;) and vg : Ly — Inn(Ls) the canonical quotient maps.

We use the same notation and steps in the proof of the preceding theorem, replacing L by L;. We obtain:

m

w(91a927 s 7gn) = Z[ui(glaQQa s 7gn)7vi(glag27 o 7gn)]
i=1
where u;,v;,1 < i < m are words. Suppose y; € L; are elements for which v (y;) = z;. As demonstrated

in the proof of the preceding theorem:

m
(T) Xw,Lq (1‘1,.%'2, LR 7-'17n) = Zle (ui(xl,x27 (R 7$n); Ui($1, T, ... 7-73n>)
i=1

Suppose z; € Ly are elements for which v5(2;) = ((x;). Similar reasoning to the above yields that:

(—H) Xw,Lo (C(ml)v C(xQ)v SRR C(:En)) = Zsz (ul(c(ml)v C(xQ)v SRR C(x’ﬂ))v Ui(C(xl)v C(mQ)v B C(:Ijn)))

Apply ¢ to both sides of (), use the defining property of homoclinisms, and compare with (1) to obtain
the result. ]

5.4. Isoclinic Lie rings: how similar are they? We say that L; and Ly are isoclinic Lie rings if there is

an isoclinism of Lie rings from L; to Ly. The relation of being isoclinic is an equivalence relation. Briefly:

e The relation of being isoclinic is reflexive because we can choose both the isomorphisms to be the
identity maps. Explicitly, for any Lie ring L, (idpn(z),idz’) defines an isoclinism from L to itself.

e The relation of being isoclinic is symmetric because we can take the inverse isomorphisms to both the
isomorphisms. Explicitly, if ({, ) describes the isoclinism from L; to Lo, then (¢71,¢~!) describes
the isoclinism from Ly to L.

e The relation of being isoclinic is transitive because we can compose both kinds of isomorphisms
separately. Explicitly, if (C12, p12) describes the isoclinism from L; to Lo and (a3, ¢23) describes the

isomorphism from Lo to Ls, then ({23 o (12, v23 © v12) describes the isoclinism from L; to Ls.

Here is an alternative way of seeing that being isoclinic is an equivalence relation: isoclinisms are precisely
the isomorphisms in the category of Lie rings with homoclinisms, and being isomorphic in any category is
an equivalence relation.

We first list some very obvious similarities between isoclinic Lie rings.

e They have isomorphic derived subrings: This is direct from the definition, which includes an isomor-
phism of the derived subrings.

e They have isomorphic inner derivation Lie rings: This is direct from the definition, which includes
an isomorphism between the inner derivation Lie rings.

e They have precisely the same non-abelian composition factors (if the composition factors do exist):
Since the center is abelian, all the non-abelian composition factors occur inside the inner derivation

Lie ring for both, which we know to be isomorphic.
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e If one is nilpotent, so is the other, and they have the same nilpotency class (with the exception of
class zero getting conflated with class one): The nilpotency class is one more than the nilpotency
class of the inner derivation Lie ring.

e If one is solvable, so is the other, and they have the same derived length (with the exception of length
zero getting conflated with length one): The derived length is one more than the derived length of

the derived subring.

Note that conjugacy class sizes and degrees of irreducible representations do not make direct sense for Lie
rings. But there are important analogues of these statements that apply in a number of cases. In Section
we discuss the Kirillov orbit method, which relates the irreducible representations of a group with its

Lazard Lie ring.

