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Abstract

In this thesis we generalize the Lazard correspondence, introduced by Lazard in [28], to a correspondence
up to isoclinism. The original Lazard correspondence is a correspondence between some groups and some Lie
rings. The Lazard correspondence up to isoclinism is a correspondence between some equivalence classes of
groups and some equivalence classes of Lie rings, where the equivalence relation on both sides is isoclinism.
By relaxing the objects on both sides of the correspondence to equivalence classes up to isoclinism, we are
able to generalize the domain of the correspondence somewhat. An overview of our proof strategy is in
Section 2, and our final results are described in Section 39.

A typical application of the original Lazard correspondence is the situation where, for some prime p, the
group is a finite p-group of nilpotency class at most p−1 and the Lie ring is a finite p-Lie ring1 of nilpotency
class at most p− 1.

A typical application of the generalization we describe is the situation where the group is a finite p-group
of nilpotency class at most p and the Lie ring is a finite p-Lie ring of nilpotency class at most p. Knowledge
of either (the group or the Lie ring) determines the other only up to isoclinism and not up to isomorphism.
Therefore, this correspondence is suited only for the study of attributes (of groups or Lie rings) that are
invariant under isoclinism.

In cases where the original Lazard correspondence applies, it refines the Lazard correspondence up to
isoclinism: if a group and Lie ring are in Lazard correspondence, then they are also in Lazard correspondence
up to isoclinism. The interesting case covered by our correspondence is the case of finite p-groups of nilpotency
class exactly p and finite p-Lie rings of nilpotency class exactly p. The original Lazard correspondence no
longer applies in this situation,2 so our generalization adds value.

1This means that the additive group of the Lie ring is a finite p-group. In other words, the Lie ring is a Lie algebra over Z/pkZ
for some positive integer k.
2There is a subtle distinction between the global and the 3-local Lazard correspondence that we omit for the abstract, but
describe in detail later
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Background and notation

0.1. Background assumed. This document assumes that the reader is comfortable with group theory at
an advanced undergraduate or beginning graduate student level. At minimum, the reader’s knowledge should
be approximately equivalent to the first six chapters of [9]. A knowledge of the material in [39] would make
the document easy reading. There will be particular emphasis on knowledge of the structure of p-groups and
nilpotent groups, including knowledge of the interplay between the upper central series and lower central
series. A review of the most important definitions and basic results is available in the Appendix, Section
C.1.

Rudimentary familiarity with the ideas of universal algebra and category theory will be helpful in under-
standing the motivating ideas. A review of the most important ideas is available in the Appendix, Sections
B.1 and B.4.

It is assumed that the reader is familiar with the idea of Lie rings, which can be viewed as Lie algebras
over Z, the ring of integers. However, familiarity with Lie algebras over the real numbers or complex numbers
will also be sufficient. A review of some basic definitions from the theory of Lie rings can be found in the
Appendix, Section A.4.

0.2. Group and subgroup notation. Let G be a group. We will use the following notation throughout
this document.

• We will use 1 to denote the trivial subgroup of G. Note that the same letter 1 will be used to denote
both the trivial group as an abstract group and the trivial subgroup in all groups.

• We will also use 1 to denote the identity element of G.
• When working with groups that are known to be abelian groups, we will use additive notation: 0 to

denote the trivial group and + to denote the group operation. However, we will use multiplicative
notation when dealing with abelian subgroups inside a (possibly) non-abelian group.

• H ≤ G will be understood to mean that H is a subgroup of G.
• Z(G) will refer to the center of G.
• G′ and [G,G] both refer to the derived subgroup of G.
• γc(G) refers to the cth member of the lower central series of G, given as follows: γ1(G) = G,
γ2(G) = G′, and γi+1(G) = [G, γi(G)].

• Zc(G) refers to the cth member of the upper central series of G, given as follows: Z0(G) is the trivial
subgroup, Z1(G) = Z(G), and Zi+1(G)/Zi(G) = Z(G/Zi(G)) for i ≥ 1.

• G(i) denotes the ith member of the derived series of G, given by G(0) = G, G(1) = G′, and G(i+1) =
[G(i), G(i)].

• Inn(G) is the inner automorphism group of G. It is canonically isomorphic to the quotient group
G/Z(G), and we will often abuse notation by treating Inn(G) as set-theoretically identical with
G/Z(G).

• Aut(G) is the automorphism group of G. We treat Inn(G) naturally as a subgroup of Aut(G). In
fact, Inn(G) is a normal subgroup of Aut(G).

• End(G) is the endomorphism monoid of G, i.e., the set of endomorphisms of G with the monoid
structure given by composition.

0.3. Lie ring and subring notation. Let L be a Lie ring, i.e., a Lie algebra over Z, the ring of integers.
We will use the following notation throughout this document.
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• We will use 0 to denote the zero subring of L. Note that 0 is used to describe both the abstract zero
Lie ring and the zero subring in every Lie ring.

• We will also use 0 to denote the zero element of L.
• M ≤ L will be understood to mean that M is a Lie subring of L. This means that it is an additive

subgroup of L and is closed under the Lie bracket.
• Z(L) denotes the center of L, i.e., the subring of L comprising those elements whose Lie bracket

with any element of L is zero.
• L′ and [L,L] both refer to the derived subring of L.
• γc(L) refers to the cth member of the lower central series of L, given as follows: γ1(L) = L, γ2(L) = L′,

and γi+1(L) = [L, γi(L)].
• Zc(L) refers to the cth member of the upper central series of L, given as follows: Z0(L) is the trivial

subring, Z1(L) = Z(L), and Zi+1(L)/Zi(L) = Z(L/Zi(L)) for i ≥ 1.
• L(i) denotes the ith member of the derived series of L, given by L(0) = L, L(1) = L′, and L(i+1) =

[L(i), L(i)].
• Inn(L) is the Lie ring of inner derivations of L. It is canonically isomorphic to the quotient Lie

ring L/Z(L), and we will often abuse notation by treating Inn(L) as set-theoretically identical with
L/Z(L).

• Der(L) is the Lie ring of all derivations of L. We treat Inn(L) naturally as a Lie subring of Der(L).
In fact, Inn(L) is an ideal in Der(L).

• Aut(L) is the automorphism group of L.
• End(L) is the endomorphism monoid of L considered as a Lie ring. Note that this is not necessarily

closed under addition.
• EndZ(L) is the endomorphism ring of the underlying additive group of L. To avoid confusion, we

will explicitly specify that we are looking at all additive group endomorphisms whenever we use this
notation.

0.4. Other conventions. We will adopt these conventions:

• As a general rule, when dealing with homomorphisms and other similar functions, we will apply
functions on the left, in keeping with the convention used in most mathematics texts. Thus, f ◦ g is
to be interpreted as saying that the function g is applied first and the function f is applied later.

• For the action of a group on itself, we denote by gx the action of g by conjugation on x as a left
action, i.e., gxg−1. We denote by xg the action of g by conjugation on x as a right action, i.e., g−1xg.
When stating results whose formulation is sensitive to whether we use the left-action convention or
the right-action convention, we will explicitly state the result using both conventions.

• If using the left-action convention, the group commutator [x, y] is defined as xyx−1y−1. If using the
right-action convention, the group commutator [x, y] is defined as x−1y−1xy.

1. Introduction

1.1. The difference in tractability between groups and abelian groups. The structure theorem for
finitely generated abelian groups, which in turn leads to a classification of all finite abelian groups, shows that
the structure of abelian groups is fairly easy to understand and control. On the other hand, the structure of
groups in general is wild. Even classifying finite groups is extremely difficult.
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The difficulty is two-fold. On the one hand, the finite simple groups (which can be thought of as the
building blocks of finite groups) have required a lot of effort to classify. While the original classification was
believed to have been completed around 1980, some holes in parts of the proof were discovered later and it
is believed that these holes were fixed only around 2004. The only finite simple abelian groups are the cyclic
groups of order p. However, there are 17 infinite families and 26 sporadic groups among the finite simple
non-abelian groups. For a quick background on the classification, see [2].

At the other extreme from finite simple groups are the finite p-groups. It is well known that any finite
group of order pn (for a prime p and natural number n) must be a nilpotent group and therefore it has
n composition factors that are all cyclic groups of order p. In other words, there is no mystery about the
building blocks of these groups. Despite this, the multiplicity of ways of putting the building blocks together
makes it very difficult to obtain a concise description of all the groups of order pn. The general consensus
among people who have studied p-groups is that it is futile to even attempt to obtain a concise description of
all the isomorphism types of groups of order pn, and that it is likely that no such description exists. Rather,
the goal of the study of p-groups is to identify methods that enable us to better understand the totality
of p-groups, including aspects that are common to all of them and aspects that differentiate some p-groups
from others. For a description of the state of knowledge regarding p-groups, see [30].5

This thesis is focused on one small part of the study of finite p-groups.

1.2. Nilpotent groups and their relation with abelian groups. A group is termed nilpotent if it has a
central series of finite length. Nilpotent groups are considerably more diverse in nature than abelian groups,
and as alluded to in the preceding section, even the finite nilpotent groups are difficult to classify.

A group is termed solvable if it has a normal series where all the quotient groups are abelian groups.
Solvable groups are considerably more diverse than nilpotent groups.

Generally, statements that are true for abelian groups fall into one of these four classes:

(1) The statement does not generalize much further from abelian groups
(2) The statement generalizes all the way to nilpotent groups but not much further
(3) The statement generalizes all the way to solvable groups but not much further
(4) The statement generalizes to all groups, or to a fairly large class of groups

It might be worthwhile to attempt to understand why the properties of being nilpotent and being solvable
differ qualitatively, and why the former is far closer to being abelian than the latter. In an abelian group, the
commutativity relation holds precisely: ab = ba for all a and b in the group. In general, ab and ba “differ”
by a commutator, i.e., ab = [a, b]ba if we use the left action convention for commutators.

When we consider expressions in a group and try to rearrange the terms of the expression, the process
of rearrangement introduces commutators. These commutators themselves need to be moved past existing
terms, which introduces commutators between the commutators and existing terms. In a nilpotent group,
we eventually reach a stage where the iterated commutators that we obtain are central, and therefore can
be freely moved past existing terms. In a solvable group, such a stage may never arise.

An alternative perspective is that of iterative algorithms, a common class of algorithms found in numerical
analysis and other parts of mathematics. An iterative algorithm attempts to find a solution to a problem
by guessing an initial solution and iteratively refining the guess by identifying and correcting the error in
the initial solution. There are many iterative algorithms that are guaranteed to terminate only for nilpotent
groups, and where the number of steps in which the algorithm is guaranteed to terminate is bounded by

5Although the article was published in 1999, progress has been modest since then.
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the nilpotency class of the group. These algorithms work in a single step for abelian groups, because
commutativity allows for the necessary manipulations to happen immediately. For non-abelian nilpotent
groups, the algorithms work by gradually refining guesses modulo members of a suitable central series (such
as the upper central series or lower central series).

1.3. The Lie correspondence: general remarks. The non-abelianness of groups makes it comparatively
difficult to keep track of group elements and to study the groups. It would be very helpful to come up with
an alternate description of the structure of a group that replaces the (noncommutative) group multiplica-
tion with a commutative group multiplication, and stores the noncommutativity in the form of a separate
operation. A Lie ring (defined in the Appendix, Section A.4) is an example of such a structure.

For readers familiar with the concept of Lie algebras over R or C, note that the definition of Lie ring is
similar, except that the underlying additive group is just an abelian group (rather than being a R-vector
space or C-vector space) and the Lie bracket is just Z-bilinear rather than being R-bilinear or C-bilinear. In
particular, any Lie algebra over R or C is a Lie ring, but not every Lie ring is a Lie algebra over R or C, and
even if it is, there may be multiple ways of giving it such a Lie algebra structure.

The Lie correspondence is an important correspondence in the theory of real Lie groups. For an elementary
exposition of this correspondence, see [42]. We recall here some of the key features of the correspondence.

To any finite-dimensional real Lie group, we can functorially associate a R-Lie algebra called the Lie
algebra of the Lie group. The underlying vector space of the Lie algebra is the tangent space at the identity
to the Lie group, or equivalently, the space of left-invariant vector fields, and the Lie bracket is defined using
the Lie bracket of vector fields. Note that the Lie algebra of a Lie group depends only on the connected
component of the identity.

Additionally, there exists a map, called the exponential map, from the Lie algebra to the Lie group. This
map need not be bijective globally, but it must be bijective in a small neighborhood of the identity. The
inverse of the map, again defined in a small neighborhood of the identity, is the logarithm map. Note that
the exponential map is globally defined, but the logarithm map is defined only locally.

The association is not quite a correspondence. The problem is that different Lie groups could give rise to
isomorphic Lie algebras. However, if we restrict attention to connected simply connected Lie groups, then the
association becomes a correspondence, and we can construct a functor in the reverse direction. Explicitly,
the Lie correspondence is the following correspondence, functorial in both directions:

Connected simply connected finite-dimensional real Lie groups ↔ Finite-dimensional real Lie algebras

1.4. The Lie algebra for the general linear group. Denote by GL(n,R) the general linear group of
degree n over the field of real numbers, i.e., the group of all invertible n × n matrices with real entries.
Denote by gl(n,R) the “general linear Lie algebra” of degree n over R. Explicitly, gl(n,R) is the vector space
of all n× n matrices over R, and the Lie bracket is defined as [x, y] := xy − yx.

gl(n,R) is the Lie algebra of GL(n,R). The exponential and logarithm maps in this case are the usual
matrix exponential and matrix logarithm maps. The exponential map:

exp : gl(n,R) → GL(n,R)

is defined as:
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The matrix exponential is defined for all matrices. However, the exponential map is neither injective nor
surjective:

• The exponential map is not surjective for any n. For n = 1, this is because the exponential of any
real number is a positive real number. A similar observation holds for larger n, once we observe that
the image of the exponential map is inside GL+(n,R), the subgroup of GL(n,R) comprising the
matrices of positive determinant. However, for n > 1, the exponential map is not surjective even to
GL+(n,R). For instance, the following matrix is not the exponential of any matrix with real entries:(

−1 1
0 −1

)
• The exponential map is not injective for n > 1. For instance, for any positive integer m, the following

matrix has exponential equal to the identity matrix:(
0 1

−4m2π2 0

)
Nonetheless, we can find an open neighborhood U of the zero matrix in gl(n,R) and an open neighbor-

hood V of the identity matrix in GL(n,R) such that the exponential map is bijective (and in fact, is a
homeomorphism) from U to V .

Note that GL(n,R) is not a connected simply connected Lie group, so the above is not an instance of the
Lie correspondence.

1.5. The nilpotent case of the Lie correspondence. The example of gl(n,R) and GL(n,R) illustrates
that the exponential map does not always behave nicely. However, it turns out that the exponential map
behaves much better when we apply the Lie correspondence in the nilpotent case. Explicitly, the nilpotent
case of the Lie correspondence is a correspondence:

Connected simply connected finite-dimensional nilpotent real Lie groups ↔ Finite-dimensional nilpotent
real Lie algebras

In the nilpotent case, it will turn out that the exponential map is bijective, and in fact, it defines a
homeomorphism from the Lie algebra to the Lie group. Thus, we can define its inverse, the logarithm map,
globally.

We now turn to an example.

1.6. The example of the unitriangular matrix group. A special case of interest for us is the corre-
spondence between the Lie ring NT (n,R) of n× n strictly upper triangular matrices over R and the group
UT (n,R) of n × n upper triangular matrices over R with all the diagonal entries equal to 1. This corre-
spondence gives a bijection between the underlying sets of NT (n,R) and UT (n,R) via the exponential map.
Explicitly, the matrix exponential defines a bijective set map:

exp : NT (n,R) → UT (n,R)

given explicitly as:
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exp(x) = ex = 1 + x+
x2

2!
+ · · ·+ xn−1

(n− 1)!
Note that this coincides with the usual matrix exponential because xn = 0 and all higher powers of x are

therefore also zero. In other words, this exponential map is the restriction to NT (n,R) of the exponential
map described in the preceding section:

exp : gl(n,R) → GL(n,R)

However, unlike the case of GL(n,R), the exponential map from NT (n,R) to UT (n,R) is bijective, and
in fact, is a homeomorphism. Topologically, both NT (n,R) and UT (n,R) are homemorphic (i.e., isomorphic
in the category of topological spaces) to the vector space R(n

2).
The inverse set map is the matrix logarithm, now defined globally:

log : UT (n,R) → NT (n,R)

given explicitly as:

log x := (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · ·+ (−1)n(x− 1)n−1

n− 1

1.7. The Malcev correspondence and Lazard correspondence. The Malcev correspondence is a gen-
eralization of the nilpotent case of the Lie correspondence that applies to algebras over the field of rational
numbers. Explicitly, the correspondence is:

Rationally powered nilpotent groups ↔ Nilpotent Q-Lie algebras

We will define “rationally powered” in Section 17, but a quick definition for our purpose is that every
element has a unique nth root for every positive integer n. The Malcev correspondence is a purely algebraic
correspondence that does not deal with topological structure. Note that any R-Lie algebra is a Q-Lie algebra
as well. It turns out that for any nilpotent R-Lie algebra, the Lie correspondence coincides with the Malcev
correspondence. Thus, for instance, under the Malcev correspondence, the group associated with NT (n,R)
is UT (n,R).

The Malcev correspondence has a slight further generalization called the Lazard correspondence, intro-
duced by Lazard in [28]. The Lazard correspondence relaxes the assumption of being “rationally powered”
and replaces it with the assumption that unique division by specific primes (namely, primes that are less
than or equal to the nilpotency class) is possible.

If we use the Lazard correspondence in the direction from groups to Lie rings, then it allows us to convert
(a suitable type of) abstract nilpotent group to a nilpotent Lie ring. The addition operation of the Lie ring
captures the abelian part of the group multiplication, whereas the Lie bracket captures the non-abelian part
of the group multiplication.

Unfortunately, the Lazard correspondence applies only to some nilpotent groups and some nilpotent Lie
rings. Specifically, for finite p-groups, it only works for finite p-groups where any subset of size three generates
a subgroup of nilpotency class at most p− 1. For the bulk of this document, we will restrict our attention to
the case of small global class, i.e., the subcorrespondence that applies to finite p-groups of nilpotency class
at most p− 1.

This means that groups that have higher nilpotency class (a way of saying that the groups are relatively
more non-abelian) cannot be studied directly using the Lazard correspondence.
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We will describe the Malcev correspondence and the Lazard correspondence in detail in Sections 30, 31,
and 32. For a textbook-style presentation of the correspondence, see Khukhro’s book [27], Chapters 9 and
10.

1.8. Our generalization of the Lazard correspondence. The goal of this document is to describe a
generalization of the Lazard correspondence that works for all p-groups of nilpotency class at most p. In
other words, it allows us to generalize the Lazard correspondence to a slightly bigger collection of groups.
The limitation of this generalization is that the correspondence only works between equivalence classes of
groups and equivalence classes of Lie rings, with each equivalence class containing multiple isomorphism
types. The equivalence relation of interest here is the equivalence relation of isoclinism. Informally, two
groups are isoclinic if their commutator maps are equivalent, and two Lie rings are isoclinic if their Lie
bracket maps are equivalent.

1.9. Similarities and differences between groups and Lie rings. The theories of groups and Lie rings
are structurally similar. For many concepts related to groups, there are analogously defined concepts for Lie
rings. In most cases, the analogous definition suggests itself naturally. Often, even the proofs are similar. In
some cases, proofs are easier for Lie rings than for groups, primarily because the Lie bracket is bilinear.

There are some concepts that make sense only on the group side, and some concepts that make sense only
on the Lie ring side. Similarly, there are some facts that are true only on the group side, and some facts
that are true only on the Lie ring side.

The closer we are to abelianness, the more structurally similar the theory for groups is to the theory for
Lie rings. In many cases, a fact is true for nilpotent Lie rings if and only if the “analogous” fact is true for
nilpotent groups. There are many facts that are true in general for Lie rings and are not true in general for
groups, but they are true for nilpotent groups.

In addition to structural similarity, we will also see some instances of bijective correspondences between
certain types of groups and certain types of Lie rings (including the Lie correspondence and the Lazard
correspondence). It will turn out that analogous concepts become bijectively correspondent under these
correspondences. For instance, normal subgroups of groups are analogous to ideals in Lie rings. The Lazard
correspondence between groups and Lie rings establishes a bijective correspondence between (certain kinds
of) normal subgroups of the group and (certain kinds of) ideals of the Lie ring.

1.10. Our central tool: Schur multipliers. Our goal is to extend the domain of the Lazard correspon-
dence by relaxing its strictness (from a correspondence up to isomorphism to a correspondence up to isoclin-
ism). In particular, we are interested in extending the Lazard correspondence to nilpotency class one higher
than where it applies. Thus, the groups (respectively, Lie rings) of interest to us arise as central extensions
where the quotient group (respectively, quotient Lie ring) is in the domain of the Lazard correspondence.

Rather than directly trying to study the groups and Lie rings, we study the theory of central extensions
for groups and Lie rings. We first develop the general theory of such central extensions. Then, we apply that
general theory to the case where the quotient group (respectively quotient Lie ring) of the central extension
lies in the domain of the Lazard correspondence. In the edge case of interest where the group is in the
domain of the Lazard correspondence but its central extensions are “just outside” the domain, we can obtain
new insights. For instance, if G is a p-group of nilpotency class exactly p− 1, it is a Lazard Lie group. The
central extensions with quotient group G are p-groups of nilpotency class either p− 1 or p. The latter may
lie outside the domain of the Lazard correspondence.
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On both the group side and the Lie ring side, the theory of central extensions is governed by an abelian
group called the Schur multiplier. There is a rich theory behind the Schur multiplier, and it connects with
important ideas from algebraic topology and homological algebra. We will explore the necessary facets
of this theory. Eventually, we will prove (in Theorem 39.3) that if a Lie ring and a group are in Lazard
correspondence, then their Schur multipliers are isomorphic. A version of the statement for finite p-groups
appeared as a conjecture in the paper [12] by Eick, Horn, and Zandi in September 2012, stated informally
after Theorem 2 of the paper.6 Once the Schur multipliers are established to be isomorphic, it is easy to
establish the Lazard correspondence up to isoclinism.

1.11. Globally and locally nilpotent. The numbers 2 and 3 are particularly significant in the context of
the axiomatization of groups and Lie rings, and they also play an important role in the Lazard correspon-
dence. 2 is the maximum of the arities7 of the operations used in the definition of groups. In particular, this
means that if a function between groups restricts to a homomorphism on every subgroup generated by at
most 2 elements, then the function is globally a homomorphism.

3 is the maximum of the number of variables that appear in the identities that define a group. In
particular, this means that if an algebra has the same signature as a group (i.e., a 0-ary operation for the
identity, a unary operation for the inverse map, and a binary operation for the group multiplication), and
every subalgebra of the algebra generated by at most 3 elements is a group, then the algebra is globally a
group.

The same is true for Lie rings: the maximum of the arities of the operations is 2, and the maximum of
the number of terms that appear in the defining identities is 3. Thus, any function between Lie rings that
restricts to a homomorphism on subrings generated by sets of size at most 2 is globally a homomorphism.
Further, given an algebra with the same signature as a Lie ring, such that every subalgebra generated by at
most 3 elements becomes a Lie ring with the induced operations, the algebra as a whole is a Lie ring.

The formulas used in the Lazard correspondence describe the group operations in terms of the Lie ring
operations, and conversely describe the Lie ring operations in terms of the group operations. The formulas
themselves refer to a maximum of two elements at a time. However, the verification that these formulas
work (i.e., that starting from a Lie ring, we end up with a group, or that starting from a group, we end
up with a Lie ring) relies on looking at three elements at a time. For instance, to verify that a formula
describing group operations in terms of Lie ring operations does indeed define a group structure, we need to
verify the associativity identity for three arbitrary elements. Similarly, to verify that a formula describing
Lie ring operations in terms of group operations does indeed define a Lie ring structure, we need to verify the
associativity of addition, bilinearity, and Jacobi identity for the Lie ring operations. Each of these identities
requires considering three arbitrary elements at a time.

Thus, the conditions that we work out on groups (respectively, Lie rings) pertaining to the Lazard corre-
spondence are 3-local conditions: they are conditions on what subgroups (respectively, Lie subrings) gener-
ated by subsets of size at most three look like.

6The authors write: “Based on various example computations, see also [7], we believe that Theorems 1 and 2 also hold for finite
p-groups of class p − 1. However, our proofs do not extend to this case.” The reference [7] alluded to by the authors has not
yet been published or made available online. For a more detailed discussion, see Section 39.4
7The arity of an operation is the number of inputs it takes. For instance, group multiplication has arity 2. Arity is discussed
in more detail in the Appendix, Section B.4.
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1.12. The structure of this document. The document is quite long despite the fact that the eventual
proofs are relatively short and simple. The reason is that the existing literature we draw upon is fragmented.
We draw on literature with these five broad themes:

• Isoclinism and homoclinism.
• Schur multiplier and the relation with group extension theory.
• Exterior square and its generalizations.
• The Lazard correspondence.
• The behavior of groups and Lie rings where we can divide by specific primes.

Each of these themes has a well-developed body of literature. However, the connections between these
ideas are not emphasized in the literature, and it often requires a careful reading to glean them. Thus, it
would not be sufficient to simply cite the relevant literature. We use the next few sections to develop all the
necessary background material in preparation for our results.

Our presentation will follow these features:

• For the foundational sections, we will systematically alternate sections between groups and Lie rings.
A section about groups will develop a concept or construct in the context of groups. The next section
about Lie rings will develop the analogous concept or construct in the context of Lie rings. To the
extent possible, we will follow parallel modes of presentation in the two sections. Differences between
the sections will be noted at the beginnings of the relevant sections.

• For the foundational sections, we will often begin by discussing a concept in the context of groups
or Lie rings in the abstract, and then discuss an analogous concept in the context of extensions of
groups or Lie rings. This will be done somewhat in reverse in the later sections, where we sometimes
prove a result in the context of extensions (of groups or Lie rings) and then apply that to prove the
result in the context of groups or Lie rings. This will be our modus operandi for the crucial proofs.

• Our key results involve generalizing certain correspondences (the Baer correspondence and Lazard
correspondence) to a larger domain, but with a coarser equivalence relation (of isoclinism). For each
correspondence that we generalize, we first explicitly describe the known correspondence and its key
attributes (in one or more sections), and then describe our generalization.

1.13. For a quick reading. For readers who wish to understand the main results without delving into
background concepts in unnecessary depth, the following reading sequence will work:

(1) Chapter 1 (Introduction, outline, and preliminaries):
• Section 2 contains the outline of our main proof techniques. It is worth reading in its entirety.
• Section 3 (The abelian Lie correspondence): The contents of this section are straightforward,

but it is worth reading because the methods used in this section form a template for later, more
complicated, correspondences.

(2) Chapter 2 (Isoclinism and homoclinism: basic theory):
• Section 4 (Isoclinism and homoclinism of groups): It suffices to read Sections 4.1 – 4.4, and the

statements of the theorems in Section 4.6. Readers already familiar with the definitions can
skip this section and return if needed.

• Section 5 (Isoclinism and homoclinism of Lie rings): It suffices to read Section 5.1. Readers
already familiar with the definitions can skip this section and return if needed. Readers who
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thoroughly understand the general analogy between groups and Lie rings can extrapolate the
definitions and results of this section from the preceding one, and hence may skip this section.

(3) Chapter 3 (Extension theory):
• Section 6 (Short exact sequences of groups): Readers already familiar with the basics of short

exact sequences and central extensions can read Sections 6.5 and 6.6.
• Section 7 (Short exact sequences and central extensions of Lie rings): Readers who understood

the preceding section (Section 6), and understand how the analogy between groups and Lie
rings works, can skip this section.

• Section 8 (Explicit description of second cohomology group): This section can be skipped
without loss of continuity. The material in this section helps with understanding Section 24.9.
However, the latter can also be skipped without loss of continuity.

• Section 9 (Exterior square, Schur multiplier, and homoclinism): This section is important to un-
derstand because it lays the foundation for later material, and the presentation is non-standard.
Readers may skip proofs, many of which are tedious, and focus on the statements of the results.

• Section 10 (Exterior square, Schur multiplier, and homoclinism for Lie rings): Apart from
Section 10.2, this section is mostly analogous to the preceding section. Hence, the rest of the
section can be skipped.

• Section 11: This section is important to understand because it lays the foundation for later
material, and the presentation is non-standard. Readers may skip proofs, many of which are
tedious, and focus on the statements of the results.

• Section 12: This section may be skipped by readers who have a thorough understanding of the
preceding section and understand how the analogy between groups and Lie rings works.

• Sections 13 and 14 (Exterior and tensor products for groups and Lie rings respectively): These
sections can be skipped without loss of continuity, and interested readers can refer back to the
explicit descriptions as needed later.

• Sections 15 and 16: These are worth skimming for their main results.
(4) Chapter 4 (Powering over sets of primes):

• Section 17 (Groups powered over sets of primes): Readers would benefit by reading the part
of Section 17 up to and including Section 17.5 in order to familiarize themselves with the
definitions. Some of the results presented in the rest of the section are useful, but they can be
revisited as necessary.

• Section 18 (Lie rings powered over sets of primes): It suffices to read Section 18.1.
• Section 19 (Free powered groups and powering functors): The results in Sections 19.5 and 19.8

are the most important. The rest of the section may be skimmed.
• Section 20 (Free powered Lie rings and powering functors): The results here are analogous to

the preceding section, though the proofs are more straightforward. The section can be skipped
and returned to as needed.

(5) Chapter 5 (Baer correspondence):
• Sections 21 and 22 (Baer correspondence): It suffices to read Sections 21.1-21.3 and Section

22.4. However, readers may benefit from skimming both sections in their entirety in order to
get a better sense.

• Section 23 may be skipped without loss of continuity.
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• Section 24 (Baer correspondence up to isoclinism): Reading the whole section is strongly rec-
ommended, but readers may skip Section 24.9 without loss of continuity.

• Section 25 contains interesting examples worth reading but may be skipped without loss of
continuity.

(6) Chapter 6 (The Malcev and Lazard correspondences):
• Sections 26 and 27 (adjoint groups, exponential and logarithm maps, and free nilpotent groups):

These sections may be skimmed without reading the proofs. They provide technical background
for Section 28.

• Section 28 (Baker-Campbell-Hausdorff formula): This section should be read in its entirety.
Readers may benefit from concentrating on the statements of the theorems and skimming the
proofs.

• Section 29: This section is partly analogous to Section 28, so aside from the introduction, it
may be skimmed.

• Sections 30, 31, and 32 (Malcev correspondence, global Lazard correspondence, and Lazard
correspondence): These sections are worth reading, though people familiar with the correspon-
dences may skim them.

(7) Chapter 7 (Generalizing the Lazard correspondence to a correspondence up to isoclinism):
• Section 33 (Group commutator and Lie bracket in terms of each other) is important.
• Section 34 may be skimmed.
• The theorems in Section 35 are important as stepping stones for the main results. However, the

proofs are unilluminative and may be skipped.
• The results in Sections 36 and 37 are important, but the proofs may again be skipped.
• Sections 38 and 39 are extremely important and should be read carefully, though the proofs

may be skimmed.
(8) Chapter 8 (Applications and possible extensions): Sections 40 and 41 may be of interest to readers

who want to understand potential applications.
(9) Readers may refer to the sections in the Appendix based on their level of interest. Sections A, B,

and C cover technical background at the advanced undergraduate or beginning graduate level that
is useful for understanding the main results of the thesis. Section E covers a general theory that is
helpful for understanding potential generalizations of the results presented here.

2. Outline of our main results

This section provides an overview of our main results and the strategy we will use to prove these results.
Some of the technical details in this section may be accessible only to people with a strong background in
group theory and some prior familiarity with the Lazard correspondence. However, all readers should be
able to understand the ideas at a broad level.

2.1. The Lazard correspondence: a rapid review. The Lazard correspondence is a correspondence
between certain kinds of groups and certain kinds of Lie rings. The groups, called Lazard Lie groups, satisfy
a condition relating the set of primes over which they are powered and the nilpotency class of subgroups
generated by subsets of size at most three. The Lie rings, called Lazard Lie rings, satisfy a similar condition
relating the set of primes over which they are powered and the nilpotency class of Lie subrings generated
by subsets of size at most three. The precise definition of the Lazard correspondence is in Section 32. A
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somewhat easier case of the correspondence, called the global Lazard correspondence, is described in Section
31. The global Lazard correspondence imposes a restriction on the nilpotency class of the whole group and
of the whole Lie ring. It is more narrow than the Lazard correspondence but easier to deal with.

For a Lie ring L, the corresponding group, exp(L), has the same underlying set as L, and the group
operations are defined in terms of the Lie ring operations based on fixed formulas. Explicitly, the group
multiplication is defined in terms of the Lie ring operations using the Baker-Campbell-Hausdorff formula.
The Baker-Campbell-Hausdorff formula is described in detail in Section 28. Technically, the formula is
different for different values of the (3-local) nilpotency class, but we can use a single infinite series whose
truncations give all the formulas.

For a group G, the corresponding Lie ring, denoted log(G), has the same underlying set as G, and the Lie
ring operations are defined in terms of the group operations based on fixed formulas called the inverse Baker-
Campbell-Hausdorff formulas (one formula describing the Lie ring addition and another formula describing
the Lie bracket in terms of the group operations). The inverse Baker-Campbell-Hausdorff formulas are
described in Section 29.

exp and log define functors between appropriately defined subcategories of the category of groups and
the category of Lie rings, and the functors are two-sided inverses of each other. Thus, they establish an
isomorphism of categories over the category of sets8 between the relevant subcategories of the category of
groups and the category of Lie rings.

2.2. Isoclinism: a rapid review. An isoclinism of groups is a pair of group isomorphisms, one between
their inner automorphism groups and the other between their derived subgroups, that are compatible with
the commutator map. Intuitively, we can think of an isoclinism of groups as an equivalence between the
commutator structures of the two groups. We will define and discuss isoclinisms in Section 4.

There is a similar notion of isoclinism of Lie rings (that uses the inner derivation Lie ring, the derived
subring, and the Lie bracket) that we will define and discuss in Section 5. Intuitively, we can think of an
isoclinism of Lie rings as an equivalence between the Lie bracket structures of the Lie rings.

We can use isoclinism of groups to define an equivalence relation on the collection of groups. Analogously,
we can use isoclinism of Lie rings to define an equivalence relation on the collection of Lie rings.

2.3. The Lazard correspondence up to isoclinism. The Lazard correspondence up to isoclinism com-
bines the idea of the Lazard correspondence and the idea of isoclinism. For a Lie ring L and a group G, a
Lazard correspondence up to isoclinism includes two pieces of data satisfying a compatibility condition:

• A Lazard correspondence up to isomorphism between Inn(L) and Inn(G). This can be viewed as an
isomorphism of groups between exp(Inn(L)) and Inn(G) or as an isomorphism of Lie rings between
Inn(L) and log(Inn(G)).

• A Lazard correspondence up to isomorphism between L′ and G′. This can be viewed as an iso-
morphism of groups between exp(L′) and G′ or as an isomorphism of Lie rings between L′ and
log(G′).

The compatibility condition is tricky to specify. Naively, we might expect that the compatibility condition
would say that the isomorphism converts the Lie bracket map Inn(L)× Inn(L) → L′ to the commutator map
Inn(G) × Inn(G) → G′. The problem with this naive specification is that even with the ordinary Lazard
correspondence, the Lie bracket of the Lie ring does not coincide with the commutator of the group. They

8This means an isomorphism of categories that preserves the underlying set
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do coincide when the class is at most two, and we discuss this special case, the Baer correspondence up to
isoclinism, in Section 24.

To handle higher class, we need to first derive a formula valid for the usual Lazard correspondence that
expresses the Lie bracket in terms of the commutator, and in the reverse direction, we need to derive a formula
valid for the usual Lazard correspondence that expresses the commutator in terms of the Lie bracket. The
compatibility condition we impose will make use of these formulas. The formulas themselves are described
in Section 33. The compatibility condition based on these formulas is described in detail in Section 39.

2.4. The existence question. Defining the Lazard correspondence up to isoclinism is relatively easy. The
harder part is establishing sufficient conditions for the existence of objects on the other side, i.e., establishing
sufficient conditions for the existence of groups that are in Lazard correspondence up to isoclinism with a given
Lie ring, and establishing sufficient conditions for the existence of Lie rings that are in Lazard correspondence
up to isoclinism with a given group.

The results that we would like to aim for are:

• For a Lie ring L, if both Inn(L) and L′ are Lazard Lie rings, then we can find a group G such that
L is in Lazard correspondence up to isoclinism with G.

• For a group G, if both Inn(G) and G′ are Lazard Lie groups, then we can find a Lie ring L such that
L is in Lazard correspondence up to isoclinism with G.

Unfortunately, the proofs of these statements at a general level require more machinery than we can
manage in this thesis. We therefore restrict our proofs here to the case of the global Lazard correspondence.
The precise statements of the results we will prove are in Section 39. Essentially, we restrict attention to
groups that satisfy global assumptions on the set of primes over which they powered, and for which the inner
automorphism group and derived subgroup are both in the domain of the global Lazard correspondence.

The strategy that we use to demonstrate these facts is somewhat roundabout. Instead of trying to answer
the question directly, we try to answer the question in the more general context of central extensions of
groups and Lie rings. We will then apply the results that we obtain to the central extensions with short
exact sequences:

0 → Z(G) → G→ G/Z(G) → 1

and

0 → Z(L) → L→ L/Z(L) → 0

We outline below the argument in the direction from Lie rings to groups.
We begin by viewing L as an extension with central subring Z(L) and quotient ring L/Z(L) ∼= Inn(L).

We obtain the corresponding Lie bracket map Inn(L)× Inn(L) → L′. We then obtain a desired commutator
map exp(Inn(L)) × exp(Inn(L)) → exp(L′) by using the formula describing the commutator map in terms
of the Lie bracket map. Finally, we demonstrate the existence of a group G that realizes this commutator
map.

2.5. The realization of isoclinism types. We will show that equivalence classes of groups up to isoclinism
can be described by storing the commutator structure in an abstract fashion, without reference to an actual
group in that equivalence class.
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This will be useful to the final step of our proof of existence established above: instead of directly trying
to construct the groups in the equivalence class up to isoclinism, we construct the commutator structure. In
the notation above, we construct the desired commutator map exp(Inn(L))× exp(Inn(L)) → exp(L′).

Below, we provide a few more details about how we store the commutator structure abstractly. This
discussion may be accessible only to people familiar either with group cohomology or with some other type
of cohomology theory that is structurally similar. Note also that the group G that we use here is not the
same as the group G used in Section 2.4. In fact, to apply what we discuss below to Section 2.4, we would
need to set the group A below to exp(Z(L)) and set the group G below to exp(L/Z(L)).

Technical details: In Sections 9 and 11, we will show that we can classify central extensions up to isoclinism
using a homomorphism from the Schur multiplier. Explicitly, when considering central extensions with
central subgroup A and quotient group G, we can determine the type of the extension up to isoclinism by
considering the induced map M(G) → A where M(G) is the Schur multiplier of G. We will relate this to
the universal coefficient theorem short exact sequence described in Section 11.4.

0 → Ext1Z(Gab, A) → H2(G;A) → Hom(M(G), A) → 0

The key aspect of the above short exact sequence that is relevant for the existence question is the surjec-
tivity of the map:

H2(G;A) → Hom(M(G), A)

Thus, the homomorphism from M(G) to A describes the equivalence class of extensions up to isoclinism,
and every homomorphism from M(G) to A describes some eqiuvalence class of extensions.

For results in the opposite direction, we develop a similar theory for Lie rings.

2.6. Powering assumptions. One complication that arises in the discussion of the Lazard correspondence
and its generalizations is that the formulas involved require taking pth roots for some primes p. Thus, in
order to make sense of these expressions, we need to develop a basic theory of groups and Lie rings where
these operations make sense. We develop that basic theory in Sections 17 and 19 (for groups) and in Sections
18 and 20 (for Lie rings).

2.7. Global Lazard correspondence preserves Schur multipliers. To complete the proof, we need to
demonstrate that the global Lazard correspondence behaves well with respect to the structures that we use
to classify extensions up to isoclinism. Explicitly, we need to show that if L = log(G) and G = exp(L), then
the Schur multipliers M(L) and M(G) are canonically isomorphic, and also that the exterior squares L ∧ L
and G∧G are in Lazard correspondence. We will demonstrate these facts in Sections 36 and 39 (specifically,
in Theorem 39.3). A version of the statement for finite p-groups appeared as a conjecture in the paper [12]
by Eick, Horn, and Zandi in September 2012, stated informally after Theorem 2 of the paper. Some technical
details of our proof idea follow.

Technical details: The key idea behind our proof is to express our group as a quotient group of a free
powered nilpotent group of class one more. Using a nilpotency class of one more allows us to use a variant of
the Hopf formula to calculate the Schur multiplier, as described in 11.10 and 36.2. We can perform a similar
construction on the Lie ring side. We now show that the groups used to compute the Schur multiplier of
the group are in Lazard correspondence with the Lie rings used to compute the Schur multiplier of the Lie
ring. The reason this is nontrivial is that the free nilpotent group and free nilpotent Lie ring of class one
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more need not themselves be in Lazard correspondence. We need to show that despite this, the groups that
we eventually use in the formula for computing the Schur multiplier are in Lazard correspondence.

3. The abelian Lie correspondence

This section describes an obvious and straightforward correspondence: the correspondence between
abelian groups and abelian Lie rings. An abelian Lie ring is a Lie ring that has trivial Lie bracket. Basic
definitions related to Lie rings can be found in the Appendix, Section A.4.

All assertions made here are trivial to prove. The purpose of this section is to set up a basic prototype
for the Lazard correspondence.

3.1. Abelian groups correspond to abelian Lie rings. We establish the abelian Lie correspondence:

Abelian groups ↔ Abelian Lie rings

The correspondence works as follows.

• From groups to Lie rings: Given an abelian group G, the corresponding abelian Lie ring logG is
defined as the Lie ring whose underlying additive group coincides with G, and where the Lie bracket
is trivial.

• From Lie rings to groups: Given an abelian Lie ring L, the corresponding abelian group expL is
defined as the underlying additive group of L.

Note that the symbols exp and log here are being used as abstract symbols. They do not describe
exponential and logarithm maps in the conventional sense of the term. The relationship with the usual
notions of exponential and logarithm will become clearer in subsequent sections leading up to the definition
of the Lazard correspondence.

3.2. Preservation of homomorphisms: viewing exp and log as functors. The following observations
follow immediately from the definitions:

• log defines a functor from abelian groups to abelian Lie rings: Suppose G1 and G2 are abelian groups
and ϕ : G1 → G2 is a group homomorphism. Then, there exists a unique Lie ring homomorphism
log(ϕ) : log(G1) → log(G2) that has the same underlying set map as ϕ.

• exp defines a functor from abelian Lie rings to abelian groups: Suppose L1 and L2 are abelian Lie
rings and ϕ : L1 → L2 is a Lie ring homomorphism. Then, there exists a unique group homomorphism
exp(ϕ) : exp(L1) → exp(L2) that has the same underlying set map as ϕ.

• The log and exp functors are two-sided inverses of each other: This assertion has four parts:
– For every abelian group G, G = exp(log(G)).
– For every abelian Lie ring L, L = log(exp(L)).
– For every group homomorphism ϕ : G1 → G2 of abelian groups, exp(log(ϕ)) = ϕ.
– For every Lie ring homomorphism ϕ : L1 → L2 of abelian Lie rings, log(exp(ϕ)) = ϕ.

The upshot of these is that the category of abelian groups and the category of abelian Lie rings are
isomorphic categories, with the log and exp functors providing the isomorphisms.

3.3. Isomorphism over Set. Consider the following two categories:

• The category of abelian groups, with the forgetful functor to the category of sets that sends each
abelian group to its underlying set.
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• The category of abelian Lie rings, with the forgetful functor to the category of sets that sends each
abelian Lie ring to its underlying set.

The correspondence we established above (in Sections 3.1 and 3.2) establishes an isomorphism of categories
over Set between the two categories. There are two parts to this statement:

• The correspondence establishes an isomorphism between the category of abelian groups and the
category of abelian Lie rings: The functor in the direction from groups to Lie rings is the log
functor. The functor in the direction from Lie rings to groups is the exp functor. The details are in
the preceding section (Section 3.2).

• This isomorphism has the property that applying it and then applying the forgetful functor to the
category of sets gives the same result as directly applying the forgetful functor to the category of
sets. This is a category-theoretic way of saying that the abelian group and abelian Lie ring have the
same underlying set, and that the set maps that are group homomorphisms are precisely the same
as the set maps that are Lie ring homomorphisms.

3.4. Equality of endomorphism monoids and of automorphism groups. Suppose L is an abelian
Lie ring and G = exp(L), so that L = log(G). The functors exp and log are isomorphisms of categories,
hence they induce isomorphisms between the endomorphism monoids. Further, since these isomorphisms
of categories preserve the underlying set, the isomorphism between the endomorphism monoids sends each
Lie ring endomorphism to a corresponding group endomorphism that is the same as a set map. Explicitly,
the map exp : End(L) → End(G) is an isomorphism. Further, for ϕ ∈ End(L), the corresponding map
exp(ϕ) ∈ End(G) coincides with ϕ as a set map. The isomorphism induced by exp between the endomorphism
monoids End(L) and End(G) restricts to an isomorphism between the automorphism groups Aut(L) and
Aut(G).

3.5. The correspondence up to isomorphism. We have so far considered the correspondence at the
level of individual groups and Lie rings:

Abelian groups ↔ Abelian Lie rings

The correspondence defines an isomorphism of categories, and thus it descends to a correspondence
between equivalence classes up to isomorphism on both sides, giving a correspondence:

Isomorphism classes of abelian groups ↔ Isomorphism classes of abelian Lie rings

Suppose L is an abelian Lie ring and G is an abelian group. Specifying an abelian Lie correspondence up
to isomorphism between L and G amounts to specifying one of the following two equivalent pieces of data:

• An isomorphism of groups from expL to G.
• An isomorphism of Lie rings from logG to L.

A common convention used to provide this data is to provide one of these:

• A set map exp : L→ G that, viewed as a set map from exp(L) to G, becomes a group isomorphism.
• A set map log : G→ L that, viewed as a set map from log(G) to L, becomes a Lie ring isomorphism.

In other words, we can specify the data in the form of one of these set maps:

exp : L→ G, log : G→ L

The set maps log and exp are two-sided inverses of each other.
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It will turn out, later, that actual exponential and logarithm maps, with the usual power series expansions,
occurring inside an associative ring, provide examples of an abelian Lie correspondence up to isomorphism.

In cases where we want to emphasize that we are talking of the abelian Lie correspondence and not the
abelian Lie correspondence up to isomorphism, we will talk of the strict abelian Lie correspondence. In this
section, our focus will be on the strict abelian Lie correspondence because that provides for an easier way
to formulate our statements.

3.6. Isomorphism of categories versus equivalence of categories. When discussing what it means
for two categories to be essentially the same, category theorists typically rely on a weaker notion than
isomorphism of categories. An equivalence of categories C and D and a pair of functors F : C → D and
G : D → C along with natural isomorphism ε : F ◦ G → IdD and η : G ◦ F → IdC . Two categories C
and D are said to be equivalent if there exists an equivalence of categories between them. An alternative
characterization is that two categories C and D are equivalent if there exists a functor F : C → D such that
F is full, faithful, and essentially surjective. Here, essentially surjective means that for every object B ∈ D,
there exists A ∈ C such that F(A) is isomorphic to B.

The difference between the definitions of isomorphism of categories and equivalence of categories arises
from the distinction between a functor being bijective (in the sense that every object is in the image of the
functor and has a unique pre-image under the functor) and the functor being essentially surjective (in the
sense that every object is isomorphic to an object in the image of the functor). Equivalence of categories
is a more robust and useful notion because it is less sensitive to how strictly we define equality of objects.
Thus, even though the correspondences we define are isomorphisms of categories over the category of sets,
it will often be more helpful to think of them as equivalences of categories.

Note that any equivalence of categories establishes a bijective correspondence between isomorphism classes
of objects in the two categories (in this case, the two categories are respectively the category of abelian groups
and the category of abelian Lie rings). However, the equivalence of categories also includes additional data
that allows us to identify homomorphism sets on both sides (in this case, identify abelian group homomor-
phisms with abelian Lie ring homomorphisms).

3.7. Subgroups, quotients, and direct products. The collection of abelian groups is a subvariety of the
variety of groups (see the Appendix, Section B.4 for the definition of variety). There are three parts to this
assertion:

• Every subgroup of an abelian group is abelian.
• Every quotient group of an abelian group is abelian.
• A direct product of (finitely or infinitely many) abelian groups is abelian.

Similarly, the collection of abelian Lie rings is a subvariety of the variety of Lie rings. There are three
parts to this assertion:

• Every subring of an abelian Lie ring is abelian.
• Every quotient ring of an abelian Lie ring is abelian.
• A direct product of (finitely or infinitely many) abelian Lie rings is abelian.

A natural question is whether the abelian Lie correspondence behaves nicely with respect to taking
subalgebras (subgroups and subrings respectively), quotient algebras (quotient groups and quotient rings
respectively), and direct products. The answer is yes. Specifically, the following are true:
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• Subgroups correspond to subrings: Suppose an abelian Lie ring L is in abelian Lie correspondence
with an abelian group G, i.e., L = log(G) and G = exp(L). Then, for every subgroup H of G, log(H)
is a subring of L, and the inclusion map of log(H) in L is obtained by applying the log functor to the
inclusion map of H in G. In the opposite direction, for every subring M of L, exp(M) is a subgroup
of G, and the inclusion map of exp(M) in G is obtained by applying the exp functor to the inclusion
map of M in L. The abelian Lie correspondence thus gives rise to a correspondence:

Subgroups of G ↔ Subrings of L

• Quotient groups correspond to quotient rings: Suppose an abelian Lie ring L is in abelian Lie cor-
respondence with an abelian group G. Then, for every normal subgroup H of G,9 log(G/H) is a
quotient Lie ring of L, and the quotient map L→ log(G/H) is obtained by applying the log functor
to the quotient map G → G/H. In the opposite direction, for every ideal I of L, exp(L/I) is a
quotient group of G, and the quotient map G → exp(L/I) is obtained by applying the exp functor
to the quotient map L→ L/I. The abelian Lie correspondence thus gives rise to correspondences:

Normal subgroups of G ↔ Ideals of L

Quotient groups of G ↔ Quotient rings of L

• Direct products correspond to direct products: Suppose I is an indexing set, and Gi, i ∈ I is a
collection of abelian groups. For each i ∈ I, let Li = log(Gi). Then, the external direct product∏

i∈I Li is in abelian Lie correspondence with the external direct product
∏

i∈I Gi. Moreover, the
projection maps from the direct product to the individual factors are in abelian Lie correspondence.
Also, the inclusion maps of each direct factor in the direct product are in abelian Lie correspondence.

3.8. Characteristic and fully invariant. Suppose an abelian group G is in abelian Lie correspondence
with an abelian Lie ring L. In Section 3.4, we saw that G and L have the same automorphism group as
each other and the same endomorphism monoid as each other (where “same” here means that the actions
agree on the underlying set). In Section 3.7, we saw that the abelian Lie correspondence induces a bijective
correspondence between subgroups of G and subrings of L. Combining these ideas, we obtain two additional
bijective correspondences:

Characteristic subgroups of G ↔ Characteristic subrings of L

Fully invariant subgroups of G ↔ Fully invariant subrings of L

Here, characteristic means invariant under all automorphisms and fully invariant means invariant under
all endomorphisms.

3.9. How the template will be reused. The steps that we have outlined above will be used to construct
and study a number of similar correspondences. The steps will be as follows:

• We will describe a way of writing group operations in terms of Lie ring operations and a way of
describing Lie ring operations in terms of group operations, such that the formulas used satisfy the
axioms for groups and Lie rings by definition, and such that the formulas are inverses of each other.

• We will then use this to construct a correspondence that defines an isomorphism over the category
of sets between a full subcategory of the category of groups and a full subcategory of the category

9Note that since G is abelian, every subgroup is normal. However, we deliberately state the result in this fashion so that
parallels with later generalizations are clearer.
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of Lie rings. We will use log to denote the functor from the group side to the Lie ring side, and exp
to denote the functor from the Lie ring side to the group side.

• We will deduce that if a group and Lie ring are in correspondence, then their endomorphism monoids
are naturally isomorphic, and their automorphism groups are naturally isomorphic.

• The correspondence can be weakened to a correspondence between isomorphism classes in the full
subcategories.

• An instance of the correspondence up to isomorphism between a group G and a Lie ring L can
be described by specifying the isomorphism from log(G) to L or by specifying the isomorphism
from exp(L) to G. We will describe the correspondence in terms of the set map log : G → L or,
equivalently, the set map exp : L→ G.

• Of the results in Section 3.7, the results for the direct product generalizes for each correspondence
(note that this does not follow category-theoretically, but rather, it follows from the nature of the
correspondence). The results for the correspondence between subgroups and subrings and the corre-
spondence between quotient groups and quoitent rings generalize but only after we impose restrictions
on the types of subgroups, subrings, quotient groups, and quotient rings under consideration.

For brevity, we will not repeat these steps in every instance. Rather, our focus will be on the first step:
establishing that the formulas used make sense, satisfy the axioms, and are inverses of each other.

4. Isoclinism and homoclinism for groups

The goal of this section is to establish the basic theory of isoclinism and homoclinism for groups. In-
formally, a homoclinism of groups is a homomorphism between the commutator structures of the groups.
Informally, two groups are isoclinic if their commutator maps are equivalent. Isoclinism defines an equiva-
lence relation on the collection of groups. Under this equivalence relation, all abelian groups are equivalent
to the trivial group.

The original results that we present later (Section 24 and 39) describe bijective correspondences between
certain equivalence classes of groups and certain equivalence classes of Lie rings. The equivalence classes of
groups are based on the equivalence relation of isoclinism.

Readers already familiar with the definitions of isoclinism and homoclinism may skip this section and
return to it later if needed. Readers who want the bare minimum necessary for later sections can read
Sections 4.1-4.4, and the statements of the theorems in Section 4.6. The proofs of the theorems in Section
4.6 can be skipped.

4.1. Isoclinism of groups: definition. The concept of isoclinism as introduced here was first defined in
1937 by Philip Hall in [21]. It was used by Philip Hall as an aid to the classification of finite groups of small
prime power order. Hall’s work was later extended by Marshall Hall and Senior, who published detailed
information on the groups of order 2n, n ≤ 6 in [20]. The basic definition and most of the elementary facts
stated here about isoclinism can be found on Page 93 of Suzuki’s group theory text [41].

For any group G, denote by Inn(G) the inner automorphism group of G, denote by G′ the derived subgroup
of G, and denote by Z(G) the center of G (this and related notation used in this document are described in
Section 0.2). Note that Inn(G) ∼= G/Z(G).

For any group G, the commutator map in G descends to a map of sets:

ωG : Inn(G)× Inn(G) → G′
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This map is well-defined because the commutator of two elements depends only on their cosets modulo
the center. Note that this map is only a set map at this stage, not a homomorphism. Later, in Section 9.1,
we will introduce the concept of the exterior square of a group, and we will be able to interpret ωG as a
homomorphism in that context.

Suppose now that G1 and G2 are groups. The commutator maps in the groups define the following
respective maps:

ωG1 : Inn(G1)× Inn(G1) → G′1

ωG2 : Inn(G2)× Inn(G2) → G′2

An isoclinism from G1 to G2 is a pair of isomorphisms (ζ, ϕ) where ζ is an isomorphism from Inn(G1) to
Inn(G2) and ϕ is an isomorphism from G′1 to G′2, satisfying the condition that:

(1) ϕ ◦ ωG1 = ωG2 ◦ (ζ × ζ)

More explicitly, for any x, y ∈ Inn(G1), we require that:

(2) ϕ(ωG1(x, y)) = ωG2(ζ(x), ζ(y))

In other words, taking the commutator and then applying the isomorphism of derived subgroups is equiv-
alent to applying the isomorphism between inner automorphism groups and then taking the commutator.

Pictorially, this can be represented as saying that the following diagram commutes:

Inn(G1)× Inn(G1)
ζ×ζ→ Inn(G2)× Inn(G2)

↓ωG1 ↓ωG2

G′1
ϕ→ G′2

Note that both the inner automorphism group and the derived subgroup are quantitative measurements
of the “non-abelianness” of the group. The notion of isoclinism can thus properly be thought of as saying
“equivalent modulo the subvariety of abelian groups.” In particular, a group is abelian if and only if it is
isoclinic to the trivial group.

There is a precise way of formulating this using the more general notion of isologism, which we describe
in the Appendix, Section E.

4.2. Homoclinism of groups. The notion of homoclinism of groups relates to isoclinism of groups in the
same way as homomorphism of groups relates to isomorphism of groups. We have not been able to confirm
the first use of the term, but a somewhat more general definition called n-homoclinism appears in [22].
We have chosen this presentation, despite its being non-standard, because it is a convenient framework for
understanding later results. Although the presentation is non-standard, none of the results in this or the
next few sections are substantively different from results available in the literature.

Suppose G1 and G2 are groups. A homoclinism of groups from G1 to G2 is a pair of homomorphisms (ζ, ϕ)
where ζ is a homomorphism from Inn(G1) to Inn(G2) and ϕ is a homomorphism from G′1 to G′2, satisfying
Equation 1 (that can alternatively be stated as 2).

Pictorially, this can be represented as saying that the following diagram commutes:
33



Inn(G1)× Inn(G1)
ζ×ζ→ Inn(G2)× Inn(G2)

↓ωG1 ↓ωG2

G′1
ϕ→ G′2

Note that this is the same as the diagram for isoclinisms. The only difference is that the horizontal maps
are no longer required to be bijective.

4.3. Composition of homoclinisms. Suppose G1, G2, and G3 are groups. Suppose (ζ12, ϕ12) is a homo-
clinism from G1 to G2 and (ζ23, ϕ23) is a homoclinism from G2 to G3. We then define the composite of these
homoclinisms to be the following homoclinism from G1 to G3:

(ζ23, ϕ23) ◦ (ζ12, ϕ12) = (ζ23 ◦ ζ12, ϕ23 ◦ ϕ12)

To see that this composite is indeed a homoclinism, we need to check that both the component maps are
homomorphisms, and that the corresponding diagram commutes. The component maps are homomorphisms
because a composite of homomorphisms is a homomorphism. The fact that the diagram commutes can be
seen from the full diagram below. The left square commutes because (ζ12, ϕ12) is a homoclinism. The right
square commutes because (ζ23, ϕ23) is a homoclinism. Thus, the overall diagram commutes.

Inn(G1)× Inn(G1)
ζ12×ζ12→ Inn(G2)× Inn(G2)

ζ23×ζ23→ Inn(G3)× Inn(G3)
↓ωG1 ↓ωG2 ↓ωG3

G′1
ϕ12→ G′2

ϕ23→ G′3

4.4. Category of groups with homoclinisms. We define a category that will be useful to work with.

Definition (Category of groups with homoclinisms). The category of groups with homoclinisms is defined
as the following category:

• The objects of the category are groups.
• The morphisms of the category are homoclinisms.
• Composition of morphisms is composition of homoclinisms.
• The identity morphism is the identity homoclinism: it is the identity map on both the inner auto-

morphism group and the derived subgroup.

In the category of groups with homoclinisms, the isomorphisms (i.e., the invertible morphisms) are pre-
cisely the isoclinisms.

4.5. Homomorphisms and homoclinisms. Suppose G1 and G2 are groups and θ : G1 → G2 is a homo-
morphism of groups. If θ satisfies the property that θ(Z(G1)) ≤ Z(G2), then θ induces a homoclinism of
groups. Explicitly the homoclinism induced by θ is defined as (ζ, ϕ) where ζ and ϕ are as defined below.

• Since θ(Z(G1)) ≤ Z(G2), θ descends to a homomorphism from G1/Z(G1) ∼= Inn(G1) to G2/Z(G2) ∼=
Inn(G2). Denote by ζ the induced homomorphism Inn(G1) → Inn(G2).

• The restriction of θ to G′1 maps inside G′2. Denote by ϕ the induced map G′1 → G′2.

It is easy to verify that (ζ, ϕ) defines a homoclinism.
Note that the condition θ(Z(G1)) ≤ Z(G2) is necessary in order to be able to construct ζ.
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The following are true:

• Every surjective homomorphism θ : G1 → G2 satisfies the condition that θ(Z(G1)) ≤ Z(G2). Thus,
every surjective homomorphism induces a homoclinism.

• The inclusion of a subgroup H in a group G satisfies the condition if and only if Z(H) ≤ Z(G), or
equivalently, Z(H) = H∩Z(G). Thus, these are the subgroups whose inclusions induce homoclinisms.

4.6. Miscellaneous results on homoclinisms and words.

Lemma 4.1. Suppose (ζ, ϕ) is a homoclinism of groups G1 and G2, where ζ : Inn(G1) → Inn(G2) and ϕ :
G′1 → G′2 are the component homomorphisms. Denote by θ1 : G′1 → Inn(G1) the composite of the inclusion
of G′1 in G1 and the projection from G1 to G1/Z(G1) = Inn(G1). Similarly define θ2 : G′2 → Inn(G2). Then,
we have:

ζ ◦ θ1 = θ2 ◦ ϕ

or equivalently, for any w ∈ G′1:

ζ(θ1(w)) = θ2(ϕ(w))

Proof. To show the equality of the two expressions, it suffices to show equality on a generating set for G′1.
By definition, the set of commutators of elements in G1 is a generating set for G′1. Thus, it suffices to show
that:

ζ(θ1([u, v])) = θ2(ϕ([u, v])) ∀ u, v ∈ G1

This is equivalent to showing that:

ζ(θ1(ωG1(x, y))) = θ2(ϕ(ωG1(x, y))) ∀ x, y ∈ Inn(G1)

Let us examine the left and right sides separately.
The left side: The expression θ1(ωG1(x, y)) first computes the commutator of lifts of x and y in G1,

then projects to G1/Z(G1). This is equivalent to directly computing the commutator in G1/Z(G1), so
θ1(ωG1(x, y)) = [x, y]. Thus, the left side becomes ζ([x, y]).

The right side: By the definition of homoclinism, ϕ(ωG1(x, y)) = ωG2(ζ(x), ζ(y)). The right side now
becomes θ2(ωG2(ζ(x), ζ(y))). In other words, we are taking the lifts of ζ(x) and ζ(y) in G2, then computing
the commutator, then projecting to G2/Z(G2). This is equivalent to directly computing the commutator in
G2/Z(G2), so the right side simplifies to [ζ(x), ζ(y)]. Since ζ is a homomorphism, this is equal to ζ([x, y]),
and hence agrees with the left side. �

We state two important theorems. Both theorems reference the concept of a word map. The concept
is defined and some of the properties of word maps are described in the Appendix, Section E.1 and the
subsequent sections. However, we do not use any nontrivial facts about word maps, so it is not necessary to
read that section to understand the theorems that follow.
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Theorem 4.2. Suppose w(g1, g2, . . . , gn) is a word in n letters with the property that w evaluates to
the identity element in any abelian group. This is equivalent to saying that w, viewed as an element of the
free group on g1, g2, . . . , gn, is in the derived subgroup. Then, for any group G, the word map w : Gn → G

obtained by evaluating w descends to a map:

χw,G : (Inn(G))n → G′

Any word w that is an iterated commutator (with any bracketing) satisfies this condition.

Proof. Denote by ν : G→ Inn(G) the quotient map.
w can be written in the form (note that the product is in general noncommutative):

w(g1, g2, . . . , gn) =
m∏

i=1

[ui(g1, g2, . . . , gn), vi(g1, g2, . . . , gn)]

where ui, vi, 1 ≤ i ≤ m are words. Suppose yi ∈ G are elements for which ν(yi) = xi. Then:

w(y1, y2, . . . , yn) :=
m∏

i=1

[ui(y1, y2, . . . , yn), vi(y1, y2, . . . , yn)]

We have that:

ν(ui(y1, y2, . . . , yn)) = ui(x1, x2, . . . , xn), ν(vi(y1, y2, . . . , yn)) = vi(x1, x2, . . . , xn)

Thus, we obtain that:

[ui(y1, y2, . . . , yn), vi(y1, y2, . . . , yn)] = ωG(ui(x1, x2, . . . , xn), vi(x1, x2, . . . , xn))

In particular, the expression [ui(y1, y2, . . . , yn), vi(y1, y2, . . . , yn)] depends only on x1, x2, . . . , xn and not
on the choice of lifts yi. Thus, the product w(y1, y2, . . . , yn) also depends only on the values of xi, and we
obtain the function:

χw,G(x1, x2, . . . , xn) =
m∏

i=1

ωG(ui(x1, x2, . . . , xn), vi(x1, x2, . . . , xn))

�

Theorem 4.3. Suppose (ζ, ϕ) is a homoclinism of groups G1 and G2, where ζ : Inn(G1) → Inn(G2) and
ϕ : G′1 → G′2 are the component homomorphisms. Then for any word w(g1, g2, . . . , gn) that is trivial in every
abelian group (as described above), we have:

χw,G2(ζ(x1), ζ(x2), . . . , ζ(xn)) = ϕ(χw,G1(x1, x2, . . . , xn))

for all x1, x2, . . . , xn ∈ Inn(G).
Any word w that is an iterated commutator (with any order of bracketing) satisfies this condition, and

the theorem applies to such word maps.
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Proof. Denote by ν1 : G1 → Inn(G1) and ν2 : G2 → Inn(G2) the canonical quotient maps.
We use the same notation and steps in the proof of the preceding theorem, replacing G by G1. We obtain:

w(g1, g2, . . . , gn) =
m∏

i=1

[ui(g1, g2, . . . , gn), vi(g1, g2, . . . , gn)]

where ui, vi, 1 ≤ i ≤ m are words. Suppose yi ∈ G1 are elements for which ν1(yi) = xi. As demonstrated
in the proof of the preceding theorem:

(†) χw,G1(x1, x2, . . . , xn) =
m∏

i=1

ωG1(ui(x1, x2, . . . , xn), vi(x1, x2, . . . , xn))

Suppose zi ∈ G2 are elements for which ν2(zi) = ζ(xi). Similar reasoning to the above yields that:

(††) χw,G2(ζ(x1), ζ(x2), . . . , ζ(xn)) =

mY
i=1

ωG2(ui(ζ(x1), ζ(x2), . . . , ζ(xn)), vi(ζ(x1), ζ(x2), . . . , ζ(xn)))

Apply ϕ to both sides of (†), use the defining property of homoclinisms, and compare with (††) to obtain
the result. �

4.7. Isoclinic groups: how similar are they? We say that groups G1 and G2 are isoclinic groups if there
exists an isoclinism from G1 to G2. The relation of being isoclinic is an equivalence relation. Briefly:

• The relation of being isoclinic is reflexive because we can choose both the isomorphisms to be the
respective identity maps. Explicitly, for any group G, (idInn(G), idG′) defines an isoclinism from G

to itself.
• The relation of being isoclinic is symmetric because we can take the inverse isomorphisms to both the

isomorphisms. Explicitly, if (ζ, ϕ) describes the isoclinism from G1 to G2, then (ζ−1, ϕ−1) describes
the isoclinism from G2 to G1.

• The relation of being isoclinic is transitive because we can compose both kinds of isomorphisms
separately. Explicitly, if (ζ12, ϕ12) describes the isoclinism from G1 to G2 and (ζ23, ϕ23) describes
the isomorphism from G2 to G3, then (ζ23 ◦ ζ12, ϕ23 ◦ ϕ12) describes the isoclinism from G1 to G3.

Here is an alternative way of seeing that being isoclinic is an equivalence relation: isoclinisms are precisely
the isomorphisms in the category of groups with homoclinisms, and being isomorphic in any category is an
equivalence relation.

We first list some very obvious similarities between isoclinic groups.

• They have isomorphic derived subgroups: This is direct from the definition, which includes an
isomorphism between the derived subgroups.

• They have isomorphic inner automorphism groups: This is direct from the definition, which includes
an isomorphism between the inner automorphism groups.

• They have precisely the same non-abelian composition factors (if the composition factors do exist):
Since the center is abelian, all the non-abelian composition factors occur inside the inner automor-
phism group for both, which we know to be isomorphic.

• If one is nilpotent, so is the other, and they have the same nilpotency class (with the exception of
class zero getting conflated with class one): The nilpotency class is one more than the nilpotency
class of the inner automorphism group.

37



• If one is solvable, so is the other, and they have the same derived length (with the exception of length
zero getting conflated with length one): The derived length is one more than the derived length of
the derived subgroup.

We move to the first straightforward but somewhat non-obvious fact: isoclinic finite groups have the same
proportions of conjugacy class sizes. The statement of the theorem is below. The proof can be found in the
Appendix, Section H.

Theorem 4.4. Suppose G1 and G2 are isoclinic finite groups. Suppose c is a positive integer. Let m1

be the number of conjugacy classes in G1 of size c (so that the total number of elements in such conjugacy
classes is m1c). Let m2 be the number of conjugacy classes in G2 of size c (so that the total number of
elements in such conjugacy classes is m2c). Then, m1 is nonzero if and only if m2 is nonzero, and if so,
m1/m2 = |G1|/|G2|.

In particular, if G1 and G2 additionally have the same order, then they have precisely the same multiset
of conjugacy class sizes.

The next theorem is a similar result for the degrees of irreducible representations. The proof of this is
also in the Appendix, Section H.

Theorem 4.5. Suppose G1 and G2 are isoclinic finite groups. Suppose d is a positive integer. Let m1

denote the number of equivalence classes of irreducible representations of G1 over C that have degree d. Let
m2 denote the number of equivalence classes of irreducible representations of G2 over C that have degree d.
Then, m1 is nonzero if and only if m2 is nonzero, and if so, m1/m2 = |G1|/|G2|.

In particular, if G1 and G2 additionally have the same order, then they have precisely the same multiset
of degrees of irreducible representations.

Theorem 4.6. (1) Suppose G1 and G2 are isoclinic finite groups. Then, the ratio of the number of
conjugacy classes in G1 to the number of conjugacy classes in G2 is |G1|/|G2|. In particular, if G1

and G2 also have the same order, they have the same number of conjugacy classes.
(2) Suppose G1 and G2 are isoclinic finite groups. Then, the centers of their respective group algebras

over C are both algebras that are direct products of copies of C. The ratio of the number of copies
used for G1 and for G2 is |G1|/|G2|. In particular, if G1 and G2 also have the same order, then the
centers of their group algebras are isomorphic.

Proof. These follow quite directly from either of the preceding theorems. More specifically, the proof for
part (1) can be deduced from either Theorem 4.4 or Theorem 4.5. Note that we can use the latter because
the number of conjugacy classes equals the number of irreducible representations.

For (2), note that the center of the group algebra is a direct product of as many copies of C as the number
of conjugacy classes. We can use the conjugacy class element sums as a basis. Alternatively, we can use the
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centers of the irreducible constituents in a direct sum decomposition into two-sided ideals as a basis. Thus,
(2) follows directly from (1). �

4.8. Isoclinism defines a correspondence between some subgroups. Suppose G1 and G2 are isoclinic
groups with an isoclinism (ζ, ϕ) : G1 → G2 where ζ : Inn(G1) → Inn(G2) and ϕ : G′1 → G′2 are the component
isomorphisms. Then, ζ gives a correspondence:

Subgroups of G1 that contain Z(G1) ↔ Subgroups of G2 that contain Z(G2)

This correspondence does not preserve the isomorphism type of the subgroup, but it preserves some related
structure. Explicitly, the following hold whenever a subgroup H1 of G1 containing Z(G1) corresponds with
a subgroup H2 of G2 containing Z(G2):

• H1/Z(G1) is isomorphic to H2/Z(G2).
• H1 and H2 are isoclinic.
• H1 is normal in G1 if and only if H2 is normal in G2, and if so, then G1/H1 is isomorphic to G2/H2.

We have a similar correspondence given by ϕ:

Subgroups of G1 that are contained in G′1 ↔ Subgroups of G2 that are contained in G′2

This correspondence preserves a number of structural features. Explicitly, the following hold if a subgroup
H1 of G′1 is in correspondence with a subgroup H2 of G′2:

• H1 is isomorphic to H2

• H1 is normal in G′1 if and only if H2 is normal in G′2, and if so, then G′1/H1 is isomorphic to G′2/H2.
• H1 is normal in G1 if and only if H2 is normal in G2, and if so, then G1/H1 is isoclinic to G2/H2.

The two correspondences discussed above may partially overlap, and they agree with each other wherever
they overlap. Explicitly, if H1 is a subgroup of G1 that satisfies both the conditions (it contains Z(G1) and
is contained in G′1), then the subgroup H2 obtained by both correspondences is identical.

4.9. Characteristic subgroups, quotient groups, and subquotients determined by the group up

to isoclinism. The vast majority of characteristic subgroups that we see defined (particularly for p-groups)
are either contained in the derived subgroup or contain the center. The exceptions are those such as the socle
and Frattini subgroup, which are smaller than the center and larger than the derived subgroup respectively.

Based on the correspondences discussed in the preceding section, we can deduce the following regarding
important subgroups, quotients, and subquotients of a group G that are determined up to isomorphism by
knowing G up to isoclinism:

• All lower central series member subgroups γc(G), c ≥ 2. Note that γ1(G) = G needs to be excluded.
Further, the isomorphism types of successive quotients between lower central series members of the
form γi(G)/γj(G) with j ≥ i ≥ 2 are also determined by the knowledge of G up to isoclinism. Note
that the quotient groups G/γc(G) are in general determined only up to isoclinism and not up to
isomorphism.

• All derived series member subgroups G(i), i ≥ 1. Note that we need to exclude G(0) = G. Further,
the isomorphism types of quotients between derived series members of the form G(i)/G(j) with
j ≥ i ≥ 1 are also determined by the knowledge of G up to isoclinism. Note that the quotient groups
G/G(i) are determined only up to isoclinism and not up to isomorphism.

• Quotients G/Zc(G) for all upper central series member subgroups Zc(G), c ≥ 1. We need to exclude
c = 0 which would give G/Z0(G) = G. Further, the isomorphism types of subquotients of the form
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Zi(G)/Zj(G) where i ≥ j ≥ 1 are also determined up to isomorphism by the knowledge of G up to
isoclinism. Note that the subgroups Zi(G) themselves are determined only up to isoclinism and not
up to isomorphism.

4.10. Correspondence between abelian subgroups. Suppose G1 and G2 are isoclinic groups. The
following are true:

• The isoclinism establishes a correspondence between abelian subgroups of G1 containing Z(G1) and
abelian subgroups of G2 containing Z(G2). Note that the abelian subgroups that are in correspon-
dence are not necessarily isomorphic to each other. In fact, unless Z(G1) and Z(G2) have the same
order, the abelian subgroups in correspondence need not even have the same order as each other.

• The isoclinism establishes a correspondence between the abelian subgroups of G1 that are self-
centralizing and the abelian subgroups of G2 that are self-centralizing. A self-centralizing abelian
subgroup is an abelian subgroup that equals its own centralizer, or equivalently, it is a subgroup that
is maximal among abelian subgroups of the group.

• In the case that G1 and G2 are both finite, the isoclinism establishes a correspondence between
abelian subgroups of maximum order in G1 and abelian subgroups of maximum order in G2.

• Each of the correspondences above preserves normality.
• If G1 and G2 are both finite, then each of the correspondences above preserves the index of the

subgroups.

In particular, this means that isoclinic finite p-groups of the same order have the same value for the
maximum order of abelian subgroup, the same value for the maximum order of abelian normal subgroup,
and the same values for the orders of self-centralizing abelian normal subgroups.

4.11. Constructing isoclinic groups. Here are some ways of constructing groups isoclinic to a given
group:

• Take a direct product with an abelian group.
• Find a subgroup whose product with the center is the whole group. In symbols, if H is a subgroup

of G and HZ(G) = G (where Z(G) denotes the center of G), then H is isoclinic to G. Note that
for finite groups, this is the only way to find isoclinic subgroups to the whole group: a subgroup is
isoclinic to the whole group if and only if its product with the center of the whole group is the whole
group.

4.12. Hall’s purpose in introducing isoclinism. Although this is not directly relevant, it might be
helpful for historical motivation to understand why Philip Hall introduced the concept of isoclinism. At
the time that Hall wrote his paper [21], very few systematic lists of finite p-groups of small order were
available. Existing classifications tended to be ad hoc and use a bunch of invariants. In hindsight, many
of these invariants were invariants up to isoclinism. As we saw in the preceding section, this is true for
information about conjugacy classes and irreducible representations, and many important attributes related
to characteristic subgroups and their quotient groups. However, since they were purely numerical invariants
rather than invariants capturing structural information, they were too weak to meaningfully distinguish
groups once the orders got large. Below are some invariants that are “good enough” to uniquely determine
groups up to isoclinism for small orders, but fail at larger orders. The second column gives the smallest n
for which there exist groups of order 2n that have the same value of the invariant but are not isoclinic to
each other.
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Table 1. The smallest n for which a given isoclinism-invariant fails to classify groups of
order 2n up to isoclinism

Isoclinism-invariant (fixed order) Smallest n where it fails to classify
Derived length 4
Nilpotency class 5
Conjugacy class sizes 5
Degrees of irreducible representations 5
Inner automorphism group 6
Derived subgroup 5
Inner automorphism group, derived subgroup 6

As the orders get bigger, numerical invariants becomes progressively more inadequate in describing the
structure. They are also not helpful to computing the algebraic structure of the group.

As indicated in the table above, even knowledge of the inner automorphism group and the derived subgroup
up to isomorphism does not determine the group uniquely up to isoclinism, with the smallest counterexamples
occurring for order 26. The commutator map is crucial to describing the group structure up to isoclinism.

Hall sought to introduce a systematic procedure that could be used to generate all the p-groups of a
particular order based on smaller groups, and group them together in ways that made it easy to compute
and remember important invariants (such as their nilpotency class, number of conjugacy classes, etc.)

The use of isoclinism allows for a recursive procedure to go from order pn−1 to pn. In broad strokes, the
idea is as follows:

• Assume we have classified all the groups of order up to pn−1, and we need to classify groups of order
pn.

• First, we need to identify the equivalence classes up to isoclinism for groups of order pn. This involves
identifying candidate pairs of inner automorphism group and derived subgroup with a candidate for
the commutator map. Note that the concept of “candidate for the commutator map” is somewhat
problematic without reference to the ambient group, but we will see later that it can be made precise
using the concept of exterior squares. Hall did not have this formalism at his disposal, but used a
similar idea in a more ad hoc fashion in his classification efforts.

• For each such equivalence class up to isoclinism, identify all the groups of order pn up to isomorphism
in that equivalence class up to isoclinism.

Our purpose differs somewhat from Hall’s, but is broadly in the same spirit. Instead of classifying groups,
we are interested in identifying some regular aspects of their behavior.

For a detailed classification that builds on Hall’s ideas, see [20], which classifies groups of order 2n for n ≤ 6.
The classification of groups of order 2n for n ≥ 7 was done using somewhat different methods. Specifically,
the focus shifted from using isoclinism (which is based on the central series) to using the exponent-p central
series, and computing immediate descendants based on the exponent-p central series. This is more amenable
to computation because we are working with central extensions where the base group is elementary abelian.
Algorithms in this genre are termed nilpotent quotient algorithms. See [25] (classification for order 27 = 128),
[35] (classification for order 28 = 256), and [13] (general description of the classification strategy) for more
details.
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4.13. Stem groups for a given equivalence class under isoclinism. Every equivalence class of groups
under isoclinism contains one or more stem groups. A group G is a stem group if Z(G) ≤ G′. All stem
groups for a given equivalence class under isoclinism have the same order, and the order of any isoclinic
group is a multiple of this order.

Hall stated this fact, with a sketch of a proof, in his 1937 paper introducing isoclinism. We will provide
a proof of the statement in Section 11.7 using modern language.

Here are some examples of stem groups:

• For the class of abelian groups, the unique stem group is the trivial group.
• For groups of class two with inner automorphism group a Klein four-group and derived subgroup of

order two, there are two possibilities for the stem group: the dihedral group of order eight and the
quaternion group of order eight.

Unlike what one might naively expect, it is not true that all groups in the equivalence class under isoclinism
contain a stem group as a subquotient. For instance, the group M16 = M4(2) given as 〈a, x | a8 = x2 =
1, xax = a5〉 is a non-abelian group of order 16.10 This group is isoclinic to the dihedral group of order
eight and the quaternion group of order eight, which are the only stem groups in that equivalence class up
to isoclinism. However, M16 does not have any subgroup, quotient, or subquotient isomorphic to either of
these groups. In fact, every proper subquotient of M16 is abelian.

4.14. Some low order classification information. In this section, we provide a quick summary of the
classification of groups of order 2n and groups of order pn (for odd p) for small n, based on isoclinism. A
detailed exposition can be found in [20] and also in some online sources included in the appendix. is also
possible to explore these groups using a computational algebra package such as GAP or Magma. More
information about exploring group information in GAP is available in the appendix.

The most salient information is provided below.
For groups of order 2n: Note that the last column is the number of equivalence classes up to isoclinism

of the preceding column. It can be computed by subtracting from the value of the preceding column the
value in the row above for the preceding column.

Table 2. Number of equivalence classes up to isoclinism for groups of order 2n

n 2n Number of groups Number up to isoclinism “New” equivalence classes
0 1 1 1 1
1 2 1 1 0
2 4 2 1 0
3 8 5 2 1
4 16 14 3 1
5 32 51 8 5
6 64 267 27 19
7 128 2328 115 88

For groups of order pn, p ≥ 3: The details depend on p, but the classification up to p4 is independent
of p, so we construct the table for n up to 4:

10The group has ID (16,6) in the SmallGroups library available for GAP and Magma.
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Table 3. Number of equivalence classes up to isoclinism for groups of order pn

n pn Number of groups Number up to isoclinism “New” equivalence classes
0 1 1 1 1
1 2 1 1 0
2 4 2 1 0
3 8 5 2 1
4 16 15 3 1

5. Isoclinism and homoclinism for Lie rings

The goal of this section is to establish the basic theory of isoclinism and homoclinism for Lie rings. The
theory is analogous to the theory for groups developed in the preceding section (Section 4.

Informally, a homoclinism of Lie rings is a homomorphism between the Lie bracket structures of the Lie
rings. Informally, two Lie rings are isoclinic if their Lie bracket maps are equivalent. Isoclinism defines an
equivalence relation on the collection of Lie rings. Under this equivalence relation, all abelian Lie rings are
equivalent to the trivial group.

The original results that we present later (Section 24 and 39) describe bijective correspondences between
certain equivalence classes of groups and certain equivalence classes of Lie rings. The equivalence classes of
Lie rings are based on the equivalence relation of isoclinism of Lie rings.

5.1. Definitions of homoclinism and isoclinism. The notion of isoclinism of Lie algebras seems to have
been introduced by Moneyhun in [34]. We introduce a corresponding notion of homoclinism to parallel the
notion for groups. The historical origin of the notion of homoclinism for Lie rings is unclear, but it appears
for instance in the paper [36] published in 2011.

For simplicity, we restrict attention to the case of Lie rings, which are Lie algebras over the ring of integers.
All our definitions and theorems here have very natural analogues in Lie algebras over other commutative
unital rings. Note that if two Lie algebras over a commutative unital ring are isoclinic as Lie algebras over
that ring, they are also isoclinic as Lie rings. In the Appendix, Section A.4, we describe the theory of Lie
algebras over arbitrary commutative unital rings, and how the general theory of Lie algebras relates to the
theory of Lie rings.

For a Lie ring L, denote by Inn(L) the inner derivation Lie ring of L, denote by L′ the derived subring of
L, and denote by Z(L) the center of L. Inn(L) is canonically isomorphic to the quotient ring L/Z(L). (For
other notation related to Lie rings that we use in this document, see Section 0.3).

The Lie bracket map in L descends to a map:

ωL : Inn(L)× Inn(L) → L′

Note that ωL is Z-bilinear, but the additional structure on it (that is forced from its arising as a Lie
bracket) is hard to describe explicitly. In Section 10.1, we will describe a structure called the exterior square
of a Lie ring and reframe the condition on ωL as being a bilinear map that induces a homomorphism from
the exterior square. This situation is similar to the situation for groups we discussed earlier, but somewhat
easier to describe because of the underlying additive group structure.

Suppose L1 and L2 are Lie rings. The Lie brackets of L1 and L2 respectively induce Z-bilinear maps:

ωL1 : Inn(L1)× Inn(L1) → L′1
43



ωL2 : Inn(L2)× Inn(L2) → L′2

A homoclinism from L1 to L2 is a pair of homomorphisms (ζ, ϕ) where ζ is a homomorphism from Inn(L1)
to Inn(L2) and ϕ is an homomorphism from L′1 to L′2, satisfying the condition that:

ϕ ◦ ωL1 = ωL2 ◦ (ζ × ζ)

More explicitly, for any x, y ∈ Inn(L1), we require that:

ϕ(ωL1(x, y)) = ωL2(ζ(x), ζ(y))

Pictorially, the following diagram commutes:

Inn(L1)× Inn(L1)
ζ×ζ→ Inn(L2)× Inn(L2)

↓ωL1 ↓ωL2

L′1
ϕ→ L′2

The homoclinism (ζ, ϕ) from L1 to L2 is termed an isoclinism if both ζ and ϕ are isomorphisms of Lie
rings.

We compose homoclinisms of Lie rings by separately composing the homomorphisms on the inner deriva-
tion Lie rings and on the derived subrings. Explicitly, suppose (ζ12, ϕ12) is a homoclinism from L1 to
L2 and suppose (ζ23, ϕ23) is a homoclinism from L2 to L3. Then, the composite (ζ23, ϕ23) ◦ (ζ12, ϕ12) is
(ζ23 ◦ ζ12, ϕ23 ◦ ϕ12). The proof that this works follows from the commutativity of this diagram.

Inn(L1)× Inn(L1)
ζ12×ζ12→ Inn(L2)× Inn(L2)

ζ23×ζ23→ Inn(L3)× Inn(L3)
↓ωG1 ↓ωG2 ↓ωG3

L′1
ϕ12→ L′2

ϕ23→ L′3

As was the case with groups, we can define a category where the morphisms are homoclinisms.

Definition (Category of Lie rings with homoclinisms). The category of Lie rings with homoclinisms is
defined as the following category:

• The objects of the category are Lie rings.
• The morphisms of the category are homoclinisms of Lie rings.
• Composition of morphisms is composition of homoclinisms.
• The identity morphism is the identity homoclinism: it is the identity map both on the inner derivation

Lie ring and on the derived subring.

In the category of Lie rings with homoclinisms, the isomorphisms (i.e., the invertible morphisms) are
precisely the isoclinisms.

5.2. Homomorphisms and homoclinisms. Suppose L1 and L2 are Lie rings and θ : L1 → L2 is a
homomorphism of Lie rings. If θ satisfies the property that θ(Z(L1)) ≤ Z(L2), then θ induces a homoclinism
of Lie rings. Explicitly the homoclinism induced by θ is defined as (ζ, ϕ) where ζ and ϕ are as defined below.
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• Since θ(Z(L1)) ≤ Z(L2), θ descends to a homomorphism from L1/Z(L1) ∼= Inn(L1) to L2/Z(L2) ∼=
Inn(L2). Denote by ζ the induced homomorphism Inn(L1) → Inn(L2).

• The restriction of θ to L′1 maps inside L′2. Denote by ϕ the induced map L′1 → L′2.

It is easy to verify that (ζ, ϕ) defines a homoclinism.
Note that the condition θ(Z(L1)) ≤ Z(L2) is necessary in order to be able to construct ζ.
The following are true:

• Every surjective homomorphism θ : L1 → L2 satisfies the condition that θ(Z(L1)) ≤ Z(L2). Thus,
every surjective homomorphism induces a homoclinism.

• The inclusion of a Lie subring M in a Lie ring L satisfies the condition if and only if Z(M) ≤ Z(L), or
equivalently, Z(M) = M∩Z(L). Thus, these are the subrings whose inclusions induce homoclinisms.

5.3. Miscellaneous results on homoclinisms and words.

Lemma 5.1. Suppose (ζ, ϕ) is a homoclinism of Lie rings L1 and L2, where ζ : Inn(L1) → Inn(L2)
and ϕ : L′1 → L′2 are the component homomorphisms. Denote by θ1 : L′1 → Inn(L1) the composite of the
inclusion of L′1 in L1 and the projection from L1 to L1/Z(L1) = Inn(L1). Similarly define θ2 : L′2 → Inn(L2).
Then, we have:

ζ ◦ θ1 = θ2 ◦ ϕ

or equivalently, for any w ∈ L′1:

ζ(θ1(w)) = θ2(ϕ(w))

Proof. To show the equality of the two expressions, it suffices to show equality on a generating set for L′1.
By definition, the set of Lie brackets of elements in L1 is a generating set for L′1. Thus, it suffices to show
that:

ζ(θ1([u, v])) = θ2(ϕ([u, v])) ∀ u, v ∈ L1

This is equivalent to showing that:

ζ(θ1(ωL1(x, y))) = θ2(ϕ(ωL1(x, y))) ∀ x, y ∈ Inn(L1)

Let us examine the left and right sides separately.
The left side: The expression θ1(ωL1(x, y)) first computes the Lie bracket of lifts of x and y in L1,

then projects to L1/Z(L1). This is equivalent to directly computing the Lie bracket in L1/Z(L1), so
θ1(ωL1(x, y)) = [x, y]. Thus, the left side becomes ζ([x, y]).

The right side: By the definition of homoclinism, ϕ(ωL1(x, y)) = ωL2(ζ(x), ζ(y)). The right side now
becomes θ2(ωL2(ζ(x), ζ(y))). In other words, we are taking the lifts of ζ(x) and ζ(y) in L2, then computing
the Lie bracket, then projecting to L2/Z(L2). This is equivalent to directly computing the Lie bracket in
L2/Z(L2), so the right side simplifies to [ζ(x), ζ(y)]. Since ζ is a homomorphism, this is equal to ζ([x, y]),
and hence agrees with the left side. �
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We state two important theorems.

Theorem 5.2. Suppose w(g1, g2, . . . , gn) is a word in n letters with the property that w evaluates to the
zero element in any abelian Lie ring. This is equivalent to saying that w, viewed as an element of the free
Lie ring on g1, g2, . . . , gn, is in the derived subring. Then, for any Lie ring L, the word map w : Ln → L

obtained by evaluating w descends to a map:

χw,L : (Inn(L))n → L′

Any word w that is an iterated Lie bracket (with any bracketing) satisfies this condition.

Proof. Denote by ν : L→ Inn(L) the quotient map.
w can be written in the form:

w(g1, g2, . . . , gn) =
m∑

i=1

[ui(g1, g2, . . . , gn), vi(g1, g2, . . . , gn)]

where ui, vi, 1 ≤ i ≤ m are words. Suppose yi ∈ L are elements for which ν(yi) = xi. Then:

w(y1, y2, . . . , yn) =
m∑

i=1

[ui(y1, y2, . . . , yn), vi(y1, y2, . . . , yn)]

We have that:

ν(ui(y1, y2, . . . , yn)) = ui(x1, x2, . . . , xn), ν(vi(y1, y2, . . . , yn)) = vi(x1, x2, . . . , xn)

Thus, we obtain that:

[ui(y1, y2, . . . , yn), vi(y1, y2, . . . , yn)] = ωL(ui(x1, x2, . . . , xn), vi(x1, x2, . . . , xn))

In particular, the expression [ui(y1, y2, . . . , yn), vi(y1, y2, . . . , yn)] depends only on x1, x2, . . . , xn and not
on the choice of lifts yi. Thus, the sum w(y1, y2, . . . , yn) also depends only on the values of xi, and we obtain
the function:

χw,L(x1, x2, . . . , xn) =
m∑

i=1

ωL(ui(x1, x2, . . . , xn), vi(x1, x2, . . . , xn))

�

Theorem 5.3. Suppose (ζ, ϕ) is a homoclinism of Lie rings L1 and L2, where ζ : Inn(L1) → Inn(L2)
and ϕ : L′1 → L′2 are the component homomorphisms. Then for any word w(g1, g2, . . . , gn) that is trivial in
every abelian Lie ring (as described above), we have:

χw,L2(ζ(x1), ζ(x2), . . . , ζ(xn)) = ϕ(χw,L1(x1, x2, . . . , xn))

for all x1, x2, . . . , xn ∈ Inn(L).
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Any word w that is an iterated Lie bracket (with any order of bracketing) satisfies this condition, and the
theorem applies to such word maps.