5.5. Isoclinism defines a correspondence between some subrings. Suppose L1 and Ly are isoclinic
Lie rings with an isoclinism ((,¢) : Ly — Ls where ¢ : Inn(L;) — Inn(Ls) and ¢ : L} — L} are the
component isomorphisms. Then, ¢ gives a correspondence:
Lie subrings of L, that contain Z(L;) < Lie subrings of Ly that contain Z(Ls)
This correspondence does not preserve the isomorphism type of the subring, but it preserves some related
structure. Explicitly, the following hold whenever a subring M; of Ly corresponds with a subring My of Ls:
e M, /Z(Ly) is isomorphic to Ma/Z(Ls).
e M7 and Ms are isoclinic.
e M is an ideal in Ly if and only if My is an ideal in Ly, and if so, then L;/M;j is isomorphic to
Lo/ M.
We have a similar correspondence given by (:
Lie subrings of Ly that are contained in L} < Lie subrings of Ly that are contained in L
This correspondence preserves a number of structural features. Explicitly, the following hold whenever a
subring M; of L; is in correspondence with a subring My of Ly:
e M is isomorphic to My
e M is an ideal in L} if and only if My is an ideal in Lj, and if so, then L} /M is isomorphic to
5/ Ms.
e M is an ideal in L if and only if M5 is an ideal in Lo, and if so, then L; /M is isoclinic to Lo /M.
The two correspondences discussed above overlap somewhat, and they agree with each other wherever
they overlap. Explicitly, if M is a subring of L; that contains Z(L) and is contained in L/, then the M,

obtained by both correspondences is identical.

5.6. Characteristic subrings, quotient rings, and subquotients determined by the Lie ring up
to isoclinism. We can deduce the following regarding important characteristic subrings, quotients, and

subquotients of a Lie ring L that are determined up to isomorphism by knowing L up to isoclinism:

e All lower central series member subrings 7.(L),c > 2. Note that v;(L) = L needs to be excluded.
Further, the isomorphism types of successive quotients between lower central series members of the
form ~;(L)/v;(L) with j > ¢ > 2 are also determined by the knowledge of L up to isoclinism.
Note that the quotient rings L/7.(L) are in general determined only up to isoclinism and not up to
isomorphism.

e All derived series member subrings L(*), i > 1. Note that we need to exclude L(®) = L. Further, the

isomorphism types of quotients between derived series members of the form L) /LU ) with j >i>1
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are also determined by the knowledge of L up to isoclinism. Note that the quotient Lie rings L/ L®
are determined only up to isoclinism and not up to isomorphism.

e Quotients L/Z¢(L) for all upper central series member subrings Z¢(L), ¢ > 1. We need to exclude
¢ = 0 which would give L/Z°(L) = L. Further, the isomorphism types of subquotients of the form
ZY(L)/Z7(L) where i > j > 1 are also determined up to isomorphism by the knowledge of L up to
isoclinism. Note that the subrings Z*(L) themselves are determined only up to isoclinism and not

up to isomorphism.

5.7. Correspondence between abelian subrings. Suppose L; and Lo are isoclinic Lie rings. The fol-

lowing are true:

e The isoclinism establishes a correspondence between abelian subrings of Ly containing Z(L;) and
abelian subrings of Ly containing Z(Ls). Note that the abelian subrings that are in correspondence
are not necessarily isomorphic to each other. In fact, unless Z(Lq) and Z(L2) have the same order,
the abelian subrings in correspondence need not even have the same order as each other.

e The isoclinism establishes a correspondence between the abelian subrings of L that are self-centralizing
and the abelian subrings of Lo that are self-centralizing. A self-centralizing abelian subring is an
abelian subring that equals its own centralizer, or equivalently, it is maximal among abelian subrings
of the Lie ring.

e In the case that L and Ly are both finite, the isoclinism establishes a correspondence between

abelian subrings of maximum order in L; and abelian subrings of maximum order in L.

If L; and Ly are both finite, then each of the correspondences above preserves the index of the subrings. In
particular, this means that isoclinic finite Lie rings of the same order have the same value for the maximum
order of abelian subring, the same value for the maximum order of abelian ideal, and the same value for the

orders of self-centralizing abelian subrings.