Proof. Denote by ν1 : L1 → Inn(L1) and ν2 : L2 → Inn(L2) the canonical quotient maps.
We use the same notation and steps in the proof of the preceding theorem, replacing L by L1. We obtain:

w(g1, g2, . . . , gn) :=
m∑

i=1

[ui(g1, g2, . . . , gn), vi(g1, g2, . . . , gn)]

where ui, vi, 1 ≤ i ≤ m are words. Suppose yi ∈ L1 are elements for which ν1(yi) = xi. As demonstrated
in the proof of the preceding theorem:

(†) χw,L1(x1, x2, . . . , xn) =
m∑

i=1

ωL1(ui(x1, x2, . . . , xn), vi(x1, x2, . . . , xn))

Suppose zi ∈ L2 are elements for which ν2(zi) = ζ(xi). Similar reasoning to the above yields that:

(††) χw,L2(ζ(x1), ζ(x2), . . . , ζ(xn)) =

mX
i=1

ωL2(ui(ζ(x1), ζ(x2), . . . , ζ(xn)), vi(ζ(x1), ζ(x2), . . . , ζ(xn)))

Apply ϕ to both sides of (†), use the defining property of homoclinisms, and compare with (††) to obtain
the result. �

5.4. Isoclinic Lie rings: how similar are they? We say that L1 and L2 are isoclinic Lie rings if there is
an isoclinism of Lie rings from L1 to L2. The relation of being isoclinic is an equivalence relation. Briefly:

• The relation of being isoclinic is reflexive because we can choose both the isomorphisms to be the
identity maps. Explicitly, for any Lie ring L, (idInn(L), idL′) defines an isoclinism from L to itself.

• The relation of being isoclinic is symmetric because we can take the inverse isomorphisms to both the
isomorphisms. Explicitly, if (ζ, ϕ) describes the isoclinism from L1 to L2, then (ζ−1, ϕ−1) describes
the isoclinism from L2 to L1.

• The relation of being isoclinic is transitive because we can compose both kinds of isomorphisms
separately. Explicitly, if (ζ12, ϕ12) describes the isoclinism from L1 to L2 and (ζ23, ϕ23) describes the
isomorphism from L2 to L3, then (ζ23 ◦ ζ12, ϕ23 ◦ ϕ12) describes the isoclinism from L1 to L3.

Here is an alternative way of seeing that being isoclinic is an equivalence relation: isoclinisms are precisely
the isomorphisms in the category of Lie rings with homoclinisms, and being isomorphic in any category is
an equivalence relation.

We first list some very obvious similarities between isoclinic Lie rings.

• They have isomorphic derived subrings: This is direct from the definition, which includes an isomor-
phism of the derived subrings.

• They have isomorphic inner derivation Lie rings: This is direct from the definition, which includes
an isomorphism between the inner derivation Lie rings.

• They have precisely the same non-abelian composition factors (if the composition factors do exist):
Since the center is abelian, all the non-abelian composition factors occur inside the inner derivation
Lie ring for both, which we know to be isomorphic.
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• If one is nilpotent, so is the other, and they have the same nilpotency class (with the exception of
class zero getting conflated with class one): The nilpotency class is one more than the nilpotency
class of the inner derivation Lie ring.

• If one is solvable, so is the other, and they have the same derived length (with the exception of length
zero getting conflated with length one): The derived length is one more than the derived length of
the derived subring.

Note that conjugacy class sizes and degrees of irreducible representations do not make direct sense for Lie
rings. But there are important analogues of these statements that apply in a number of cases. In Section
41.6, we discuss the Kirillov orbit method, which relates the irreducible representations of a group with its
Lazard Lie ring.

5.5. Isoclinism defines a correspondence between some subrings. Suppose L1 and L2 are isoclinic
Lie rings with an isoclinism (ζ, ϕ) : L1 → L2 where ζ : Inn(L1) → Inn(L2) and ϕ : L′1 → L′2 are the
component isomorphisms. Then, ζ gives a correspondence:

Lie subrings of L1 that contain Z(L1) ↔ Lie subrings of L2 that contain Z(L2)
This correspondence does not preserve the isomorphism type of the subring, but it preserves some related

structure. Explicitly, the following hold whenever a subring M1 of L1 corresponds with a subring M2 of L2:

• M1/Z(L1) is isomorphic to M2/Z(L2).
• M1 and M2 are isoclinic.
• M1 is an ideal in L1 if and only if M2 is an ideal in L2, and if so, then L1/M1 is isomorphic to
L2/M2.

We have a similar correspondence given by ϕ:
Lie subrings of L1 that are contained in L′1 ↔ Lie subrings of L2 that are contained in L′2
This correspondence preserves a number of structural features. Explicitly, the following hold whenever a

subring M1 of L1 is in correspondence with a subring M2 of L2:

• M1 is isomorphic to M2

• M1 is an ideal in L′1 if and only if M2 is an ideal in L′2, and if so, then L′1/M1 is isomorphic to
L′2/M2.

• M1 is an ideal in L1 if and only if M2 is an ideal in L2, and if so, then L1/M1 is isoclinic to L2/M2.

The two correspondences discussed above overlap somewhat, and they agree with each other wherever
they overlap. Explicitly, if M1 is a subring of L1 that contains Z(L1) and is contained in L′1, then the M2

obtained by both correspondences is identical.

5.6. Characteristic subrings, quotient rings, and subquotients determined by the Lie ring up

to isoclinism. We can deduce the following regarding important characteristic subrings, quotients, and
subquotients of a Lie ring L that are determined up to isomorphism by knowing L up to isoclinism:

• All lower central series member subrings γc(L), c ≥ 2. Note that γ1(L) = L needs to be excluded.
Further, the isomorphism types of successive quotients between lower central series members of the
form γi(L)/γj(L) with j ≥ i ≥ 2 are also determined by the knowledge of L up to isoclinism.
Note that the quotient rings L/γc(L) are in general determined only up to isoclinism and not up to
isomorphism.

• All derived series member subrings L(i), i ≥ 1. Note that we need to exclude L(0) = L. Further, the
isomorphism types of quotients between derived series members of the form L(i)/L(j) with j ≥ i ≥ 1
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are also determined by the knowledge of L up to isoclinism. Note that the quotient Lie rings L/L(i)

are determined only up to isoclinism and not up to isomorphism.
• Quotients L/Zc(L) for all upper central series member subrings Zc(L), c ≥ 1. We need to exclude
c = 0 which would give L/Z0(L) = L. Further, the isomorphism types of subquotients of the form
Zi(L)/Zj(L) where i ≥ j ≥ 1 are also determined up to isomorphism by the knowledge of L up to
isoclinism. Note that the subrings Zi(L) themselves are determined only up to isoclinism and not
up to isomorphism.

5.7. Correspondence between abelian subrings. Suppose L1 and L2 are isoclinic Lie rings. The fol-
lowing are true:

• The isoclinism establishes a correspondence between abelian subrings of L1 containing Z(L1) and
abelian subrings of L2 containing Z(L2). Note that the abelian subrings that are in correspondence
are not necessarily isomorphic to each other. In fact, unless Z(L1) and Z(L2) have the same order,
the abelian subrings in correspondence need not even have the same order as each other.

• The isoclinism establishes a correspondence between the abelian subrings of L1 that are self-centralizing
and the abelian subrings of L2 that are self-centralizing. A self-centralizing abelian subring is an
abelian subring that equals its own centralizer, or equivalently, it is maximal among abelian subrings
of the Lie ring.

• In the case that L1 and L2 are both finite, the isoclinism establishes a correspondence between
abelian subrings of maximum order in L1 and abelian subrings of maximum order in L2.

If L1 and L2 are both finite, then each of the correspondences above preserves the index of the subrings. In
particular, this means that isoclinic finite Lie rings of the same order have the same value for the maximum
order of abelian subring, the same value for the maximum order of abelian ideal, and the same value for the
orders of self-centralizing abelian subrings.

5.8. Constructing isoclinic Lie rings. Here are some ways of constructing Lie rings isoclinic to a given
Lie ring:

• Take a direct product with an abelian Lie ring.
• Find a Lie subring whose sum with the center is the whole Lie ring. In symbols, if M is a subring

of L and M + Z(L) = L (where Z(L) denotes the center of L), then M is isoclinic to L. Note that
for finite Lie rings, this is the only way to find isoclinic subrings to the whole Lie ring: a subring is
isoclinic to the whole Lie ring if and only if its sum with the center of the whole ring is the whole
ring.

6. Short exact sequences and central group extensions

Central extensions are fundamental to how we think about nilpotent groups: nilpotent groups can be
thought of as groups that can be obtained by iteratively taking central extensions, starting with an abelian
group. The notion of central extension is also closely related to the notion of isoclinism, although we will
defer the explicit connection for later. Central extensions are instrumental to formulating and proving the
generalizations that we develop in Sections 24 and 39.

In this section, we develop the rudimentary vocabulary of central extensions.
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6.1. Definition of short exact sequence and group extension. A short exact sequence of groups is an
exact sequence of groups with homomorphisms as follows:

1 → A→ E → G→ 1

In words, the homomorphism from A to E is injective, the homomorphism from E to G is surjective, and
the image of A in E equals the kernel of the homomorphism from E to G. The standard abuse of notation
identifies A with its image in E (so A is viewed as a normal subgroup of E) and G with the quotient group
E/A.

We may also frame this as follows: E is a group extension with normal subgroup A and quotient group
G.

A morphism of short exact sequences from a short exact sequence:

1 → A1 → E1 → G1 → 1

to another short exact sequence:

1 → A2 → E2 → G2 → 1

is defined as a triple of homomorphisms A1 → A2, E1 → E2, G1 → G2, such that the following diagram
commutes:

1 → A1 → E1 → G1 → 1
↓ ↓ ↓ ↓ ↓
1 → A2 → E2 → G2 → 1

Note that the arrows at the extremes do not convey useful information, so the above is equivalent to
asserting that the following diagram commutes:

1 → A1 → E1 → G1 → 1
↓ ↓ ↓

1 → A2 → E2 → G2 → 1

We can compose two morphisms of short exact sequences in the obvious way. In the diagram below, this
corresponds to composing the vertical morphisms:

1 → A1 → E1 → G1 → 1
↓ ↓ ↓

1 → A2 → E2 → G2 → 1
↓ ↓ ↓

1 → A3 → E3 → G3 → 1

We can thus define a category of short exact sequences. An isomorphism of short exact sequences is defined
as an isomorphism in this category. Explicitly, it is defined as a morphism of short exact sequences where
all the component homomorphisms are isomorphisms.

6.2. Group extensions with fixed base and quotient; congruence and pseudo-congruence. We
often study group extensions of the form:
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1 → A→ E → G→ 1

where A and G are both fixed in advance and different possibilities for E are considered. Two group
extensions:

1 → A→ E1 → G→ 1

and

1 → A→ E2 → G→ 1

are said to be congruent if there is an isomorphism ϕ : E1 → E2 such that the triple comprising the
identity map A → A, the map ϕ : E1 → E2, and the identity map G → G give an isomorphism of short
exact sequences. In other words, we can get an isomorphism from E1 to E2 that induces the identity maps
both on the subgroup A and the quotient group G.

Congruence defines an equivalence relation on the set of all group extensions with normal subgroup A

and quotient group G. The equivalence classes for this equivalence relation are termed congruence classes.
Two group extensions:

1 → A→ E1 → G→ 1

and

1 → A→ E2 → G→ 1

are said to be pseudo-congruent if there is an isomorphism between the short exact sequences. The
isomorphism need not induce the identity map on A and need not induce the identity map on G.

Pseudo-congruence defines an equivalence relation on the set of all group extensions with normal subgroup
A and quotient group G. The equivalence classes for this equivalence relation are termed pseudo-congruence
classes.

Pseudo-congruence is a coarser equivalence relation than congruence because it allows for “re-labeling”
on both the subgroup side and the quotient group side.

6.3. Abelian normal subgroups. In the case that A is an abelian group, the short exact sequence:

1 → A→ E → G→ 1

may also be written as

0 → A→ E → G→ 1

This is because when working with abelian groups, we denote the trivial group by 0 instead of 1.

6.4. Central extensions and stem extensions. In this document, we use the term central subgroup for
a subgroup that is contained inside the center.

A central extension refers to a group extension where the subgroup is central. Explicitly, consider a short
exact sequence of the following form, where A is abelian:
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0 → A→ E → G→ 1

We say that E is a central extension with central subgroup A and quotient group G if the image of A in
E is a central subgroup of E. If we engage in the usual abuse of notation that conflates A with its image in
E, we could shorten this to saying that A is a central subgroup of E.

We will often say “E is a central extension of G” as shorthand for “there exists an abelian group A such
that E is a central extension with central subgroup A and quotient group G.”

A stem extension is a central extension where the central subgroup is also contained in the derived
subgroup of the extension group. Explicitly, consider a short exact sequence of the following form, where A
is abelian:

0 → A→ E → G→ 1

We say that E is a stem extension with central subgroup A and quotient group G if the image of A in E
is contained in E′ ∩ Z(E).

6.5. The use of cohomology groups to classify central extensions. Suppose A is an abelian group
and G is a group. The group H2(G;A) (also denoted H2(G,A)), called the second cohomology group for
trivial group action of G on A, is a group whose elements correspond to the congruence classes of central
extensions with central subgroup A and quotient group G. Here, by “congruence class” we mean equivalence
class under the equivalence relation of being congruent group extensions. The group structure on H2(G;A)
is not prima facie obvious. We will describe it in detail in Section 8.

Further, there is a natural action of Aut(G) × Aut(A) on H2(G;A) and the orbits of H2(G;A) under
this natural action correspond precisely to the pseudo-congruence classes of central extensions with central
subgroup A and quotient group G.

Note that there is a more general definition of the second cohomology group that works for non-central ex-
tensions where the action of the quotient group G on the abelian normal subgroup A is specified. Throughout
this document, however, when referring to the second cohomology group, we mean the second cohomology
group for trivial group action.

Basic background about the second cohomology group can be found in [3], [26], [9], or in any standard
reference on group cohomology.

6.6. Homomorphism of central extensions. In the discussion so far, we have fixed both the normal
subgroup A and the quotient group G and considered possibilities for the group extension. We now consider
the case where the quotient group G is fixed. We are interested in all central extensions with quotient group
G. The theory undergirding these should be hidden within the group structure of G. Our goal is to make
that theory more explicit. Unfortunately, this is a long task, and we therefore only include a first step here.
We will pick up from where we leave here in Section 9.1.

We begin by defining the concept of homomorphism of central extensions. Consider two central extensions,
both of which have G as the quotient group:

0 → A1 → E1 → G→ 1

and
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0 → A2 → E2 → G→ 1

A homomorphism of central extensions from the first central extension to the second is a pair of homo-
morphisms A1 → A2, E1 → E2, that, together with the identity map G→ G, give a homomorphism of short
exact sequences.

We can consider the category of central extensions of G:

• The objects of this category are the central extensions with quotient group G.
• The morphisms of this category are homomorphisms of central extensions of G, as defined above.
• Composition of morphisms is defined as the usual composition of homomorphisms of short exact

sequences.

An object in the category of central extensions can be completely described up to isomorphism in this
category simply by specifying its right map. Explicitly, consider two central extensions:

0 → A1 → E
ν→ G→ 1

and

0 → A2 → E
ν→ G→ 1

where the map ν is the same in both cases. In that case, the central extensions are isomorphic in the
category. Explicitly, this is because if we consider the partial commutative diagram:

0 → A1 → E
ν→ G → 1

↓id ↓id

0 → A2 → E
ν→ G → 1

there is a unique choice of isomorphism A1 → A2 so that the diagram as a whole commutes:

0 → A1 → E
ν→ G → 1

↓ ↓id ↓id

0 → A2 → E
ν→ G → 1

Further, specifying a homomorphism from one object:

0 → A1 → E1
ν1→ G→ 1

to another:

0 → A2 → E2
ν2→ G→ 1

is equivalent to simply specifying the homomorphism E1 → E2, because the homomorphism A1 → A2 is
uniquely determined by it. Explicitly, this is because in the commutative diagram:

0 → A1 → E1
ν1→ G → 1

↓θ ↓id

0 → A2 → E2
ν2→ G → 1

there is a unique morphism A1 → A2 that completes the commutative diagram.
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Further, the set of permissible homomorphisms E1 → E2 is precisely the set of homomorphisms θ : E1 →
E2 such that ν2 ◦ θ = ν1.

The category of central extensions of G thus has the following alternative description. Note that strictly
speaking, this is a different category, but the preceding remarks establish that there is a canonical equivalence
of categories between the categories.

• The objects of the category are “central extensions” of G in the sense of being pairs (E, ν) where
ν : E → G is a surjective group homomorphism and the kernel of ν is central in G.

• Given two objects (E1, ν1) and (E2, ν2) in the category, a morphism between them is a homomorphism
θ : E1 → E2 such that ν2 ◦ θ = ν1.

The equivalence of categories is given by the obvious forgetful functor from the short exact sequence
category to this new category, that sends a short exact sequence 0 → A → E

ν→ G → 1 to the quotient
map E ν→ G. The functor is clearly essentially surjective (in fact, it is surjective on objects). The preceding
remarks establish that the functor is full and faithful, and therefore an equivalence of categories. From this
point onward, we we talk of the “category of central extensions of G” we will refer to the latter category.

We might hope that this category has an initial object, which could then serve as the “source” classifying
central extensions of G. However, such an initial object does not always exist. We will show in Section 9.7
that there do exist objects in this category that admit homomorphisms to every other object in the category.
These are not in general initial objects because the homomorphisms admitted are not unique.

7. Short exact sequences and central extensions of Lie rings

In this section, we develop the theory of short exact sequences of Lie rings parallel to the development
in the preceding section (Section 6) of the theory for groups. The sections are almost completely analogous
and readers who have thoroughly understood the preceding section can safely skip this section. The reasons
behind developing the theory are also analogous to those offered for groups.

The underlying theory for the cohomology group is different in substantive ways for groups and Lie rings.
However, these differences do not show up at the level of abstraction at which we are dealing with groups
and Lie rings in this and the preceding section.

7.1. Definition of short exact sequence and Lie ring extension. A short exact sequence of Lie rings
is an exact sequence of Lie rings with homomorphisms as follows:

0 → A→ N → L→ 0

In words, the homomorphism from A to N is injective, the homomorphism from N to L is surjective, and
the image of A in N equals the kernel of the homomorphism from N to L. The standard abuse of notation
identifies A with its image in N (so A is viewed as an ideal of N) and L with the quotient Lie ring N/A.

We may also frame this as follows: N is a Lie ring extension with (base) ideal A and quotient Lie ring L.
A morphism of short exact sequences from a short exact sequence:

0 → A1 → N1 → L1 → 0

to another short exact sequence:

0 → A2 → N2 → L2 → 0
54



is defined as a triple of homomorphisms A1 → A2, N1 → N2, L1 → L2, such that the following diagram
commutes:

0 → A1 → N1 → L1 → 0
↓ ↓ ↓ ↓
0 → A2 → N2 → L2 → 0

Note that the arrows at the extremes do not convey useful information, so this is equivalent to saying
that the following diagram commutes:

0 → A1 → N1 → L1 → 0
↓ ↓ ↓

0 → A2 → N2 → L2 → 0

We can compose two morphisms of short exact sequences in the obvious way. In the diagram below, this
corresponds to composing the vertical morphisms:

0 → A1 → N1 → L1 → 0
↓ ↓ ↓

0 → A2 → N2 → L2 → 0
↓ ↓ ↓

0 → A3 → N3 → L3 → 0

We can thus define a category of short exact sequences. An isomorphism of short exact sequences is defined
as an isomorphism in this category. Explicitly, it is defined as a morphism of short exact sequences where
all the component homomorphisms are isomorphisms.

7.2. Lie ring extensions with fixed base and quotient; congruence and pseudo-congruence. We
often study Lie ring extensions of the form:

0 → A→ N → L→ 0

where A and L are both fixed in advance and different possibilities for N are considered. Two Lie ring
extensions:

0 → A→ N1 → L→ 0

and

0 → A→ N2 → L→ 0

are said to be congruent if there is an isomorphism ϕ : N1 → N2 such that the triple comprising the
identity map A → A, the map ϕ : E1 → E2, and the identity map L → L give an isomorphism of short
exact sequences. In other words, we can get an isomorphism from N1 to N2 that induces the identity maps
both on the ideal A and the quotient Lie ring L.

Congruence defines an equivalence relation on the set of all Lie ring extensions with ideal A and quotient
Lie ring L. The equivalence classes for this equivalence relation are termed congruence classes.

Two Lie ring extensions:
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0 → A→ N1 → L→ 0

and

0 → A→ N2 → L→ 0

are said to be pseudo-congruent if there is an isomorphism between the short exact sequences. The
isomorphism need not induce the identity map on A and need not induce the identity map on L.

Pseudo-congruence defines an equivalence relation on the set of all Lie ring extensions with ideal A and
quotient Lie ring L. The equivalence classes for this equivalence relation are termed pseudo-congruence
classes.

Pseudo-congruence is a coarser equivalence relation than congruence because it allows for “re-labeling”
on both the ideal side and the quotient Lie ring side.

7.3. Central extensions and stem extensions. A central extension refers to a Lie ring extension where
the ideal is central. Explicitly, consider a short exact sequence of the following form, where A is an abelian
Lie ring:

0 → A→ N → L→ 0

We say that N is a central extension with central subring A and quotient Lie ring L if the image of A in
N is a central subring of N . If we engage in the usual abuse of notation that conflates A with its image in
N , we could shorten this to saying that A is a central subring (or equivalently, central ideal) of N .

We will often say “N is a central extension of L” as shorthand for “there exists an abelian Lie ring A

such that N is a central extension with central subring A and quotient Lie ring L.”
A stem extension is a central extension where the central subring is also contained in the derived subring of

the extension Lie ring. Explicitly, consider a short exact sequence of the following form, where A is abelian:

0 → A→ N → L→ 0

We say that N is a stem extension with central subring A and quotient Lie ring L if the image of A in N
is contained in N ′ ∩ Z(N).

7.4. The use of cohomology groups to classify central extensions. Suppose A is an abelian Lie
ring and L is a Lie ring. The group H2

Lie(L;A), called the second cohomology group for trivial Lie ring
action of L on A, is a group whose elements correspond to the congruence classes of central extensions with
central subring A and quotient Lie ring L. Here, by “congruence class” we mean equivalence class under the
equivalence relation of being congruent Lie ring extensions. The group structure on H2

Lie(L;A) is not prima
facie obvious. For a detailed discussion of the group structure, please refer to Weibel’s book [43]. H2

Lie(L;A)
is simply denoted H2(L;A) in cases where there is no potential for ambiguity with the cohomology group
describing group extensions.

Further, there is a natural action of Aut(L) × Aut(A) on H2(L;A) and the orbits of H2
Lie(L;A) under

this natural action correspond precisely to the pseudo-congruence classes of central extensions with central
subring A and quotient Lie ring L.

Note that there is some potential for abuse of notation here, namely, we often view A both as an abelian
group and as an abelian Lie ring. From a pedantic perspective, it would be preferable to use the exp and log
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functors to transition between the abelian group and abelian Lie ring via the abelian Lie correspondence, as
described in Section 3. However, doing so would complicate our notation considerably, so we avoid it in this
section. Later, when applying the results here to the Baer correspondence up to isoclinism as described in
Section 24, we will be more careful.

7.5. Homomorphism of central extensions. In the discussion so far, we have fixed both the central
subring A and the quotient Lie ring L and considered possibilities for the extension Lie ring. We now
consider the case where the quotient Lie ring L is fixed. We are interested in all central extensions with
quotient Lie ring L. The theory undergirding these should be hidden within the internal structure of L as a
Lie ring. Our goal is to make that theory more explicit.

We begin by defining the concept of homomorphism of central extensions. Consider two central extensions,
both of which have L as the quotient Lie ring:

0 → A1 → N1 → L→ 0

and

0 → A2 → N2 → L→ 0

A homomorphism of central extensions from the first central extension to the second is a pair of homo-
morphisms A1 → A2, N1 → N2, that, together with the identity map L→ L, give a homomorphism of short
exact sequences.

We can consider the category of central extensions of L:

• The objects of this category are the central extensions with quotient Lie ring L.
• The morphisms of this category are homomorphisms of central extensions of L, as defined above.
• Composition of morphisms is defined as the usual composition of homomorphisms of short exact

sequences.

An object in the category of central extensions can be completely described up to isomorphism in this
category simply by specifying its right map. Explicitly, consider two central extensions:

0 → A1 → N
ν→ L→ 0

and

0 → A2 → N
ν→ L→ 0

where the map ν is the same in both cases. In that case, the central extensions are isomorphic in the
category. Explicitly, this is because if we consider the partial commutative diagram:

0 → A1 → N
ν→ L → 0

↓id ↓id

0 → A2 → N
ν→ L → 0

there is a unique choice of isomorphism A1 → A2 so that the diagram as a whole commutes:
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0 → A1 → N
ν→ L → 0

↓ ↓id ↓id

0 → A2 → N
ν→ L → 0

Further, specifying a homomorphism from one object:

0 → A1 → N1
ν1→ L→ 0

to another:

0 → A2 → N2
ν2→ L→ 0

is equivalent to simply specifying the homomorphism N1 → N2, because the homomorphism A1 → A2 is
uniquely determined by it. Explicitly, this is because in the commutative diagram:

0 → A1 → N1
ν1→ L → 0

↓θ ↓id

0 → A2 → N2
ν2→ L → 0

there is a unique morphism A1 → A2 that completes the commutative diagram.
Further, the set of permissible homomorphisms N1 → N2 is precisely the set of homomorphisms θ : N1 →

N2 such that ν2 ◦ θ = ν1.
The category of central extensions of L thus has the following alternative description. Note that strictly

speaking, this is a different category, but the preceding remarks establish that there is a canonical equivalence
of categories between the categories:

• The objects of the category are “central extensions” of L in the sense of being pairs (N, ν) where
ν : N → L is a surjective Lie ring homomorphism and the kernel of ν is central in L.

• Given two objects (N1, ν1) and (N2, ν2) in the category, a morphism between them is a homomor-
phism θ : N1 → N2 such that ν2 ◦ θ = ν1.

The equivalence of categories is given by the obvious forgetful functor from the short exact sequence
category to this new category, that sends a short exact sequence 0 → A → N

ν→ L → 0 to the quotient
map N ν→ L. The functor is clearly essentially surjective (in fact, it is surjective on objects). The preceding
remarks establish that the functor is full and faithful, and therefore an equivalence of categories. From this
point onward, we we talk of the “category of central extensions of L” we will refer to the latter category.

We might hope that this category has an initial object, which could then serve as the “source” classifying
central extensions of L. However, such an initial object does not always exist. We will show in Section 10.9,
there do exist objects in this category that admit homomorphisms to every other object in the category.
These are not in general initial objects because the homomorphisms admitted are not unique.

8. Explicit description of second cohomology group using the bar resolution

In Section 6.5, we stated that the second cohomology group for trivial group action H2(G;A) is a group
whose elements correspond with congruence classes of central extensions with central subgroup A and quo-
tient group G. However, we did not specify the group structure at the time. In this section, we explicitly
construct H2(G;A) as a group.

Interested readers can learn more from [3], [26], [9], or any standard reference on group cohomology.
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8.1. Explicit description of second cohomology group using cocycles and coboundaries. Suppose
G is a group and A is an abelian group. A 2-cochain for trivial group action of G on A is defined as a set
map f : G×G → A. With pointwise addition of functions, the set of 2-cochains acquires an abelian group
structure. We denote this group as C2(G;A).

A 2-cochain f : G × G → A is termed a 2-cocycle for trivial group action if it satisfies the following
condition:

f(g1, g2) + f(g1g2, g3) = f(g1, g2g3) + f(g2g3) ∀ g1, g2, g3 ∈ G

The 2-cocycles form a subgroup of C2(G;A). This subgroup is denoted Z2(G;A).
A 2-cochain f : G × G → A is termed a 2-coboundary for trivial group action if there exists a set map

ϕ : G→ A such that:

f(g1, g2) = ϕ(g1) + ϕ(g2)− ϕ(g1g2) ∀ g1, g2 ∈ G

Every 2-coboundary is a 2-cocycle, and the 2-coboundaries form a subgroup of the group of 2-cocycles.
We denote this subgroup as B2(G;A). The group H2(G;A), called the second cohomology group for trivial
group action of G on A, is defined as the quotient group Z2(G;A)/B2(G;A) (note that both are subgroups
of the abelian group C2(G;A), hence B2(G;A) is normal in Z2(G;A)). The elements of H2(G;A), i.e., the
cosets of B2(G;A) in Z2(G;A), are termed cohomology classes. Given two elements of Z2(G;A) that are in
the same cohomology class, we will say that they are cohomologous to each other.

We will reconcile this definition with the earlier definition from Section 6.5 in Section 8.3.

8.2. Functoriality and automorphism group action. Each of C2, Z2, B2, and H2, viewed in terms of
G and A, is contravariant in the first argument G and covariant in the second argument A. Explicitly:

• If θ : G1 → G2 is a homomorphism, then θ induces a homomorphism C2(G2;A) → C2(G1;A)
by composition: given a map f : G2 × G2 → A that is an element of C2(G2;A), its image in
C2(G1;A) is the map (x, y) 7→ f(θ(x), θ(y)). This homomorphism restricts to homomorphisms
Z2(G2;A) → Z2(G1;A) and B2(G2;A) → B2(G1;A). Thus, it also induces a homomorphism
H2(G2;A) → H2(G1;A). All these induced homomorphisms define contravariant functors.

• If α : A1 → A2 is a homomorphism, then α induces a homomorphism C2(G;A1) → C2(G;A2) by
composition: f 7→ α ◦ f . This homomorphism restricts to homomorphisms Z2(G;A1) → Z2(G;A2)
and B2(G;A1) → B2(G;A2). Thus, it also induces a homomorphism H2(G;A1) → H2(G;A2). All
these induced homomorphisms define covariant functors.

Based on this functoriality, we obtain a natural action of Aut(G)×Aut(A) on each of the groups C2(G;A),
Z2(G;A), B2(G;A), and H2(G;A). We compose on both sides. Note that, due to contravariance in the
G-argument, we need to use the inverse of the element on the Aut(G) side to keep the action a left action.
Explicitly, (ϕ, α) ◦ f is defined as:

(x, y) 7→ α(f(ϕ−1(x), ϕ−1(y)))

8.3. Identifying cohomology classes with congruence classes of central extensions. We will now
describe a bijection:

Elements of the second cohomology group H2(G;A) ↔ Congruence classes of central extensions with
central subgroup A and quotient group G
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We will describe the bijection in the reverse direction. Explicitly, given a central extension group E, we
will describe how to use E to obtain a cohomology class.

We have the short exact sequence:

0 → A
ι→ E

ν→ G→ 1

Pick any set map s : G→ E that is a one-sided inverse to the surjective homomorphism ν : E → G (such
a set map is called a section of the extension). We can think of s as specifying the coset representatives in
E for each element of G.

Now, define the following 2-cochain f : G × G → A: for g1, g2 ∈ G, consider the element of E given by
s(g1g2)(s(g1)s(g2))−1. This element of E maps to the identity element of G, hence is in the image of A.
Define f(g1, g2) to be its inverse image under ι in A.

Explicitly:

s(g1g2) = ι(f(g1, g2))s(g1)s(g2) ∀ g1, g2 ∈ G

We can think of f as measuring the extent to which s fails to be a homomorphism. Since ν ◦ s is the
identity map, s is a homomorphism modulo A. The “error term” for s therefore lies in A, and this is how
we get a 2-cochain f : G×G→ A.

We can now verify the following:

• The function f constructed for any section s : G → E is a 2-cocycle, i.e., an element of Z2(G;A).
This follows from associativity of group multiplication. Explicitly, if we expand s(g1g2g3) using the
two different ways of associating the expression, and compare, we get the result. Note that we need
to use the centrality of ι(A) in E to commute elements.

• The set of all possible functions f that we can get by choosing different sections s : G → E for
a single extension E correspond to a single cohomology class, i.e., a single coset of B2(G;A) in
Z2(G;A), and therefore, a single element of H2(G;A).

• Two central extensions with central subgroup A and quotient group G are congruent if and only if
they give the same element of H2(G;A).

We have now completely described one direction of the correspondence. The construction in the other
direction is similar: we need to explicitly construct a group extension based on a cohomology class. We will
omit the details, but they can be found in [9] or in any of the standard references on cohomology.

It also follows from the above that the orbits of H2(G;A) under the Aut(G)×Aut(A) action correspond
with the pseudo-congruence classes of extensions.

8.4. Short exact sequence of coboundaries, cocycles, and cohomology classes. We have a natural
short exact sequence:

0 → B2(G;A) → Z2(G;A) → H2(G;A) → 0

This short exact sequence does not always split. For instance, consider the case where G = Z/2Z and
A = Z. In this case, C2(G;A) is, as an abelian group, isomorphic to A|G|×|G|, which is Z4. In particular,
it is a finitely generated free abelian group. Thus, both B2(G;A) and Z2(G;A), which are subgroups of
C2(G;A), are also free abelian groups. However, H2(G;A) ∼= Z/2Z, which is not a free abelian group. If

60



the short exact sequence did split, then H2(G;A) would have been free abelian. Therefore, the short exact
sequence does not split.

In Section 24.9, we will see that in the special case that G and A are both 2-powered abelian groups, this
short exact sequence splits canonically.

9. Exterior square, Schur multiplier, and homoclinism

In Sections 6 and 7, we introduced, for groups and for Lie rings, the notion of central extension. In this
section, our goal is to understand, for a group G, the category of central extensions of G (introduced in
Section 7.5) in terms of the isomorphism type of G.

We will attack this question by looking at one key attribute of the extension: how the commutator map
behaves. Roughly speaking, the behavior of the commutator map classifies the central extension up to
isoclinism, and if we want to study the collection of central extensions focusing only on this attribute, we
consider the category of central extensions with homoclinisms, a variant of the category of central extensions
with homomorphisms. We will establish key features of this category, including the fact that there is at
most one morphism between any two objects, and the existence of initial objects. There are two structures
in particular that store a lot of the information related to the central extensions of G. These are the exterior
square G ∧ G (which serves as a source object for the derived subgroups in all central extensions) and the
Schur multiplier M(G) (which is the kernel of the canonical map G ∧G→ [G,G]).

We tangentially mention in this section the well-known fact that the Schur multiplier M(G) has an
alternative description as the second homology group H2(G; Z). We do not provide a proof here, since
developing the underlying machinery of homology would take us too far afield. However, the techniques used
to establish this are closely related to the explicit description of the second cohomology group in Section 8.
For reference, see the exact sequence appearing as (2.8) in Loday and Brown’s 1987 paper [7].

9.1. Exterior square. The exterior square of a group was originally considered (though not with that
name) in the paper [33] by Clair Miller in 1952. It was later defined as a special case of a more general
concept called the exterior product of groups in [7]. More information about the exterior square and related
constructions can be found in [32] and [14].

The definition that we provide here for the exterior square is the “abstract” definition. We will provide a
concrete definition (based on generators and relations) in Section 13.4. The equivalence of the two approaches
is discussed in Miller’s original paper, and we include some further discussion of the equivalence in Section
13.5. As we demonstrate in this section, however, the initial theory is best established using the abstract
definition.

Suppose G is a group. The exterior square of G, denoted by G ∧ G, is defined as follows. Let F be the
free group on the set G×G.

For any central extension:

0 → A→ E → G→ 1

there is a set map:

ωE,G : G×G→ [E,E]

given by:
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ωE,G(x, y) = [x̃, ỹ]

where x̃ denotes any element of E that maps to x and ỹ denotes any element of E that maps to y. Note
that the map is well defined (i.e., it does not depend on the choice of the lifts x̃ and ỹ) because the extension
is a central extension.

Note that the set map ωE,G described here differs from ωE in the following important respect: ωE,G is a
map from G × G, whereas ωE is a map from E/Z(E) × E/Z(E). However, it is obvious that ωE,G factors
through ωE .
F is the free group on G×G, so ωE,G gives rise to a group homomorphism:

ω̂E,G : F → [E,E]

Note also that this homomorphism is surjective, because by definition, [E,E] is the subgroup of E gener-
ated by the image of the set map ωE,G.

Define R as the intersection of the kernels of all such homomorphisms ω̂E,G where E varies over all central
extension groups with quotient group G. Note that even though the collection of all such homomorphisms
is too large to be a set, the collection of possible kernels is a set, so the intersection is well defined. In other
words, R is the set of all products of formal pairs of elements and their inverses such that the corresponding
commutator words become trivial in every central extension of G. We define the exterior square G ∧ G as
the quotient group F/R. The image of (x, y) in the group is denoted x ∧ y.

It is clear from the definition that, for any central extension E with short exact sequence:

0 → A→ E → G→ 1

there exists a unique natural homomorphism ΩE,G from G∧G to [E,E] satisfying the condition that for
any x, y ∈ G we have:

ΩE,G(x ∧ y) = [x̃, ỹ]

where x̃ and ỹ are elements of E that map to x and y respectively. Note also that ΩE,G is surjective.
As a special case of the above, there is a natural homomorphism:

G ∧G→ [G,G]

given on a generating set by:

x ∧ y 7→ [x, y]

The kernel of this homomorphism is called the Schur multiplier of G and is denoted M(G). We can easily
deduce that M(G) is a central subgroup of G ∧G. We thus have a short exact sequence:

0 →M(G) → G ∧G→ [G,G] → 1

There are numerous other definitions of the Schur multiplier. The most common textbook definition is
that M(G) = H2(G; Z), i.e., it is the second homology group for trivial group action with coefficients in
the integers. [26] has a detailed description of techniques to compute the Schur multiplier for finite groups.
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[7] and [32] provide background on why the two definitions of Schur multiplier agree. In particular, see the
exact sequence appearing as (2.8) in Loday and Brown’s 1987 paper [7].

9.2. The existence of a single central extension that realizes the exterior square. Consider a
group G. A natural question is whether there exists a central extension group E with quotient group G with
the property that the natural homomorphism:

ΩE,G : G ∧G→ [E,E]

is an isomorphism.
The answer to this question is yes. We provide one construction below. We will provide another con-

struction in Section 9.7.
Recall the earlier description of G ∧ G as a quotient F/R. The normal subgroup R was defined as the

intersection of all possible normal subgroups arising as kernels of the natural homomorphisms F → [E,E]
for a central extension group E. For each possible normal subgroup Ni, i ∈ I of F that arises this way, let
Ei denote a corresponding central extension of G.

Define E0 to be the pullback (also called the fiber product or the subdirect product) corresponding to all
the quotient maps Ei → G. We can verify that the natural mapping:

F → [E0, E0]

has kernel precisely R, and hence, the mapping:

G ∧G→ [E0, E0]

is an isomorphism.

9.3. Homoclinism of central extensions. Suppose G is a group. We define a certain category for which
we are interested in computing the initial object. We will call this category the category of central extensions
of G with homoclinisms. Explicitly, the objects of the category are short exact sequences of the form:

0 → A→ E → G→ 1

where the image of A is central in E.
The morphisms in the category, which we call homoclinisms of central extensions, are defined as follows.

For two objects:

0 → A1 → E1 → G→ 1

and

0 → A2 → E2 → G→ 1

a morphism from the first to the second is a group homomorphism ϕ : E′1 → E′2 between the derived
subgroups E′1 = [E1, E1] and E′2 = [E2, E2] such that the following holds. Let ω1 : G×G→ E′1 denote the
map arising from the commutator map in E1 and let ω2 : G×G→ E′2 denote the corresponding map in E2.
We require that ϕ ◦ ω1 = ω2 as set maps.
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The above condition can be reframed in terms of group homomorphisms if we use the exterior square:
let Ω1 : G ∧ G → E′1, Ω2 : G ∧ G → E′2 denote the natural homomorphisms described in Section 9.1. The
condition we need is that ϕ ◦ Ω1 = Ω2.

9.4. Relation between the category of central extensions and the category of central extensions

with homoclinisms. Any homomorphism of central extensions induces a homoclinism of central extensions.
Explicitly, consider two central extensions:

0 → A1 → E1
ν1→ G→ 1

and

0 → A2 → E2
ν2→ G→ 1

As discussed in Section 6.6, the central extensions are completely described by the pairs (E1, ν1) and
(E2, ν2) respectively. A homomorphism of central extensions can be specified as a homomorphism θ : E1 →
E2 satisfying the condition that ν2 ◦ θ = ν1.

Any such homomorphism of central extensions induces a homoclinism of central extensions. Explicitly,
for a homomorphism θ : E1 → E2 satisfying ν2 ◦ θ = ν1, define ϕ as the homomorphism E′1 → E′2 obtained
by restricting θ to E′1. We claim that ϕ defines a homoclinism of the central extensions. We now prove that
this construction works.

Lemma 9.1. Suppose (E1, ν1) and (E2, ν2) are central extensions of a group G, and θ : E1 → E2 is a
homomorphism of central extensions, i.e., ν2 ◦ θ = ν1. Denote by ω1 : G×G→ E′1 and ω2 : G×G→ E′2 the
maps induced by the commutator maps in E1 and E2 respectively. Let ϕ : E′1 → E′2 be the homomorphism
obtained by restricting θ to the derived subgroup E′1. Then, ϕ is a homoclinism of central extensions, i.e.,
ϕ ◦ ω1 = ω2.

Proof. Let u, v be arbitrary elements of G (possibly equal, possibly distinct). Our goal is to show that:

ϕ(ω1(u, v)) = ω2(u, v)

Let x, y ∈ E1 be elements such that ν1(x) = u and ν1(y) = v. Then, by definition, ω1(u, v) = [x, y].
Simplify the left side:

ϕ(ω1(u, v)) = ϕ([x, y]) = θ([x, y]) = [θ(x), θ(y)] = ω2(ν2(θ(x)), ν2(θ(y)))

Now, use that ν2 ◦ θ = ν1 and simplify further to:

ω2(ν1(x), ν1(y)) = ω2(u, v)

which is the right side. �

9.5. Uniqueness of homoclinism if it exists. We will show that if a homoclinism exists between two
central extensions, it must be unique.
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Lemma 9.2. Consider two short exact sequences that give central extensions of a group G:

0 → A1 → E1 → G→ 1

0 → A2 → E2 → G→ 1

Denote by ω1 : G×G→ E′1 and ω2 : G×G→ E′2 the commutator maps.
Suppose there exists homoclinisms ϕ, θ from the first central extension to the second. Explicitly, ϕ : E′1 →

E′2 and θ : E′1 → E′2 are homomorphisms such that ϕ ◦ ω1 = ω2 and θ ◦ ω1 = ω2. Then, ϕ = θ.

Proof. Denote by ν1 the quotient map E1 → G and by ν2 the quotient map E2 → G.
It will suffice to show that ϕ and θ agree with each other on the set of all commutators, which is a

generating set for E′1. Consider a commutator [x, y] with x, y ∈ E1. Let u = ν1(x) and v = ν1(y).
By definition, [x, y] = ω1(u, v). Thus, ϕ([x, y]) = ϕ(ω1(u, v)) = ω2(u, v). Similarly, θ([x, y]) = θ(ω1(u, v)) =

ω2(u, v). We thus obtain that ϕ([x, y]) = θ([x, y]), completing the proof. �

Thus, if a homoclinism exists, it is unique. However, a homoclinism need not exist. The obstruction
occurs if there are relations within the derived subgroup E′1 such that the corresponding relations are not
valid in the derived subgroup E′2.

9.6. Existence and description of initial objects in the category of central extensions up to

homoclinisms. In category theory, an object X in a category C is termed an initial object if for every
object Y ∈ C, there is a unique morphism from X to Y , sometimes called the initial morphism. It can easily
be seen using “abstract nonsense”11 that if X1 and X2 are both initial objects in a category C, then there
exists a unique isomorphism between X1 and X2. In other words, the initial object in a category is uniquely
determined up to (unique) isomorphism.

We are interested in identifying the initial objects in the category of extensions of G with homoclinisms
discussed in Section 9.3.

Lemma 9.3 (Existence and description of initial objects). For a group G, consider the category of central
extensions of G with homoclinisms. The following are true for this category.

(1) There exists a central extension E0 of G for which the natural homomorphism Ω0 : G ∧G → E′0 is
an isomorphism.

(2) Any central extension E0 of G for which the natural homomorphism Ω0 : G ∧ G → E′0 is an
isomorphism is an initial object of the category.

(3) If a central extension E1 of G is an initial object of the category, the corresponding homomorphism
Ω1 : G ∧G→ E′1 is an isomorphism.

(4) Combining all the above: the category of central extensions of G with homoclinisms admits initial
objects, and a central extension E → G is an initial object for the category if and only if the
commutator map homomorphism ΩE,G : G ∧G→ [E,E] is an isomorphism.

11“Abstract nonsense” is a non-derogatory term used to refer to proof methods that rely on formalistic ideas, typically from
category theory, rather than on the specifics of the structures being studied. Statements proved using abstrcat nonsense are
often very general.
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Proof. • Proof of (1): In Section 9.2, we constructed a central extension group E0 for which the natural
map Ω0 : G ∧G→ E′0 is an isomorphism.

• Proof of (2): Suppose E0 is a central extension for which the commutator map Ω0 : G ∧G→ E′0 is
an isomorphism. For any central extension E2, there is a natural homomorphism Ω2 : G ∧G→ E′2.
Composing this with the inverse of Ω0, we obtain a homomorphism ϕ : E′0 → E′2 that defines a
homoclinism of the extensions. Moreover, by Lemma 9.2, this is the unique homoclinism of the
extensions.

• Proof of (3): We already know of the existence of a central extension E0 for which Ω0 : G∧G→ E′0

is an isomorphism by (1). We also know that it is an initial object by (2). By the uniqueness of
initial objects up to isomorphism, E0 and E1 are isomorphic in the category of central extensions
of G with homoclinisms. Thus, there exists an isomorphism ϕ1 : E′0 → E′1 such that ϕ1 ◦ Ω0 = Ω1.
Since both ϕ1 and Ω0 are isomorphisms, Ω1 is also an isomorphism.

• Proof of (4): This follows by combining (1), (2), and (3).
�

9.7. An alternate construction of the initial object. Here is an alternative way of constructing a
central extension E1 for which the natural map:

Ω1 : G ∧G→ E1

is an isomorphism.
Write G as the quotient of a free group F by a normal subgroup R of F . Let ν : F → G denote the

quotient map. The kernel of ν is R.
The group E1 that we are interested in is F/[F,R]. This group E1 is a central extension of G in a

natural fashion. Denote by ν the corresponding quotient map E1 → G. Consider the commutator map
ω1 : G×G→ E1 and denote by Ω1 the corresponding group homomorphism:

Ω1 : G ∧G→ [E1, E1]

Consider any extension:

0 → A→ E2
µ→ G→ 1

with the natural commutator map ω2 : G×G→ E2 and the corresponding commutator map homomor-
phism:

Ω2 : G ∧G→ [E2, E2]

Our goal is to show that there there exists a unique homomorphism ϕ : [E1, E1] → [E2, E2] such that
ϕ ◦ ω1 = ω2, or equivalently, ϕ ◦ Ω1 = Ω2.

The map ν : F → G lifts to a map ψ : F → E2 because F is a free group (note that the lift is not
necessarily unique). Explicitly, this means that µ ◦ ψ = ν.

We know that ν(R) is trivial, so µ(ψ(R)) is trivial. Thus, ψ(R) lands inside the kernel of µ, which is the
image of A in E2. Thus, ψ(R) is a central subgroup of E2. Therefore, ψ([F,R]) = [ψ(F ), ψ(R)] is trivial.

Thus, ψ descends to a homomorphism θ : E1 → E2, where E1 = F/[F,R] as defined above, with the
property that µ◦θ = ν. The condition µ◦θ = ν can be interpreted as saying that θ is a homomorphism from
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the central extensions (E1, ν) to the central extension (E2, µ). Denote by ϕ : E′1 → E′2 the restriction of θ to
E′1. Thus, by Lemma 9.1, ϕ defines a homoclinism of the central extensions. Lemma 9.2 now establishes that
the homoclinism is unique. Finally, Lemma 9.3 establishes from this that (E1, ν) defines an initial object in
the category of central extensions of G with homoclinisms.

Clarification regarding uniqueness: In the discussion above, the lift ψ : F → E2 of ν : F → G is not
unique, because it involves picking arbitrary coset representatives of G in E2 for the freely generating set of
F . The homomorphism θ : E1 → E2 also need not be unique. However, the map ϕ : E′1 → E′2, obtained by
restricting θ to E′1, is unique.

9.7.1. Canonical choice of E1. The description of E1 above is unique once we fix the description of G of
the form F/R where F is a free group. Specifying a description of this form is equivalent to specifying a
generating set for G, and thus, the description relies on a choice of generating set for G.

It is possible to make a canonical choice of E1 by making a canonical choice of generating set for G,
namely, the entire underlying set of G. In this case, the free group F is the free group on the underlying set
of G, and the normal subgroup R is generated by the multiplication table of G, viewed as relations within
F (explicitly, for any product relation of the form gh = k in G, we introduce the relation ghk−1 in F ).

There is an alternative description of the group E1 that demonstrates its canonical nature: E1 is the
freest possible group admitting G as a quotient by a central subgroup.12

9.8. Functoriality of exterior square and Schur multiplier. The exterior square and Schur multiplier
are both functorial. Explicitly, for any homomorphism ϕ : G → H of groups, there are homomorphisms
ϕ ∧ ϕ : G ∧ G → H ∧ H and M(ϕ) : M(G) → M(H) and the associations are functorial. This means
that for homomorphisms ϕ : G → H and θ : H → K, (θ ◦ ϕ) ∧ (θ ◦ ϕ) = (θ ∧ θ) ◦ (ϕ ∧ ϕ) and also
M(θ ◦ ϕ) = M(θ) ◦M(ϕ).

The proofs of both assertions are straightforward, but we are not including them here because we do not
use the functoriality of the Schur multiplier. See a more detailed discussion of functoriality in the Appendix,
Section B.1.2.

9.9. Homoclinisms and words for central extensions. We state and prove some results that are similar
in spirit to the results in Section 4.6.

Lemma 9.4. Suppose G is a group and w(g1, g2, . . . , gn) is a word in n letters with the property that w
evaluates to the identity element in every abelian group. The following are true.

(1) For every central extension E of G, w can be used to define a set map χw,E : Gn → [E,E].
(2) For any homoclinism between central extensions E1 and E2, with the central extension specified via

a homomorphism ϕ : [E1, E1] → [E2, E2], we have that:

ϕ ◦ χw,E1 = χw,E2

Proof. Proof of (1): This is similar to the proof of Theorem 4.2. Alternatively, we can deduce it from the
result of Theorem 4.2 by noting that the map factors as follows:

12This might tempt one to think that (E1, ν) is an initial object in the category of central extensions of G with homomorphisms,
but the non-uniqueness of homomorphisms involved, along with some other considerations, makes this false.
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Gn → (E/Z(E))n → [E,E]

Proof of (2): This is similar to the proof of Theorem 4.3. Alternatively, we can deduce it from the result
of Theorem 4.3 by factoring through E/Z(E). �

We can now prove the theorem.

Theorem 9.5. Suppose G is a group and w(g1, g2, . . . , gn) is a word in n letters with the property that
w evaluates to the identity element in every abelian group. Then, there exists a set map Xw : Gn → G ∧G
with the property that for any central extension E of G, ΩE,G ◦Xw = χw,E .

Proof. Apply Part (1) of Lemma 9.4 to the case where the extension E0 is an initial object in the category
of central extensions of G, so that the map ΩE0,G : G ∧ G → [E0, E0] is an isomorphism. Define Xw =
Ω−1

E0,G ◦ χw,E0 . For any central extension E of G, there is a homoclinism from the extension E0 to the
extension E defined via the homomorphism ϕ : [E0, E0] → [E,E]. By Part (2) of Lemma 9.4, we have:

ϕ ◦ χw,E0 = χw,E

We can rewrite χw,E0 as ΩE,G ◦Xw, and obtain:

ϕ ◦ (ΩE,G ◦Xw) = χw,E

Using associativity of composition, we obtain:

(ϕ ◦ ΩE,G) ◦Xw = χw,E

Ω itself commutes with homoclinisms, so we obtain:

ΩE0,G ◦Xw = χw,E

�

10. Exterior square, Schur multiplier, and homoclinism for Lie rings

A large part of this section repeats for Lie rings what the previous section did for groups. The main
exception is the content in Sections 10.2 and Section 10.3. The material presented in Section 10.2 has no
natural group analogue, while the results Section 10.3 have group analogues that are harder to prove, and
are deferred to Sections 11.11 and 24.3.

For background on the homology and cohomology theory of Lie rings, see Weibel’s homological algebra
textbook [43].

10.1. Exterior square. The concept of exterior square of a Lie ring appears to have first been explicitly
discussed in the literature in the paper [15] by Graham Ellis.

The definition that we provide here for the exterior square is the “abstract” definition. We will provide a
concrete definition (based on generators and relations) in Section 14.3. The equivalence of the two approaches
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follows from the work in [15]. Background theory on the homology of Lie rings is discussed in [12] and the
references therein.

Suppose L is a Lie ring. The exterior square of L, denoted by L ∧ L, is defined as follows. Let F be the
free Lie ring on the set L× L.

For any central extension:

0 → A→ N → L→ 0

there is a set map (in fact, a Z-bilinear map):

ωN,L : L× L→ [N,N ]

given by:

ωN,L(x, y) = [x̃, ỹ]

where x̃ denotes any element of N that maps to x and ỹ denotes any element of N that maps to y. Note
that the map is well defined (i.e., it does not depend on the choice of the lifts x̃ and ỹ) because the extension
is a central extension.
F is the free Lie ring on L× L, so ωN,L gives rise to a Lie ring homomorphism:

ω̂N,L : F → [N,N ]

Note also that this homomorphism is surjective, because by definition, [N,N ] is the subring of N generated
by the image of the set map ωN,L.

Define R as the intersection of the kernels of all such homomorphisms ω̂N,L where N varies over all central
extension Lie rings with quotient ring L. Note that even though the collection of all such homomorphisms
is too large to be a set, the collection of possible kernels is a set, so the intersection is well defined. In other
words, R is the set of all Z-linear combinations of formal pairs such that the corresponding sums of Lie
brackets would become trivial in every central extension of L. We define the exterior square L ∧ L as the
quotient Lie ring F/R. The image of (x, y) in the Lie ring is denoted x ∧ y.

It is clear from the definition that, for any central extension N with short exact sequence:

0 → A→ N → L→ 0

there exists a unique natural homomorphism ΩN from L ∧ L to [N,N ] satisfying the condition that for
any x, y ∈ L we have:

ΩN (x ∧ y) = [x̃, ỹ]

where x̃ and ỹ are elements of N that map to x and y respectively. Note also that ΩN is surjective.
As a special case of the above, there is a natural homomorphism:

L ∧ L→ [L,L]

given on a generating set by:

x ∧ y 7→ [x, y]
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The kernel of this homomorphism is called the Schur multiplier of L and is denoted M(L). We can easily
deduce that M(L) is a central subring of L ∧ L. We thus have a short exact sequence:

0 →M(L) → L ∧ L→ [L,L] → 0

10.2. Free Lie ring on an abelian group. Suppose G is an abelian group. The free Lie ring on G is
defined as the initial object in the category of Lie rings L with group homomorphisms from G to them.

Lemma 10.1. The free Lie ring on G exists and is a N-graded Lie ring where the degree 1 homogeneous
component is isomorphic to G.

Proof. The free Lie ring on G is the quotient of the free ring on G by the ideal generated by all the Lie
identities. The free ring on G is given as the infinite direct sum:

∞⊕
i=1

i⊗
G

The ideal that we need to factor out by is a homogeneous ideal because all the Lie identities are homoge-
neous identities. Thus, the free Lie ring is naturally a N-graded Lie ring. �

Denote by L the free Lie ring on G. Then, for any positive integer c, we can define the free class c Lie
ring on G as the quotient ring L/γc+1(L). Note that this is also a N-graded Lie ring, but it is zero except
in the first c homogeneous components. In particular, this is a quotient of:

c⊕
i=1

i⊗
G

Lemma 10.2. Suppose G is an abelian group. The degree 2 homogeneous component of the free Lie ring
on G is isomorphic to the ring G ∧Z G. Equivalently, the free class two Lie ring on G has additive group
G⊕ (G ∧Z G) with Lie bracket:

[(x, u), (y, v)] = [0, x ∧Z y]

Proof. Note that of the Lie ring identities, the Jacobi identity becomes redundant because of the class two
condition. The only condition on the Lie bracket is that it is alternating. Taking the quotient of G⊕ (G⊗G)
by this relation gives G⊕ (G ∧Z G). �

10.3. Relation between exterior square of a Lie ring and exterior square in the abelian group

sense. Recall that the additive group of L has an exterior square as an abelian group. Denote this as L∧ZL.
We have a canonical abelian group homomorphism:

L ∧Z L→ L ∧ L
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The homomorphism is constructed as follows. For every central extension N of L, the map ΩN : L×L→
[N,N ] is Z-bilinear because the Lie bracket map itself is Z-bilinear.

Thus, the natural map L× L→ L ∧ L given by (x, y) 7→ x ∧ y is Z-bilinear. Hence, it induces an abelian
group homomorphism L ∧Z L→ L ∧ L. This is the homomorphism we seek.

The canonical homomorphism L∧Z L→ L∧L is surjective: It is obvious that L∧L is generated as a Lie
ring by the image of L ∧Z L. The main thing to verify is that, in fact, the image of L ∧Z L is closed under
the Lie bracket. The following identity demonstrates this:

[(m1 ∧ n1), (m2 ∧ n2)] = −[n1,m1] ∧ [m2, n2]

We now turn to a proof of an important result. Note that this is subsumed by the explicit presentation
of the exterior square in Section 14.3, but we give an explicit proof here for convenience.

Lemma 10.3. Suppose L is an abelian Lie ring. Then, the canonical surjective homomorphism L∧ZL→
L ∧ L is an isomorphism. This

Proof. We have already established surjectivity, so to demonstrate injectivity, it suffices to construct a central
extension N of L for which the composite map L∧Z L→ [N,N ] is an isomorphism. Taking N to be the free
class two Lie ring on the additive group of L works, based on the discussion in Section 10.2. �

10.4. The existence of a single central extension that realizes the exterior square. Consider a Lie
ring L. A natural question is whether there exists a central extension Lie ring N with quotient Lie ring L
with the property that the natural homomorphism:

ΩN : L ∧ L→ [N,N ]

is an isomorphism.
The answer to this question is yes. We provide one construction below. We will provide another con-

struction in Section 10.9.
Recall the earlier description of L ∧ L as a quotient F/R. The ideal R was defined as the intersection

of all possible ideals arising as kernels of the natural homomorphisms F → [N,N ] for a central extension
Lie ring N . For each possible ideal Ji, i ∈ I of F that arises this way, let Ni denote a corresponding central
extension of L.

Define N0 to be the pullback (also called the fiber product or the subdirect product) corresponding to all
the quotient maps Ni → L. We can verify that the natural mapping:

F → [N0, N0]

has kernel precisely R, and hence, the mapping:

L ∧ L→ [N0, N0]

is an isomorphism.

10.5. Homoclinism of central extensions. Suppose L is a Lie ring. We define a certain category for
which we are interested in computing the initial object. We will call this category the category of central
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extensions of L with homoclinisms. Explicitly, the objects of the category are short exact sequences of the
form:

0 → A→ N → L→ 0

where the image of A is central in N .
The morphisms in the category, which we call homoclinisms of central extensions, are defined as follows.

For two objects:

0 → A1 → N1 → L→ 0

and

0 → A2 → N2 → L→ 0

a morphism from the first to the second is a Lie ring homomorphism ϕ : N ′
1 → N ′

2 such that the following
holds. Let ω1 : L×L→ N ′

1 denote the map arising from the Lie bracket map in N1 and let ω2 : L×L→ N ′
2

denote the corresponding map in N2. We require that ϕ ◦ ω1 = ω2 as set maps.
The above condition can be reframed in terms of Lie ring homomorphisms if we use the exterior square:

let Ω1 : L ∧ L → N ′
1, Ω2 : L ∧ L → N ′

2 denote the natural homomorphisms described in Section 10.1. The
condition we need is that ϕ ◦ Ω1 = Ω2.

10.6. Relation between the category of central extensions and the category of central extensions

with homoclinisms. Any homomorphism of central extensions induces a homoclinism of central extensions.
Explicitly, consider two central extensions:

0 → A1 → N1
ν1→ L→ 0

and

0 → A2 → N2
ν2→ L→ 0

As discussed in Section 7.5, the central extensions are completely described by the pairs (N1, ν1) and
(N2, ν2) respectively. A homomorphism of central extensions can be specified as a homomorphism θ : N1 →
N2 satisfying the condition that ν2 ◦ θ = ν1.

Any such homomorphism of central extensions induces a homoclinism of central extensions. Explicitly,
for a homomorphism θ : N1 → N2 satisfying ν2 ◦ θ = ν1, define ϕ as the homomorphism N ′

1 → N ′
2 obtained

by restricting θ to N ′
1. We claim that ϕ defines a homoclinism of the central extensions. We now prove that

this construction works.

Lemma 10.4. Suppose (N1, ν1) and (N2, ν2) are central extensions of a Lie ring L, and θ : N1 → N2 is a
homomorphism of central extensions, i.e., ν2 ◦ θ = ν1. Denote by ω1 : L×L→ N ′

1 and ω2 : L×L→ N ′
2 the

maps induced by the commutator maps in N1 and N2 respectively. Let ϕ : N ′
1 → N ′

2 be the homomorphism
obtained by restricting θ to the derived subring N ′

1. Then, ϕ is a homoclinism of central extensions, i.e.,
ϕ ◦ ω1 = ω2.
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Proof. Let u, v be arbitrary elements of L (possibly equal, possibly distinct). Our goal is to show that:

ϕ(ω1(u, v)) = ω2(u, v)

Let x, y ∈ N1 be elements such that ν1(x) = u and ν2(y) = v. Then, by definition, ω1(u, v) = [x, y].
Simplify the left side:

ϕ(ω1(u, v)) = ϕ([x, y]) = θ([x, y]) = [θ(x), θ(y)] = ω2(ν2(θ(x)), ν2(θ(y)))

Now, use that ν2 ◦ θ = ν1 and simplify further to:

ω2(ν1(x), ν1(y)) = ω2(u, v)

which is the right side. �

10.7. Uniqueness of homoclinism if it exists. We will show that if a homoclinism exists between two
central extensions, it must be unique.

Lemma 10.5. Consider two short exact sequences that give central extensions of a Lie ring L:

0 → A1 → N1 → L→ 0

0 → A2 → N2 → L→ 0

Denote by ω1 : L× L→ N ′
1 and ω2 : L× L→ N ′

2 the Lie bracket maps.
Suppose there exists homoclinisms ϕ, θ from the first central extension to the second. Explicitly, ϕ : N ′

1 →
N ′

2 and θ : N ′
1 → N ′

2 are homomorphisms such that ϕ ◦ ω1 = ω2 and θ ◦ ω1 = ω2. Then, ϕ = θ.

Proof. Denote by ν1 the quotient map N1 → L and by ν2 the quotient map N2 → L.
It will suffice to show that ϕ and θ agree with each other on the set of all Lie brackets, which is a generating

set for N ′
1. Consider a Lie bracket [x, y] with x, y ∈ N1. Let u = ν1(x) and v = ν1(y).

By definition, [x, y] = ω1(u, v). Thus, ϕ([x, y]) = ϕ(ω1(u, v)) = ω2(u, v). Similarly, θ([x, y]) = θ(ω1(u, v)) =
ω2(u, v). We thus obtain that ϕ([x, y]) = θ([x, y]), completing the proof. �

Thus, if a homoclinism exists, it is unique. However, a homoclinism need not exist. The obstruction
occurs if there are relations within the derived subring N ′

1 such that the corresponding relations are not
valid in the derived subring N ′

2.

10.8. Existence and description of initial objects in the category of central extensions up to

homoclinisms. We are interested in identifying the initial objects in the category of extensions of L with
homoclinisms discussed in Section 10.5.

Lemma 10.6 (Existence and description of initial objects). For a Lie ring L, consider the category of
central extensions of L with homoclinisms. The following are true for this category.
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(1) There exists a central extension N0 of L for which the natural homomorphism Ω0 : L ∧ L → N ′
0 is

an isomorphism.
(2) Any central extension N0 of L for which the natural homomorphism Ω0 : L ∧ L→ N ′

0 is an isomor-
phism is an initial object of the category.

(3) If a central extension N1 of L is an initial object of the category, the corresponding homomorphism
Ω1 : L ∧ L→ N ′

1 is an isomorphism.
(4) Combining all the above: the category of central extensions of L with homoclinisms admits initial

objects, and a central extension N → L is an initial object for the category if and only if the Lie
bracket map homomorphism ΩN : L ∧ L→ [N,N ] is an isomorphism.

Proof. • Proof of (1): In Section 10.4, we constructed a central extension Lie ring N0 for which the
natural map Ω0 : L ∧ L→ N ′

0 is an isomorphism.
• Proof of (2): Suppose N0 is a central extension for which the Lie bracket map Ω0 : L ∧ L → N ′

0 is
an isomorphism. For any central extension N2, there is a natural homomorphism Ω2 : L ∧ L→ N ′

2.
Composing this with the inverse of Ω0, we obtain a homomorphism ϕ : N ′

0 → N ′
2 that defines a

homoclinism of the extensions. Moreover, by Lemma 10.5, this is the unique homoclinism of the
extensions.

• Proof of (3): We already know of the existence of a central extension N0 for which Ω0 : L∧L→ N ′
0

is an isomorphism by (1). We also know that it is an initial object by (2). By the uniqueness of
initial objects up to isomorphism, N0 and N1 are isomorphic in the category of central extensions
of L with homoclinisms. Thus, there exists an isomorphism ϕ1 : N ′

0 → N ′
1 such that ϕ1 ◦ Ω0 = Ω1.

Since both ϕ1 and Ω0 are isomorphisms, Ω1 is also an isomorphism.
• Proof of (4): This follows by combining (1), (2), and (3).

�

10.9. An alternate construction of the initial object. Here is an alternative way of constructing a
central extension N1 for which the natural map:

Ω1 : L ∧ L→ N1

is an isomorphism.
Write L as the quotient of a free Lie ring F by an ideal R of F . Let ν : F → L denote the quotient map.

The kernel of ν is R.
The Lie ring N1 that we are interested in is F/[F,R]. This Lie ring N1 is a central extension of L in

a natural fashion. Denote by ν the corresponding quotient map N1 → L. Consider the Lie bracket map
ω1 : L× L→ N1 and denote by Ω1 the corresponding Lie ring homomorphism:

Ω1 : L ∧ L→ [N1, N1]

Consider any extension:

0 → A→ N2
µ→ L→ 0

with the natural Lie bracket map ω2 : L×L→ N2 and the corresponding Lie bracket map homomorphism:
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Ω2 : L ∧ L→ [N2, N2]

Our goal is to show that there there exists a unique homomorphism ϕ : [N1, N1] → [N2, N2] such that
ϕ ◦ ω1 = ω2, or equivalently, ϕ ◦ Ω1 = Ω2.

The map ν : F → L lifts to a map ψ : F → N2 because F is a free Lie ring (note that the lift is not
necessarily unique). Explicitly, this means that µ ◦ ψ = ν.

We know that ν(R) is trivial, so µ(ψ(R)) is trivial. Thus, ψ(R) lands inside the kernel of µ, which is the
image of A in N2. Thus, ψ(R) is a central subring of N2. Therefore, ψ([F,R]) = [ψ(F ), ψ(R)] is trivial.

Thus, ψ descends to a homomorphism θ : N1 → N2, where N1 = F/[F,R] as defined above, with the
property that µ ◦ θ = ν. The condition µ ◦ θ = ν can be interpreted as saying that θ is a homomorphism
from the central extensions (N1, ν) to the central extension (N2, µ). Denote by ϕ : N ′

1 → N ′
2 the restriction

of θ to N ′
1. Thus, by Lemma 10.4, ϕ defines a homoclinism of the central extensions. Lemma 10.5 now

establishes that the homoclinism is unique. Finally, Lemma 10.6 establishes that (N1, ν1) defines an initial
object in the category of central extensions of L with homoclinisms.

Clarification regarding uniqueness: In the discussion above, the lift ψ : F → N2 of ν : F → L is not
unique, because it involves picking arbitrary coset representatives of L in N2 for the freely generating set of
F . The homomorphism θ : N1 → N2 also need not be unique. However, the map ϕ : N ′

1 → N ′
2, obtained by

restricting θ to N ′
1, is unique.

10.10. Functoriality of exterior square and Schur multiplier. The exterior square and Schur multiplier
are both functorial. Explicitly, for any homomorphism ϕ : L → H of Lie rings, there are homomorphisms
ϕ∧ϕ : L∧L→ H ∧H and M(ϕ) : M(L) →M(H) and the associations are functorial. This means that for
homomorphisms ϕ : L→ H and θ : H → K, (θ◦ϕ)∧(θ◦ϕ) = (θ∧θ)◦(ϕ∧ϕ) and alsoM(θ◦ϕ) = M(θ)◦M(ϕ).

The proofs of both assertions are straightforward, but we are not including them here because we do not
use the functoriality of the Schur multiplier. See a more detailed discussion of functoriality in the Appendix,
Section B.1.2.

10.11. Homoclinisms and words for central extensions. We state and prove some results that are
similar in spirit to the results in Section 5.3.

Lemma 10.7. Suppose L is a Lie ring and w(g1, g2, . . . , gn) is a Lie ring word in n letters with the
property that w evaluates to the zero element in every abelian Lie ring. The following are true.

(1) For every central extension N of L, w can be used to define a set map χw,N : Ln → [N,N ].
(2) For any homoclinism between central extensions N1 and N2, with the central extension specified via

a homomorphism ϕ : [N1, N1] → [N2, N2], we have that:

ϕ ◦ χw,N1 = χw,N2

Proof. Proof of (1): This is similar to the proof of Theorem 5.2. Alternatively, we can deduce it from the
result of Theorem 5.2 by noting that the map factors as follows:

Ln → (N/Z(N))n → [N,N ]
75



Proof of (2): This is similar to the proof of Theorem 5.3. Alternatively, we can deduce it from the result
of Theorem 5.3 by factoring through N/Z(N). �

We can now prove the theorem.

Theorem 10.8. Suppose L is a Lie ring and w(g1, g2, . . . , gn) is a word in n letters with the property that
w evaluates to the identity element in every abelian Lie ring. Then, there exists a set map Xw : Ln → L∧L
with the property that for any central extension N of L, ΩN,L ◦Xw = χw,N .

Proof. Apply Part (1) of Lemma 10.7 to the case where the extension N0 is an initial object in the category
of central extensions of L, so that the map ΩN0,L : L ∧ L → [N0, N0] is an isomorphism. Define Xw =
Ω−1

N0,L ◦ χw,E0 . For any central extension N of L, there is a homoclinism from the extension N0 to the
extension N defined via the homomorphism ϕ : [N0, N0] → [N,N ]. By Part (2) of Lemma 10.7, we have:

ϕ ◦ χw,N0 = χw,N

We can rewrite χw,N0 as ΩN,L ◦Xw, and obtain:

ϕ ◦ (ΩN,L ◦Xw) = χw,N

Using associativity of composition, we obtain:

(ϕ ◦ ΩN,L) ◦Xw = χw,N

Ω itself commutes with homoclinisms, so we obtain:

ΩN0,L ◦Xw = χw,N

�

11. Exterior square, Schur multiplier, and the second cohomology group

In Section 9, we studied the category of central extensions of a group G using the groups G ∧ G (the
exterior square of G) and M(G) (the Schur multiplier of G). Instead of studying the original category, we
considered the category of central extensions with homoclinisms as the morphisms.

Our goal now is to consider, for any groupG and abelian group A, the relation between the groupH2(G;A)
(described in Section 6.5) and the isomorphism types of G and A. More specifically, we will consider the
equivalence relation of being isoclinic on H2(G;A). The equivalence classes turn out to be the fibers of a
surjective map from H2(G;A) that is the right map of an important short exact sequence. We will construct
the maps explicitly.

One crucial and nontrivial fact stated in this section will not be proved here, namely, that the sequence
is right exact, and more specifically, that the short exact sequence under consideration is the same as the
universal coefficient theorem short exact sequence. For a detailed description as well as proofs of these facts,
see [6], Theorem 1.8, and in [11], Theorem 2.2.

11.1. Homomorphism from the Schur multiplier to the kernel of the extension. We will now
describe a very important homomorphism. For any central extension of the form:
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0 → A→ E → G→ 1

there is a natural homomorphism from the Schur multiplier of G to A, i.e., a homomorphism:

β : M(G) → A

We now proceed to describe this homomorphism.
As discussed in Section 9.1, there is a natural homomorphism:

Ω : G ∧G→ [E,E]

Compose this with the inclusion of [E,E] in E to get a map G ∧G→ E. We obtain:

0 → M(G) → G ∧G → [G,G] → 1
↓ ↓

0 → A → E → G → 1

It is immediate that this diagram commutes.
By general diagram-chasing, we can construct a unique map M(G) → A such that the diagram continues

to be commutative, and that is the homomorphism β that we want:

0 → M(G) → G ∧G → [G,G] → 1
↓β ↓ ↓

0 → A → E → G → 1

11.2. Classification of extensions up to isoclinism. Given a group G and an abelian group A, we say
that the central extensions E1 and E2 with short exact sequences:

0 → A→ E1 → G→ 1

and

0 → A→ E2 → G→ 1

are isoclinic (fixing both G and A) if there exists an isomorphism of groups ϕ : E′1 → E′2 satisfying both
the following conditions:

• Isoclinic as extensions of G: If Ω1 : G ∧ G → E′1 and Ω2 : G ∧ G → E′2 are the commutator map
homomorphisms, then ϕ ◦ Ω1 = Ω2.

• Suppose B is the inverse image in A of [E1, E1]. Then, B is also the inverse image in A of [E2, E2].
Moreover, composing ϕ with the inclusion of B in [E1, E1] gives the inclusion of B in [E2, E2].

11.3. Relating the classification of extensions up to isoclinism with the homomorphism from

the Schur multiplier. In Section 11.1, we noted that for any central extension:

0 → A→ E → G→ 1

we have a natural homomorphism β : M(G) → A.
The homomorphism is uniquely determined by the choice of extension up to congruence, so we get a set

map:
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H2(G;A) → Hom(M(G), A)

In Section 11.4, we will see that this set map is a group homomorphism. We alluded to the group structure
on H2(G;A) in Section 6.5 and described it in detail in Section 8.

As we will see in Section 11.4, this group homomorphism is surjective and is the right map in an important
short exact sequence. For now, however, we note that this group homomorphism classifies extensions up to
isoclinism. Explicitly, two extensions E1, E2 are isoclinic in the sense of Section 11.2 if and only if they
induce the same homomorphism M(G) → A. We now proceed to explain why. Note that one direction,
namely the direction that isoclinic extensions define the same homomorphism from M(G) to A, is obvious
from the definition. The other direction requires some work.

Consider the two short exact sequences below:

0 → M(G) → G ∧G → [G,G] → 1
↓β ↓ ↓id

0 → A → E → G → 1

Suppose B is the subgroup of A that arises as the image of the homomorphism β : M(G) → A and
β′ : M(G) → B is the map obtained by restricting the co-domain. We then have the following two short
exact sequences, where all the downward maps are surjective:

0 → M(G) → G ∧G → [G,G] → 1
↓β′ ↓ΩE,G ↓id

0 → B → [E,E] → [G,G] → 1

Note that the second row sequence is exact because all the downward maps are surjective.13

It is easy to see that if E1 and E2 are two central extensions of G that give the same map β, then we can
obtain an isomorphism [E1, E1] → [E2, E2] such that in the diagram below, the composite of the downward
maps in the middle column is ΩE2,G, and the lower downward arrow in the middle column is an isomorphism.

0 → M(G) → G ∧G → [G,G] → 1
↓β′ ↓ΩE,G ↓id

0 → B → [E1, E1] → [G,G] → 1
↓id ↓ ↓id

0 → B → [E2, E2] → [G,G] → 1

11.4. The universal coefficient theorem short exact sequence. As before, let G be a group and let
A be an abelian group. Our goal is to understand all central extension groups E, i.e., short exact sequences
of the following form where the image of A in E is in the center of E:

0 → A→ E → G→ 1

As discussed earlier, the set of all congruence classes of extensions is classified by the group H2(G;A)
(the second cohomology group for trivial group action). We now proceed to describe a related short exact
sequence. The short exact sequence is discussed in [6], Theorem 1.8, and in [11], Theorem 2.2. The short
exact sequence is as follows:

13Some proof details involving diagram chasing are being omitted for brevity.
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(3) 0 → Ext1Z(Gab, A) → H2(G;A) → Hom(M(G), A) → 0

11.4.1. Interpretation of the left map of the sequence. The map:

Ext1Z(Gab, A) → H2(G;A)

takes an abelian group extension with normal subgroup A and quotient group Gab, and gives an extension
with G on top of A that can loosely be described as follows: the restriction to the derived subgroup [G,G]
splits and the quotient sits as per the element of Ext1Z(Gab, A). Explicitly, it can be thought of as a composite
of two maps:

Ext1Z(Gab, A) → H2(Gab;A) → H2(G;A)

where the first map treats an abelian group extension simply as a group extension, and the second map
uses the contravariance of H2 in its first argument.

11.4.2. Interpretation of the right map of the sequence. The right map of the sequence:

H2(G;A) → Hom(M(G), A)

sends an extension group to the corresponding map β described in Section 11.1. In Section 11.3, we
showed that the map H2(G;A) → Hom(M(G), A) classifies extensions up to isoclinism.

11.4.3. What the existence of the short exact sequence tells us. Consider again the short exact sequence:

0 → Ext1Z(Gab, A) → H2(G;A) → Hom(M(G), A) → 0

We now consider the three aspects of exactness:

• Left exactness, i.e., the injectivity of the map Ext1Z(Gab, A) → H2(G;A). This is the assertion that
the only abelian group extension for Gab on top of A that maps to G × A is the trivial extension.
This is immediate from the definition.

• Middle exactness, i.e., the image of the map Ext1Z(Gab, A) → H2(G;A) is precisely the same as the
kernel of the map H2(G;A) → Hom(M(G), A). This is easy to see from the definition.

• Right exactness, i.e., the surjectivity of the map H2(G;A) → Hom(M(G), A). This says that every
homomorphism from M(G) to A arises from an extension with central subgroup A and quotient
group G. In other words, the set of extension types up to isoclinism can be identified with the group
Hom(M(G), A). This is the most important and least obvious of the three exactness statements.
Many of our later constructive results will rely crucially on right exactness.

11.4.4. How it is a special case of the dual universal coefficient theorem. The general version of the dual
universal coefficient theorem for group cohomology is as follows:

0 → Ext1Z(Hk−1(G; Z), A) → Hk(G;A) → Hom(Hk(G; Z), A) → 0

If we set k = 2 and use the fact that M(G) is canonically isomorphic to H2(G; Z), and also that Gab is
canonically isomorphic to H1(G; Z), we get the short exact sequence we have been discussing.
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11.4.5. The splitting of the short exact sequence. The dual universal coefficient theorem for group cohomol-
ogy, in addition to providing the short exact sequence above, also states that the short exact sequence always
splits, but the splitting is not in general canonical. Explicitly, the universal coefficient theorem states that:

Hk(G;A) ∼= Ext1Z(Hk−1(G; Z), A)⊕Hom(Hk(G; Z), A)

In the special case of interest to us, we obtain:

H2(G;A) ∼= Ext1Z(Gab, A)⊕Hom(M(G), A)

The direct sum decomposition is not in general canonical.
In Section 24.5.3, we will identify some special circumstances where the short exact sequence splits canon-

ically.

11.5. An alternate characterization of initial objects, and the existence of Schur covering

groups. Recall that, by Lemma 9.3, a central extension:

0 → A→ E → G→ 1

is an initial object in the category of central extensions of G with homoclinisms if the natural homomor-
phism:

ΩE,G : G ∧G→ [E,E]

is an isomorphism. We now provide an alternative characterization.

Lemma 11.1. Consider a group G and a central extension:

0 → A→ E → G→ 1

The central extension is an initial object in the category of central extensions of G with homoclinisms if
and only if the corresponding homomorphism β : M(G) → A (described in Section 11.1) is injective.

Proof. Let B be the image in A of β and let β′ be the restriction of β to co-domain B, so β′ is a surjective
homomorphism from M(G) to B. Note also that β is injective if and only if β′ is an isomorphism.

As discussed in Section 11.3, we have the following morphism of short exact sequences, where all the
downward maps are surjective:

0 → M(G) → G ∧G → [G,G] → 1
↓β′ ↓ΩE,G ↓id

0 → B → [E,E] → [G,G] → 1

Since the right-most downward map is the identity map, we see (from some elementary diagram chasing)
that β′ is an isomorphism if and only if ΩE,G is an isomorphism. �

Recall the definition of stem extension from Section 6.4. We provide an alternative characterization of
such extensions:
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Lemma 11.2. A central extension 0 → A → E → G → 1 is a stem extension if and only if the
corresponding map β : M(G) → A is surjective.

Proof. Let B be the image in A of β and let β′ be the restriction of β to co-domain B, so β′ is a surjective
homomorphism from M(G) to B. Note also that β is surjective if and only if B = A. Note also that
A ≤ Z(E) by the assumption that the extension is central, so the challenge is to show that A ≤ [E,E] if
and only if B = A.

As described in Section 11.3, we have the following morphism of two short exact sequences, with all the
downward maps surjective:

0 → M(G) → G ∧G → [G,G] → 1
↓β′ ↓ΩE,G ↓id

0 → B → [E,E] → [G,G] → 1

Explicitly, B is the kernel of the homomorphism from [E,E] to [G,G]. The homomorphism from [E,E]
to [G,G] is obtained by restricting to [E,E] the homomorphism from E to G.

Thus, B = A ∩ [E,E]. It follows that A ≤ [E,E] if and only if B = A, completing the proof. �

We are now prepared for a definition.

Definition (Schur covering group). We define a Schur covering group of G as a group extension E of G
with short exact sequence:

0 → A→ E → G→ 1

satisfying the condition that it is a central extension and the corresponding map β : M(G) → A (defined
in Section 11.1) is an isomorphism. Equivalently, the extension must satisfy both these conditions:

• The extension is a stem extension, i.e., the image of A in E is contained in Z(E) ∩ [E,E].
• The natural homomorphism ΩE,G : G ∧G→ [E,E] is an isomorphism.

The equivalence of the two versions of the definition follows from the two preceding lemmas (Lemmas
11.1 and 11.2).

The existence of Schur covering groups is not a priori clear, but can be deduced from the short exact
sequence of the preceding section.

Theorem 11.3. For any group G, Schur covering groups of G exist.

Proof. For any abelian group A, we have the short exact sequence described in Section 11.4:

0 → Ext1Z(Gab, A) → H2(G;A) → Hom(M(G), A) → 0

Now, set A = M(G):
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0 → Ext1Z(Gab,M(G)) → H2(G;M(G)) → Hom(M(G),M(G)) → 0

Consider the element IdM(G) ∈ Hom(M(G),M(G)). By surjectivity (i.e., right exactness), there exists
at least one element of H2(G;M(G)) that maps to this. Note that the inverse image is in fact a coset in
H2(G;M(G)) of the image of Ext1Z(Gab,M(G)). Each element in this inverse image corresponds to a Schur
covering group. If Ext1Z(Gab,M(G)) is nontrivial, the Schur covering group need not be unique. �

11.6. Realizability of surjective homomorphisms from the exterior square. Suppose G and D are
groups and α : G∧G→ D and δ : D → [G,G] are surjective homomorphisms such that δ◦α : G∧G→ [G,G]
is the canonical map sending x ∧ y to [x, y]. We would like to know whether there is a central extension:

0 → A→ E → G→ 1

with the property that there is an isomorphism θ : E′ → D such that if we consider the homomorphism:

ΩE,G : G ∧G→ E′

then θ ◦ ΩE,G = α. The answer to this question is yes. In fact, we can even choose E to be a stem
extension of G. We outline the construction below.

Recall that we have the following short exact sequence, describing G∧G as a central extension of [G,G]:

0 →M(G) → G ∧G→ [G,G] → 1

Denote by A the image of M(G) under the set map α : G ∧G→ D and by β : M(G) → A the restricted
map. We therefore have the following commutative diagram:

0 → M(G) → G ∧G → [G,G] → 1
↓β ↓α ↓id

0 → A → D
δ→ [G,G] → 1

Now, consider the short exact sequence described in Section 11.4:

0 → Ext1Z(Gab, A) → H2(G;A) → Hom(M(G), A) → 0

The right map is surjective, so there exists an extension group E (corresponding to an element ofH2(G,A))
such that the map β corresponding to E (as described in Sections 11.1 and 11.3) is the map β that we
specified. Also, for reasons discussed in Section 11.3, we can find an isomorphism θ : [E,E] → D such that
θ ◦ ΩE,G = α.

11.7. The existence of stem groups. In Section 4.13, we defined a group G as a stem group if Z(G) ≤ G′.
Now that we have defined the concept of stem extension, we can provide an alternate definition of stem group:
G is a stem group if the short exact sequence:

0 → Z(G) → G→ G/Z(G) → 1

makes G a stem extension.
We now turn to the proof of a statement made in Section 4.13 without proof.
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Theorem 11.4. Suppose G is a group. Then, the following are true:

(1) There exists a stem group K that is isoclinic to G.
(2) In case G is finite, all stem groups isoclinic to G are finite and have the same order as each other.

Proof. Proof of (1): Consider the short exact sequence:

0 → Z(G) → G→ G/Z(G) → 1

This short exact sequence allows us to think of G as a central extension with central subgroup Z(G) and
quotient group G/Z(G). We apply the construction in Section 11.1 (further discussed in Section 11.3) to
obtain the natural map β : M(G/Z(G)) → Z(G). Let B be the image of β. By the explicit construction,
note that the image of β is actually inside Z(G) ∩ G′. Let β′ : M(G/Z(G)) → B be the map obtained by
restricting the co-domain of β to the image of β.

Consider now the short exact sequence of Section 11.4 for central subgroup B and quotient group G/Z(G).
The short exact sequence is:

0 → Ext1Z((G/Z(G))ab, B) → H2(G/Z(G);B) → Hom(M(G/Z(G)), B) → 0

In particular, the map:

H2(G/Z(G);B) → Hom(M(G/Z(G)), B)

is surjective. This means that we can find a (possibly non-unique and non-canonical) central extension
K with short exact sequence:

0 → B → K → G/Z(G) → 1

such that the map βK corresponding to this extension (per Section 11.1) is the same as β′. The following
are now easy to verify:

• The image of B in K is the center of K.
• The image of B in K is contained in the derived subgroup K ′.
• G and K are isoclinic.

Proof of (2): It is easy to verify that any stem group isoclinic to G can be constructed in the above
fashion, i.e., it is a central extension group K with quotient group G/Z(G) and central subgroup B such
that the map βK : M(G/Z(G)) → B is equal to β′. In particular, if G is finite, then both G/Z(G) and B

are finite, so that K is finite. Further, the order of K is |B||G/Z(G)|, so all stem groups isoclinic to G have
the same order.

Finally, we wish to show that the order of all stem groups is less than or equal to the order of G. For this,
note that B is a subgroup of Z(G)∩G′, so that |B| ≤ |Z(G)|. Thus, |K| = |B||G/Z(G)| ≤ |Z(G)||G/Z(G)| =
|G|. �

Note that although stem groups exist, there may be no canonical choice of stem group. The problem is
the absence of a canonical splitting of the short exact sequence, described in Section 11.4.5. If a canonical
splitting did exist, we could use that splitting to obtain a canonical choice of extension.
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11.8. The Stallings exact sequence. The Stallings exact sequence was defined by Stallings in [40] and
explored further by Eckmann, Hilton, and Stammbach in [11] for arbitrary group extensions.

Start with a short exact sequence of groups (note that A is not necessarily abelian, but we use this
notation to stay consistent with the other sections):

1 → A→ E → G→ 1

Then, the Stallings exact sequence is as follows:

M(E) α→M(G)
β→ A/[E,A] σ→ Eab τ→ Gab

The maps are described as follows:

• The homomorphism α : M(E) → M(G) arises from the functoriality of the Schur multiplier, dis-
cussed in Section 9.8.

• The homomorphism β : M(G) → A/[E,A] arises from the corresponding map in the central extension
case (discussed below) once we replace the original short exact sequence by the short exact sequence
1 → A/[E,A] → E/[E,A] → G→ 1.

• The homomorphism σ : A/[E,A] → Eab = E/[E,E] arises directly from the natural inclusion
A→ E under which [E,A] is mapped inside [E,E].

• The homomorphism τ : Eab → Gab arises from the quotient map E → G under which [E,E] gets
mapped inside [G,G].

In the central extension case, the Stallings exact sequence simplifies to:

M(E) α→M(G)
β→ A

σ→ Eab τ→ Gab

The maps are described as follows:

• The homomorphism α : M(E) →M(G) arises from the functoriality of the Schur multiplier.
• The homomorphism β : M(G) → A is the same as that described in Section 11.1.
• The homomorphism σ : A → Eab = E/[E,E] arises directly from the natural inclusion A → E

under which [E,A] is mapped inside [E,E].
• The homomorphism τ : Eab → Gab arises from the quotient map E → G under which [E,E] gets

mapped inside [G,G].

11.9. Hopf’s formula: two proofs. Hopf’s formula states that if a group G can be expressed in the form
F/R where F is a free group and R is a normal subgroup of F , then:

(4) M(G) ∼= (R ∩ [F, F ])/([F,R])

We provide two related proofs. The first proof relies on the observation in Section 9.7 that if we consider
E1 = F/[F,R] as a central extension of G in a natural fashion, then this central extension is an initial
object in the category of group extensions of G with homoclinisms. The exterior square G ∧G is therefore
isomorphic to E′1 = [F, F ]/[F,R]:

(5) G ∧G ∼= [F, F ]/[F,R]
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The Schur multiplier M(G) is isomorphic to the kernel of the natural homomorphism E′1 → G′, which is
the subgroup (R ∩ [F, F ])/[F,R] inside [F, F ]/[F,R].

Alternately, Hopf’s formula can be deduced from the Stallings exact sequence applied to the short exact
sequence:

1 → R→ F → G→ 1

combined with the information that M(F ) is trivial. Explicitly, the Stallings exact sequence is:

M(F ) α→M(G)
β→ R/[F,R] σ→ F/[F, F ] τ→ G/[G,G]

Since M(F ) is trivial, we obtain from exactness that M(G) is isomorphic to the kernel of the map σ.
From this, we obtain Hopf’s formula.

11.10. Hopf’s formula: class one more version. The following is a slight variant of Hopf’s formula
for nilpotent groups. Its equivalence with the version of the preceding section (Section 11.9) is clear. It is
computationally somewhat more useful.

Suppose G is a nilpotent group of nilpotency class c. Suppose G can be expressed in the form F/R where
F is a free nilpotent group of class c+ 1 and R is a normal subgroup of F . Then:

(6) M(G) ∼= (R ∩ [F, F ])/([F,R])

Also:

(7) G ∧G ∼= [F, F ]/[F,R]

Free nilpotent groups are described later in more detail in Section 15.

11.11. Exterior square of an abelian group. Suppose G is an abelian group. Denote by G ∧Z G the
exterior square of G as an abelian group. We will show here that G∧ZG is canonically isomorphic to G∧G.

For any central extension:

0 → A→ E → G→ 1

we know that E is a group of nilpotency class at most two. Further, the commutator map:

ωE,G : G×G→ [E,E]

is Z-bilinear. This observation is specific to G being abelian (see Lemma C.2 in the Appendix).
Based on this, we obtain that the map below is Z-bilinear:

G×G→ G ∧G

Thus, it induces a map:

G ∧Z G→ G ∧G

Moreover, since G ∧G is generated by the elements x ∧ y, x, y ∈ G, the map above is surjective.
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The part that is not immediately obvious is that the map above is injective. In other words, it is prima
facie plausible that there are additional relations, beyond bilinearity, that are always satisfied in central
extensions of G. The explicit description of the exterior square based on generators and relations in Section
13.4 will settle this point in a straightforward manner: for an abelian group G, it will turn out that the
above map is an isomorphism (see Section 13.6 for a summary of the conclusions).

11.12. Relationship with K-theory. For any associative unital ring A, we can define a short exact se-
quence:

0 → K2(A) → St(A) → E(A) → 1

Here, St(A) denotes the Steinberg group of A and E(A) denotes the group of elementary matrices over
A (note that all these groups are the direct limits of the corresponding groups for n× n matrices under the
obvious inclusion mappings). It is known that K2(A) = M(E(A)) is the Schur multiplier of E(A). It follows
by unwinding the definitions that St(A) is the exterior square of E(A). However, we have not been able to
locate the statement (namely, that St(A) is the exterior square of E(A)) anywhere explicitly in the K-theory
literature. This may well be because people who work in that area are unaware of the terminology related
to the exterior square.