5.8. Constructing isoclinic Lie rings. Here are some ways of constructing Lie rings isoclinic to a given

Lie ring:

e Take a direct product with an abelian Lie ring.

e Find a Lie subring whose sum with the center is the whole Lie ring. In symbols, if M is a subring
of L and M + Z(L) = L (where Z(L) denotes the center of L), then M is isoclinic to L. Note that
for finite Lie rings, this is the only way to find isoclinic subrings to the whole Lie ring: a subring is
isoclinic to the whole Lie ring if and only if its sum with the center of the whole ring is the whole

ring.

6. SHORT EXACT SEQUENCES AND CENTRAL GROUP EXTENSIONS

Central extensions are fundamental to how we think about nilpotent groups: nilpotent groups can be
thought of as groups that can be obtained by iteratively taking central extensions, starting with an abelian
group. The notion of central extension is also closely related to the notion of isoclinism, although we will
defer the explicit connection for later. Central extensions are instrumental to formulating and proving the
generalizations that we develop in Sections [24] and [39]

In this section, we develop the rudimentary vocabulary of central extensions.
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6.1. Definition of short exact sequence and group extension. A short exact sequence of groups is an

exact sequence of groups with homomorphisms as follows:

1-A—F—-G—1

In words, the homomorphism from A to E is injective, the homomorphism from E to G is surjective, and
the image of A in E equals the kernel of the homomorphism from E to G. The standard abuse of notation
identifies A with its image in E (so A is viewed as a normal subgroup of E) and G with the quotient group
E/A.

We may also frame this as follows: E is a group extension with normal subgroup A and quotient group

G.

A morphism of short exact sequences from a short exact sequence:

1—- A, —-FE -G —1

to another short exact sequence:

1— Ay - FEy — Gy —1

is defined as a triple of homomorphisms A; — Ay, F1 — E5, G1 — G2, such that the following diagram

commutes:

1 - A —-FE —-G -1
! 1 1 ! 1
1 - A4 —FE —Gy —1
Note that the arrows at the extremes do not convey useful information, so the above is equivalent to

asserting that the following diagram commutes:

1 —>A1 —>E1 —>G1 — 1

! ! !
1 A —FEy, — Gy —1

We can compose two morphisms of short exact sequences in the obvious way. In the diagram below, this

corresponds to composing the vertical morphisms:

1 —>A1 —>E1 —>G1 — 1

! ! !
1 - A4 —FEy — Gy —1
! ! !

1 — A3 — E3 — Gg — 1
We can thus define a category of short exact sequences. An isomorphism of short exact sequences is defined
as an isomorphism in this category. Explicitly, it is defined as a morphism of short exact sequences where

all the component homomorphisms are isomorphisms.

6.2. Group extensions with fixed base and quotient; congruence and pseudo-congruence. We

often study group extensions of the form:
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1-A—-F—-G—1

where A and G are both fixed in advance and different possibilities for E are considered. Two group

extensions:

1-A—-F —-G—1

and

1-A—-FE—-G—1

are said to be congruent if there is an isomorphism ¢ : E; — FE5 such that the triple comprising the
identity map A — A, the map ¢ : £y — Es, and the identity map G — G give an isomorphism of short
exact sequences. In other words, we can get an isomorphism from F; to E5 that induces the identity maps
both on the subgroup A and the quotient group G.

Congruence defines an equivalence relation on the set of all group extensions with normal subgroup A
and quotient group G. The equivalence classes for this equivalence relation are termed congruence classes.

Two group extensions:

1-A—-F —-G—1

and

1-A—-FE—-G—1

are said to be pseudo-congruent if there is an isomorphism between the short exact sequences. The
isomorphism need not induce the identity map on A and need not induce the identity map on G.

Pseudo-congruence defines an equivalence relation on the set of all group extensions with normal subgroup
A and quotient group G. The equivalence classes for this equivalence relation are termed pseudo-congruence
classes.

Pseudo-congruence is a coarser equivalence relation than congruence because it allows for “re-labeling”

on both the subgroup side and the quotient group side.