For more information about the Steinberg group and K2(A), see [?].

12. Exterior square, Schur multiplier, and the second cohomology group: Lie ring version

This section covers the Lie ring analogue of the material in Section 12. The motivation is largely the
same. The analogous material to Section 11.11 was already covered in Section 10.3, and is therefore not
repeated here.

12.1. Homomorphism from the Schur multiplier to the kernel of the extension. We will now
describe a very important homomorphism. For any central extension of the form:

0 → A→ N → L→ 0

there is a natural homomorphism from the Schur multiplier of L to A, i.e., a homomorphism:

β : M(L) → A

We now proceed to describe this homomorphism.
As discussed in Section 10.1, there is a natural homomorphism:

Ω : L ∧ L→ [N,N ]

Compose this with the inclusion of [N,N ] in N to get a map L ∧ L→ N . We obtain:

0 → M(L) → L ∧ L → [L,L] → 0
↓ ↓

0 → A → N → L → 0

It is immediate that this diagram commutes.
By a special case of the snake lemma, we can construct a unique map M(L) → A such that the diagram

continues to be commutative, and that is the homomorphism β that we want:
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0 → M(L) → L ∧ L → [L,L] → 0
↓β ↓ ↓

0 → A → N → L → 0

12.2. Classification of extensions up to isoclinism. Given a Lie ring L and an abelian Lie ring A, we
say that the central extensions N1 and N2 with short exact sequences:

0 → A→ N1 → L→ 0

and

0 → A→ N2 → L→ 0

are isoclinic (fixing both L and A) if there exists an isomorphism of Lie rings ϕ : N ′
1 → N ′

2 satisfying both
the following conditions:

• Isoclinic as extensions of L: If Ω1 : L ∧ L → N ′
1 and Ω2 : L ∧ L → N ′

2 are the Lie bracket map
homomorphisms, then ϕ ◦ Ω1 = Ω2.

• Suppose B is the inverse image in A of [N1, N1]. Then, B is also the inverse image in A of [N2, N2].
Moreover, composing ϕ with the inclusion of B in [N1, N1] gives the inclusion of B in [N2, N2].

12.3. Relating the classification of extensions up to isoclinism with the homomorphism from

the Schur multiplier. In Section 12.1, we noted that for any central extension:

0 → A→ N → L→ 0

we have a natural homomorphism β : M(L) → A.
The homomorphism is uniquely determined by the choice of extension up to congruence, so we get a set

map:

H2(L;A) → Hom(M(L), A)

In Section 12.4, we will see that this set map is a Lie ring homomorphism. We alluded to the Lie ring
structure on H2

Lie(L;A) in Section 7.4 and a detailed description is in the Appendix.
As we will see in Section 12.4, this Lie ring homomorphism is surjective and is the right map in an

important short exact sequence. For now, however, we note that this Lie ring homomorphism classifies
extensions up to isoclinism. Explicitly, two extensions N1, N2 are isoclinic in the sense of the preceding
section if and only if they induce the same homomorphism M(L) → A. We now proceed to explain why.

Consider the two short exact sequences below:

0 → M(L) → L ∧ L → [L,L] → 0
↓β ↓ ↓

0 → A → N → L → 0

Suppose B is the subring of A that arises as the image of the homomorphism β : M(L) → A and
β′ : M(L) → B is the map obtained by restricting the co-domain. We then have the following two short
exact sequences, where all the downward maps are surjective:
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0 → M(L) → L ∧ L → [L,L] → 0
↓β′ ↓ΩN,L ↓id

0 → B → [N,N ] → [L,L] → 0

Note that the second row sequence is exact because all the downward maps are surjective.14

It is easy to see that if N1 and N2 are two central Lie ring extensions of L that give the same map β,
then we can obtain an isomorphism [N1, N1] → [N2, N2] such that in the diagram below, the composite of
the downward maps in the middle column is ΩN2,L, and the lower downward arrow in the middle column is
an isomorphism.

0 → M(L) → L ∧ L → [L,L] → 0
↓β′ ↓ΩN,L ↓id

0 → B → [N1, N1] → [L,L] → 0
↓id ↓ ↓id

0 → B → [N2, N2] → [L,L] → 0

12.4. The universal coefficient theorem short exact sequence. As before, let L be a Lie ring and
let A be an abelian Lie ring. Our goal is to understand all central extension Lie rings N , i.e., short exact
sequences of the following form where the image of A in N is in the center of N :

0 → A→ N → L→ 0

As discussed earlier, the set of all congruence classes of extensions is classified by the group H2
Lie(L;A)

(the second cohomology group for trivial Lie ring action). We now proceed to describe a related short
exact sequence, analogous to the short exact sequence discussed in Section 11.4 for groups. The short exact
sequence is as follows:

(8) 0 → Ext1Z(Lab, A) → H2(L;A) → Hom(M(L), A) → 0

Note that

12.4.1. Interpretation of the left map of the sequence. The map:

Ext1Z(Lab, A) → H2(L;A)

takes an abelian Lie ring extension with ideal A and quotient Lie ring Lab, and gives an extension with L
on top of A that can loosely be described as follows: the restriction to the derived subring [L,L] splits and
the quotient sits as per the element of Ext1Z(Lab, A). Explicitly, it can be thought of as a composite of two
maps:

Ext1Z(Lab, A) → H2(Lab;A) → H2(L;A)

where the first map treats an abelian Lie ring extension simply as a Lie ring extension, and the second
map uses the contravariance of H2 in its first argument.

14Some proof details involving diagram chasing are being omitted for brevity.

88



12.4.2. Interpretation of the right map of the sequence. The right map of the sequence:

H2(L;A) → Hom(M(L), A)

sends an extension Lie ring to the corresponding map β described in Section 12.1. In Section 12.3, we
showed that the map H2(L;A) → Hom(M(L), A) classifies extensions up to isoclinism.

12.4.3. What the existence of the short exact sequence tells us. Consider again the short exact sequence:

0 → Ext1Z(Lab, A) → H2(L;A) → Hom(M(L), A) → 0

We now consider the three aspects of exactness:

• Left exactness, i.e., the injectivity of the map Ext1Z(Lab, A) → H2(L;A). This is the assertion that
the only abelian Lie ring extension for Lab on top of A that maps to L×A is the trivial extension.
This is immediate from the definition.

• Middle exactness, i.e., the image of the map Ext1Z(Lab, A) → H2(L;A) is precisely the same as the
kernel of the map H2(L;A) → Hom(M(L), A). This is easy to see from the definition.

• Right exactness, i.e., the surjectivity of the map H2(L;A) → Hom(M(L), A). This says that every
homomorphism from M(L) to A arises from an extension with central subring A and quotient Lie
ring L. In other words, the set of extension types up to isoclinism can be identified with the group
Hom(M(L), A). This is the most important and least obvious of the three exactness statements.
Many of our later constructive results will rely crucially on right exactness.

12.4.4. How it is a special case of the dual universal coefficient theorem. The general version of the dual
universal coefficient theorem for Lie ring cohomology is as follows:

0 → Ext1Z(Hk−1(L; Z), A) → Hk(L;A) → Hom(Hk(L; Z), A) → 0

If we set p = 2 and use the fact that M(L) is canonically isomorphic to H2(L; Z), and also that Lab is
canonically isomorphic to H1(L; Z), we get the short exact sequence we have been discussing.

12.4.5. The splitting of the short exact sequence. The dual universal coefficient theorem for Lie ring coho-
mology, in addition to providing the short exact sequence above, also states that the short exact sequence
always splits, but the splitting is not in general canonical. Explicitly, the universal coefficient theorem states
that:

Hk(L;A) ∼= Ext1Z(Hk−1(L; Z), A)⊕Hom(Hk(L; Z), A)

In the special case of interest to us, we obtain:

H2(L;A) ∼= Ext1Z(Lab, A)⊕Hom(M(L), A)

The direct sum decomposition is not in general canonical.
In Section 24.5.3, we will note that the short exact sequence splits canonically in the case that L itself is

an abelian Lie ring.

12.5. An alternate characterization of initial objects, and the existence of Schur covering Lie

rings. Recall that, by Lemma 10.6, a central extension:
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0 → A→ N → L→ 0

is an initial object in the category of central extensions of L with homoclinisms if the natural homomor-
phism:

ΩN,L : L ∧ L→ [N,N ]

is an isomorphism. We now provide an alternative characterization.

Lemma 12.1. Consider a Lie ring L and a central extension:

0 → A→ N → L→ 0

The central extension is an initial object in the category of central extensions of L with homoclinisms if
and only if the corresponding homomorphism β : M(L) → A (described in Section 11.1) is injective.

Proof. Let B be the image in A of β and let β′ be the restriction of β to co-domain B, so β′ is a surjective
homomorphism from M(L) to B. Note also that β is injective if and only if β′ is an isomorphism.

As discussed in Section 11.3, we have the following morphism of short exact sequences, where all the
downward maps are surjective:

0 → M(L) → L ∧ L → [L,L] → 0
↓β′ ↓ΩN,L ↓id

0 → B → [N,N ] → [L,L] → 0

Since the right-most downward map is the identity map, we see (from some elementary diagram chasing)
that β′ is an isomorphism if and only if ΩN,L is an isomorphism. �

Recall the definition of stem extension from Section 7.3. We provide an alternative characterization of
such extensions:

Lemma 12.2. A central extension 0 → A → N → L → 0 is a stem extension if and only if the
corresponding map β : M(L) → A is surjective.

Proof. Let B be the image in A of β and let β′ be the restriction of β to co-domain B, so β′ is a surjective
homomorphism from M(L) to B. Note also that β is surjective if and only if B = A. Note also that
A ≤ Z(N) by the assumption that the extension is central, so the challenge is to show that A ≤ [N,N ] if
and only if B = A.

As described in Section 12.3, we have the following morphism of two short exact sequences, with all the
downward maps surjective:
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0 → M(L) → L ∧ L → [L,L] → 0
↓β′ ↓ΩN,L ↓id

0 → B → [N,N ] → [L,L] → 0

Explicitly, B is the kernel of the homomorphism from [N,N ] to [L,L]. The homomorphism from [N,N ]
to [L,L] is obtained by restricting to [N,N ] the homomorphism from N to L.

Thus, B = A ∩ [N,N ]. It follows that A ≤ [N,N ] if and only if B = A, completing the proof. �

We are now prepared for a definition.

Definition (Schur covering Lie ring). We define a Schur covering Lie ring of L as a Lie ring extension
N of L with short exact sequence:

0 → A→ N → L→ 0

satisfying the condition that it is a central extension and the corresponding map β : M(L) → A (defined
in Section 12.1) is an isomorphism. Equivalently, the extension must satisfy both these conditions:

• The extension is a stem extension, i.e., the image of A in N is contained in Z(N) ∩ [N,N ].
• The natural homomorphism ΩN,L : L ∧ L→ [N,N ] is an isomorphism.

The equivalence of the two versions of the definition follows from the two preceding lemmas (Lemmas
12.1 and 12.2).

The existence of Schur covering Lie rings is not a priori clear, but can be deduced from the short exact
sequence of the preceding section.

Theorem 12.3. For any Lie ring L, Schur covering Lie rings of L exist.

Proof. For any abelian Lie ring A, we have the short exact sequence described in Section 11.4:

0 → Ext1Z(Lab, A) → H2(L;A) → Hom(M(L), A) → 0

Now, set A = M(L):

0 → Ext1Z(Lab,M(L)) → H2(L;M(L)) → Hom(M(L),M(L)) → 0

Consider the element IdM(L) ∈ Hom(M(L),M(L)). By surjectivity (i.e., right exactness), there exists
at least one element of H2(L;M(L)) that maps to this. Note that the inverse image is in fact a coset in
H2(L;M(L)) of the image of Ext1Z(Lab,M(L)). Each element in this inverse image corresponds to a Schur
covering Lie ring. If Ext1Z(Lab,M(L)) is nontrivial, the Schur covering Lie ring need not be unique. �

12.6. Realizability of surjective homomorphisms from the exterior square. Suppose L and D are
Lie rings and α : L∧L→ D and δ : D → [L,L] are surjective homomorphisms such that δ◦α : L∧L→ [L,L]
is the canonical map sending x ∧ y to [x, y]. We would like to know whether there is a central extension:
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0 → A→ N → L→ 0

with the property that there is an isomorphism θ : N ′ → D such that if we consider the homomorphism:

ΩN,L : L ∧ L→ N ′

then θ ◦ ΩN,L = α. The answer to this question is yes. In fact, we can even choose N to be a stem
extension of L. We outline the construction below.

Recall that we have the following short exact sequence, describing L ∧ L as a central extension of [L,L]:

0 →M(L) → L ∧ L→ [L,L] → 0

Denote by A the image of M(L) under the set map α : L ∧ L→ D and by β : M(L) → A the restricted
map. We therefore have the following commutative diagram:

0 → M(L) → L ∧ L → [L,L] → 0
↓β ↓α ↓id

0 → A → D
δ→ [L,L] → 0

Now, consider the short exact sequence described in Section 12.4:

0 → Ext1Z(Lab, A) → H2(L;A) → Hom(M(L), A) → 0

The right map is surjective, so there exists an extension Lie ring N (corresponding to an element of
H2(L,A)) such that the map β corresponding to N (as described in Sections 12.1 and 12.3) is the map β

that we specified. Also, for reasons discussed in Section 12.3, we can find an isomorphism θ : [N,N ] → D

such that θ ◦ ΩN,L = α.

12.7. The existence of stem Lie rings. Define a Lie ring L as a stem Lie ring if Z(L) ≤ L′. Now that
we have defined the concept of stem extension, we can provide an alternate definition of stem Lie ring: L is
a stem Lie ring if the short exact sequence:

0 → Z(L) → L→ L/Z(L) → 0

makes L a stem extension.

Theorem 12.4. Suppose L is a Lie ring. There exists a stem Lie ring K that is isoclinic to L.

Proof. Consider the short exact sequence:

0 → Z(L) → L→ L/Z(L) → 0

This short exact sequence allows us to think of L as a central extension with central subring Z(L)
and quotient Lie ring L/Z(L). We apply the construction in Section 12.3 to obtain the natural map β :
M(L/Z(L)) → Z(L). Let B be the image of β. By the explicit construction, note that the image of β is
actually inside Z(L) ∩ L′. Let β′ : M(L/Z(L)) → B be the map obtained by restricting the co-domain of β
to the image of β.
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Consider now the short exact sequence of Section 12.4 for central subring B and quotient Lie ring L/Z(L).
The short exact sequence is:

0 → Ext1Z((L/Z(L))ab, B) → H2(L/Z(L);B) → Hom(M(L/Z(L)), B) → 0

In particular, the map:

H2(L/Z(L);B) → Hom(M(L/Z(L)), B)

is surjective. This means that we can find a (possibly non-unique and non-canonical) central extension
K with short exact sequence:

0 → B → K → L/Z(L) → 0

such that the map βK corresponding to this extension (per Section 11.3) is the same as β′. The following
are now easy to verify:

• The image of B in K is the center of K.
• The image of B in K is contained in the derived subring K ′.
• L and K are isoclinic.

�

Note that although stem Lie rings exist, there may be no canonical choice of stem Lie ring. The problem
is the absence of a canonical splitting of the short exact sequence. If a canonical splitting did exist, we could
use that splitting to obtain a canonical choice of extension.

12.8. The Stallings exact sequence. The Stallings exact sequence was defined by Stallings in [40] and
explored further by Eckmann, Hilton, and Stammbach in [11] for arbitrary Lie ring extensions.

Start with a short exact sequence of Lie rings (note that A is not necessarily abelian, but we use this
notation to stay consistent with the other sections):

1 → A→ N → L→ 0

Then, the Stallings exact sequence is as follows:

M(N) α→M(L)
β→ A/[N,A] σ→ Nab τ→ Lab

The maps are described as follows:

• The homomorphism α : M(N) → M(L) arises from the functoriality of the Schur multiplier, dis-
cussed in Section 9.8.

• The homomorphism β : M(L) → A/[N,A] arises from the corresponding map in the central extension
case (discussed below) once we replace the original short exact sequence by the short exact sequence
1 → A/[N,A] → N/[N,A] → L→ 0.

• The homomorphism σ : A/[N,A] → Nab = N/[N,N ] arises directly from the natural inclusion
A→ N under which [N,A] is mapped inside [N,N ].

• The homomorphism τ : Nab → Lab arises from the quotient map N → L under which [N,N ] gets
mapped inside [L,L].

In the central extension case, the Stallings exact sequence simplifies to:
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M(N) α→M(L)
β→ A

σ→ Nab τ→ Lab

The maps are described as follows:

• The homomorphism α : M(N) →M(L) arises from the functoriality of the Schur multiplier.
• The homomorphism β : M(L) → A is the same as that described in Section 11.1.
• The homomorphism σ : A → Nab = N/[N,N ] arises directly from the natural inclusion A → N

under which [N,A] is mapped inside [N,N ].
• The homomorphism τ : Nab → Lab arises from the quotient map N → L under which [N,N ] gets

mapped inside [L,L].

12.9. Hopf’s formula for Lie rings: two proofs. Hopf’s formula for Lie rings states that if a Lie ring L
can be expressed in the form F/R where F is a free Lie ring and R is an ideal of F , then:

(9) M(L) ∼= (R ∩ [F, F ])/([F,R])

We provide two related proofs. The first proof relies on the observation in Section 10.9 that if we consider
N1 = F/[F,R] as a central extension of L in a natural fashion, then this central extension is an initial
object in the category of Lie ring extensions of L with homoclinisms. The exterior square L∧L is therefore
isomorphic to N ′

1 = [F, F ]/[F,R]. The Schur multiplier M(L) is isomorphic to the kernel of the natural
homomorphism N ′

1 → L′, which is the subring (R ∩ [F, F ])/[F,R] inside [F, F ]/[F,R].
Alternately, Hopf’s formula can be deduced from the Stallings exact sequence applied to the short exact

sequence:

1 → R→ F → L→ 0

combined with the information that M(F ) is trivial. Explicitly, the Stallings exact sequence is:

M(F ) α→M(L)
β→ R/[F,R] σ→ F/[F, F ] τ→ L/[L,L]

Since M(F ) is trivial, we obtain from exactness that M(L) is isomorphic to the kernel of the map σ.
From this, we obtain Hopf’s formula.

13. Exterior and tensor product for groups: explicit descriptions

The treatment of tensor products and exterior products found here is similar to that found in [7], [32],
and [14].

In keeping with the literature on the topic, we use the convention of groups acting on the left. In particular,
when talking of a conjugation action, we refer to the action (g, x) 7→ gx = gxg−1.

The material included in this section can be skipped. Its relevance is primarily that it shows, as a special
case, that the exterior square of an abelian group as a group is the same as its exterior square as an abelian
group. We alluded to this, without proof, in Section 11.11. However, we also provide an alternative proof in
Section 24.3.15

15The proofs are not really different once we write down all the details.
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13.1. Compatible pair of actions. Suppose G and H are groups and α : G → Aut(H) and β : H →
Aut(G) are group homomorphisms. We say that (α, β) form a compatible pair of actions if both the following
conditions hold:

β(α(g1)(h))(g2) = g1(β(h)(g−1
1 (g2)))) ∀ g1, g2 ∈ G, h ∈ H

α(β(h1)(g))(h2) = h1(α(g)(h−1
1 (h2))) ∀ h1, h2 ∈ H, g ∈ G

If we use · to denote the action of each group on itself by conjugation and both the actions α and β, the
above can be written as:

(g1 · h) · g2 = g1 · (h · (g−1
1 · g2)) ∀ g1, g2 ∈ G, h ∈ H

(h1 · g) · h2 = h1 · (g · (h−1
1 · h2)) ∀ h1, h2 ∈ H, g ∈ G

The following is an alternate description of the axioms that is sometimes easier to work with:

g1(β(h)g2) = β(α(g1)h)(g1(g2)) ∀ g1, g2 ∈ G, h ∈ H
h1(α(g)h2) = α(β(h1)g)(h1(h2)) ∀ g ∈ G, h1, h2 ∈ H

With the · notation, this becomes:

g1 · (h · g2) = (g1 · h) · (g1 · g2) ∀ g1, g2 ∈ G, h ∈ H

h1 · (g · h2) = (h1 · g) · (h1 · h2) ∀g ∈ G, h1, h2 ∈ H

The g2 of the first identity here equals the element g−1
1 · g2 of the preceding formulation. The h2 of the

second identity equals the element h−1
1 · h2 of the preceding formulation.

The following are examples of compatible pairs of actions:

• The trivial pair of actions is compatible. By “trivial pair of actions” we mean that both the homo-
morphisms α : G→ Aut(H) and β : H → Aut(G) are trivial homomorphisms.

• For a group G, setting G = H and taking both actions to be the action of a group on itself by
conjugation gives a compatible pair of actions.

• This generalizes both the preceding examples: if G and H can be embedded as subgroups inside a
group Q such that G and H normalize each other in Q, then the actions of G and H on each other
by conjugation are compatible. Note that this generalizes the trivial pair of actions because we can
set Q = G×H. It generalizes the action of a group on itself by conjugation because, if G = H, we
can set Q = G = H.
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13.2. Tensor product for a compatible pair of actions. Suppose G and H are groups and α : G →
Aut(H), β : H → Aut(G) form a compatible pair of actions. For simplicity of notation, we will use · to
denote the action of each group on itself by conjugation and both the actions α and β.

The tensor product of G and H for this compatible pair of actions, denoted G⊗H, is the quotient of the
free group on the set {g ⊗ h | g ∈ G, h ∈ H} by the following relations:

(g1g2)⊗ h = ((g1 · g2)⊗ (g1 · h))(g1 ⊗ h) ∀ g1, g2 ∈ G, h ∈ H

g ⊗ (h1h2) = (g ⊗ h1)((h1 · g)⊗ (h1 · h2)) ∀ g ∈ G, h1, h2 ∈ H

13.3. Exterior product of normal subgroups of a group. Suppose G and H are subgroups of a group
Q such that G and H both normalize each other. Then, the actions of G and H on each other by conjugation
form a compatible pair of actions. Note that we can assume without loss of generality that G and H are
both normal in Q, because if not, then Q can be replaced by the subgroup GH of Q and the rest of the
construction is unaffected.

We define the exterior product G∧H as the quotient of the tensor product G⊗H by the normal subgroup
generated by the set {x⊗ x | x ∈ G ∩H}. The image of g ⊗ h is denoted g ∧ h.

13.4. Tensor square and exterior square of a group. Let G be a group. The tensor square of G,
denoted G⊗G or

⊗2
G, is defined as the tensor product of G with itself for the compatible pair of actions

where both actions equal the action of G on itself by conjugation.
The exterior square of G, denoted G ∧ G or

∧2
G, is defined as the exterior product of G and G where

both copies of G are viewed as normal subgroups inside G. Explicitly, G = H = Q in the notation used in
the preceding subsection.

Alternately the exterior square of G can be defined as the quotient of the tensor square of G by the normal
subgroup generated by the subset {g ⊗ g | g ∈ G}.

13.5. Reconciling the definitions of exterior square. Clair Miller, in her 1952 paper [33] introducing
the concept of the exterior square, proved the equivalence of the two descriptions of exterior square.16 A later
paper [16] by Graham J. Ellis, published in 1993, discussed the matter and related questions in considerably
greater detail.

13.6. The special case of abelian groups. There are pre-existing concepts of tensor product, tensor
square, and exterior square for abelian groups. These coincide with our general definitions above when both
definitions make sense. Explicitly, the following are true and can be readily verified from the definitions
above. We will ⊗Z and ∧Z to denote tensor and exterior product operations as abelian groups.

• The tensor product G ⊗ H for the trivial pair of actions of G and H on each other is an abelian
group that is canonically isomorphic to the tensor product of abelian groups Gab ⊗Z H

ab.
• In particular, the tensor square G ⊗ G for an abelian group G agrees with its tensor square as an

abelian group, i.e., G⊗Z G ∼= G⊗G.
• The exterior square G ∧G for an abelian group agrees with its exterior square as an abelian group,

i.e., G ∧Z G ∼= G ∧G.

16This is a somewhat hard-to-verify statement, since Miller’s paper uses different terminology and language from what we use.
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14. Exterior and tensor product for Lie rings: explicit descriptions

This section does for Lie rings what the preceding section (Section 13) did for groups.
Our treatment here closely follows the 1989 paper [15] by Graham Ellis. Proofs of unproved assertions

here can be found in the paper.
The section can be skipped without any loss of continuity.

14.1. Compatible pair of actions of Lie rings. Suppose M and N are Lie rings. Suppose α : M →
Der(N) and β : N → Der(M) are homomorphism of Lie rings, where Der(M) and Der(N) denote the Lie
ring of derivations of M and of N respectively. We say that α, β form a compatible pair of actions if the
following two conditions hold:

α(β(n1)m)(n2) = [n2, α(m)n1] ∀ m ∈M,n1, n2 ∈ N

β(α(m1)n)(m2) = [m2, β(n)m1] ∀ m1,m2 ∈M,n ∈ N

The above expressions are easier to write down if we use · to denote the actions. In this case, the above
become:

(n1 ·m) · n2 = [n2,m · n1] ∀ m ∈M,n1, n2 ∈ N

(m1 · n) ·m2 = [m2, n ·m1] ∀ m1,m2 ∈M,n ∈ N

The following are true:

• For any Lie ring L, the adjoint action of L on itself forms a compatible pair of actions with itself.
• For any Lie rings M and N , the trivial Lie ring actions of M and N on each other form a compatible

pair of actions.
• The following generalizes the preceding two examples: if M and N can be embedded as ideals inside

a Lie ring Q, then the adjoint actions of M and N on each other form a compatible pair of actions.
Note that it suffices to assume that M and N are Lie subrings that idealize each other, but there is
no loss of generality since we can replace Q by the subring M +N .

14.2. Tensor product of Lie rings. Suppose M and N are Lie rings and α : M → Der(N) and β : N →
Der(M) is a compatible pair of actions of Lie rings. We define the tensor product M ⊗ N for this pair of
actions as follows. It is the quotient of the free Lie ring on formal symbols of the form m⊗n (m ∈M,n ∈ N)
by the following relations:

(1) Additive in M : (m1 +m2) ⊗ n = (m1 ⊗ n) + (m2 ⊗ n) ∀ m1,m2 ∈ M,n ∈ N . Note that if we are
dealing with Lie algebras instead of Lie rings, we will replace additivity by ”linearity” in M with
respect to the ground ring.

(2) Additive in N : m ⊗ (n1 + n2) = (m ⊗ n1) + (m ⊗ n2) ∀ m ∈ M,n1, n2 ∈ N . Note that if we are
dealing with Lie algebras instead of Lie rings, we will replace additivity by ”linearity” in N with
respect to the ground ring.

(3) Expanding a tensor product involving one Lie bracket:
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• [m1,m2]⊗ n = m1 ⊗ α(m2)(n)−m2 ⊗ α(m1)(n) ∀ m1,m2 ∈M,n ∈ N
• m⊗ [n1, n2] = β(n2)m⊗ n1 − β(n1)(m)⊗ n2 ∀m ∈M,n1, n2 ∈ N

If both the actions are rewritten using ·, this simplifies to:
• [m1,m2]⊗ n = m1 ⊗ (m2 · n)−m2 ⊗ (m1 · n) ∀ m1,m2 ∈M,n ∈ N
• m⊗ [n1, n2] = (n2 ·m)⊗ n1 − (n1 ·m)⊗ n2 ∀m ∈M,n1, n2 ∈ N

(4) Expanding a Lie bracket of two pure tensors:

[(m1 ⊗ n1), (m2 ⊗ n2)] = −(β(n1)(m1))⊗ (α(m2)(n2))

(5) If both the actions are rewritten using ·, this becomes:

[(m1 ⊗ n1), (m2 ⊗ n2)] = −(n1 ·m1)⊗ (m2 · n2)

14.3. Exterior product of Lie rings. Suppose M,N are (possibly equal, possibly distinct) ideals in a Lie
ring Q. Note that in fact it suffices to assume that they idealize each other, but there is no loss of generality
in assuming that they are both ideals because we could replace Q by M +N .

Define a compatible pair of actions of Lie rings of M and N on each other via the adjoint action on each
other, i.e., the action that each induces on the other by restricting the inner derivation given by the adjoint
action in the whole Lie ring. The exterior product of M and N is then defined as the quotient of the tensor
product of Lie rings M ⊗ N for this compatible pair of actions by the ideal generated by elements of the
form x⊗ x, x ∈M ∩N .

14.4. Tensor square and exterior square of a Lie ring. Let L be a Lie ring. The tensor square of L,
denoted L ⊗ L or

⊗2
L, is defined as the tensor product of L with itself for the compatible pair of actions

where both actions equal the adjoint action of L on itself.
The exterior square of L, denoted L∧L or

∧2
L, is defined as the exterior product of L and L where both

copies of L are viewed as ideals inside L. Explicitly, M = N = Q = L in the notation used in the preceding
subsection.

Alternately the exterior square of L can be defined as the quotient of the tensor square of L by the ideal
generated by the subset {x⊗ x | x ∈ L}.

15. Free nilpotent groups: basic facts about their homology groups

15.1. Free nilpotent group: definition. The free nilpotent group of class c on a set S can be defined as
the free algebra on S in the variety of groups of nilpotency class at most c. Below is an explicit definition in
terms of the free group.

Definition (Free nilpotent group). Suppose S is a set and c is a positive integer. The free nilpotent group
of class c on the set S is defined as the quotient group F (S)/γc+1(F (S)) where F (S) is the free group on S.
Equivalently, this group, along with the set map to it from S, is the initial object in the category of groups
of nilpotency class at most c with set maps to them from S.
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The functor sending a set to the free nilpotent group of class c is left adjoint to the forgetful functor from
nilpotent groups of class c to sets.17

15.2. Homology of free nilpotent groups. Suppose G is the free nilpotent group of class c on a generating
set S. G can be naturally identified with F/γc+1(F ) where F is the free group of class c (i.e., F is a free
algebra in the variety of groups). We wish to compute the homology of G.

Setting R = γc+1(F ) and working out the details as discussed in Section 11.9, we obtain:

• The group [F,R] equals [F, γc+1(F )] = γc+2(F ).
• The group E = F/[F,R], with the natural quotient map E → G, is an initial object in the category

of central extensions of G with homoclinisms. Note that E is a free nilpotent group of class c+ 1 on
the same generating set S.

• The exterior square G ∧ G is canonically isomorphic to [E,E], or equivalently, to [F, F ]/[F,R] =
γ2(F )/γc+2(F ).

• The Schur multiplier M(G) is canonically isomorphic to the quotient group (R ∩ [F, F ])/[F,R] =
γc+1(F )/γc+2(F ).

• The canonical short exact sequence:

0 →M(G) → G ∧G→ [G,G] → 1

is isomorphic to the short exact sequence:

0 → γc+1(F )/γc+2(F ) → γ2(F )/γc+2(F ) → γ2(F )/γc+1(F ) → 1

16. Free nilpotent Lie rings: basic facts about their homology groups

16.1. Free nilpotent Lie ring: definition. The free nilpotent Lie ring of class c on a set S can be defined
as the free algebra on S in the variety of Lie rings of nilpotency Lie rings at most c. Below is an explicit
definition in terms of the free group.

Definition (Free nilpotent Lie ring). Suppose S is a set and c is a positive integer. The free nilpotent of
class c on the set S is defined as the quotient Lie ring F (S)/γc+1(F (S)) where F (S) is the free Lie ring on
S. Equivalently, this Lie ring, along with the set map to it from S, is the initial object in the category of
Lie rings of nilpotency class at most c with set maps to them from S.

The functor sending a set to the free nilpotent Lie ring of class c is left adjoint to the forgetful functor
from nilpotent Lie rings of class c to sets.18

17This means that given a set S and a group G of nilpotency class at most c, there is a canonical bijection between the set of
set maps from S to G and the set of group homomorphisms from F (S) to G. For more on adjoint functors, see the Appendix,
Section B.3.
18This means that given a set S and a Lie ring L of nilpotency class at most c, there is a canonical bijection between the set
of set maps from S to L and the set of Lie ring homomorphisms from F (S) to L.
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16.2. Homology of free nilpotent Lie rings. Suppose L is the free nilpotent Lie ring of class c on a
generating set S. L can be naturally identified with F/γc+1(F ) where F is the free Lie ring of class c (i.e.,
F is a free algebra in the variety of Lie rings). We wish to compute the homology of L.

Setting R = γc+1(F ) and working out the details as discussed in Section 12.9, we obtain:

• The Lie ring [F,R] equals [F, γc+1(F )] = γc+2(F ).
• The Lie ring N = F/[F,R], with the natural quotient map N → L, is an initial object in the category

of central extensions of L with homoclinisms. Note that N is a free nilpotent Lie ring of class c+ 1
on the same generating set S.

• The exterior square L ∧ L is canonically isomorphic to [N,N ], or equivalently, to [F, F ]/[F,R] =
γ2(F )/γc+2(F ).

• The Schur multiplier M(L) is canonically isomorphic to the quotient Lie ring (R ∩ [F, F ])/[F,R] =
γc+1(F )/γc+2(F ).

• The canonical short exact sequence:

0 →M(L) → L ∧ L→ [L,L] → 0

is isomorphic to the short exact sequence:

0 → γc+1(F )/γc+2(F ) → γ2(F )/γc+2(F ) → γ2(F )/γc+1(F ) → 0

17. Groups powered over sets of primes: key results

Abelian groups can be defined as modules over Z, the ring of integers. We can therefore think of groups
as the non-abelian analogues of modules over Z. In other words, we can think of group theory as essentially
happening “over Z”: we can raise group elements only to integer powers.

Working over Z is insufficient for the Lie correspondence and its generalizations. We saw in Section 1.6
that the Lie correspondence between NT (n,R) and UT (n,R) relies on the matrix exponential and logarithm
maps, which involve division. This division happens inside the associative algebra of n× n matrices over R,
but it is also related to the question of existence of rational powers of elements in the group UT (n,R).

The purpose of this section is to develop the general theory of π-powered groups: groups where it is
possible to define pth roots of elements uniquely for p in a specified set π of primes. The main purpose is to
understand how “closed” this collection is under various operations including taking subgroups and quotient
groups of important types. The theory will be useful in establishing key aspects of the behavior of the
Malcev and Lazard correspondences, and their generalizations. When necessary, we will restrict attention
to nilpotent groups, where we can derive stronger conclusions than for arbitrary groups.

17.1. Some important intermediate rings between the integers and the rationals. We denote the
ring of integers as Z and the field of rational numbers as Q. Clearly, Z ⊆ Q. The intermediate subrings
between Z and Q can be described as follows. For any prime set π, denote by Z[π−1] the subring of Q
comprising those rational numbers such that, when the rational number is written as a reduced fraction, all
prime divisors of the denominator are in π. Equivalently, it is the subring of Q generated by the elements
1/p, p ∈ π. The following are some special cases of interest:

• The case that π is the empty set: In this case, Z[π−1] = Z.
• The case that π is the set of all primes: In this case, Z[π−1] = Q.
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• The case that π is a singleton set {p} for some prime number p: In this case, Z[π−1] = Z[1/p] is the
subring generated by 1/p.

In the language of commutative algebra, we would say that Z[π−1] is the localization of Z at the multi-
plicative subset comprising all π-numbers. Here, a π-number is a number all of whose prime divisors are in
π.

17.2. Background and motivation. While building the Lazard correspondence and its generalizations,
one of the important operations we need to do is take nth roots of elements (on the group side) or divide
elements by n (on the Lie ring side). We need to be able to make sense of these operations.

There are two approaches to this:

(1) The first approach is to impose conditions on the group and Lie ring of unique divisibility by specific
primes. It suffices to restrict attention to primes because unique divisibility by specific primes gives
unique divisibility by all products of powers of these, and conversely, unique divisibility by a number
n implies unique divisibility by all the prime divisors of n. In this approach, the operation of taking
pth roots is not a separate operation but one uniquely determined by the group operations.

(2) The second approach is to redefine the concept of group and/or Lie ring by including operations that
correspond to taking pth roots for specific primes p. On the Lie ring side, this means that instead of
a Lie ring, we are talking now of a Lie algebra over the ring Z[1/p]. If there is more than one prime,
we adjoin all their reciprocals, so that we are considering a Lie algebra over the ring Z[π−1] where
π is the set of primes for which we want to adjoint roots. If all primes are included, we simply get
a Lie algebra over Q. On the group side, we need to define an appropriate corresponding notion of
group powered over a ring, then consider groups powered over Z[1/p] and similar rings. Note that in
this approach, there is additional structure being imposed on the group and/or Lie ring. We would
therefore revise the concept of “subgroup” and “quotient group” as being systems that are closed
under the additional newly defined operations.

Both approaches have their advantages and disadvantages. The advantage of approach (1) is that since
we are working with groups and Lie rings as we usually understand them (over Z) we do not need to recheck
any of the standard results, and conversely, any results we discover here apply to abstract groups without
additional structures. The disadvantage is that we do need to verify that the subgroups and quotient groups
of interest inherit the unique divisibility (powering) structure. This section focuses on a number of simple
lemmas designed for that goal.

Approach (2) is also reasonably straightforward in this case, but it gets somewhat trickier when we want
to deal with groups powered over arbitrary rings. The axioms are easy to pin down for arbitrary rings only
in the case of nilpotent groups. For an exposition based on approach (2), Thomas Weigel’s monograph [44]
and the references therein are a good start. We will use some aspects of approach (2) for some of the trickier
results.

17.3. Group powered over a prime. We begin with some definitions. Our definitions match those in
Khukhro’s text [27] and our treatment is quite similar to that in Khukhro’s text.

Definition (Powered for a set of primes). Suppose G is a group and π is a set of prime numbers. We say
that G is powered over π, or π-powered, if it satisfies the following equivalent conditions:
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• For any g ∈ G and any p ∈ π, there is a unique element h ∈ G such that hp = g.
• For any g ∈ G and any natural number n all of whose prime factors are in π, there is a unique

element h ∈ G such that hn = g.

For a single prime p, we shorten {p}-powered to p-powered, following the time-honored abuse of notation
conflating elements with singleton subsets. Note that [27] uses the notation Qπ-powered for what we call
π-powered.19

Definition (Local for a set of primes). Suppose G is a group and π is a set of prime numbers. We say
that G is π-local if G is powered over all the primes not in π.

For a single prime p, we shorten {p}-local to p-local.
The term “local” here is used in analogy with localizations of rings at prime ideals: when we localize at

a prime ideal, we introduce inverses for all other primes. Note that this is not directly related to the sense
of the word “local” in the context of local analysis used in the classification of finite simple groups.

For this section, we will frame all our results in terms of π-powered groups rather than π-local groups.
Obviously, each result formulated in the language of π-powered groups can be formulated instead in the
language of π-local groups.

An extreme case is the case of a rationally powered group:

Definition (Rationally powered group). A group G is termed a rationally powered group or a Q-powered
group if it is powered over the set of all primes.

Our interest throughout this document will be on nilpotent and locally nilpotent groups, but it is worth
pointing out that there do exist non-nilpotent rationally powered groups. The easiest example is the group
GA+(1,R), which is defined as R o (R∗)+, i.e., the group of affine maps from R to R of the form x 7→ ax+ b

with a > 0, under composition. For any natural number n, every element of the group has a unique nth

root. Explicitly, the unique nth root of x 7→ ax+ b is the map:

x 7→ a1/nx+
b

1 + a1/n + · · ·+ a(n−1)/n

This is an example of a rationally powered solvable group that is not nilpotent.
It is also possible to construct free π-powered groups for any set of prime numbers and any size of

generating set. When the generating set has size more than one, these are not solvable. The free π-powered
groups are extremely difficult to work with because of the absence of an easily definable reduced form for
words. We will discuss free constructions in Section 19.

The majority of the results in this section can either be found in the literature or are fairly easy to deduce,
or both. The historical origins of many individual results are hard to trace. For this reason, we provide

19One reason we avoid this notation is that Qp is often used for the p-adics, which are quite different from what we wish to
consider here.
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full proofs and avoid citations to papers for individual results in this section. A number of the results have
appeared in [5], [31], [27], and other references.

17.4. The variety of powered groups and its forgetful functor to groups. Suppose π is a set of
primes. The collection of π-powered groups forms a variety of algebras. The operations in the variety include
the usual group operations (group multiplication, identity element, inverse map) as well as operations of the
form x 7→ x1/p for each prime p ∈ π, with the following two identities for each p ∈ π:

• (xp)1/p = x: This condition shows that the pth power map is injective, and that u1/p is the unique
pth root of u if u is a pth power.

• (x1/p)p = x: This condition shows that the pth power map is surjective, i.e., that every element is a
pth power.

Suppose π1 ⊆ π2 are sets of primes. As discussed in Section B.5, there is a forgetful functor from the
variety of π2-powered groups to the variety of π1-powered groups. Each of these forgetful functors turns out
to be full. Essentially, this means that a set map ϕ : G1 → G2 between π2-powered groups G1 and G2 is a
homomorphism of π2-powered groups if and only if it is a homomorphism of π1-powered groups. The reason
is that for all primes p ∈ π2, the 1/p-powering map is preserved by the homomorphism simply on account of
the homomorphism being a group homomorphism and pth roots being unique in the target group G2.

17.5. The concepts of divisible and torsion-free. We introduce some other useful definitions, again
similar to those found in [27].

Definition (Divisibility for a set of primes). Suppose G is a group and π is a set of primes. We say that
G is π-divisible if it satisfies the following equivalent conditions:

• For any g ∈ G and any p ∈ π, there exists h ∈ G (not necessarily unique) such that hp = g.
• For any g ∈ G and any natural number n all of whose prime factors are in π, there exists h ∈ G (not

necessarily unique) such that hn = g.

For a single prime p, we use the term p-divisible for {p}-divisible, with the usual abuse of notation
conflating elements with singleton subsets.

When we say that G is divisible (without any set of primes specified) this will be understood to mean
that G is divisible for the set of all primes.

We now define torsion-free.

Definition (Torsion-free for a set of primes). Suppose G is a group and π is a set of primes. We say that
G is π-torsion-free if it has no element of order p for any p ∈ π.

When we say that G is torsion-free (without any set of primes specified) this will be understood to mean
that G is torsion-free for the set of all primes.

In a short while, we will prove that for nilpotent groups, being powered over a set of primes is equivalent
to being both divisible and torsion-free for that set of primes. However, this is not completely obvious at
the moment, and the corresponding result is false for non-nilpotent groups.
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Most of the results that follow rely on the following two crucial observations, where γi(G) denote the
members of the lower central series of G:

• Each successive quotient γi(G)/γi+1(G) is a homomorphic image of a tensor power of G/G′, the
abelianization of G, via the i-fold iterated commutator map:

G/G′ ×G/G′ × · · · ×G/G′ → γi(G)/γi+1(G)

See Lemma C.2 for more details.
• In the quotient G/γi+1(G), the subgroup γi(G)/γi+1(G) is central.

For simplicity, we will state and prove the results in subsequent sections with respect to individual primes.
However, the results easily extend to sets of primes. More explicitly, for each of our results, the corresponding
result will hold if we uniformly replace “p-powered” by “π-powered,” “p-divisible” by “π-divisible,” and “p-
torsion-free” by π-torsion-free” for an arbitrary set π of primes.

17.6. The case of finite groups. If our interest is solely in finite groups, then the machinery developed
in this section is unnecessary. In particular, the finite version of all results of interest follows from these two
lemmas.

Lemma 17.1. For a finite group G and a prime number p, the following are equivalent:

(1) p does not divide the order of G.
(2) p does not divide the exponent of G.
(3) G is p-powered.
(4) G is p-divisible.
(5) G is p-torsion-free.

The proof is straightforward.
The next lemma builds on this.

Lemma 17.2. (1) Every subgroup, quotient group, and subquotient of a p-powered (respectively,
p-divisible, p-torsion-free) finite group is p-powered (respectively,
p-divisible, p-torsion-free).

(2) If a finite group G has a normal subgroup H such that H and the quotient group G/H are both p-
powered (respectively, p-divisible, p-torsion-free), then G is also p-powered (respectively p-divisible,
p-torsion-free).

Proof. (1) follows directly by using the characterization in terms of p not dividing the order, and using
Lagrange’s theorem to note that the order of any subgroup and quotient group divides the order of the
group.

(2) follows by combining the characterization in terms of p not dividing the order, and using Lagrange’s
theorem to note that the order of a group is the product of the orders of any normal subgroup and the
corresponding quotient group. �
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In particular, a finite p-group is powered over all primes other than p. Thus, it is in particular powered
over all primes less than p (a very important observation) and also over all primes greater than p (a less
important, but still useful, observation). An equivalent formulation is that any finite p-group is a p-local
group.

Note that the result has some analogues for infinite groups in which every element has finite order, but
we do not need to develop these for our purpose.

17.7. Some general results on powering and divisibility. We begin with some preliminary lemmas.

Lemma 17.3 (Divisibility is inherited by quotient groups). Suppose G is a group and H is a normal
subgroup. Suppose that G is p-divisible for some prime number p. Then, the quotient group G/H is also
p-divisible. Explicitly, if a ∈ G/H, there exists b ∈ G/H such that bp = a.

Proof. Let ϕ : G → G/H be the quotient map. Pick g ∈ G such that ϕ(g) = a. There exists h ∈ G such
that hp = g due to the p-divisibility of G. The element b = ϕ(h) satisfies bp = a. �

We next show that powering on the quotient group implies powering on the subgroup.

Lemma 17.4 (Quotient-to-subgroup powering implication). Suppose G is a group and H is a normal
subgroup of G. Suppose p is a prime number such that both G and G/H are p-powered groups. Then, H
is also a p-powered group. In other words, for any g ∈ H, there exists a unique element x ∈ H such that
xp = g.

Proof. Let ϕ : G→ G/H be the quotient map.
Since G as a whole is p-powered, there exists x ∈ G such that xp = g, and this x is unique in G. It suffices

to show that this unique x is an element of H. For this, note that (ϕ(x))p = ϕ(xp) = ϕ(g) is the identity
element of G/H. Thus, ϕ(x) is an element of order 1 or p in G/H. Since G/H is p-powered, this forces ϕ(x)
to be the identity element of G/H, so x ∈ H, as desired. �

Theorem 17.18 gives a converse implication specific to the nilpotent context.