6.3. Abelian normal subgroups. In the case that A is an abelian group, the short exact sequence:

1-A—-F—-G—1

may also be written as

0—-A—-F—-G—1

This is because when working with abelian groups, we denote the trivial group by 0 instead of 1.

6.4. Central extensions and stem extensions. In this document, we use the term central subgroup for
a subgroup that is contained inside the center.
A central extension refers to a group extension where the subgroup is central. Explicitly, consider a short

exact sequence of the following form, where A is abelian:
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0—-—A—F—-G—1

We say that E is a central extension with central subgroup A and quotient group G if the image of A in
E is a central subgroup of E. If we engage in the usual abuse of notation that conflates A with its image in
E, we could shorten this to saying that A is a central subgroup of E.

We will often say “FE is a central extension of G” as shorthand for “there exists an abelian group A such
that F is a central extension with central subgroup A and quotient group G.”

A stem extension is a central extension where the central subgroup is also contained in the derived
subgroup of the extension group. Explicitly, consider a short exact sequence of the following form, where A

is abelian:

0—-—A—F—-G—1

We say that F is a stem extension with central subgroup A and quotient group G if the image of A in E
is contained in E' N Z(E).

6.5. The use of cohomology groups to classify central extensions. Suppose A is an abelian group
and G is a group. The group H?(G; A) (also denoted H?(G, A)), called the second cohomology group for
trivial group action of G on A, is a group whose elements correspond to the congruence classes of central
extensions with central subgroup A and quotient group G. Here, by “congruence class” we mean equivalence
class under the equivalence relation of being congruent group extensions. The group structure on H?(G; A)
is not prima facie obvious. We will describe it in detail in Section

Further, there is a natural action of Aut(G) x Aut(A) on H?(G; A) and the orbits of H?(G; A) under
this natural action correspond precisely to the pseudo-congruence classes of central extensions with central
subgroup A and quotient group G.

Note that there is a more general definition of the second cohomology group that works for non-central ex-
tensions where the action of the quotient group G on the abelian normal subgroup A is specified. Throughout
this document, however, when referring to the second cohomology group, we mean the second cohomology
group for trivial group action.

Basic background about the second cohomology group can be found in [3], [26], [9], or in any standard

reference on group cohomology.

6.6. Homomorphism of central extensions. In the discussion so far, we have fixed both the normal
subgroup A and the quotient group G and considered possibilities for the group extension. We now consider
the case where the quotient group G is fixed. We are interested in all central extensions with quotient group
G. The theory undergirding these should be hidden within the group structure of G. Our goal is to make
that theory more explicit. Unfortunately, this is a long task, and we therefore only include a first step here.
We will pick up from where we leave here in Section [9.1

We begin by defining the concept of homomorphism of central extensions. Consider two central extensions,

both of which have G as the quotient group:

0—A  —FEL—-G—1

and
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0— Ay —EFEy —G—1

A homomorphism of central extensions from the first central extension to the second is a pair of homo-
morphisms A; — As, Fy — Fs, that, together with the identity map G — G, give a homomorphism of short
exact sequences.

We can consider the category of central extensions of G:

e The objects of this category are the central extensions with quotient group G.
e The morphisms of this category are homomorphisms of central extensions of G, as defined above.
e Composition of morphisms is defined as the usual composition of homomorphisms of short exact

sequences.

An object in the category of central extensions can be completely described up to isomorphism in this

category simply by specifying its right map. Explicitly, consider two central extensions:

0—-A —-ESLG—1

and

0> Ay, - ESLG—1

where the map v is the same in both cases. In that case, the central extensions are isomorphic in the

category. Explicitly, this is because if we consider the partial commutative diagram:

0 -4, —F 5G —1
lid lid
0 -4, —F 4G —1

there is a unique choice of isomorphism A; — As so that the diagram as a whole commutes:

0 A, —E &G —1
l lid lid
0 -4, - E 5G —1

Further, specifying a homomorphism from one object:

O"AlﬂElgGﬂl

to another:

0—>A2—>E22>GH1

is equivalent to simply specifying the homomorphism E; — FEs, because the homomorphism 4; — A, is

uniquely determined by it. Explicitly, this is because in the commutative diagram:

0 —>A1 —>E1 QG — 1
l& lid
0 ‘}AQ *)EQ EG — 1

there is a unique morphism A; — Ay that completes the commutative diagram.
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Further, the set of permissible homomorphisms F; — FE5 is precisely the set of homomorphisms 6 : Fy —
F5 such that v9 00 = 1.

The category of central extensions of G thus has the following alternative description. Note that strictly
speaking, this is a different category, but the preceding remarks establish that there is a canonical equivalence

of categories between the categories.

e The objects of the category are “central extensions” of G in the sense of being pairs (E,r) where
v: E — G is a surjective group homomorphism and the kernel of v is central in G.

e Given two objects (E1,v1) and (Es9, v5) in the category, a morphism between them is a homomorphism
0 : By — E5 such that v5 060 = vy.

The equivalence of categories is given by the obvious forgetful functor from the short exact sequence
category to this new category, that sends a short exact sequence 0 — A — E % G — 1 to the quotient
map E % G. The functor is clearly essentially surjective (in fact, it is surjective on objects). The preceding
remarks establish that the functor is full and faithful, and therefore an equivalence of categories. From this
point onward, we we talk of the “category of central extensions of G” we will refer to the latter category.

‘We might hope that this category has an initial object, which could then serve as the “source” classifying
central extensions of G. However, such an initial object does not always exist. We will show in Section [9.7]
that there do exist objects in this category that admit homomorphisms to every other object in the category.

These are not in general initial objects because the homomorphisms admitted are not unique.

7. SHORT EXACT SEQUENCES AND CENTRAL EXTENSIONS OF LIE RINGS

In this section, we develop the theory of short exact sequences of Lie rings parallel to the development
in the preceding section (Section @ of the theory for groups. The sections are almost completely analogous
and readers who have thoroughly understood the preceding section can safely skip this section. The reasons
behind developing the theory are also analogous to those offered for groups.

The underlying theory for the cohomology group is different in substantive ways for groups and Lie rings.
However, these differences do not show up at the level of abstraction at which we are dealing with groups

and Lie rings in this and the preceding section.

7.1. Definition of short exact sequence and Lie ring extension. A short exact sequence of Lie rings

is an exact sequence of Lie rings with homomorphisms as follows:

0—-A—N-—-=L—0

In words, the homomorphism from A to N is injective, the homomorphism from N to L is surjective, and
the image of A in N equals the kernel of the homomorphism from N to L. The standard abuse of notation
identifies A with its image in N (so A is viewed as an ideal of N) and L with the quotient Lie ring N/A.

We may also frame this as follows: N is a Lie ring extension with (base) ideal A and quotient Lie ring L.

A morphism of short exact sequences from a short exact sequence:

0—A4 —N;— L1 —0

to another short exact sequence:

0— Ay — Ny — Ly — 0
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is defined as a triple of homomorphisms A; — As, Ny — Ny, L1 — Lo, such that the following diagram

commutes:

0 -4, — N —L; —0
! 1 l 1
0 A, — Ny — Ly, —0
Note that the arrows at the extremes do not convey useful information, so this is equivalent to saying

that the following diagram commutes:

0 -4 —- N —L; —0

! ! !
0 A, — Ny — Ly —0

We can compose two morphisms of short exact sequences in the obvious way. In the diagram below, this

corresponds to composing the vertical morphisms:

0 -4 — N —L; —0

! ! !
0 A, — Ny — Ly —0
! ! !

0 —A3 — N3 — L3 —0
We can thus define a category of short exact sequences. An isomorphism of short exact sequences is defined
as an isomorphism in this category. Explicitly, it is defined as a morphism of short exact sequences where

all the component homomorphisms are isomorphisms.