17.8. Results for the center. We begin with a lemma about the center.

Lemma 17.5. Suppose G is a group with center Z(G). Suppose n is a natural number. If z ∈ Z(G) is
such that there is a unique x ∈ G satisfying xn = z, then x ∈ Z(G).

In particular, if G is powered over a prime p, so is the center Z(G).

The key feature of the center that we use in the proof here is that it is the fixed-point subgroup of a
subgroup of Aut(G) (namely, Inn(G)). The proof also works for fixed-point subgroups of other subgroups of
Aut(G). In particular, the proof works for all subgroups arising as centralizers of subgroups of G.

Proof. It suffices to show that for any y ∈ G, yxy−1 = y.
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Note that:

(yxy−1)n = yxny−1 = yzy−1 = z

Thus, (yxy−1)n = z = xn. Now, the uniqueness of x (as a nth root of z) forces that in fact yxy−1 = x,
completing the proof. �

Next:

Lemma 17.6. Suppose p is a prime number, G is a p-powered group, and H is a central subgroup of G
that is also p-powered. Then, the quotient group G/H is also p-powered. Explicitly, for any a ∈ G/H, there
is a unique b ∈ G/H satisfying bp = a.

The proof below seems notationally complicated, but the idea is simple. We first use the existence of pth

roots in the whole group to find a candidate pth root in G/H. We now want to show uniqueness. Since the
subgroup H is in the center, we can take pth roots of the subgroup elements used to translate within a coset
in order to figure out the appropriate translates on the pth roots. Then, we use the uniqueness aspect to
argue that all pth roots of elements in a particular coset must lie in a single coset.

Proof. Let ϕ : G→ G/H be the quotient map.
Let g ∈ G be such that ϕ(g) = a. There exists x ∈ G such that xp = g.
For any u ∈ H, there exists v ∈ H such that vp = u (due to our assumption that H is p-powered). Thus,

for any element of G of the form gu with g as above and u ∈ H, we get (xv)p = xpvp = gu with v as the
element satisfying vp = u. Note that rewriting (xv)p = xpvp uses the assumption that H is in the center of
G.

Now, we claim that the element b = ϕ(x) is the unique element satisfying bp = a. First, note that bp = a

follows by applying ϕ to both sides of xp = g. Suppose there is an element c ∈ G/H satisfying cp = a. Let
y ∈ G be such that ϕ(y) = c. Then, yp ∈ gH, hence is of the form gu, u ∈ H, so by the preceding paragraph,
it can also be written as (xv)p, v ∈ H. Thus, we get yp = (xv)p as elements of G. Since G is p-powered, this
forces y = xv, so c = ϕ(y) = ϕ(xv) = ϕ(x)ϕ(v) = ϕ(x) = b, thus proving the uniqueness of b as the pth root
of a. �

The preceding two lemmas easily give us the following.

Lemma 17.7. Suppose G is a group and Z(G) is the center of G. Then, if G is p-powered for a prime p,
both the center Z(G) and the quotient group G/Z(G) are p-powered. Hence, the inner automorphism group
Inn(G), which is isomorphic to G/Z(G), is also p-powered.

We are now in a position to state the main result.
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Theorem 17.8. Suppose G is a group (not necessarily nilpotent) and Zn(G) is the nth member of the
upper central series of G. Suppose p is a prime such that G is p-powered. Then, Zn(G) and G/Zn(G) are
also p-powered.

Proof. The fact that G/Zn(G) is p-powered follows by using mathematical induction on the preceding lemma,
and noting that G/Zn(G) is obtained by iteration of the operation of factoring out by the center (starting
from G). We can then use Lemma 17.4 to conclude that Zn(G) is also p-powered. �

Note that this result also extends to members of the transfinite upper central series. For simplicity,
however, we avoid dealing with transfinite central series.

We can now state the bigger theorem. Note that this establishes a partial converse to Lemma 17.4.

Theorem 17.9. Suppose G is a group and H is a normal subgroup of G that is contained in a member
of the upper central series of G. Suppose p is a prime number such that both G and H are p-powered. Then,
G/H is also p-powered.

Note that if G is nilpotent, then the condition that H is contained in a member of the upper central series
of G is always satisfied. We will return to this implication in Theorem 17.18, which is deferred to a later
section.

Proof. Let Z0(G), Z1(G), Z2(G), . . . be the upper central series of G (the trivial subgroup is Z0(G), the
center is Z1(G), the second center is Z2(G), and so on). Suppose H is contained in the member Zn(G) for
some n. Intersecting with H, we get a series:

1 = H ∩ Z0(G) ≤ H ∩ Z1(G) ≤ H ∩ Z2(G) ≤ · · · ≤ H ∩ Zn(G) = H

All the subgroups in this series are normal (since each is an intersection of normal subgroups) and further,
for 0 ≤ i ≤ n− 1, (H ∩ Zi+1(G))/(H ∩ Zi(G)) is a central subgroup of G/(H ∩ Zi(G)).

By Theorem 17.8, each Zi(G) is p-powered. Hence, each H ∩ Zi(G) is also p-powered.
We will now prove by induction on i that each G/(H ∩ Zi(G)) is p-powered. The base case is clear. The

inductive step is to show that if G/(H ∩Zi(G)) is p-powered, so is G/(H ∩Zi+1(G)). For this, note that by
the third isomorphism theorem:

(*) G/(H ∩ Zi+1(G)) ∼=
G/(H ∩ Zi(G))

(H ∩ Zi+1(G))/(H ∩ Zi(G))

As noted above, (H ∩ Zi+1(G))/(H ∩ Zi(G)) is a central subgroup of G/(H ∩ Zi(G)). As also noted
above, H ∩ Zi+1(G) is p-powered, hence p-divisible. Combining this with Lemma 17.3, we see that (H ∩
Zi+1(G))/(H ∩Zi(G)) is also p-divisible. Since (H ∩Zi+1(G))/(H ∩Zi(G)) is a subgroup of the p-powered
group G/(H ∩ Zi(G)), (H ∩ Zi+1(G))/(H ∩ Zi(G)) must be p-powered. Thus, we have a p-powered group
G/(H∩Zi(G)) and a p-powered central subgroup (H∩Zi+1(G))/(H∩Zi(G)). By Lemma 17.6, the quotient
group is also p-powered, so by (*), G/(H ∩ Zi+1(G)) is p-powered.
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This completes the proof of the inductive step. Thus, G/(H ∩Zi(G)) is p-powered for all i. In particular,
setting i = n, we get that G/(H ∩ Zn(G)) = G/H is p-powered, completing the proof. �

A quick note on the “duality” between divisible and torsion-free. There is a heuristic duality
between some of the results that we will be exploring in the coming two sections. Unfortunately, it is
difficult to make this duality rigorous. The following quick glossary will give an idea of how the duality
generally works.

• divisible ↔ torsion-free
• subgroup ↔ quotient group
• injective ↔ surjective
• lower central series ↔ upper central series
• derived subgroup ↔ inner automorphism group
• abelianization ↔ center

The way the duality works is that for any statement involving these concepts, we can typically consider
a “dual” statement that replaces each concept by its dual, and that dual statement is usually true. Un-
fortunately, this duality does not always work. We shall see examples where the “dual” statements to true
statements are false. Nonetheless, it is a useful guide for interpreting some of our easier results.

17.9. Basic results on divisible and torsion-free. We first begin with a basic divisibility result.

Lemma 17.10. Suppose G is a group and H is a central subgroup of G such that both H and G/H are
p-divisible groups. Then, G is a p-divisible group as well. In other words, for any g ∈ G, there exists x ∈ G
such that xp = g.

Proof. Suppose ϕ : G→ G/H is the quotient map. Let a = ϕ(g), so a ∈ G/H. There exists b ∈ G/H such
that bp = a. Suppose y ∈ G is such that ϕ(y) = b. Then, y−pg ∈ H. Say, it is an element u ∈ H. Let v be
an element of H such that vp = u. Then, y−pg = vp, so g = ypvp = (yv)p (because H is central). So, G is
p-divisible. �

We now turn to a result that is related to the idea of being torsion-free.

Lemma 17.11. Suppose G is a group and H is a central subgroup of G. Suppose p is a prime number
such that both H and the quotient group G/H have the property that the map x 7→ xp is injective in the
group. Then, G also has the property that the map x 7→ xp is injective in G. Explicitly, if a, b ∈ G are
elements such that ap = bp, then a = b.

The idea is to first show that the elements are in the same coset of H (i.e., they have the same image in
G/H) then take their quotient and argue that that must be the identity element. The first part will use the
injectivity of the power map in G/H. The second part will use the injectivity of the power map in H.

Proof. Let ϕ : G→ G/H be the quotient map.
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Since ap = bp, we have ϕ(a)p = ϕ(b)p. By the injectivity of the p-power map in G/H, we conclude that
ϕ(a) = ϕ(b). In other words, a and b are in the same coset of H, so the element u = ab−1 is an element of
H.

Since u = ab−1, a = ub. Further, u ∈ H so u is central, so (ub)p = upbp. Thus, ap = (ub)p = upbp. Since
ap = bp, we get that upbp = bp. Cancel bp from both sides to get that up is the identity element of G, and
hence also the identity element of the subgroup H.

We now use the injectivity of the p-power map in H to conclude that u itself is the identity element of
H, and hence, a = b. �

It easily follows that:

Lemma 17.12. Suppose G is a group and H is a central subgroup of G. Suppose p is a prime number
such that both H and the quotient group G/H are p-powered. Then, G is p-powered.

Proof. This follows from the preceding lemma and Lemma 17.10. �

Lemma 17.13. Suppose G is a group (not necessarily nilpotent) and p is a prime number. Suppose i is
a positive integer such that the quotient group Zi(G)/Zi−1(G) is p-torsion-free. Then, the quotient group
Zi+1(G)/Zi(G) in G is also p-torsion-free.

Proof. Suppose x is an element of Zi+1(G) whose image in Zi+1(G)/Zi(G) has order 1 or p. Our goal will
be to show that x ∈ Zi(G), i.e., the order of x modulo Zi(G) must be 1 and cannot be p.

For any y ∈ G, we have [x, y] ∈ Zi(G), and moreover, we have:

[x, y]p = [xp, y] (mod Zi−1(G))

Since xp ∈ Zi(G), the right side is the identity element mod Zi−1(G), hence [x, y] is an element of Zi(G)
whose image in Zi(G)/Zi−1(G) has pth power the identity. Thus, [x, y] taken modulo Zi−1(G) has order
either 1 or p. The order cannot be p because by the inductive hypothesis, Zi(G)/Zi−1(G) is p-torsion-free.
Hence, [x, y] ∈ Zi−1(G).

Since the above is true for all y ∈ G, we obtain that [x, y] ∈ Zi−1(G) for all y ∈ G. This forces x ∈ Zi(G),
so that the order of the image of x in Zi+1(G)/Zi(G) is in fact 1. Thus, the order can never be p, showing
that Zi+1(G)/Zi(G) is p-torsion-free. �

Note that the analogous result breaks down for the lower central series. Specifically, the problem with
the lower central series is that the subgroups there are too small and the quotients too big, and something
being central modulo a quotient does not guarantee its containment in the adjacent member.

[27] gives a somewhat different proof (Lemma 3.16) that uses the lower central series but “augments” it
with the element of interest, thus overcoming the problem of the lower central series being too small.

17.10. Definition equivalence for torsion-free nilpotent groups with important corollaries.
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Theorem 17.14. The following are equivalent for a nilpotent group G and a prime number p.

(1) The powering map x 7→ xp is injective in G.
(2) G is p-torsion-free.
(3) The center Z(G) is p-torsion-free.
(4) Each of the successive quotients Zi+1(G)/Zi(G) of the upper central series of G is a p-torsion-free

group.
(5) In any quotient of the form Zi(G)/Zj(G), the powering map x 7→ xp is injective.

Moreover, the implication (1) to (2) to (3) to (4) to (5) holds in all groups. The only implication that
relies on G being nilpotent is the implication from (5) to (1).

Proof. (1) implies (2): This is direct from the definition.
(2) implies (3): This is immediate, since Z(G) is a subgroup of G.
(3) implies (4): This follows from Lemma 17.13 and the principle of mathematical induction.
(4) implies (5): This relies on Lemma 17.11, the principle of mathematical induction, and the observation

that in the base case (for abelian groups) being p-torsion-free is obviously equivalent to the p-power map
being injective.

(5) implies (1): If G has class c, set i = c, j = 0. Note that this is the only step where we use that G is
nilpotent. �

An easy corollary is as follows:

Lemma 17.15. If G is a nilpotent group and p is a prime number, then the following are equivalent:

(1) G is p-divisible and p-torsion-free.
(2) G is p-powered.

Proof. This is immediate, once we use the preceding theorem (Theorem 17.14) to replace p-torsion-free by
“the p-power map is injective.” �

Lemma 17.16. If G is a group and H is a normal subgroup such that both G and H are p-powered,
then G/H is p-torsion-free.

Proof. Let ϕ : G → G/H be the quotient map and let a ∈ G/H be such that ap is the identity element
of G/H. Suppose g ∈ G is such that ϕ(g) = a. Then, (ϕ(g))p = ϕ(gp) is the identity element of G/H, so
gp ∈ H. Let h = gp. Since H is p-powered, there exists an element x ∈ H such that xp = h. Thus, xp = gp.
since G is also p-powered, this forces x = g. Thus, g ∈ H, so ϕ(g) = a is the identity element of G/H. Thus,
there is no element of order p in G/H, as desired. �
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Theorem 17.17. Suppose G is a group and H is a normal subgroup of G such that the quotient group
G/H is nilpotent. Then, if p is a prime such that both G and H are p-powered, the quotient group G/H is
also p-powered.

Proof. Clearly, G/H is p-divisible by Lemma 17.3. It is also p-torsion-free because G and H are both
p-powered and by the preceding lemma (Lemma 17.16).

Thus, by the lemma before last (Lemma 17.15), G/H is p-powered. �

We can now state a fundamental result about normal subgroups of nilpotent groups with two different
proofs.

Theorem 17.18. Suppose G is a nilpotent group and H is a normal subgroup of G. Then, if p is a prime
number such that both G and H are p-powered, then the quotient group G/H is also p-powered.

Proof. First proof alternative: Use Theorem 17.9, noting that since G is nilpotent, H must lie in an upper
central series member of G, namely G itself.

Second proof alternative: Use Theorem 17.17, noting that since G is nilpotent, so is G/H. �

17.11. Definition equivalence for divisible nilpotent groups with important corollaries. This
result is dual to Theorem 17.14, the chief result of the preceding section.

Theorem 17.19. The following are equivalent for a nilpotent group G and a prime number p.

(1) G is p-divisible.
(2) The abelianization of G is p-divisible.
(3) For every positive integer i, the quotient group γi(G)/γi+1(G) is p-divisible.
(4) For all pairs of positive integers i < j, the quotient group γi(G)/γj(G) is p-divisible.

Moreover, the implications (1) to (2) to (3) to (4) hold for all groups. It is only the implication from (4)
to (1) that uses that the group is nilpotent.

Proof. (1) implies (2): This follows from Lemma 17.3. Note that this step does not use G being nilpotent.
(2) implies (3): Note that each γi(G)/γi+1(G) is p-divisible on account of being a homomorphic image of

a tensor power of the abelianization of G. This again does not use G nilpotent.
(3) implies (4): We do mathematical induction using Lemma 17.10. This step again does not use that G

is nilpotent.
(4) implies (1): plug in i = 1, j = c + 1 where c is the nilpotency class of G. Note that this is the only

step where we use that G is nilpotent. �

Theorem 17.20. Suppose G is a nilpotent group that is powered over a prime p. Then:

(1) All members of the lower central series of G are p-powered, i.e., γi(G) is p-powered for all p.
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(2) All quotients between members of the lower central series of G are p-powered, i.e., γi(G)/γj(G) is
p-powered for all i < j. In particular, the abelianization of G is p-powered.

Proof. Proof of (1): Since G is p-powered, it is p-divisible. Hence, by the preceding theorem (Theorem
17.19), all quotients γi(G)/γj(G) are p-divisible. Let c be the nilpotency class of G. Setting j = c + 1, we
get that all the lower central series members γi(G) are p-divisible. But since G is p-powered (i.e., uniqueness
of roots), this forces all of these subgroups to also be p-powered.

Proof of (2): Note that since G is nilpotent, so are γi(G) and γj(G) for any i < j. Further, γj(G) is
characteristic in G, hence normal in G, hence normal in γi(G). Thus, the hypotheses of Theorem 17.18
apply, and we get the conclusion that the quotient group γi(G)/γj(G) is p-powered. �

17.12. Divisibility and the upper central series. We now mention and prove a result about the upper
central series whose “dual” (in the heuristic sense) fails to hold.

Theorem 17.21. Suppose G is a nilpotent group and p is a prime number such that G is p-divisible.
Then, all members of the upper central series of G are p-divisible.

The proof is somewhat unusual in the following sense: it proceeds using mathematical induction starting
from the largest member of the upper central series and going down. Usually, when we use the upper central
series for induction, we move upward. This is one reason why the proof is difficult to discover, even though
it is not hard to explain.

Proof. Suppose G has nilpotency class c ≥ 2 (note that if c = 1 there is nothing to prove).
Consider the c-fold left-normed Lie bracket map of the form:

T : (x1, x2, . . . , xc) 7→ [. . . [[x1, x2], x3], . . . , xc]

By Lemma C.2 in the Appendix, this map is a homomorphism in each coordinate holding the other
coordinates fixed. Note that this fact is very specific to the class being c. It fails for higher class. Moreover,
the set of values for x1 for which the output is always the identity is precisely the subgroup Zc−1(G).

Now, suppose g ∈ Zc−1(G). Since G is p-divisible, there exists x ∈ G such that xp = g. The goal is to
show that there exists such a value of x in Zc−1(G) satisfying xp = g. In fact, we will do better. We will
show that any x ∈ G satisfying xp = g actually lies inside Zc−1(G). In other words, we want to show that
T (x, x2, . . . , xc) is the identity element of G for all x2, x3, . . . , xc ∈ G.

Fix the values of x2, x3, . . . , xc temporarily. Let u be an element of G such that up = xc. Then, we know
that:

T (g, x2, . . . , xc−1, u) = T (xp, x2, . . . , xc−1, u) = T (x, x2, . . . , xc−1, u)p

Similarly:

T (x, x2, . . . , xc−1, xc) = T (x, x2, . . . , xc−1, u
p) = T (x, x2, . . . , xc−1, u)p

The right sides of both equations are the same, so we get:
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T (g, x2, . . . , xc−1, u) = T (x, x2, . . . , xc−1, xc)

Since g ∈ Zc−1(G), the left side is the identity element, hence so is the right side. Since x2, . . . , xc−1, xc

are arbitrary, this shows that x ∈ Zc−1(G).
The result can now be extended further down the upper central series. The key trick in executing the

extension is to replace the original c-fold commutator with smaller fold commutators, but now restrict the
first input to being within the member one higher. In general when inducting down from Zi(G) to Zi−1(G),
we consider a left-normed commutator of length i, restricting the first input to be within Zi(G) and allowing
all other inputs to vary freely within G. We then use the same logic. Note that this logic works in each
stage as long as i ≥ 2, and hence we can do our induction all the way down to the center. We cannot use
the induction to get down to the trivial subgroup, but we know that the trivial subgroup is p-divisible for
all primes p, so this is unnecessary. �

As we shall see in Example (4) in the next subsection, the naive dual statement for torsion-free and
quotient groups with the lower central series fails to hold.

17.13. Collection of interesting counterexamples. For the examples below, we denote by UT (3, R)
the group whose underlying set is the set of unitriangular matrices of degree three over R under matrix
multiplication where R is any unital ring. In other words, UT (3, R) is the set:

1 a12 a13

0 1 a23

0 0 1

 | a12, a13, a23 ∈ R


with the usual matrix multiplication.

(1) A group may be p-powered and have a subgroup that is not p-powered; in fact, we can choose an
abelian example: The subgroup Z inside Q is an example of a situation where the whole group is
powered over every prime but the subgroup is not powered over any prime. Note that it is the
“divisible” aspect, not the “torsion-free” aspect, that fails. The corresponding quotient group (Q/Z)
is also not p-powered for any prime p. For the quotient, it is the “torsion-free” aspect that fails.

We can tweak this example a bit to construct, for any pair of prime sets π2 ⊆ π1, an abelian group
that is powered over π1 and a subgroup that is powered only over the primes inside π2.

(2) A characteristic subgroup of a p-powered group need not be p-powered: It is possible to have a
characteristic subgroup of a group that is not powered over some primes that the whole group is
powered over. Recall that GA+(1,R) = R o (R∗)+ is rationally powered. The subgroup R o (Q∗)+

is characteristic, but is not powered over any prime.
We can tweak this example a bit to construct, for any pair of prime sets π2 ⊆ π1, a group that is

powered precisely over the primes in π1 and a characteristic subgroup that is powered precisely over
the primes inside π2.

(3) It is possible to have a nilpotent group G (in fact, we can choose G to have class two) such that the
abelianization of G is rationally powered (hence torsion-free), but G itself is not torsion-free: We
can take G to be the quotient of UT (3,Q) by a subgroup Z inside its central Q. The abelianization
of G is Q×Q, while the center is Q/Z. Thus, the abelianization of G is rationally powered, whereas
G has p-torsion for all primes p.
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Explicitly, G is given as the set of matrices:
1 a12 a13

0 1 a23

0 0 1

 | a12, a23 ∈ Q, a13 ∈ Q/Z


with the matrix multiplication defined as:1 a12 a13

0 1 a23

0 0 1


1 b12 b13

0 1 b23

0 0 1

 =

1 a12 + b12 a12b23 + a13 + b13

0 1 a23 + b23

0 0 1


(4) It is possible to have a nilpotent group G (in fact, we can choose G to have class two) such that G is

torsion-free but the abelianization of G is not torsion-free: Let G be a central product of UT (3,Z)
by Q identifying a copy of Z inside Q with the center of UT (3,Z). In this case, the abelianization is
isomorphic to Z× Z×Q/Z, which has torsion for all primes.

Explicitly, G is the following set with matrix multiplication:
1 a12 a13

0 1 a23

0 0 1

 | a12, a23 ∈ Z, a13 ∈ Q


This result is the expected dual to Theorem 17.21 that fails to hold. The expected dual to that

result should say that all quotients of a p-torsion-free nilpotent group by its lower central series
members are also p-torsion-free. This fails to be true in this situation.

(5) It is possible to have a non-nilpotent p-divisible group whose center is not p-divisible: The simplest
example is S3 ∼= SU(2,C), which can also be described as the group of unit quaternions. The center
is {−1, 1}. The group S3 as a whole is p-divisible for all primes p, and in particular, every element
in the group has a square root in the group. However, the center of the group is not 2-divisible,
because the element −1 has no square root in the center.

Note that this example is an opposite of sorts to potential generalizations of Lemma 17.5 (which
rules out similar examples for the p-powered case) and Theorem 17.21 (which rules out similar
examples where the whole group is nilpotent).

(6) It is possible to have a non-nilpotent p-divisible group whose derived subgroup is not p-divisible:
Consider the group GL(p,C). This is p-divisible (and in fact, also divisible by all other primes). The
derived subgroup SL(p,C) is not p-divisible (however, it is divisible by other primes). Specifically,
the element in SL(p,C) that is a single Jordan block with eigenvalue a primitive pth root of unity
has no pth root within SL(p,C), even though it does have pth roots in GL(p,C).

More generally, for a finite set π of primes, we can take n as the product of all primes in π. Then
G = GL(n,C) is divisible by all primes, but G′ = SL(n,C) is divisible only by those primes that are
not in π, and is not divisible by any of the primes in π.

17.14. Extra: a two-out-of-three theorem. We are now ready to prove or “two-out-of-three” result for
powering. We begin with a lemma, which is structurally quite similar to, and in some ways a generalization
of, Theorem 17.19.
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Lemma 17.22. Suppose G is a nilpotent group, p is a prime number, and H is a p-divisible normal
subgroup of G. Then, consider the descending chain:

H ≥ [H,G] ≥ [[H,G], G] ≥ [[[H,G], G], G] ≥ · · · ≥ 1

Note that this chain reaches the trivial subgroup because G is nilpotent.
Then, the following are true:

(1) Each of the quotient groups between successive members of this descending series is p-divisible.
(2) Each of the quotient groups between members of this descending series (not necessarily successive)

is p-divisible.
(3) Each of the members of this descending series is p-divisible.

Proof. Proof of (1): Once we note that divisibility inherits to quotient groups (Lemma 17.3), the situation
for each quotient is similar to the situation for the last (final) quotient, so for notational simplicity, we prove
the result only for the last quotient.

Suppose the penultimate member of the series involves c− 1 occurrences of G and one occurrence of H.
Thus, there is a c-fold iterated commutator map:

T : H ×G×G× · · · ×G→ G

whose image generates this subgroup. This map is multilinear, i.e., it is a homomorphism in each coordi-
nate. We can therefore use the p-divisibility of H to obtain that the image set is p-divisible, and hence, so
is the abelian subgroup generated by it.

Proof of (2): This follows from (1), Lemma 17.10, and mathematical induction.
Proof of (3): This is a special case of (2) where the lower end of the quotient is taken to be the trivial

subgroup. �

This is sufficient for the following theorem:

Theorem 17.23. Suppose G is a nilpotent group, H is a normal subgroup, and p is a prime number
such that both H and G/H are p-divisible. Then, G is also p-divisible.

Proof. Consider the series:

H ≥ [H,G] ≥ [[H,G], G] ≥ · · · ≥ 1

For simplicity, define H1 = H and Hi+1 = [Hi, G]. Then the series is:

H1 ≥ H2 ≥ H3 ≥ · · · ≥ 1

By Lemma 17.22 and the fact that H is p-divisible, all the successive quotients Hi/Hi+1 are also p-
divisible. Further, by the nature of the series, each Hi is normal in G and each quotient Hi/Hi+1 is central
in the quotient G/Hi+1.
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We can now prove, by upward induction on i, that each quotient G/Hi is p-divisible. The base case i = 1
follows from the stipulation that G/H is p-divisible. For the inductive step, suppose G/Hi is p-divisible and
we need to show that G/Hi+1 is p-divisible. We already have that Hi/Hi+1 is p-divisible and central in
G/Hi+1, and G/Hi

∼= (G/Hi+1)/(H1/Hi+1) by the third isomorphism theorem, so (G/Hi+1)/(H1/Hi+1) is
also p-divisible. Thus, by Lemma 17.10, G/Hi+1 is also p-divisible. This completes the inductive step.

For large enough i, Hi is the trivial subgroup of G, so this indeed gives us that G is p-divisible. �

The next lemma tries to do something similar for the torsion-free setting. It mimics and generalizes
Theorem 17.14.

Lemma 17.24. Suppose G is a nilpotent group, p is a prime number, and H is a p-torsion-free normal
subgroup of G. There exists some natural number n such that H ≤ Zn(G). Consider the ascending chain of
subgroups in H:

1 ≤ H ∩ Z(G) ≤ H ∩ Z2(G) ≤ · · · ≤ H ∩ Zn(G) = H

We have the following:

(1) Each of the quotient groups between successive members of this ascending series is p-torsion-free.
(2) Each of the quotient groups between members of this ascending series (not necessarily successive) is

p-torsion-free.
(3) Each of the members of this ascending series is p-torsion-free.

Proof. Proof of (1): We prove this for each quotient (H ∩ Zi(G))/(H ∩ Zi−1(G)) by induction on i. The
base case for induction, namely, the statement that H ∩Z(G) is p-torsion-free, follows from the fact that H
is p-torsion-free. The proof method for the inductive step is similar to the proof method used for Lemma
17.13.

Explicitly, we want to show that if (H ∩Zi(G))/(H ∩Zi−1(G)) is p-torsion-free, then (H ∩Zi+1(G))/(H ∩
Zi(G)) is p-torsion-free. We do this as follows.

Suppose x is an element of H ∩ Zi+1(G) whose image in (H ∩ Zi+1(G))/(H ∩ Zi(G)) has order 1 or p.
Our goal will be to show that x ∈ H ∩ Zi(G), i.e., the order of the image of x must be 1 and cannot be p.

For any y ∈ G, we have [x, y] ∈ H ∩ Zi(G), and moreover, we have:

[x, y]p = [xp, y] (mod H ∩ Zi−1(G))

Since xp ∈ H ∩ Zi(G), the right side is the identity element mod H ∩ Zi−1(G), hence [x, y] is an element
of H ∩ Zi(G) whose image in (H ∩ Zi(G))/(H ∩ Zi−1(G)) has pth power the identity. Thus, [x, y] taken
modulo H ∩ Zi−1(G) has order either 1 or p. The order cannot be p because by the inductive hypothesis,
(H ∩ Zi(G))/(H ∩ Zi−1(G)) is p-torsion-free. Hence, [x, y] ∈ H ∩ Zi−1(G).

Since the above is true for all y ∈ G, we obtain that [x, y] ∈ H ∩ Zi−1(G) and hence [x, y] ∈ Zi−1(G) for
all y ∈ G. This forces x ∈ Zi(G) and hence x ∈ H ∩ Zi(G), so that the order of the image of x in (H ∩
Zi+1(G))/(H ∩Zi(G)) is in fact 1. Thus, the order can never be p, showing that (H ∩Zi+1(G))/(H ∩Zi(G))
is p-torsion-free.
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Proof of (2): This follows from (1) and Lemma 17.11 (note that we have already established, in Theorem
17.14, that being p-torsion-free is equivalent to the p power map being injective).

Proof of (3): This is already obvious. �

We can now state the theorem:

Theorem 17.25. Suppose G is a nilpotent group, H is a normal subgroup, and p is a prime number
such that both H and G/H are p-torsion-free. Then, G is also p-torsion-free.

Proof. By the preceding lemma, we have the ascending chain of subgroups in H:

1 ≤ H ∩ Z(G) ≤ H ∩ Z2(G) ≤ · · · ≤ H ∩ Zn(G) = H

and further, we have that each successive quotient between members of this ascending chain is p-torsion-
free. We can now induct downward on i (going down from n to 0) to show thatG/(H∩Zi(G)) is p-torsion-free.
The base case, i = n, is given to us. To induct down from G/(H ∩ Zi(G)) to G/(H ∩ Zi−1(G)), we use
Lemma 17.11, along with the observation that the abelian group (H∩Zi(G))/(H∩Zi−1(G)) is p-torsion-free
if and only if the p-powering map in the group is injective. �

Combining the theorems for divisibility and torsion-free, we have that:

Theorem 17.26. Suppose G is a nilpotent group, H is a normal subgroup, and p is a prime number
such that both H and G/H are p-powered. Then, G is also p-powered.

Proof. This is a direct combination of Theorems 17.23 and 17.25. �

We can now state the two-out-of-three theorem.

Theorem 17.27. Suppose G is a nilpotent group, H is a normal subgroup, and p is a prime number.
The following are true:

(1) If any two of the three groups G, H, and G/H is p-powered, so is the third.
(2) For p-divisibility, if G is p-divisible, so is G/H, and if H and G/H are p-divisible, so is G.
(3) For p-torsion-free, if G is p-torsion-free, so is H, and if H and G/H are p-torsion-free, so is G.

Proof. Proof of (1):

• G and H to G/H: This follows from Theorem 17.18.
• G and G/H to H: This follows from Lemma 17.4.
• H and G/H to G: This follows from Theorem 17.26.

Proof of (2):

• G to G/H: This follows from Lemma 17.3.
• H and G/H to G: This follows from Theorem 17.23.
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Proof of (3):

• G to H: This is obvious.
• H and G/H to G: This follows from Theorem 17.25.

�

17.15. Is every characteristic subgroup invariant under powering? The following is a conjecture.

Conjecture 17.28. Suppose G is a nilpotent group and H is a characteristic subgroup of G. Suppose π
is a set of primes such that G is π-powered. Then, H is also π-powered.

The conjecture appears to be open.20

The corresponding result is false for solvable groups: for instance, the group G = GA+(1,R) = Ro (R∗)+

is powered over all primes, and the subgroup H = R o (Q∗)+ is characteristic, but H is not powered over
any prime.

The corresponding result is true for abelian groups, because the map x 7→ x1/p (which in additive notation
becomes x 7→ (1/p)x) is an automorphism of G for every p ∈ π.

Apart from abelian groups, there are some important types of nilpotent groups for which the conjecture
can be demonstrated to be true. For instance:

• The conjecture is trivially true for all finite nilpotent groups, because every subgroup of a π-powered
finite group is π-powered by Lemma 17.2. Similarly, it is also true for periodic groups, i.e., groups
in which every element has finite order.

• The conjecture is true for groups for which we can find an automorphism that behaves like a power
map on the successive quotient groups for some central series of the group. For instance, suppose
π = {p} and G is a p-powered nilpotent group of nilpotency class two. The conjecture holds for
G if we can find a central subgroup H of G and an automorphism σ of G such that σ induces the
automorphism x 7→ xpk

on G/H and σ behaves like x 7→ xp2k

on H.

In Section 22.3, we will discuss some implications of this conjecture being true when restricted to the
groups that participate in the Baer correspondence.

18. Lie rings powered over sets of primes: key results

This section covers Lie ring analogues of the material covered for groups in the preceding section (Section
17). The majority of results carry over, but many of the proofs are notably similar. We use results of the
preceding section.

18.1. Definitions. We can define notions of powered, divisible, and torsion-free for Lie rings similar to the
definitions for groups. In fact, we do not need to redefine these terms: we simply define them by invoking
the corresponding definition for the additive group of the Lie ring. Thus, for instance, a Lie ring is called
p-powered for a prime p if and only if the additive group of the Lie ring is p-powered. Similarly, for a prime
set π, a Lie ring is called π-powered if and only if the additive group of the Lie ring is π-powered.
π-powered Lie rings are the same as Z[π−1]-Lie algebras. For a more detailed discussion of Lie algebras

over rings other than Z, see the Appendix, Section A.4.

20See http://mathoverflow.net/questions/124295/characteristic-subgroup-of-nilpotent-group-that-is-not-invariant-under-powering
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We will now go over results analogous to the results we established about groups in the preceding section.
The proofs in most cases are either the same or much simpler. For instance, we note the following two-
out-of-three result in the Lie ring context which is not true in general for groups and took a lot of effort to
establish for nilpotent groups:

Lemma 18.1. Suppose L is a Lie ring and I is an ideal in L. Suppose p is a prime number. Then, if any
two of L, I, and L/I are p-powered, so is the third.

Proof. This is straightforward just from looking at the additive group structure and invoking the correspond-
ing result for abelian groups, where it is obvious:

• L and I to L/I: This follows from Lemma 17.6, applied to the additive group of L and the additive
subgroup I. Note that since L is abelian, the subgroup I is central in the additive group sense,
regardless of whether I is central as an ideal in L.

• L and L/I to I: This follows from Lemma 17.4 applied the additive group of L and the additive
subgroup I.

• I and L/I to L: This can be deduced from Lemma 17.12 applied to the additive group of L and the
additive subgroup I. Note that since L is abelian, the subgroup I is central in the additive group
sense, regardless of whether I is central as an ideal in L.

�

Another basic fact is this.

Lemma 18.2. The following are equivalent for a Lie ring L and a prime number p:

(1) The multiplication by p map is injective from L to itself.
(2) The additive group of L is p-torsion-free.

Proof. This follows from the additive group of L being an abelian group. �

18.2. Results for the center.

Lemma 18.3. Suppose L is a Lie ring that is powered over a prime p and Z(L) is the center of L. Then,
Z(L) is also powered over p. In other words, for any g ∈ Z(L), there exists a unique x ∈ Z(L) such that
px = g.

Proof. Since L is p-powered, we know there exists unique x ∈ L such that px = g. It therefore suffices to
show that this unique x is in Z(L). In other words, we need to show that for any y ∈ L, [x, y] = 0.

Note that [g, y] = 0 on account of g being in the center of L, so:

0 = [g, y] = [px, y] = p[x, y]
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Since L is powered over p, it is in particular p-torsion-free. Thus, we must have [x, y] = 0, completing the
proof. �

Note that the analogous results to Lemma 17.6 and Theorem 17.9 are trivially obvious due to the two-
out-of-three lemma noted above. Thus, we can jump straight to:

Theorem 18.4. Suppose L is a Lie ring (not necessarily nilpotent) and Zn(L) is the nth member of the
upper central series of L. Suppose p is a prime such that L is p-powered. Then, Zn(L) and L/Zn(L) are
also p-powered.

Proof. Lemma 18.3 and the two-out-of-three lemma give that L/Z(L) is p-powered. Iterating inductively, we
get that L/Zn(L) is p-powered. Again using the two-out-of-three lemma, we get that Zn(L) is p-powered. �

We now prove the Lie ring analogue to Lemma 17.13.

Lemma 18.5. Suppose L is a Lie ring (not necessarily nilpotent) and p is a prime number. Suppose
i is a natural number. Then, if the quotient ring Zi(L)/Zi−1(L) is p-torsion-free, so is the quotient ring
Zi+1(L)/Zi(L).

Proof. Suppose x is an element of Zi+1(L) whose image in Zi+1(L)/Zi(L) has order 1 or p. Our goal will
be to show that x must be in Zi(L), i.e., its image must be the zero element of Zi+1(L)/Zi(L).

For any y ∈ L, we have [x, y] ∈ Zi(L), and moreover, we have:

p[x, y] = [px, y] (mod Zi−1(L))

Since px ∈ Zi(L), the right side is the zero element mod Zi−1(L), hence [x, y] is an element of Zi(L)
whose image in Zi(L)/Zi−1(L), when multiplied by p, gives 0. Thus, [x, y] taken modulo Zi−1(L) has order
either 1 or p. The order cannot be p because by the inductive hypothesis, Zi(L)/Zi−1(L) is p-torsion-free.
Hence, [x, y] ∈ Zi−1(L).

Since the above is true for all y ∈ L, we obtain that [x, y] ∈ Zi−1(L) for all y ∈ L. This forces x ∈ Zi(L),
so that the order of the image of x in Zi+1(L)/Zi(L) is in fact 1. Thus, the order can never be p, showing
that Zi+1(L)/Zi(L) is p-torsion-free. �

18.3. Definition equivalence for torsion-free nilpotent Lie rings.

Theorem 18.6. The following are equivalent for a nilpotent Lie ring L and a prime number p.

(1) L is p-torsion-free.
(2) The center Z(L) is p-torsion-free.
(3) Each of the successive quotients Zi+1(L)/Zi(L) of the upper central series of L is a p-torsion-free

Lie ring.
(4) Each of the quotients Zi(L)/Zj(L) is a p-torsion-free Lie ring.
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Moreover, the implication (1) to (2) to (3) to (4) holds in all Lie rings. The only implication that relies
on L being nilpotent is the implication from (4) to (1).

Proof. (1) implies (2): This is immediate, since Z(L) is a subring, and hence additive subgroup, of L.
(2) implies (3): This follows from Lemma 18.5 and the principle of mathematical induction.
(3) implies (4): This relies on Lemma 17.11 and mathematical induction.
(4) implies (1): This is follows by setting i = c, j = 0. �

18.4. Definition equivalences for divisible nilpotent Lie rings.

Theorem 18.7. The following are equivalent for a nilpotent Lie ring L and a prime number p.

(1) L is p-divisible.
(2) The abelianization of L is p-divisible.
(3) For every positive integer i, the quotient group γi(L)/γi+1(L) is p-divisible.
(4) For all pairs of positive integers i < j, the quotient group γi(L)/γj(L) is p-divisible.

Note that the implications (1) to (2) to (3) to (4) hold for all Lie rings. It is only the implication from
(4) to (1) that uses that the Lie ring is nilpotent.

Proof. (1) implies (2): This follows from Lemma 17.3 applied to the additive group of L. Note that this step
does not use L being nilpotent.

(2) implies (3): Note that each γi(L)/γi+1(L) is p-divisible on account of being a homomorphic image of
a tensor power of the abelianization of L (as an additive group). This again does not use L being nilpotent.

(3) implies (4): We do mathematical induction using Lemma 17.10. This step again does not use that L
is nilpotent.

(4) implies (1): Plug in i = 1, j = c + 1 where c is the nilpotency class of L. Note that this is the only
step where we use that L is nilpotent. �

Note that the following is true for any Lie ring (not necessarily nilpotent). The corresponding statement
for groups does not hold in the general case (see Section 17.13, Example 6).

Lemma 18.8. Suppose L is a Lie ring (not necessarily nilpotent) that is p-divisible for some prime
number p. Then, the derived subring of L and all the members of the lower central series of L are also
p-divisible. Moreover, if L is p-powered, then the derived subring of L and all the members of the lower
central series of L are also p-powered.

Proof. Every Lie element of the form [x, y] can be divided by p to give a Lie element. Explicitly, if pu = x,
then p[u, y] = [x, y]. Since the derived subring is generated additively by Lie elements, every element of the
derived subring can be divided by p within the derived subring.

A similar logic applies to other members of the lower central series.
The statement for the p-powered case also follows. �
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18.5. Divisibility and the upper central series. The result for the upper central series for a Lie ring
has a similar formulation and a similar proof to the corresponding result for a group.

Theorem 18.9. Suppose L is a nilpotent Lie ring and p is a prime number such that L is p-divisible.
Then, all members of the upper central series of L are p-divisible.

The proof is analogous to that for groups.

Proof. Suppose L has nilpotency class c ≥ 2 (note that if c = 1 there is nothing to prove).
Consider the c-fold left-normed commutator map of the form:

T : (x1, x2, . . . , xc) 7→ [. . . [[x1, x2], x3], . . . , xc]

Viewed as a map of the additive groups, this map is a homomorphism in each coordinate when one fixes
the values of the other coordinates. Moreover, the set of values for x1 for which the output is always the
zero element is precisely the subring Zc−1(L).

Now, suppose g ∈ Zc−1(L). Since L is p-divisible, there exists x ∈ L such that px = g. The goal is
to show that there exists a value of x in Zc−1(L) satisfying px = g. In fact, we will do better. We will
show that any x ∈ L satisfying px = g actually lies inside Zc−1(L). In other words, we want to show that
T (x, x2, . . . , xc) is the zero element of L for all x2, x3, . . . , xc ∈ L.

Fix the values of x2, x3, . . . , xc temporarily. Let u be an element of L such that pu = xc. Then, we know
that:

(g, x2, . . . , xc−1, u) = T (px, x2, . . . , xc−1, u) = pT (x, x2, . . . , xc−1, u)

Similarly:

T (x, x2, . . . , xc−1, xc) = T (x, x2, . . . , xc−1, pu) = pT (x, x2, . . . , xc−1, u)

The right sides of both equations are the same, so we get:

T (g, x2, . . . , xc−1, u) = T (x, x2, . . . , xc−1, xc)

Since g ∈ Zc−1(L), the left side is the zero element, hence so is the right side. Since x2, . . . , xc−1, xc are
arbitrary, this shows that x ∈ Zc−1(L).

The result can now be extended further down the upper central series. The key trick in executing the
extension is to replace the original c-fold commutator with smaller fold commutators, but now restrict the
first input to being within the member one higher. In general when inducting down from Zi(L) to Zi−1(L),
we consider a left-normed commutator of length i, restricting the first input to be within Zi(L) and allowing
all other inputs to vary freely within L. We then use the same logic. Note that this logic works in each stage
as long as i ≥ 2, and hence we can do our induction all the way down to the center. We cannot use the
induction to get down to the zero subring, but we know that the zero subring is p-divisible for all primes p,
so this is unnecessary. �
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18.6. Counterexamples for Lie rings. For the examples below, we denote by NT (3, R) the set of niltri-
angular matrices of degree three over R under matrix multiplication where R is any unital ring. In other
words, NT (3, R) is the set: 

0 a12 a13

0 0 a23

0 0 0

 | a12, a13, a23 ∈ R


with the usual matrix multiplication. To make it into a Lie ring, we define the Lie bracket as the additive

commutator corresponding to the matrix multiplication. Explicitly, we define the Lie bracket of matrices x
and y as [x, y] = xy− yx where xy and yx are the products with respect to the usual matrix multiplication.

(1) A Lie ring may be p-powered and have a subring that is not p-powered; in fact, we can choose an
abelian example: The subgroup Z inside Q is an example of a situation where the whole group is
powered over every prime but the subgroup is not powered over any prime. Viewing all the group as
abelian Lie rings (with the trivial bracket) we obtain the desired examples for Lie rings. Note that it
is the “divisible” aspect, not the “torsion-free” aspect, that fails. The corresponding quotient group
(Q/Z) is also not p-powered for any prime p. For the quotient, it is the “torsion-free” aspect that
fails.

We can tweak this example a bit to construct, for any pair of prime sets π2 ⊆ π1, an abelian
group (hence an abelian Lie ring) that is powered over π1 and a subgroup (hence, subring) that is
powered only over the primes inside π2.

(2) A characteristic subring of a p-powered Lie ring need not be p-powered: Consider the Lie ring L =
Q o Q where the action of the acting Q on the other Q is by rational number multiplication. The
ring is rationally powered, i.e., it is a Q-Lie algebra. However, the characteristic subring Q o Z is
not powered over any prime.

(3) It is possible to have a nilpotent Lie ring L (in fact, we can choose L to have class two) such that
the abelianization of L is rationally powered (hence torsion-free), but L itself is not torsion-free: We
can take L to be the quotient of NT (3,Q) by a subgroup Z inside its central Q. The abelianization
of L is Q×Q, while the center is Q/Z. Thus, the abelianization of L is rationally powered, whereas
L has p-torsion for all primes p.

Explicitly, L is given as the set of matrices:
0 a12 a13

0 0 a23

0 0 0

 | a12, a23 ∈ Q, a13 ∈ Q/Z


with the Lie bracket defined as the bracket arising from matrix multiplication.

(4) It is possible to have a nilpotent Lie ring L (in fact, we can choose L to have class two) such that L
is torsion-free but the abelianization of L is not torsion-free: Let L be a central product of NT (3,Z)
by Q identifying a copy of Z inside Q with the center of UT (3,Z). In this case, the abelianization is
isomorphic to Z× Z×Q/Z, which has torsion for all primes.

Explicitly, L is:
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
0 a12 a13

0 0 a23

0 0 0

 | a12, a23 ∈ Z, a13 ∈ Q


This result is the expected dual to Theorem 17.21 that fails to hold. The expected dual to that

result should say that all quotients of a p-torsion-free nilpotent group by its lower central series
members are also p-torsion-free. This fails to be true in this situation.

18.7. Is every characteristic subring invariant under powering? The following is a Lie ring analogue
of Conjecture 17.28.

Conjecture 18.10. Suppose L is a nilpotent Lie ring and M is a characteristic subring of L. Suppose π
is a set of primes such that L is π-powered. Then, M is also π-powered.