7.2. Lie ring extensions with fixed base and quotient; congruence and pseudo-congruence. We

often study Lie ring extensions of the form:

0—A—N—-L—0

where A and L are both fixed in advance and different possibilities for N are considered. Two Lie ring

extensions:

0—-A— N —L—0

and

0—-A—Ny—L—0

are said to be congruent if there is an isomorphism ¢ : N3 — Ny such that the triple comprising the
identity map A — A, the map ¢ : E; — FE5, and the identity map L — L give an isomorphism of short
exact sequences. In other words, we can get an isomorphism from N; to Ny that induces the identity maps
both on the ideal A and the quotient Lie ring L.

Congruence defines an equivalence relation on the set of all Lie ring extensions with ideal A and quotient
Lie ring L. The equivalence classes for this equivalence relation are termed congruence classes.

Two Lie ring extensions:
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0—-A— N —L—0

and

0—-A—Ny—L—0

are said to be pseudo-congruent if there is an isomorphism between the short exact sequences. The
isomorphism need not induce the identity map on A and need not induce the identity map on L.

Pseudo-congruence defines an equivalence relation on the set of all Lie ring extensions with ideal A and
quotient Lie ring L. The equivalence classes for this equivalence relation are termed pseudo-congruence
classes.

Pseudo-congruence is a coarser equivalence relation than congruence because it allows for “re-labeling”

on both the ideal side and the quotient Lie ring side.

7.3. Central extensions and stem extensions. A central extension refers to a Lie ring extension where
the ideal is central. Explicitly, consider a short exact sequence of the following form, where A is an abelian

Lie ring:

0—-—A—N—-L—0

We say that N is a central extension with central subring A and quotient Lie ring L if the image of A in
N is a central subring of N. If we engage in the usual abuse of notation that conflates A with its image in
N, we could shorten this to saying that A is a central subring (or equivalently, central ideal) of N.

We will often say “N is a central extension of L” as shorthand for “there exists an abelian Lie ring A
such that IV is a central extension with central subring A and quotient Lie ring L.”

A stem extension is a central extension where the central subring is also contained in the derived subring of

the extension Lie ring. Explicitly, consider a short exact sequence of the following form, where A is abelian:

0—-—A—N-—-L—0

We say that N is a stem extension with central subring A and quotient Lie ring L if the image of A in N
is contained in N’ N Z(N).

7.4. The use of cohomology groups to classify central extensions. Suppose A is an abelian Lie
ring and L is a Lie ring. The group H?, (L; A), called the second cohomology group for trivial Lie ring
action of L on A, is a group whose elements correspond to the congruence classes of central extensions with
central subring A and quotient Lie ring L. Here, by “congruence class” we mean equivalence class under the
equivalence relation of being congruent Lie ring extensions. The group structure on HZ, (L; A) is not prima
facie obvious. For a detailed discussion of the group structure, please refer to Weibel’s book [43]. HZ (L; A)
is simply denoted H?(L; A) in cases where there is no potential for ambiguity with the cohomology group
describing group extensions.

Further, there is a natural action of Aut(L) x Aut(A4) on H?(L; A) and the orbits of H?; (L; A) under
this natural action correspond precisely to the pseudo-congruence classes of central extensions with central
subring A and quotient Lie ring L.

Note that there is some potential for abuse of notation here, namely, we often view A both as an abelian

group and as an abelian Lie ring. From a pedantic perspective, it would be preferable to use the exp and log
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functors to transition between the abelian group and abelian Lie ring via the abelian Lie correspondence, as
described in Section [3] However, doing so would complicate our notation considerably, so we avoid it in this
section. Later, when applying the results here to the Baer correspondence up to isoclinism as described in

Section we will be more careful.

7.5. Homomorphism of central extensions. In the discussion so far, we have fixed both the central
subring A and the quotient Lie ring L and considered possibilities 