The corresponding result is false for solvable Lie rings. See (2) in the list of counterexamples in Section
18.6.

The corresponding result is true for abelian Lie rings, because the map x 7→ (1/p)x is an automorphism
of L for every p ∈ π.

Apart from abelian Lie rings, there are some important types of nilpotent groups for which the conjecture
can be demonstrated to be true. Remars about special cases similar to those found in Section 17.15 apply
here.

In Section 22.3, we will discuss some implications of this conjecture being true when restricted to the Lie
rings that participate in the Baer correspondence.

19. Free powered groups and powering functors

19.1. Construction of the free powered group. This section uses basic terminology from universal
algebra. For background on the terminology, see Section B.4. The section also builds on Section 17.4, where
we described how the collection of π-powered groups for a prime set π is a variety of algebras with a natural
forgetful functor to the variety of groups.

For any variety of algebras, we can talk of the free algebra in that variety on any set. In particular, we
can talk of the free π-powered group F (S, π) on a set S. Working with this free group is difficult because,
unlike the usual free group, it is difficult to work out a reduced form for elements of the free π-powered
group. It is also obvious that the canonical map from S to F (S, π) is injective. To see this, note that the
free π-powered abelian group on S is the free Z[π−1]-module with basis indexed by S, and this is a quotient
group of F (S, π). Since the free π-powered abelian group on S has the property that the natural map from
S to it is injective, the natural map from S to F (S, π) is also injective.

An explicit construction of the free π-powered group on a set S is as follows. Start with the abstract free
group F (S). In each iteration, do the following:

• Adjoin pth roots (for all p ∈ π) of all the elements so far.
• Take the free group generated by all these.
• For every pair of elements that have the same pth power (for one or more p ∈ π), set them to be

equal (i.e., factor out by the relation of their being equal).
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The group constructed at each stage has a natural homomorphism to it from the previous group. The
direct limit of this sequence is the desired group F (S, π).

19.2. Free powered nilpotent groups. In Section 15, we defined the free nilpotent group of class c on a
set S. We now define the π-powered analogue of that construction.

Definition (Free π-powered nilpotent group). Suppose S is a set, π is a set of primes, and c is a
positive integer. The free π-powered nilpotent group of class c on S is defined as the quotient group
F (S, π)/γc+1(F (S, π)) where F (S, π) is the free π-powered group on S. Equivalently, this group, along
with the set map to it from S, is the initial object in the category of groups of nilpotency class at most c
with set maps to them from S.

The functor sending a set to its free π-powered nilpotent group of class c is left adjoint to the forgetful
functor from π-powered nilpotent groups of class (at most) c to sets.

19.3. π-powered words and word maps. Word maps (described in the Appendix, Section E.1) are an
important tool in the study of the variety of groups and other varieties of algebras. In particular, we can define
words and word maps relative to the variety of π-powered groups. We will use the jargon π-powered word
to describe a word relative to the variety of π-powered groups. A π-powered word in n letters g1, g2, . . . , gn

can be described using an expression that involves composing the operations of multiplication, inverses, and
taking pth roots for primes p ∈ π. Two such expressions define the same word if they give the same element
in the free π-powered group F (S, π) where S = {g1, g2, . . . , gn}.

For any π-powered group G and any π-powered word w in n letters, we can define the π-powered word
map on G corresponding to w. This is a map Gn → G. By abuse of notation, we will denote this map
by the letter w as well, i.e., for x1, x2, . . . , xn ∈ G, we denote the image of (x1, x2, . . . , xn) under w by
w(x1, x2, . . . , xn).

For a prime set π and a positive integer c, we can also consider π-powered class c words. These are
words with respect to the variety of π-powered groups of nilpotency class at most c. We can correspondingly
considered π-powered class c word maps. For a π-powered class c word w in n letters and a π-powered class
c group G, the word map induced by w is a set map Gn → G.

19.4. Localization and powering functors. For a set π of primes, the π-powering functor is a functor
from the category of groups to the category of π-powered groups that is left adjoint to the forgetful functor
from the category of π-powered groups to the category of groups. More explicitly, for a group G, the π-
powering of G is a group K along with a homomorphism ϕ : G → K such that for any homomorphism
θ : G→ L from G to a π-powered group L, there is a unique homomorphism α : K → L such that θ = α ◦ϕ.

For a prime set π, the π-localization functor refers to the powering functor for the set of primes outside
of π.

We begin with a lemma.

Lemma 19.1. Suppose G is a group, π is a set of primes, and K is the π-powering of G with the
π-powering homomorphism ϕ : G→ K. The following are true:

(1) Let N be the kernel of ϕ. Then, N contains all the elements of G whose order is a π-number.
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(2) K is generated as a π-powered group by the image ϕ(G). Equivalently, K does not have any proper
π-powered subgroup containing ϕ(G).

Proof. Proof of (1): If g ∈ G has order a π-number, then ϕ(g) also has order a π-number, since the order of
ϕ(g) divides the order of g. However, K is π-powered, hence π-torsion-free, so ϕ(g) is the identity element
of K. Thus, g is in N , the kernel of ϕ.

Proof of (2): Viewing the π-powering functor as a “free” functor, we see thatK is generated as a π-powered
group by the image of G. �

In general, we cannot say much more: the kernel of the homomorphism may be a lot bigger than the
subgroup generated by π-torsion elements. However, in the case of nilpotent groups, the kernel is precisely
the set of π-torsion elements (which in fact form a subgroup), and the π-powering is itself a nilpotent group
with the same nilpotency class. We now develop the framework that will allow us to get to proofs. We will
prove this at the end of Section 19.6.

19.5. Root set of a subgroup. Suppose G is a group and H is a subgroup of G. We denote by π
√
H

(relative to the ambient group G) the set of all elements x ∈ G such that xn ∈ H for some π-number n. We
begin with some lemmas. Note that if G is non-nilpotent, π

√
H need not be a subgroup of G.21 Thus, the

results below do depend on the assumption of G being nilpotent.

Theorem 19.2. (1) Suppose G is a nilpotent group, H is a subgroup of G, and π is a set of primes.
Then, π

√
H is also a subgroup of G.

(2) Suppose G is a nilpotent group, π is a set of primes, and A,B are subgroups of G with A normal in
B. Then, π

√
A is normal in π

√
B.

This appears as Theorem 10.19 in Khukhro’s book [27]. The book does not prove this result, but provides
a similar, more specialized proof for a related result, Theorem 9.18.

Proof. Proof of (1): We can assume without loss of generality G = 〈 π
√
H〉. If not, simply replace G by the

subgroup 〈 π
√
H〉 and proceed.

With this assumption, the goal is to show that G = π
√
H.

We note that for any quotient map ϕ : G→M , ϕ(G) = 〈 π
√
ϕ(H)〉. In particular, this is true for quotient

maps by lower central series members.
We now prove that G = π

√
H by induction on the nilpotency class of G. The base case for induction,

namely the case of abelian groups, is obviously true. For the inductive step, assume we have established the
result for class c− 1, and need to prove it for G of class c.

Any element of γc(G) is a product of iterated c-fold commutators involving elements of G. Since the c-fold
iterated commutator is multilinear, the element can be expressed as a product of iterated c-fold commutators
involving elements of π

√
H, which is a generating set for G. Each such iterated commutator is of the form:

u = [[. . . [[x1, x2], x3], . . . , xc−1], xc]

21For instance, let G be the symmetric group S3 and H be the trivial subgroup. Let π be the set {2}. Then, π
√

H is a subset
of size four comprising the identity element and the three elements of order two, and it is not a subgroup.
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with xi ∈ π
√
H. For each xi, there exists a π-number ni such that xni

i ∈ H, and then, using multilinearity,
we get that:

un1n2...nc = [[. . . [[xn1
1 , xn2

2 ], xn3
3 ], . . . , xnc−1

c−1 ], xnc
c ]

The number n1n2 . . . nc is a π-number since each ni is a π-number. Hence, a suitable power of u in in
H ∩ γc(G), so u ∈ π

√
H ∩ γc(G). Thus, γc(G) is abelian and is generated by elements in π

√
H ∩ γc(G). Since

a product of commuting elements of π
√
H ∩ γc(G) must also be in π

√
H ∩ γc(G), we get that:

γc(G) ≤ π
√
H ∩ γc(G)

In particular, we get that:

γc(G) ≤ π
√
H

By the observation regarding quotients, we also have that:

G/γc(G) = 〈 π
√
Hγc(G)/γc(G)〉

By the inductive hypothesis, this gives us that:

G/γc(G) = π
√
Hγc(G)/γc(G)

We now complete the proof. Suppose g ∈ G. From the fact about G/γc(G), there exists a π-number m
such that gm ∈ Hγc(G). Thus, gm = hu where h ∈ H and u ∈ γc(G) (which is in particular central). Since
γc(G) ≤ π

√
H, there exists a π-number n such that un ∈ H. Thus, gmn = (gm)n = (hu)n = hnun (since

u ∈ γc(G) is central) and this is an element of H. Thus, mn is a π-number such that gmn ∈ H, so g ∈ π
√
H.

Proof of (2): Please see the reference ([27], Theorem 9.18 and 10.19). �

Note in particular that this shows that in a nilpotent group G, π
√

1, i.e., the set of elements whose order
is a π-number, is a subgroup of G.

19.6. Minimal powered group containing a torsion-free group. The following is a theorem from [27]
(Theorem 10.20, Page 122).

Theorem 19.3. Suppose π is a set of primes and G is a π-torsion-free nilpotent group of class c.

(1) There exists a π-powered group Ĝπ of nilpotency class c containing G such that Ĝπ = π
√
G is precisely

the set of elements that arise as nth roots of elements of G for n varying over π-numbers.
(2) The group Ĝπ is uniquely determined up to isomorphism. In particular, any automorphism of G

extends to an automorphism of Ĝπ.
(3) If F is free nilpotent of class c, then F̂π is the free nilpotent π-powered group of class c.

A few comments are in order here before we proceed. Note that π-powered groups are very nicely behaved
– all their important characteristic subgroups, quotients, and subquotients are π-powered. For the most part,
therefore, if we start with a π-powered group and use deterministic processes, we will stay with π-powered
groups.
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The π-torsion-free groups are not so nice. In the counterexamples section (section 17.13), we saw situations
where a torsion-free group has an abelianization that is not torsion-free. This means that we need to proceed
with a little more care.

We now prove a statement we made at the end of Section 19.4.

Theorem 19.4. The following are true for a set of primes π:

(1) Suppose G is a π-torsion-free nilpotent group. Then, Ĝπ is the π-powering of G and the inclusion
map G→ Ĝπ is the natural homomorphism.

(2) Suppose G is a nilpotent group and T is the set of elements of G whose order is a π-number.
The quotient group G/T is a π-torsion-free nilpotent group, ˆG/T

π
is the π-powering of G, and

the composite of the quotient map G → G/T and the inclusion G/T → ( ˆG/T )π is the natural
homomorphism to the π-powering of G.

Proof. Proof of (1): Suppose ϕ : G → K is the natural homomorphism to the π-powering of G. Denote by
θ : G→ Ĝπ the canonical inclusion map of Theorem 19.3. By the universality of K, there exists α : K → Ĝπ

such that θ = α ◦ ϕ.
Since θ is injective, ϕ is also injective, so we can view G as a subgroup of K. Part (2) of Theorem 19.3

tells us that inside K, Ĝπ = π
√
G. Thus, Ĝπ is a π-powered subgroup of K containing G. By Lemma 19.1,

Ĝπ = K.
Proof of (2): By Theorem 19.2, T = π

√
1 is a subgroup of G. If any element in G/T has π-torsion, then

any representative g for it in G has the property that gn ∈ T for n a π-number, and therefore, that (gn)m = 1
for n and m both π-numbers, forcing g to have order a π-number, so g ∈ T . Thus, G/T is π-torsion-free.
The rest of the proof is similar to (1). �

19.7. Every π-powered class c word is expressible as a root of an ordinary class c word. This
theorem follows from Theorem 19.3.

Theorem 19.5. Suppose w is a π-powered class c word in n letters. Then, w can be expressed as v1/m

where v is an ordinary word (i.e., a word using the group operations only, without any powering operations),
and m is a π-number, i.e., all the prime divisors of m are in π.

Proof. Denote by F the free group on n letters of nilpotency class c, and denote by F̂π its π-powered
envelope, which is clearly the free π-powered group on n letters. w can be described as an element of F̂π.
By Theorem 19.3, F̂π = π

√
F . Thus, there exists a π-number m such that wm ∈ F . Let v = wm. The result

follows. �

19.8. Results about isoclinisms for π-powered nilpotent groups. We now state and prove a π-powered
analogue of Theorem 4.2. We will prove the results in the context of nilpotent groups, since this will be the
area of primary application. Similar statements can be made for non-nilpotent groups, but the notation and
proof become messier, so we restrict attention to the nilpotent case.
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Theorem 19.6. Suppose c ≥ 1 and π is any set of primes. Suppose w(g1, g2, . . . , gn) is a π-powered class
c word in n letters with the property that w evaluates to the identity element in any π-powered abelian
group. Then, for any group G, the word map w : Gn → G obtained by evaluating w descends to a map:

χw,G : (Inn(G))n → G′

Any word w that is an iterated commutator (with any bracketing) satisfies this condition.

Proof. By Theorem 19.5, we can write w as v1/m where v is an ordinary word andm is a π-number. Moreover,
since w is guaranteed to be satisfied in any π-powered abelian group, so is v. Thus, v is satisfied in the vector
space over the rationals generated by the n letters. So, v is satisfied in the free abelian group generated by
the n letters, and therefore v is satisfied in any abelian group. Thus, Theorem 4.2 applies to the word v,
and we obtain that the map descends to a map:

χv,G : Inn(G))n → G′

Since w = v1/m and G′ is π-powered by Theorem 17.20, we can obtain the map:

χw,G : Inn(G))n → G′

�

The next theorem is related to Theorem 4.3.

Theorem 19.7. Suppose c ≥ 1, π is a set of primes, and (ζ, ϕ) is a homoclinism of π-powered class c
groups G1 and G2, where ζ : Inn(G1) → Inn(G2) and ϕ : G′1 → G′2 are the component homomorphisms.
Then for any π-powered class c word w(g1, g2, . . . , gn) that is trivial in every π-powered abelian group (as
described above), we have:

χw,G2(ζ(x1), ζ(x2), . . . , ζ(xn)) = ϕ(χw,G1(x1, x2, . . . , xn))

for all x1, x2, . . . , xn ∈ Inn(G).
Any word w that is an iterated commutator (with any order of bracketing) satisfies this condition, and

the theorem applies to such word maps.

Proof. By Theorem 19.5, we can write w as v1/m where v is an ordinary word andm is a π-number. Moreover,
since w is guaranteed to be satisfied in any π-powered abelian group, so is v. Thus, v is satisfied in the vector
space over the rationals generated by the n letters. So, v is satisfied in the free abelian group generated by
the n letters, and therefore v is satisfied in any abelian group. Thus, Theorem 4.2 applies to the word v,
and we obtain:

χv,G2(ζ(x1), ζ(x2), . . . , ζ(xn)) = ϕ(χv,G1(x1, x2, . . . , xn))

Taking mth roots on both sides, we obtain:
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χw,G2(ζ(x1), ζ(x2), . . . , ζ(xn)) = ϕ(χw,G1(x1, x2, . . . , xn))

as desired. �

19.9. Results for the upper central series. We begin with a simple-looking result whose proof relies on
downward induction with the upper central series. The technique used in the proof is similar to the technique
used in the proof of Theorem 17.21.

Lemma 19.8. Suppose π is a set of primes and G is a π-torsion-free nilpotent group. Suppose H is a
subgroup of G. Then, for any natural number n, Zn( π

√
H) = π

√
Zn(H).

Proof. The direction Zn( π
√
H) ≤ π

√
Zn(H) is obvious: note that any element in the group on the left has

some π-multiple that is in H, and that therefore must also be in Zn(H) by definition. We thus concentrate
on proving the opposite inclusion.

Suppose G has nilpotency class c ≥ 2 (note that if c = 1 there is nothing to prove).
Consider the c-fold left-normed commutator map of the form:

T : (x1, x2, . . . , xc) 7→ [. . . [[x1, x2], x3], . . . , xc]

This map is a homomorphism in each coordinate holding the other coordinates fixed. Note that this fact
is very specific to the class being c. It fails for higher class. Moreover, the set of values for x1 ∈ H for which
the output is always the identity for the other inputs restricted to H is precisely the subgroup Zc−1(H).

Now, suppose x ∈ π
√
Zc−1(H). If we now consider:

T (x, x2, . . . , xc)

where each xi in in π
√
H, we see that if we replace each input by a suitable power of it, the first input

lands inside Zc−1(H) and the remaining inputs land inside H. Thus, a suitable π-multiple of T (x, x2, . . . , xc)
is the identity. Since G is π-torsion-free, this forces T (x, x2, . . . , xc) to be the identity, so we obtain that
π
√
Zc−1(H) ≤ Zc−1( π

√
H).

The result can now be extended further down the upper central series. The key trick in executing the
extension is to replace the original c-fold commutator with smaller-fold commutators, but now restrict the
first input to being within the member one higher. In general when inducting down from Zi(H) to Zi−1(H),
we consider a left-normed commutator of length i, restricting the first input to be within Zi(H) and allowing
all other inputs to vary freely within H or π

√
H. �

We can apply this to the minimal π-powered group:

Lemma 19.9. Suppose G is a π-torsion-free nilpotent group and Ĝπ is a minimal π-powered group
containing G. Let K = Zn(G) Then, K̂π is canonically isomorphic to Zn(Ĝπ).

Proof. This follows from the preceding lemma (Lemma 19.8) and Theorem 19.3. �
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19.10. Results for the lower central series. Of the two results stated for the upper central series, only
one has an analogue for the lower central series. The analogue of the first lemma breaks down, while the
second still has a valid analogue.

To see why the analogue of the first lemma breaks down, let G be the central product of UT (3,Z) and
Q where we identify the central Z in UT (3,Z) with a Z subgroup in Q. Let H be the subgroup UT (3,Z).
Then, if we take π as the set of all primes, we have that π

√
H = G. Thus, ( π

√
H)′ = G′, which is the central

Z of G and also the center of H. On the other hand π
√
H ′ is the full center of G, and it is isomorphic to Q.

Clearly, the two are not the same.
On the other hand, the second result, pertaining to the minimal π-powered group, still holds.

Lemma 19.10. Suppose G is a π-torsion-free nilpotent group and Ĝπ is a minimal π-powered group
containing G. Then, ˆγi(G)

π
is canonically isomorphic to γi(Ĝπ).

Proof. Since Ĝπ is π-powered, Theorem 17.20 tells us that γi(Ĝπ) is also π-powered. We already know that
γi(G) ≤ γi(Ĝ), and thus, π

√
γi(G) ≤ γi(Ĝπ). By Theorem 19.3, the left side becomes ˆγi(G)

π
. Thus, we have

that:

ˆγi(G)
π
≤ γi(Ĝπ)

The proof for the other direction is also fairly similar and proceeds by inducting over the lower central
series, starting from smaller members upwards. The mechanics of the proof are quite similar to that of
Theorem 19.2. We begin by looking at γc(G) as the image of the c-fold iterated left normed commutator
map, and note that we can pull powers in and out of the commutators. For brevity, we omit the proof
details. �

20. Free powered Lie rings and powering functors for Lie rings

The final results of this section mirror those of the preceding section (Section 19). However, the proofs
are much easier.

20.1. Construction of the free powered Lie ring. This section uses basic terminology from universal
algebra. For background on the terminology, see Section B.4.

For any variety of algebras, we can talk of the free algebra in that variety on any set. In particular, we
can talk of the free π-powered Lie ring on a set S. We already saw in Section 18 that π-powered Lie rings are
the same as Z[π−1]-Lie algebras. Thus, the free π-powered Lie ring on S coincides with the free Z[π−1]-Lie
algebras. Equivalently, the free Z[π−1]-Lie algebra on S is Z[π−1]⊗ L where L is the free Lie algebra on S.
We will denote the free π-powered Lie algebra on S as Lie algebra as F (S, π) here to keep notation similar
to the preceding section.

20.2. Free nilpotent and free powered nilpotent Lie rings. We begin with the definition.

Definition (Free π-powered nilpotent Lie ring). Suppose S is a set, π is a set of primes, and c is a
positive integer. The free π-powered nilpotent Lie ring of class c on S is defined as the quotient Lie ring
F (S, π)/γc+1(F (S, π)) where F (S, π) is the free π-powered Lie ring on S. Equivalently, this Lie ring, along
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with the set map to it from S, is the initial object in the category of Lie rings of nilpotency class at most c
with set maps to them from S.

The functor sending a set to its free π-powered nilpotent Lie ring of class c is left adjoint to the forgetful
functor from π-powered nilpotent Lie rings of class (at most) c to sets.

20.3. π-powered words and word maps. We can define π-powered words and π-powered class c words,
and the corresponding word maps, in a manner analogous to Section 19.3. Due to the biadditivity of the
Lie bracket, we can readily deduce the Lie ring analogues of results that took us some effort to deduce for
groups. Further, we do not need the assumption of nilpotency.

Any π-powered word w(g1, g2, . . . , gn) can be written in the form 1
mv(g1, g2, . . . , gn) where v is an ordinary

word (a sum of Lie products) and m is a π-number. The same conclusion applies if we start with a π-powered
class c word.

20.4. Localization and powering functors. For a set π of primes, the π-powering functor is a functor
from the category of Lie rings to the category of π-powered Lie rings that is left adjoint to the forgetful
functor from the category of π-powered Lie rings to the category of Lie rings. More explicitly, for a Lie
ring L, the π-powering of L is a Lie ring K along with a homomorphism ϕ : L → K such that for any
homomorphism θ : L→ N from L to a π-powered Lie ring N , there is a unique homomorphism α : K → N

such that θ = α ◦ ϕ.
It turns out that the π-powering functor is the same as the functor that tensors with Z[π−1] to change

the base ring to Z[π−1]. Explicitly, the functor takes the Z-Lie algebra L and returns the Z[π−1]-Lie algebra
Z[π−1]⊗Z L.

For a prime set π, the π-localization functor refers to the powering functor for the set of primes outside
of π.

20.5. Results about isoclinisms for π-powered Lie rings. We now state and prove a π-powered ana-
logue of Theorem 5.2. Note that unlike the situation for groups, we do not restrict ourselves to the nilpotent
case, because the proofs are straightforward without the assumption of nilpotency. However, if we wish, we
can formulate the results in the context of π-powered class c Lie ring words. The proofs will remain similar.

Theorem 20.1. Suppose π is a set of primes and w(g1, g2, . . . , gn) is a π-powered word in n letters
with the property that w evaluates to the zero element in any π-powered abelian Lie ring. Then, for any
π-powered Lie ring L, the word map w : Ln → L obtained by evaluating w descends to a map:

χw,L : (Inn(L))n → L′

Proof. As discussed above, we can write w = (1/m)v where m is a π-number and v is a Lie word (a sum
of Lie products) and m is a π-number. Moreover, since w is guaranteed to be satisfied in any π-powered
abelian Lie ring, so is v. Thus, v is satisfied in the vector space over the rationals generated by the n letters.
So, v is satisfied in the free abelian Lie ring generated by the n letters, and therefore v is satisfied in any
abelian Lie ring. Thus, Theorem 5.2 applies to the word v, and we obtain that the map descends to a map:
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χv,L : Inn(L))n → L′

Since w = (1/m)v and L′ is π-powered by Lemma 18.8, we can obtain the map:

χw,L : Inn(L))n → L′

�

The next theorem is related to Theorem 5.3.

Theorem 20.2. Suppose π is a set of primes and (ζ, ϕ) is a homoclinism of π-powered Lie rings L1 and
L2, where ζ : Inn(L1) → Inn(L2) and ϕ : L′1 → L′2 are the component homomorphisms. Then for any
π-powered word w(g1, g2, . . . , gn) that is trivial in every π-powered abelian Lie ring (as described above), we
have:

χw,L2(ζ(x1), ζ(x2), . . . , ζ(xn)) = ϕ(χw,L1(x1, x2, . . . , xn))

for all x1, x2, . . . , xn ∈ Inn(G).
Any word w that is an iterated commutator (with any order of bracketing) satisfies this condition, and

the theorem applies to such word maps.

Proof. We can write w = (1/m)v where v is an ordinary word and m is a π-number. Moreover, since w is
guaranteed to be satisfied in any π-powered abelian Lie ring, so is v. Thus, v is satisfied in the vector space
over the rationals generated by the n letters. So, v is satisfied in the free abelian Lie ring generated by the
n letters, and therefore v is satisfied in any abelian Lie ring. Thus, Theorem 5.2 applies to the word v, and
we obtain:

χv,L2(ζ(x1), ζ(x2), . . . , ζ(xn)) = ϕ(χv,L1(x1, x2, . . . , xn))

Dividing both sides by m, we obtain:

χw,L2(ζ(x1), ζ(x2), . . . , ζ(xn)) = ϕ(χw,L1(x1, x2, . . . , xn))

as desired. �

21. Baer correspondence: the basic setup

The Baer correspondence was introduced by Reinhold Baer in [3]. We will review the correspondence in
this section, and study it in further detail in the next two sections (Sections 22 and 23). This paves the way
for the section after that (Section 24), which contains a novel contribution of this thesis, that we call the
Baer correspondence up to isoclinism. This is relatively straightforward to prove and understand. It sets the
stage for the next few sections, where we discuss the Lazard correspondence (introduced by Lazard in [28])
and our variation of it, namely the Lazard correspondence up to isoclinism.

Many of the ideas described in this section are similar to, and build upon, ideas in Section 3, where we
describe the abelian Lie correspondence.
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21.1. Baer Lie groups and Baer Lie rings. We begin with some definitions. These definitions are not
standard, and there may be somewhat different meanings in other sources that use these words.

Definition (Baer Lie group). A group G is termed a Baer Lie group if G is powered over the prime 2 (per
Definition 17.3; explicitly, this means that every element of G has a unique square root) and G is nilpotent
with nilpotency class at most 2.

Definition (Baer Lie ring). A Lie ring L is termed a Baer Lie ring if L is powered over the prime 2
(i.e., its additive group is powered over 2 per Definition 17.3; explicitly, this means that every element has
a unique half) and L is nilpotent with nilpotency class at most 2.

The Baer correspondence is a correspondence:

Baer Lie groups ↔ Baer Lie rings

A group and Lie ring that are in Baer correspondence have the same underlying set.

21.2. Construction from group to Lie ring. Consider a Baer Lie group G with multiplication denoted
by juxtaposition and the identity element denoted by 1. We define a Baer Lie ring, denoted logG or log(G),
as follows. The underlying set of logG is the same as the underlying set of G, and the operations are as
follows.

• The addition on log(G) is defined as x + y := xy√
[x,y]

where [x, y] denotes the group commutator.

Note that because the group has class two, it does not matter whether we use the left action
convention for the commutator [x, y] = xyx−1y−1 or the right action convention for the commutator
[x, y] = x−1y−1xy: they both mean the same thing.

Note that [x, y] ∈ Z(G) (where Z(G) denotes the center of G) because G has class at most two.
G is 2-powered, so by Lemma 17.5, the center Z(G) is also 2-powered. Thus,

√
[x, y] is also in Z(G).

Thus, we can “divide” xy by this element unambiguously, without specifying whether the division is
on the left or on the right.

There are two alternative expressions for x + y that are equal to the above and are sometimes
more useful to use: x+ y =

√
xy
√
x and x+ y =

√
xy2x. For more on these expressions, see Section

21.6.
• The zero element of log(G) is defined as equal to the identity element 1 of G.
• The additive inverse −x is defined as −x := x−1.
• The Lie bracket [x, y]Lie is defined as the group commutator [x, y]. As remarked above, it does not

matter whether we use the left action convention or the right action convention for the commutator.

Lemma 21.1. logG (as defined above, with the same underlying set as G), is a Baer Lie ring.

Proof. The proof requires showing the following:

(1) Addition is associative
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(2) Addition is commutative
(3) Identity and inverses work
(4) The Lie bracket is additive in the first variable
(5) The Lie bracket is additive in the second variable
(6) The Lie bracket is alternating
(7) The Lie bracket satisfies the Jacobi condition and gives a class two Lie ring
(8) The Lie ring is 2-powered.

Proof of (1): We want to show that for every x, y, z in G (possibly equal, possibly distinct), we have:

(x+ y) + z = x+ (y + z)

We first consider the left side:

(x+ y) + z =

xy√
[x,y]

· z√[
xy√
[x,y]

, z

]
We know that for c central, [a, bc] = [ac, b] = [a, b]. Since the reciprocal of

√
[x, y] is central, it can be

dropped from inside commutator expressions, and we simplify to:

(x+ y) + z =
xyz√

[x, y]
√

[xy, z]
The square root operation is a homomorphism on the center, and we can thus rewrite it as:

(†) (x+ y) + z =
xyz√

[x, y][xy, z]

Similarly, the right side of the associativity result we want to prove becomes:

(††) x+ (y + z) =
xyz√

[x, yz][y, z]

Thus, to prove associativity, it suffices to show that the right sides of (†) and (††) are equal, which in turn
reduces to proving that:

[x, y][xy, z] = [x, yz][y, z]

For a group of class two, the commutator map is a homomorphism in each of its coordinates (see Lemma
C.2 for a proof of this and related statements). Thus, both sides simplify to:

[x, y][x, z][y, z]

and hence both sides are equal, completing the proof.
Proof of (2): We want to show that for any x, y in the group, x+ y = y + x. The key ingredient to our

proof is the observation that [x, y]−1 = [y, x].
We have, by definition:
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x+ y =
xy√
[x, y]

and:

y + x =
yx√
[y, x]

It thus suffices to prove that:

xy√
[x, y]

=
yx√
[y, x]

which is equivalent to proving that:

xy√
[x, y]

= yx
√

[x, y]

which in turn is equivalent to proving that:

xy = yx[x, y]

which is true by the definition of [x, y].
Proof of (3): We have:

x+ 1 =
x1√
[x, 1]

= x

and:

1 + x =
1x√
[1, x]

= x

Thus, 1 is an identity element for the Lie ring addition.
We also have:

x+ x−1 =
xx−1√
[x, x−1]

= 1

and:

x−1 + x =
x−1x√
[x−1, x]

= 1

Proof of (4) and (5): These follow from the corresponding facts for the commutator map in a group of
class two.

Proof of (6): This follows from the general fact that [x, y]−1 = [y, x].
Proof of (7): In fact, all Lie products [[x, y], z] are zero, so the Jacobi identity is trivially satisfied.
Proof of (8): We have:

x+ x =
x2√
[x, x]

= x2

In other words, the double of an element in the Lie ring is the same as its square in the group. Since the
group is 2-powered, the Lie ring is also 2-powered. �
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21.3. Construction from Lie ring to group. Suppose L is a Baer Lie ring with addition + and Lie
bracket [ , ]. We define a Baer Lie group exp(L) as follows. The underlying set of exp(L) is the same as the
underlying set of L. The group operations are defined as follows:

• The group multiplication on exp(L) is defined as:

xy = x+ y +
1
2
[x, y]

• The identity element for the group multiplication of exp(L) is defined as the element 0 of L.
• The inverse operation is defined as x−1 := −x.

Lemma 21.2. exp(L) (defined as above, with the same underlying set as L) is a Baer Lie group. Moreover,
the group commutator in exp(L) coincides with the Lie bracket in L.

Proof. The proof requires showing the following:

(1) Multiplication is associative.
(2) The identity element and inverses work.
(3) The commutator map in the group agrees with the Lie bracket.
(4) The group has nilpotency class at most two.
(5) The group is 2-powered.

Proof of (1): Let x, y, z be arbitrary (possibly equal, possibly distinct) elements of L.
To prove: (xy)z = x(yz)
Proof: We begin by simplifying the left side. We have:

(xy)z =
(
x+ y +

1
2
[x, y]

)
+ z +

1
2

[
x+ y +

1
2
[x, y], z

]
We use the linearity of the Lie bracket, and also use that the Lie ring has nilpotency class two to simplify

[[x, y], z] to zero. The expression simplifies to:

(xy)z = x+ y + z +
1
2

([x, y] + [x, z] + [y, z])

Similarly, we can show that:

x(yz) = x+ y + z +
1
2

([x, y] + [x, z] + [y, z])

Thus, associativity holds.
Proof of (2): From the expression for group multiplication, we obtain that if [x, y] = 0, then xy = x+ y.

In particular, this means that:

x(0) = x+ 0 = x

and:

(0)x = 0 + x = x
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Thus, x(0) = (0)x = x, so 0 is an identity element for multiplication, and we obtain that the multiplication
defined turns L into a monoid.

Further, we obtain that:

x(−x) = x+ (−x) = 0

and:

(−x)x = (−x) + x = 0

Thus, −x is a two-sided multiplicative inverse for x. L is thus a monoid where every element has a
two-sided multiplicative inverse, hence is a group. Further, −x = x−1 in this group for all x.

Proof of (3): We want to compute an explicit expression for the group commutator [x, y]Group = xyx−1y−1 =
(xy)(yx)−1 in terms of the Lie ring operations.

First, we use that (yx)−1 = −(yx), so we get:

[x, y]Group = (xy)(−(yx)) = (xy) + (−(yx)) +
1
2
[xy,−(yx)]

This simplifies to:

[x, y]Group = x+ y +
1
2
[x, y]− (y + x+

1
2
[y, x]) +

1
2
[x+ y +

1
2
[x, y],−(y + x+

1
2
[y, x])]

Simplify using the fact that the Lie ring has class two, so that all Lie products of the form [a, [b, c]] or
[[a, b], c] are zero. We get:

[x, y]Group = [x, y]

Thus, the group commutator equals the Lie bracket. Note that the proof above is for the group commutator
defined using the left action convention, but an analogous proof exists for the group commutator defined
using the right action convention.

Proof of (4): This follows from (3) and the fact that the Lie ring has nilpotency class two.
Proof of (5): For any x ∈ L, x2 with respect to the group structure is given by:

x2 = x+ x+
1
2
[x, x] = 2x

In other words, the squaring operation in the group coincides with the doubling operation in the Lie
ring. The latter is bijective because the Lie ring is 2-powered. Hence, the former operation is also bijective.
Therefore, the group is 2-powered. �

21.4. Mutually inverse nature of the constructions. We now show that exp and log are two-sided
inverses of each other.

Lemma 21.3. The construction of the Baer Lie ring of a Baer Lie group and the construction of the
Baer Lie group of a Baer Lie ring are two-sided inverses of each other. Explicitly:

(1) Start with a Baer Lie group G. Then, G = exp(log(G)).
(2) Start with a Baer Lie ring L. Then, L = log(exp(L)).
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Proof. Note that the identity element and inverse map are the same for the group and Lie ring, and the
Lie bracket for the Lie ring is the same as the commutator for the group, so the main thing to check is the
interplay between the Lie ring addition and the group multiplication.

Proof of (1): We want to show that the “new” group multiplication coincides with the original group
multiplication:

(x+ y) +
1
2
[x, y] = xy

We begin by simplifying the left side. We begin by replacing x+ y by its expression in terms of the group
multiplication, and obtain:

xy√
[x, y]

+
1
2
[x, y]

This further simplifies to:

xy√
[x,y]

√
[x, y]√[

xy√
[x,y]

,
√

[x, y]
]

The lower denominator is the identity element because
√

[x, y] is central on account of the group having
class two and being 2-powered. The numerator simplifies to xy. This completes the proof.

Proof of (2): We want to show that the “new” Lie ring addition coincides with the original Lie ring
addition. Explicitly, we want to show that:

xy√
[x, y]

= x+ y

We simplify the left side. Note that
√

[x, y] = 1
2 [x, y] is central back in the Lie ring, so this becomes:

(x+ y + 1
2 [x, y])− 1

2 [x, y]
This simplifies to x+ y, as desired. �

21.5. Understanding the formulas in the Baer correspondence. Given two elements x and y in a
Baer Lie group G, there are two possible products we can consider: xy and yx. The quotient of these
products (xy)/(yx) is the commutator [x, y]. Note that we get the same answer whether we use left or right
quotients, because the elements xy and yx commute on account of the class being two.

The “average” of the two products can be thought of as an element z that is midway between xy and yx,
i.e., we want z to satisfy:

xy

z
=

z

yx

If we rearrange and solve, we will get:

z =
xy√
[x, y]

The Baer Lie ring construction sets x+ y to equal this “average” value and sets the Lie bracket [x, y] to
equal the “distance” between xy and yx. This agrees with our earlier statement made in Section 1.7 about
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Lie-type correspondences in general: “The addition operation of the Lie ring captures the abelian part of the
group multiplication, whereas the Lie bracket captures the non-abelian part of the group multiplication.”

21.6. Twisted multiplication of a 2-powered group. Suppose G is a 2-powered (not necessarily nilpo-
tent) group. For any u ∈ G, denote by

√
u the unique element v ∈ G such that v2 = u.22

The twisted multiplication on G has two somewhat different but related definitions. The two definitions
are denoted as ∗1 and ∗2 below, and the reason for their equivalence is discussed below:

x ∗1 y :=
√
xy
√
x

x ∗2 y :=
√
xy2x =

√
(xy)(yx)

The latter can be thought of as the “mean” between xy and yx, and more explicitly, it is the unique
solution z to:

z−1xy = z(yx)−1

For any x, y ∈ G, we have:

x2 ∗1 y2 = (x ∗2 y)2 = xy2x

Thus, the square map establishes an isomorphism between (G, ∗2) and (G, ∗1).
As proved in [17], G acquires the structure of a gyrocommutative gyrogroup (and in particular, the

structure of a loop) under either of these equivalent operations. Explicitly:

• The identity element for ∗1 equals the identity element for ∗2, and both are equal to the identity
element for G as a group.

• The inverse map for ∗1 is the same as the inverse map for ∗2, and both are equal to the inverse map
for G as a group.

• In terms of ∗2, the gyroautomorphism gyr([x, y]) is defined to be conjugation inG by
√
xy2xx−1y−1 =

(
√
xy2x)−1xy. Note that the conjugation element can be thought of as the “mean deviation”, i.e.,

it is the distance between either of xy and yx and the “mean” between them, in a manner similar
to that described in Section 21.5.

The connection of the twisted multiplication with the Baer correspondence is as follows: given a Baer Lie
group, the addition operation in the corresponding Baer Lie ring coincides with the twisted multiplication
(in fact, it coincides with both ∗1 and ∗2). Explicitly, for a Baer Lie group, the Lie ring addition has the
following equivalent forms:

x+ y =
xy√
[x, y]

=
√
xy
√
x =

√
xy2x

21.7. Preservation of homomorphisms and isomorphism of categories. In Section 3.2, we made a
number of observations leading to the conclusion that the category of abelian groups is isomorphic to the
category of abelian Lie rings, with the isomorphisms given explicitly by the log and exp functors.

22The typical case of interest is where G is a finite group, in which case being 2-powered is equivalent to being an odd-order
group. However, none of the statements here rely on finiteness.
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The analogous conclusion also holds for the Baer correspondence. However, the reasoning behind these
steps is somewhat different from the abelian case. In the abelian case, the only conceptual distinction
between the group side and Lie ring side was that the latter had a trivial Lie bracket operation. Other
than that, the operations were the same. In the Baer case, the group operations and Lie ring operations
are defined somewhat differently. The reason that the correspondence works is that any formula commutes
with any homomorphism. For instance, if w(x, y) is the word describing the Lie ring addition in terms of the
group operations (including powering operations), then for any group homomorphism ϕ:

ϕ(w(x, y)) = w(ϕ(x), ϕ(y))

In the case of the Baer correspondence, the formula in question is:

w(x, y) =
xy√
[x, y]

and the assertion becomes:

ϕ

(
xy√
[x, y]

)
=

ϕ(x)ϕ(y)√
[ϕ(x), ϕ(y)]

Since the Lie ring operations are defined in terms of the group operations, a homomorphism of groups
preserves the Lie ring operations, and therefore gives a homomorphism of Lie rings. In the opposite direction,
since the group operations are defined in terms of the Lie ring operations, a homomorphism of Lie rings
preserves the group operations, and therefore gives a homomorphism of groups. Explicitly, in this case, if ϕ
is a Lie ring homomorphism between Baer Lie rings, then the assertion is that:

ϕ

(
x+ y +

1
2
[x, y]

)
= ϕ(x) + ϕ(y) +

1
2
[ϕ(x), ϕ(y)]

The explicit statements are below:

• log defines a functor from Baer Lie groups to Baer Lie rings: Suppose G1 and G2 are Baer Lie groups
and ϕ : G1 → G2 is a group homomorphism. Then, there exists a unique Lie ring homomorphism
log(ϕ) : log(G1) → log(G2) that has the same underlying set map as ϕ. Reason: The Lie ring
operations are defined as formal expressions in terms of the group operations and the square root
operation, and this expression is preserved under homomorphisms.

• exp defines a functor from Baer Lie rings to Baer Lie groups: Suppose L1 and L2 are Baer Lie rings
and ϕ : L1 → L2 is a Lie ring homomorphism. Then, there exists a unique group homomorphism
exp(ϕ) : exp(G1) → exp(G2) that has the same underlying set map as ϕ. Reason: The group
operations are defined as formal expressions in terms of the Lie ring operations and the halving
operation, and this expression is preserved under homomorphisms.

• The log and exp functors are two-sided inverses of each other: This has four parts:
– For every Baer Lie group G, G = exp(log(G)). This is part of Lemma 21.3.
– For every Baer Lie ring L, L = log(exp(L)). This is part of Lemma 21.3.
– For every group homomorphism ϕ : G1 → G2 of Baer Lie groups, exp(log(ϕ)) = ϕ. This follows

immediately from the fact that both taking log and taking exp preserve the underlying set map.
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– For every Lie ring homomorphism ϕ : L1 → L2 of Baer Lie rings, log(exp(ϕ)) = ϕ. This follows
immediately. This following immediately from the fact that both taking log and taking exp
preserve the underlying set map.

The upshot is that the Baer correspondence defines an isomorphism of categories over the category of sets
between the category of Baer Lie groups and the category of Baer Lie rings. Here, by “category of Baer Lie
groups” we mean the full subcategory23 of the category of groups where the objects are the Baer Lie groups.
Similarly, by “category of Baer Lie rings” we mean the full subcategory of the category of Lie rings where
the objects are Baer Lie rings.

Note that all steps of this reasoning can be repeated for the Lazard correspondence. To avoid repetition,
we will omit the details and instead refer back to this section as needed.

21.8. Consequences for the Baer correspondence of being an isomorphism of categories. We
have established above that the Baer correspondence defines an isomorphism of categories. Mimicking the
steps in Section 3, we obtain the following:

• The Baer correspondence preserves endomorphism monoids. Explicitly, if G is a Baer Lie group and
L = log(G), then End(G) and End(L) are isomorphic monoids, and define the same collection of set
maps. The reasoning mimicks Section 3.4.

• The Baer correspondence also preserves automorphism groups. Again, the reasoning mimicks Section
3.4.

• We can define the Baer correspondence up to isomorphism (mimicking Section 3.5). This is a
correspondence:

Isomorphism classes of Baer Lie groups ↔ Isomorphism classes of Baer Lie rings

22. Baer correspondence: additional remarks

22.1. Subgroups, quotients, and direct products. In Section 3.7, we noted that the abelian Lie cor-
respondence between an abelian group and an abelian Lie ring gives rise to a correspondence between all
subgroups of the group and all subrings of the Lie ring.

A related result holds for the Baer correspondence, but there are more caveats. The important caveat is
that the 2-powered groups do not form a subvariety of the variety of groups. Therefore, the Baer Lie groups
do not form a subvariety of the variety of groups. Let us examine subgroups, quotients, and direct products
separately:

• Subgroups: A subgroup of a Baer Lie group need not be a Baer Lie group. For instance, the group
Q of rational numbers is a Baer Lie group, but its subgroup Z is not a Baer Lie group.

• Quotients: A quotient group of a Baer Lie group need not be a Baer Lie group. For instance, the
group Q of rational numbers is a Baer Lie group, but its quotient group Q/Z is not a Baer Lie group.

• Direct products: An arbitrary direct product of Baer Lie groups is a Baer Lie group.

Similar observations hold for Baer Lie rings:

• Subrings: A subring of a Baer Lie ring need not be a Baer Lie ring. For instance, the abelian Lie
ring with additive group Q but its subring with additive group Z is not a Baer Lie ring.

23Full subcategory means that all morphisms of the big category (in this case, the category of groups) between objects of the
subcategory (in this case, Baer Lie groups) are morphisms in the subcategory.
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• Quotient rings: A quotient ring of a Baer Lie ring need not be a Baer Lie ring. For instance, the
abelian Lie ring with additive group Q is a Baer Lie ring, but the quotient ring with additive group
Q/Z is not a Baer Lie ring.

• Direct products: An arbitrary direct product of Baer Lie rings is a Baer Lie ring.

Due to the above considerations, we need to impose some restrictions on the nature of the subgroup and
nature of the quotient group in order to use the Baer correspondence to obtain a correspondence between
subgroups and subrings, or between quotient groups and quotient rings.

Call a subgroup H of a Baer Lie group G a Baer Lie subgroup if H is 2-powered. In particular, this means
that H is a Baer Lie group in its own right. Note also that for a normal subgroup H of G, H is a Baer Lie
subgroup if and only if the quotient group G/H is a Baer Lie group (this follows from the two-out-of-three
theorem, Theorem 17.27). In this case, we say that G/H is a Baer Lie quotient group of G.

Call a subring M of a Baer Lie ring L a Baer Lie subring if M is 2-powered. In particular, this means
that M is a Baer Lie ring in its own right. Note also that for an ideal I of L, I is a Baer Lie subring if and
only if the quotient ring L/I is a Baer Lie ring (this follows from Theorem 18.1). In these equivalent cases,
we will say that I is a Baer Lie ideal of L and L/I is a Baer Lie quotient ring of L.

• Baer Lie subgroups correspond to Baer Lie subrings: Suppose a Baer Lie ring L is in Baer corre-
spondence with a Baer Lie group G, i.e., L = log(G) and G = exp(L). Then, for every Baer Lie
subgroup H of G, log(H) is a subring of L, and the inclusion map of log(H) in L is obtained by
applying the log functor to the inclusion map of H in G. In the opposite direction, for every Baer
Lie subring M of L, exp(M) is a subgroup of G, and the inclusion map of exp(M) in G is obtained
by applying the exp functor to the inclusion map of M in L. The Baer correspondence thus gives
rise to a correspondence:

Baer Lie subgroups of G ↔ Baer Lie subrings of L

• Quotient groups by normal Baer Lie subgroups correspond to quotient rings by Baer Lie ideals:
Suppose a Baer Lie ring L is in Baer correspondence with a Baer Lie group G. Then, for every
normal Baer Lie subgroup H of G, log(G/H) is a quotient Lie ring of L, and the quotient map
L → log(G/H) is obtained by applying the log functor to the quotient map G → G/H. In the
opposite direction, for every Baer Lie ideal I of L, exp(L/I) is a quotient group of G, and the
quotient map G→ exp(L/I) is obtained by applying the exp functor to the quotient map L→ L/I.
The Baer correspondence thus gives rise to correspondences:

Normal Baer Lie subgroups of G ↔ Baer Lie ideals of L

Baer Lie quotient groups of G ↔ Baer Lie quotient rings of L

• Direct products correspond to direct products: Suppose I is an indexing set, andGi, i ∈ I is a collection
of Baer Lie groups. For each i ∈ I, let Li = log(Gi). Then, the external direct product

∏
i∈I Li is in

Baer correspondence with the external direct product
∏

i∈I Gi. Moreover, the projection maps from
the direct product to the individual direct factors are in Baer correspondence. Also, the inclusion
maps of each direct factor in the direct product are in Baer correspondence.

22.2. Twisted subgroups and subrings. We introduce the notion of twisted subgroup of a group. Our
definition differs somewhat from the definition found in the literature (see, for instance, [17]) in that our
definition requires twisted subgroups to be closed under taking inverses. The condition is not stated in [17]
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because that paper, and the other related literature, are interested primarily in finite groups, where the
condition is redundant.

Definition (Twisted subgroup). A subset K of a group G is termed a twisted subgroup if it satisfies the
following three conditions:

(1) For any x, y ∈ K (possibly equal, possibly distinct), xyx ∈ K.
(2) The identity element of G is in K.
(3) For any x ∈ K, x−1 ∈ K.

Note that Conditions (1) and (2) imply closure under taking positive powers, so if every element of K has
finite order in G, condition (3) is redundant.

We will call a twisted subgroup K of a group G powered over a set of primes π if the map x 7→ xp is a
bijection from K to itself for every p ∈ π.

We had earlier defined the addition in a Baer Lie group as follows:

x+ y =
xy√
[x, y]

As described in Section 21.6, we can rewrite this as:

x+ y =
√
xy
√
x

It follows that under the Baer correspondence, we have a correspondence:

2-powered twisted subgroups of the Baer Lie group ↔ 2-powered additive subgroups of the Baer Lie ring

22.3. Characteristic subgroups and subrings. In Section 22.1, we noted that the Baer correspondence
between a Baer Lie group G and a Baer Lie ring L induces a correspondence:

Baer Lie subgroups of G ↔ Baer Lie subrings in L

Recall that a Baer Lie subgroup of a Baer Lie group is simply a 2-powered subgroup. Similarly, a Baer
Lie subring of a Baer Lie ring is simply a 2-powered subring.

In Section 21.8, we noted that the Baer correspondence preserves automorphisms groups, i.e., Aut(G) and
Aut(L) define the same collection of permutations on the underlying set. Thus, the above correspondence
preserves the property of being invariant under automorphisms, and we obtain a correspondence:

Characteristic Baer Lie subgroups of G ↔ Characteristic Baer Lie subrings of L

Note that, combined with the fact that normal Baer Lie subgroups of G correspond with Baer Lie ideals
of L, this tells us that any characteristic Baer Lie subring of L (i.e., any 2-powered characteristic subring of
L) is an ideal of L. Note that this is a nontrivial statement about the structure of L, since there do exist
Lie rings that have characteristic subrings that are not ideals.

Conjecture 17.28 (respectively, Conjecture 18.10) stated that for a prime set π, any characteristic subgroup
(respectively, characteristic Lie subring) in a π-powered nilpotent group (respectively, π-powered nilpotent
Lie ring) must be π-powered. We can consider restricted versions of Conjectures 17.28 and 18.10 to the case
of Baer Lie groups and Baer Lie rings respectively. If both restricted conjectures are true, then we have a
correspondence:
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Characteristic subgroups of G ↔ Characteristic subrings of L

Analogous remarks to the above remarks for characteristic subgroups and subrings apply to the case of
fully invariant subgroups and subrings. Note that the conjecture that would be necessary for fully invariant
subgroups and subrings is implied by the conjecture for characteristic subgroups.

22.4. The p-group case. Let p be an odd prime. We will use the term p-group for a group (not necessarily
finite) in which the order of every element is a power of p. We will use the term p-Lie ring for a Lie ring
whose additive group is a p-group. The Baer correspondence restricts to a correspondence:

p-groups of nilpotency class (at most) two ↔ p-Lie rings of nilpotency class (at most) two

The square root operation in this case corresponds to a powering operation. Explicitly, if g is an element
of a p-group G, the order of g is a prime power pk.

√
g equals g(pk+1)/2. In particular, it is a positive integral

power of g.
Thus, every subset of a p-group that is closed under taking positive powers is also closed under taking

square roots. In particular, every subgroup of a p-group is 2-powered, and every twisted subgroup of a
p-group is 2-powered.

Thus, in the case of p-groups for odd primes p, the correspondences discussed in the preceding sections
are particularly easy. The correspondence between 2-powered subgroups and 2-powered subrings becomes a
correspondence:

Subgroups of G ↔ Subrings of L

We also obtain correspondences:

• Normal subgroups of G ↔ Ideals of L
• Quotient groups of G ↔ Quotient rings of L
• Characteristic subgroups of G ↔ Characteristic subrings of L
• Fully invariant subgroups of G ↔ Fully invariant subrings of L

The correspondence between 2-powered twisted subgroups and 2-powered additive subgroups of the Lie
ring becomes a correspondence:

Twisted subgroups of G ↔ Subgroups of the additive group of L

22.5. Relation between the Baer correspondence and the abelian Lie correspondence. In an
earlier section (Section 3), we introduced the abelian Lie correspondence:

Abelian groups ↔ Abelian Lie rings

In the preceding section (Section 21), we introduced the Baer correspondence:

Baer Lie groups ↔ Baer Lie rings

We used the same symbols (log and exp) to describe the functors for both correspondences. This leads
to a potential for ambiguity: what happens if a group happens to be both an abelian group and a Baer Lie
group? It turns out that in this case, the two correspondences agree. Explicitly:

• Suppose G is a 2-powered abelian group, i.e., G is both an abelian group and a Baer Lie group.
Then, the two definitions of logG (based on the abelian Lie correspondence and Baer correspondence
respectively) agree with each other.

• Suppose L is a 2-powered abelian Lie ring, i.e., L is both an abelian Lie ring and a Baer Lie ring. Then,
the two definitions of expL (using the abelian Lie correspondence and Baer Lie correspondence) agree
with each other.
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• Suppose G1 and G2 are 2-powered abelian groups and ϕ : G1 → G2 is a homomorphism of groups.
Then, the two definitions of log(ϕ) (based on the abelian Lie correspondence and Baer correspondence
respectively) agree.

• Suppose L1 and L2 are 2-powered abelian Lie rings and ϕ : L1 → L2 is a homomorphism of Lie
rings. Then, the two definitions of exp(ϕ) (based on the abelian Lie correspondence and Baer
correspondence respectively) agree.

Every time we introduce a new correspondence between groups and Lie rings, we will attempt to verify
whether it is compatible with existing correspondences. Checking compatibility will reduce to the question
of checking whether the formulas agree with each other in the case of overlap. For illustrative purposes,
consider the proof that for a 2-powered abelian Lie ring L, the two definitions of expL agree. The definitions
of group multiplication in terms of the Lie ring operations:

x+ y for the abelian Lie correspondence, x+ y +
1
2
[x, y] for the Baer Lie correspondence

These formulas agree for a 2-powered abelian group.

22.6. Abelian subgroups, abelian quotient groups, center and derived subgroup. Suppose a group
G is in Baer correspondence with a Lie ring L. We know that G and L have the same underlying set, and
the commutator map in G coincides with the Lie bracket in L. From this, we can deduce the following:

(1) The abelian subgroups of G are in abelian Lie correspondence with the abelian subrings of L, and
this abelian Lie correspondence arises by restricting the Baer correspondence between G and L.

Abelian subgroups of G ↔ Abelian subrings of L

Note that for the 2-powered abelian subgroups and 2-powered abelian subrings, this coincides
with the Baer correspondence.

The correspondence also restricts to a correspondence:

Abelian normal subgroups of G ↔ Abelian ideals of L

and to a subcorrespondence:

Abelian characteristic subgroups of G ↔ Abelian characteristic subrings of L

Finally, the correspondence gives rise to a correspondence:

Quotient groups of G by abelian normal subgroups ↔ Quotient rings of L by abelian ideals

Note, however, that the instances of this last correspondence are not instances of the Baer cor-
respondence. They do, however, form instances of the divided Baer correspondence described in
Section 23.4.

(2) For a subset S of the common underlying set of G and L, the subgroup generated by S in G is
abelian if and only if the subring generated by S in L is abelian, and if so, the subgroup and subring
are in abelian Lie correspondence.

(3) The abelian quotient groups of G are in abelian Lie correspondence with the abelian quotient Lie
rings of L. Explicitly:

Abelian quotient groups of G ↔ Abelian quotient Lie rings of L

We obtain a correspondence between the corresponding kernels. Explicitly, the Baer correspon-
dence between G and L restricts to a correspondence via identification of the underlying sets:
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Subgroups of G containing G′ ↔ Subrings of L containing L′

Note, however, that each individual instance of this correspondence is not an instance of the Baer
correspondence. Rather, it would be an instance of the generalization of the Baer correspondence
described in Section 23.2.

(4) The center Z(G) is in abelian Lie correspondence as well as in Baer correspondence with the center
Z(L). Note that the claim has two parts:
(a) Z(G) and Z(L) have the same underlying set: This follows from the fact that the commutator

map of G coincides with the Lie bracket map of L, so the set of elements whose commutator
with every element of G is the identity element coincides with the set of elements whose Lie
bracket with every element of L is the zero element.

(b) Both Z(G) and Z(L) are 2-powered, so that we can apply the Baer correspondence: This follows
from Lemmas 17.5 and 18.3.

(5) The inner automorphism group G/Z(G) is in abelian Lie correspondence as well as in Baer correspon-
dence with the inner derivation Lie ring L/Z(L). This follows from the preceding point about Z(G)
being in correspondence with Z(L) and the observations made regarding subgroups and quotients
in Section 22.1.

(6) The derived subgroup G′ is in abelian Lie correspondence as well as in Baer correspondence with
the derived subring L′. Note that the claim has two parts:
(a) G′ and L′ have the same underlying set: The commutator map in G coincides with the Lie

bracket map in L, so the set of commutators in G coincides with the set of elements in L that
can be expressed as Lie brackets. We know that both G′ is an abelian group and L′ is an abelian
Lie ring, because both G and L have class two. By point (2) above, G′ and L′ are in abelian
Lie correspondence and have the same underlying set.

(b) G′ and L′ are both 2-powered: This follows from Theorem 17.20 and Lemma 18.8 respectively.
(7) The abelianization Gab = G/G′ is in abelian Lie correspondence as well as in Baer correspondence

with the abelianization Lab = L/L′. This follows from the preceding point and the observations
regarding subgroups and quotients in Section 22.1.

(8) The abelian subgroups of G that contain G′ and are contained in Z(G) are in abelian Lie correspon-
dence with the abelian subgroups of L that contain L′ and are contained in Z(L). Moreover, the
corresponding quotient group is in abelian Lie correspondence with the corresponding quotient ring.

22.7. Cyclic subgroups, preservation of element orders, and the parallels with one-parameter

subgroups. We noted in Section 22.6 that given a group G and a Lie ring L that are in Baer correspondence,
we obtain a correspondence, with each instance also an instance of the abelian Lie correspondence:

Abelian subgroups of G ↔ Abelian subrings of L

In particular, we get a correspondence:

Cyclic subgroups of G ↔ Cyclic subrings of L

Another way of framing this is that the additive group of L and the group G have the same cyclic subgroup
structure. In other words, the map exp : L → G restricts to an isomorphism on cyclic subgroups of the
additive group of L. Some of the generalizations of the Baer correspondence, including all those described
in the next section, continue to have this property, so that the remarks of the next paragraph apply to these
generalizations.
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For any element of the common underlying set, its order as an element of the additive group of L is the
same as its order as an element of G. In the case that the common underlying set of G and L is finite,
this translates to the requirement that for every positive integer d, the number of elements of G of order
d equals the number of elements of the additive group of L as order d. In particular, we obtain that the
order statistics of G (information about how many elements are there of any given order) coincide with the
order statistics of some abelian group. When considering whether a group G can participate in a potential
generalization of the Baer correspondence, this condition serves as a potential filter.

The Baer correspondence for cyclic subgroups and subrings is closely related to the correspondence be-
tween one-dimensional subspaces of the real Lie algebra and one-parameter subgroups of the real Lie group
under the Lie correspondence described in Section 1.3 (we did not describe one-parameter subgroups there).

22.8. Inner automorphisms and inner derivations. Supose G is a Baer Lie group and L is the corre-
sponding Baer Lie ring. Under the Baer correspondence, Z(G) is in Baer correspondence (and hence also in
abelian Lie correspondence) with Z(L), and the quotient group G/Z(G) ∼= Inn(G) is in Baer correspondence
(and hence also in abelian Lie correspondence) with the quotient Lie ring L/Z(L) ∼= Inn(L). The former
gives the inner automorphisms of the group G (that are hence also automorphisms of L). The latter gives
the inner derivations of L.

Consider an element x ∈ G with image x in the common underlying set of G/Z(G) and L/Z(L). We
would like to understand the relationship between these two set maps from L to L:

• The inner automorphism corresponding to x, i.e., the map g 7→ xgx−1, now viewed as a automor-
phism of L as a Lie ring. As noted in Section 21.8, the automorphisms of L as a Lie ring coincide
with the automorphisms of G as a group. We will denote this map as Adx.

• The inner derivation corresponding to x, i.e., the map g 7→ [x, g] where [ , ] denotes the Lie bracket.
We will denote this map as adx. Derivations and inner derivations are discussed in more detail in
the Appendix, Sections A.7 and A.8.

We first work out the set map Adx in terms of the Lie ring operations.

Adx(g) = xgx−1 =
(
x+ g +

1
2
[x, g]

)
x−1

This simplifies to:

Adx(g) = x+ g +
1
2
[x, g] + (−x) +

[(
x+ g +

1
2
[x, g]

)
,−x

]
This simplifies to:

Adx(g) = g + [x, g]

or equivalently:

Adx(g) = g + adx(g)

If we view both Adx and adx as elements of the ring EndZ(L) of endomorphisms of the underlying additive
group of L, then we can write the above relationship as:

Adx = 1 + adx
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The expression for Adx in terms of adx is a truncated form of the power series for the exponential
function. It turns out that this is not a coincidence. We will see in Section 31.9 that for the Malcev and
Lazard correspondences, Adx = exp(adx).

23. Generalizations of the Baer correspondence: relaxing the definitions

In the construction of the Baer Lie ring and Baer Lie group from one another, we did not use the existence
of unique square roots in the whole group or Lie ring. Rather, we only made use of the fact that we be able
to make sense of the expression

√
[x, y] when going from groups to Lie rings and of the expression 1

2 [x, y]
when going from Lie rings to groups, and further, that the outputs of these expressions land in the respective
centers.

23.1. Generalization that allows for division within the lower central series. This generalization
is a correspondence:

Groups of nilpotency class (at most) two where the derived subgroup is 2-powered↔ Lie rings of nilpotency
class (at most) two where the derived subring is 2-powered

Note that this correspondence has the advantage of including as subcorrespondences both the abelian Lie
correspondence and the Baer correspondence.

This correspondence behaves nicely in a number of ways:

• Isomorphism of categories: We can define log and exp functors and obtain an isomorphism of cate-
gories between the full subcategories of the category of groups and category of Lie rings as described
above. We can then deduce consequences similar to those described for the Baer correspondence in
Section 21.8.

• Subgroups and subrings: A subgroup of a group in this subcategory need not be in the subcategory.
However, if we do restrict to subgroups that satisfy the condition for being in the category, we can
deduce results analogous to the results stated for subgroups in Section 22.1. Note in particular that
the correspondence between subgroups and subrings here includes two subcorrespondences:

Abelian subgroups ↔ Abelian subrings

Baer Lie subgroups ↔ Baer Lie subrings

• Direct products: Direct products on the group side correspond with direct products on the Lie ring
side. The statement is similar to that for the abelian Lie correspondence (as described in Section
3.7) and the Baer correspondence (as described in Section 22.1).

However, the categories in question are not well-behaved with respect to the relation between subgroups
and quotients. Explicitly, it is possible to have a group in the category and a normal subgroup that is also
in the category, but such that the quotient group is not in the category. For instance, consider the case that
G = UT (3,Q) and H is a copy of Z in the center. Then, both G and H are objects of the category, and H
is normal in G, but the quotient group G/H is not an object of the category.

23.2. Generalization that allows for division starting in the lower central series and ending in

the upper central series. This generalization is a correspondence:
Groups of nilpotency class (at most) two where every element of the derived subgroup has a unique square

root in the center ↔ Lie rings of nilpotency class (at most) two where every element of the derived subring
has a unique half in the center.
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Note that the “unique square root in the center” clause could be interpreted in two ways: one could
understand it to mean that there is a unique square root in the whole group that happens to be in the
center, or one could understand it to mean that there is a unique square root among the elements in the
center. However, for nilpotent groups, these are equivalent. If every element of the derived subgroup has a
unique square root among elements of the center, then in particular the identity element has a unique square
root among elements in the center, so the center is 2-torsion-free. Thus. by Theorem 17.14, the whole group
is 2-torsion-free, so the squaring map is injective on the whole group.

Similarly, both ways of interpreting “unique half in the center” on the Lie ring side are equivalent to each
other.

Note also that by Lemma 17.5, the condition on the group side can be reformulated as “group of nilpotency
class (at most) two where every element of the derived subgroup has a unique square root in the whole group.”
A similar reformulation is possible on the Lie ring side by Lemma 18.3.

The correspondence is nice in a number of ways:

• Isomorphism of categories: We can define log and exp functors and obtain an isomorphism of cate-
gories between the full subcategories of the category of groups and category of Lie rings as described
above. We can then deduce consequences similar to those described for the Baer correspondence in
Section 21.8.

• Subgroups and subrings: A subgroup of a group in this subcategory need not be in the subcategory.
However, if we do restrict to subgroups that satisfy the condition for being in the category, we can
deduce results analogous to the results stated for subgroups in Section 22.1.

• Direct products: Direct products on the group side correspond with direct products on the Lie ring
side. The statement is similar to that for the abelian Lie correspondence (as described in Section
3.7) and the Baer correspondence (as described in Section 22.1).

However, the categories in question are not well-behaved with respect to the relation between subgroups
and quotients. Explicitly, it is possible to have a group in the category and a normal subgroup that is also
in the category, but such that the quotient group is not in the category. For instance, consider the case that
G = UT (3,Q) and H is a copy of Z in the center. Then, both G and H are objects of the category, and H
is normal in G, but the quotient group G/H is not an object of the category.

23.3. Incomparability of the generalizations. Neither of the two preceding generalizations contains the
other. Explicitly:

• Any abelian group with 2-torsion would be covered under the first generalization (described in Section
23.1) but not the second (described in Section 23.2).

• An example of a group that would be covered under the second generalization but not the first is the
group UT (3,Z) ∗Z Q where ∗ denotes the central product where we identify the center of UT (3,Z)
with a copy of Z in Q.

There are generalizations that are strictly more general than both the above generalizations. We consider
one such generalization below.

23.4. The divided Baer correspondence: a generalization that uses additional structure. This
generalization of the Baer correspondence involves specifying additional structure on the Lie ring and on the
group. We use new terminology in this section. However, the results of this section are not necessary for
our main results, and the terminology used here is not required for our main results.
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Definition (Baer-divided Lie group). A Baer-divided Lie group is a group G of nilpotency class at most
two equipped with an alternating Z-bilinear map {, } : G×G→ G (i.e., the map is a homomorphism in each
coordinate holding the other coordinate fixed, and {x, x} = 1 for all x ∈ G) such that the following hold:

(1) {x, y}2 = [x, y] for all x, y ∈ G, where [x, y] denotes the group commutator.
(2) {{x, y}, z} is the identity element of G for all x, y, z ∈ G.

Definition (Baer-divided Lie ring). A Baer-divided Lie ring is a Lie ring L (with Lie bracket denoted
[ , ]) equipped with an alternating Z-bilinear map {, } : L× L→ L such that the following hold:

(1) 2{x, y} = [x, y] for all x, y ∈ L.
(2) {, } also defines a Lie bracket on the additive group of L, and the corresponding Lie ring has nilpo-

tency class two.

In particular, the original Lie ring L with Lie bracket [ , ] is also a Lie ring of nilpotency class at most
two.

We can now define the divided Baer correspondence as a correspondence:

Baer-divided Lie groups ↔ Baer-divided Lie rings

In the direction from the group to the Lie ring, the correspondence uses the formula:

x+ y :=
xy

{x, y}
and:

[x, y] = [x, y]Group

In the direction from the Lie ring to the group, the correspondence uses the formula:

xy := x+ y + {x, y}

In other words, the roles of 1
2 [x, y] and

√
[x, y] are taken over by the operation {x, y} (of the group or

the Lie ring). The key difference is that this operation is an additional structure specified rather than being
purely dependent on the group or Lie ring as an abstract structure.

The Baer correspondence and the generalizations of it described earlier can be reframed in terms of the
divided Baer correspondence as follows:

(1) In the case of the Baer correspondence, as well as in the generalization described in Section 23.2, there
is a unique possibility for {x, y}. In fact, in the Baer correspondence as well as the generalization,
the uniqueness is at the level of elements: every element of the form [x, y] has a unique square root or
half. Note that there could be situations that fall outside this generalization where there is a unique
possibility for {x, y}, even though individual elements in the derived subgroup (respectively, derived
subring) have non-unique halves, as discussed in the example of UT (3,Z[1/2])× Z/2Z below.

(2) In the case of the generalization described in Section 23.1, the possibility for {x, y} need not be
unique. Nonetheless, there is a particular canonical choice we can make for {x, y}, namely the
unique option available within the deried subgroup or derived subring.
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Below, we describe some examples of the divided Baer correspondence.

(1) The case G = UT (3,Q)/Z and L = NT (3,Q)/Z: G is the group described as Example (3) in
the counterexample list in Section 17.13 and L is the Lie ring described in Example (3) in the
counterexample list in Section 18.6.

In this case, G is not a Baer Lie group and L is not a Baer Lie ring, because neither G nor L is
2-powered. However, we can give G the structure of a Baer-divided Lie group as follows. Note that
Z(G) = G′ is isomorphic to the subgroup Q/Z in G, and G/Z(G) = G/G′ is isomorphic to Q × Q.
The commutator map G/Z(G)×G/Z(G) → G′ can be described as the composite of the maps:

(Q×Q)× (Q×Q) → Q → Q/Z

where the map on the left is given by:

((a1, b1), (a2, b2)) 7→ a1b2 − a2b1

and the map Q → Q/Z is the quotient map.
There is a canonical choice of half for this map, namely, the composite:

(Q×Q)× (Q×Q) → Q → Q/Z

where the first map is:

((a1, b1), (a2, b2)) 7→
1
2
(a1b2 − a2b1)

Note that we circumvent the problem of non-unique halves in the derived subgroup or subring by
performing the halving in an intermediate group (namely Q) through which we factor the map.

Similar observations hold on the Lie ring side.
(2) The case G = UT (3,Z[1/2])×Z/2Z and L = NT (3,Z[1/2])×Z/2Z: Note that this case actually falls

under the earlier generalization described in Section 23.1. One interesting feature of this example is
that although in general the choice of half is non-unique when the center has 2-torsion, in this case,
there is a unique choice of divided Baer structure. Explicitly, each element of the derived subgroup
has two halves: a half inside the first direct factor, and a half that has a nontrivial second coordinate.
However, a linear choice of {, } requires that we choose each half inside the first direct factor. Similar
observations hold on the Lie ring side.

(3) The case where G and L are as follows:

G = 〈a, b, c | a4 = b4 = c4 = 1, ab = ba, ac = ca, [b, c] = a2〉

L = 〈a, b, c | 4a = 4a = 4c = 0, [a, b] = 0, [a, c] = 0, [b, c] = 2a〉

In this case, Z(G) = 〈a〉 and G′ = 〈a2〉. Z(G) is isomorphic to Z/4Z and G′ is the unique
subgroup of order two. We can define {, } as {b, c} = a with the rest of the definition following from
that. Note that this is not the unique choice of { , }, because we could choose {b, c} = a−1 as well.
However, it is a choice that works.

A similar construction works for L, and the divided Baer correspondence between G and L works
as expected.
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23.5. Category-theoretic perspective on the divided Baer correspondence. The Baer-divided Lie
groups form a category as follows:

• The objects of the category are Baer-divided Lie groups.
• For Baer-divided Lie groups G1 and G2, the morphisms from G1 to G2 are group homomorphisms
ϕ : G1 → G2 satisfying the additional condition ϕ({x, y}) = {ϕ(x), ϕ(y)} for all x, y ∈ G1. Note
that in the case that { , } is defined canonically in terms of the group operations, the additional
condition is satisfied for all group homomorphisms.

We can similarly define a category of Baer-divided Lie rings. The divided Baer correspondence defines an
isomorphism of categories between the category of Baer-divided Lie groups and the category of Baer-divided
Lie rings.

There is a natural forgetful functor from the category of Baer-divided Lie groups to the category of groups.
This functor forgets the { , }-structure and simply stores the underlying group structure. This forgetful
functor is faithful but not full: there may well be homomorphisms between groups that do not preserve
the { , }-structure. The functor is not injective or surjective on objects. It is not injective because there
exist groups with multiple possibilities for { , }. It is not surjective, even to the subcategory of groups of
nilpotency class two, because there exist such groups for which there is no possible { , }-structure.

The following are true.

• If G is a Baer Lie group, or more generally, a group that fits the generalization described in Section
23.2, then the functor is injective to G, i.e., there is a unique Baer-divided Lie group structure on
G. Further, if G1 and G2 are two such groups, then all homomorphisms between them are realized
as Baer-divided Lie group homomorphisms, so the functor behaves as a full functor if we restrict to
such groups.

• If G fits the generalization described in Section 23.1, then the functor need not be injective to G,
but there does exist a canonical choice of Baer-divided Lie group structure on G. In other words, if
we restrict attention to the subcategory of groups described in Section 23.1, we can obtain a functor
from this subcategory to the category of Baer-divided Lie groups that is a one-sided inverse to the
forgetful functor.

Analogous observations hold on the Lie ring side.

23.6. The case of finite p-groups. Note that for odd primes p, p-groups of class two and p-Lie rings
of class two fall in the domain of the Lazard correspondence, and we do not need to rely on any of the
generalizations. The case p = 2 is interesting. In this case, the following are true:

• The generalization described in Section 23.1 applies only to abelian 2-groups and abelian 2-Lie rings,
and not to any others.

• The generalization described in Section 23.2 does not apply to any nontrivial 2-groups or nontrivial
2-Lie rings, because the center is nontrivial and hence is not 2-powered.

• The divided Baer correspondence generalization applies to some but not all 2-groups of class two.
Explicitly, a necessary but not sufficient condition for a group G to be the underlying group of
a Baer-divided Lie group is that G′ ⊆ f1(Z(G)), where f1(Z(G)) denotes the set of squares of
elements in Z(G). A similar necessary but not sufficient condition exists on the Lie ring side.

153



24. Baer correspondence up to isoclinism

The concept of “Baer correspondence up to isoclinism” is a novel contribution of this thesis. Many of the
results in this section are based on joint work with John Wiltshire-Gordon.

24.1. Motivation. In Section 22.6, we noted that if G and L are in Baer correspondence, the subgroups of
G that contain G′ and are contained in Z(G) are in abelian Lie correspondence with the subrings of L that
contain L′ and are contained in Z(L). Further, for each such subgroup and subring in correspondence, the
associated quotient group and quotient ring are also in abelian Lie correspondence. In other words, we can
build the group G as a central extension of groups, and the Lie ring L as a central extension of Lie rings,
where the central subgroup of G is in abelian Lie correspondence with the central subring of L, and the
quotient group of G is in abelian Lie correspondence with the quotient ring of L.

We describe two extreme cases below.

(1) The case where the subgroup is Z(G) and the subring is Z(L). We can depict this case as follows:

0 → Z(G) → G→ G/Z(G) → 1
↓log ↓log ↓log

0 → Z(L) → L→ L/Z(L) → 0

Note that the log connecting G and L arises from the Baer correspondence. The log connecting
Z(G) with Z(L), and the log connecting G/Z(G) with L/Z(L), can be viewed as arising both from
the Baer correspondence and from the abelian Lie correspondence, as described in Section 22.6.

(2) The case where the subgroup is G′ and the subring is L′. We can depict this case as follows:

0 → G′ → G → G/G′ → 1
↓log ↓log ↓log

0 → L′ → L → L/L′ → 0

An analogous observation to the note in point (1) above applies here, with Z(G), Z(L), G/Z(G),
and L/Z(L) replaced by G′, L′, G/G′, and L/L′ respectively.

Our aim is to generalize the Baer correspondence to a situation where the middle downward arrow
(connecting G with L) is missing, but we still have an abelian Lie correspondence between the central
subgroup and central subring, an abelian Lie correspondence between the quotient group and quotient ring,
and a condition to the effect that the commutator map on the group side looks the same as the Lie bracket
map on the Lie ring side.

24.2. Definition of the correspondence. The Baer correspondence up to isoclinism is a correspondence
that we will define between the following two sets:

Equivalence classes up to isoclinism of groups of nilpotency class at most two ↔ Equivalence classes up
to isoclinism of Lie rings of nilpotency class at most two

Suppose G is a group of nilpotency class at most two and L is a Lie ring of nilpotency class at most two.
A Baer correspondence up to isoclinism between G and L is a pair (ζ, ϕ) where:

• ζ is an isomorphism from the abelian group Inn(G) to the abelian group that is the additive group
exp(Inn(L)) of Inn(L), and

• ϕ is an isomorphism from the abelian group G′ to the abelian group that is the additive group
exp(L′) of L′,
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such that the following diagram commutes:

Inn(G)× Inn(G)
ζ×ζ→ exp(Inn(L))× exp(Inn(L))

↓ωG ↓exp(ωL)

G′
ϕ→ exp(L′)

where ωG is the map Inn(G)× Inn(G) → G′ obtained from the commutator map on G, and ωL is the map
Inn(L) × Inn(L) → L′ obtained from the Lie bracket on L. We had introduced the notation for the maps
ωG and ωL in Sections 4 and 5.

We say that G and L are in Baer correspondence up to isoclinism if there exists a Baer correspondence
up to isoclinism between G and L.

The following are easy to verify. All the groups and Lie rings referred to below are of nilpotency class at
most two. The proofs of all the assertions below rely on a similar commutative diagram setup to the setup
used in Section 4.3 to prove that a composite of homoclinisms is a homoclinism.

• If G1 and G2 are isoclinic groups, and G1 and L are in Baer correspondence up to isoclinism, then
G2 and L are also in Baer correspondence up to isoclinism.

• If L1 and L2 are isoclinic Lie rings, and G and L1 are in Baer correspondence up to isoclinism, then
G and L2 are also in Baer correspondence up to isoclinism.

• If G1 and G2 are groups and L is a Lie ring such that G1 is in Baer correspondence up to isoclinism
with L and G2 is also in Baer correspondence up to isoclinism with L, then G1 and G2 are isoclinic.

• If L1 and L2 are Lie rings and G is a group such that G is in Baer correspondence up to isoclinism
with L1 and G is in Baer correspondence up to isoclinism with L2, then L1 and L2 are isoclinic Lie
rings.

In other words, the definition we gave above establishes a correspondence between some equivalences
classes up to isoclinism of groups and some equivalence classes up to isoclinism of Lie rings. However, it is
not yet clear that the correspondence applies to every equivalence class up to isoclinism of groups and to
every equivalence class up to isoclinism of Lie rings. Essentially, we need to show two things:

(1) For every group G of nilpotency class at most two, there exists a Lie ring L of nilpotency class at
most two such that G is in Baer correspondence up to isoclinism with L.

(2) For every Lie ring L of nilpotency class at most two, there exists a group G of nilpotency class at
most two such that G is in Baer correspondence up to isoclinism with L.

(1) is relatively easy to show: we can take the associated graded Lie ring of a group. (2) is harder to
show. We will now discuss some ideas related to group extension theory that will help us establish both (1)
and (2) in a better way.

24.3. Exterior square for an abelian group. Suppose G is an abelian group. Then, the following are
canonically isomorphic:

(1) The exterior square G ∧Z G of G as an abelian group.
(2) The exterior square G ∧ G of G as a group (as defined in section 9.1). The map in the forward

direction G ∧Z G → G ∧ G is as follows. Note that the commutator map in a class two group is
Z-bilinear, so that the map G × G → G ∧ G is Z-bilinear. Thus, it gives rise to a homomorphism
G ∧Z G→ G ∧G.

(3) The Schur multiplier M(G) of G as a group.
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(4) The exterior square G ∧ G of G as an abelian Lie ring. The exterior square is itself an abelian Lie
ring with the same additive group structure. We have already described this map in Section 10.3.

(5) The Schur multiplier M(G) of G as an abelian Lie ring.

We first note the equivalence of (2) with (3) and also the equivalence of (4) with (5). For the equivalence
of (2) and (3), note the canonical short exact sequence, introduced in Section 9.1:

0 →M(G) → G ∧G→ [G,G] → 1

Since G is abelian, [G,G] is trivial and we get an isomorphism M(G) ∼= G ∧G.
Similarly, the equivalence of (4) with (5) follows from the analogous canonical short exact sequence for

Lie rings introduced in Section 10.1.
It remains to show that the canonical map from (1) to (2) is an isomorphism and the canonical map from

(1) to (4) is an isomorphism.
To see this, we can rely on the explicit presentations for the exterior square provided in Section 13.4 (for

groups) and 14.3 (for Lie rings) to confirm that in the case that the group (respectively Lie ring) is abelian,
its exterior square as a group (respectively Lie ring) agrees with its exterior square as an abelian group.

In order to better keep track of whether we are thinking of G as an abelian group or as an abelian Lie
ring, it may sometimes help to use the log and exp functors of the abelian Lie correspondence (as described
in Section 3) to go back and forth between the descriptions. With this language, we can rewrite the above
results in the form:

• For any abelian group G, log(G ∧G) is canonically isomorphic to logG ∧ logG, where the ∧ on the
left represents the exterior square as a group and the ∧ on the right represents the exterior square
as a Lie ring.

• For any abelian Lie ring L, exp(L∧L) is canonically isomorphic to expL∧ expL where the ∧ on the
left represents the exterior square as a Lie ring and the ∧ on the right represents the exterior square
as a group.

24.4. Description of central extensions for an abelian group. Suppose A and G are abelian groups.
Recall from Section 6.5 that H2(G;A), termed the second cohomology group for trivial group action of G on
A, is a group whose elements correspond with the central extensions with central subgroup A and quotient
group G.

We are now assuming that G is abelian. Hence, all the extension groups have nilpotency class at most
two. Further, Gab = G and M(G) = G∧G as discussed. Thus, the short exact sequence described in Section
11.4 simplifies to:

(10) 0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G,A) → 0

The short exact sequence splits (but not necessarily canonically) and we get:

H2(G;A) ∼= Ext1Z(G;A)⊕Hom(G ∧G,A)

We will now proceed to explain the meaning of the short exact sequence in this context.

24.4.1. Description of the left map of the sequence. The map:
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Ext1Z(G;A) → H2(G;A)

can be interpreted as follows. The underlying set of the group on the left is canonically identified with
the set of all abelian group extensions with subgroup A and quotient group G. The group on the right is the
group whose elements are all the central extensions with central subgroup A and quotient group G. Every
abelian group extension is a central extension, and there is therefore a canonical injective set map from
Ext1Z(G;A) to H2(G;A). This set map turns out to be a group homomorphism based on the way the group
structures on Ext1Z(G;A) and H2(G;A) are defined. Delving into the group structure on Ext1Z(G;A) will be
too much of a diversion from our goal here, so we skip it.

The image of the map is described as precisely the set of those cohomology classes whose representative
2-cocycles are symmetric, i.e., any 2-cocycle f in that cohomology class satisfies the property that f(x, y) =
f(y, x) for all x, y ∈ G. This can be easily deduced from the discussion in Section 8.3.

24.4.2. Description of the right map of the sequence. The map:

H2(G;A) → Hom(G ∧G,A)

can be described as follows. For any group extension E, the commutator map E ×E → E descends to a
set map:

ωE,G : G×G→ A

Our earlier definition of ωE,G defined it as a map to [E,E], but [E,E] lies in the image of A (under the
inclusion of A in E), so it can be viewed as a map to A.

Note that the image of the map is in A because G is abelian. Further, ωE,G is bilinear, because the image
of the map is central. It thus defines a group homomorphism G ∧G→ A.

The homomorphism above can also be described in terms of the how it operates at the level of 2-cocycles
(this description requires understanding the explicit description of the second cohomology group using the
bar resolution, as given in Section 8). Explicitly, the map:

H2(G;A) → Hom(G ∧G,A)

arises from a homomorphism:

Z2(G;A) → Hom(G ∧G,A)

given by:

f 7→ Skew(f)

where Skew(f) is the map (x, y) 7→ f(x, y)− f(y, x).
Intuitively, this is because the commutator of two elements represents the distance between their products

in both possible orders, i.e., [x, y] is the quotient (xy)/(yx). Whether we use left or right quotients does not
matter because the group has class two.

Based on the discussion in Section 11.2, the homomorphism:

H2(G;A) → Hom(G ∧G,A)
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classifies extensions up to isoclinism of group extensions. In other words, the fibers for this map are
precisely the equivalence classes up to isoclinism of group extensions.

24.5. Description of central extensions for an abelian Lie ring. Suppose A and L are abelian Lie
rings. Recall that H2

Lie(L;A), called the second cohomology group for trivial Lie ring action, is a group whose
elements correspond to the congruence classes of central extensions with central subring A and quotient Lie
ring L.

We are now assuming that L is abelian. Hence, Lab = L and M(L) = L ∧ L. The short exact sequence
of Section 12.4 simplifies to:

(11) 0 → Ext1Z(L;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0

The short exact sequence splits canonically, and we get a canonical isomorphism:

H2
Lie(L;A) ∼= Ext1Z(L;A)⊕Hom(L ∧ L,A)

Note that L being abelian is crucial to the splitting being canonical. We will understand the splitting in
more detail, but first we need to explain what the maps are.

24.5.1. Description of the left map of the sequence. The map:

Ext1Z(L;A) → H2
Lie(L;A)

can be described as follows. The group on the left is canonically identified with the abelian Lie rings
arising as extensions with subring A and quotient ring L. The group on the right is canonically identified
with the central extensions with subring A and quotient ring L. Every abelian Lie ring extension is a central
extension, and there is therefore a canonical injective set map from Ext1Z(L;A) to H2

Lie(L;A). This set map
turns out to be a group homomorphism based on the way the group structures on Ext1Z(L;A) and H2

Lie(L;A)
are defined. Delving into the group structure on Ext1Z(L;A) will be too much of a diversion from our goal
here, so we skip it.

24.5.2. Description of the right map of the sequence. The map:

H2
Lie(L;A) → Hom(L ∧ L,A)

is defined as follows. For any extension Lie ring M , consider the Lie bracket M ×M →M . This descends
to a Z-bilinear map:

ωM : L× L→ A

Note that the image is in A because L is abelian. The map can be viewed as a homomorphism from L∧L
to A, and hence as an element of Hom(L ∧ L,A).

Note also that, per the discussion in Section 12.2, this homomorphism classifies the extension up to
isoclinism of Lie ring extensions. In other words, the fibers of this map are precisely the equivalence classes
up to isoclinism of Lie ring extensions.

24.5.3. Canonical splitting. We will now describe how the short exact sequence below splits:
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0 → Ext1Z(L;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0

We can describe the splitting either by specifying the projection H2
Lie(L;A) → Ext1Z(L;A) or by specifying

the inclusion Hom(L ∧ L,A) → H2
Lie(L;A). We do both.

The projection:

H2
Lie(L;A) → Ext1Z(L;A)

is defined as follows. For any extension Lie ring M , map it to the extension Lie ring that is abelian as
a Lie ring and has the same additive group as M . In other words, keep the additive structure intact, but
“forget” the Lie bracket.

The inclusion:

Hom(L ∧ L,A) → H2
Lie(L;A)

is defined as follows. Given a bilinear map b : L× L → A, define the extension Lie ring as a Lie ring M
whose additive group is L⊕A, and where the Lie bracket is:

[(x1, y1), (x2, y2)] = [0, b(x1, x2)]

In other words, we use the direct sum for the additive structure, and use the bilinear map to define the
Lie bracket.

In light of this, we can think of the direct sum decomposition as follows:

H2
Lie(L;A) ∼= Ext1Z(L;A)⊕Hom(L ∧ L,A)

The projection onto the first component stores the additive structure of the Lie ring, while destroying,
or forgetting, the Lie bracket. The projection onto the second component preserves the Lie bracket while
replacing the additive structure with a direct sum of L and A. Note also that the latter projection is
equivalent to passing to the associated graded Lie ring. The associated graded Lie ring is discussed in more
detail in the Appendix, Sections D.3, D.4, and D.5.

24.6. The Baer correspondence up to isoclinism for extensions. Suppose A and G are abelian groups.
Denote by L the abelian Lie ring whose additive group is G. In other words, L = logG under the abelian
Lie correspondence described in Section 3.

We abuse notation regarding A, using the same letter A to denote the abelian group and the abelian
Lie ring, which might more properly be written as logA when viewed as a Lie ring. We engage in this
abuse because, throughout this document, we deal with central extensions, so that the base of the extention
is always abelian. We do not abuse notation when dealing with G and L, because the distinction will be
helpful when we describe our later generalization, the Lazard correspondence up to isoclinism, in Section 39.

We have discussed above two short exact sequences:

0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G,A) → 0

and

0 → Ext1Z(L;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0
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We have canonical isomorphisms between the left terms of the exact sequences and between the right
terms of the exact sequences:

0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G,A) → 0
↓ ↓

0 → Ext1Z(L;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0

We now try to understand both component isomorphisms in greater detail.

24.6.1. The isomorphism of the Ext1 groups on the left side, and its relation to the abelian Lie correspondence.
We have a canonical isomorphism of groups:

Ext1Z(G;A) ∼= Ext1Z(L;A)

This is because, although we use different symbols for G and L, they both have the same underlying
additive group, and the Ext1 computation uses only the underlying additive group.

The elements of Ext1Z(G;A) correspond to the extension groups with subgroup A and quotient group G

where the extension group is abelian. The elements of Ext1Z(L;A) correspond to the extension Lie rings with
subring A and quotient Lie ring L where the extension Lie ring is abelian. The isomorphism above therefore
gives a correspondence:

Group extensions with subgroup A and quotient group G such that the extensions are abelian groups ↔
Lie ring extensions with subring A and quotient ring L such that the extensions are abelian Lie rings

For each group extension and Lie ring extension that are in bijection (in other words, each pair of elements
in the two isomorphic groups that are in bijection with each other), the corresponding extension group is in
abelian Lie correspondence with the corresponding extension Lie ring.

24.6.2. The isomorphism of the Hom groups on the right side, and its relation to the Baer correspondence
up to isoclinism. We have a canonical isomorphism:

Hom(G ∧G,A) ∼= Hom(L ∧ L,A)

We reviewed the meanings of the two groups in Sections 24.4.2 and 24.5.2. The group Hom(G ∧ G,A)
classifies the central extensions with central subgroup A and quotient group G up to isoclinism of extension.
The group Hom(L∧L,A) classifies the central extensions with central subring A and quotient Lie ring L up
to isoclinism of the extension.

The two Hom groups are isomorphic because, since L = logG, Section 24.3 tells us that the additive
group of L ∧ L is isomorphic to G ∧ G as an abelian group. Thus, the homomorphism groups can also be
identified with one another.

The isomorphism gives a correspondence:

Equivalence classes up to isoclinism of Lie ring extensions with central subring A and quotient Lie ring L
↔ Equivalence classes up to isoclinism of group extensions with central subgroup A and quotient group G

Any particular instance of this bijection (i.e., an equivalence class of Lie ring extensions and an equivalence
class of group extensions that are in bijection with each other) is termed a Baer correspondence up to
isoclinism for extensions.

We now state an important lemma that relates the Baer correspondence up to isoclinism for extensions
with the Baer correspondence up to isoclinism.
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Lemma 24.1. Supose A and G are abelian groups and L = logG is the corresponding abelian Lie ring.
Suppose E is a group extension with central subgroup A and quotient group G. Suppose N is a Lie ring
extension with central subring logA (which we denote as A via abuse of notation) and quotient Lie ring
L. Suppose further than the equivalence class up to isoclinism of the group extension E corresponds, via
the above bijection, to the equivalence class of the Lie ring extension N . Then, the group E is in Baer
correspondence up to isoclinism with the Lie ring N .

Proof. We have the following map induced by the commutator map in E:

ωE,G : G×G→ A

Similarly, we have the following map induced by the Lie bracket map in N :

ωN,L : L× L→ A

The extensions being in correspondence up to isoclinism means that ωN,L = log(ωE,G), in the sense that
the underlying set map of ωN,L coincides with the underlying set map of ωE,G. Note also that the images
of these maps need not be all of A. The image of the first map generates a subgroup that can be identified
with E′, whereas the image of the second map generates a subgroup that can be identified with the additive
group of N ′. Both maps coincide, so E′ and N ′ are in abelian Lie corespondence.

The image of Z(E) in G coincides with the normal subgroup {x ∈ G | ωE,G(x, y) = 0 ∀ y ∈ G}. Similarly,
the image of Z(N) in L coincides with the ideal {x ∈ L | ωN,L(x, y) = 0 ∀ y ∈ L}. The underlying sets
coincide, so the normal subgroup and ideal are in abelian Lie correspondence. Thus, the quotient group of
G by the image of Z(E) in G is in abelian Lie correspondence with the quotient group of L by the image of
Z(N) in L. Thus, E/Z(E) is in abelian Lie correspondence with N/Z(N). Thus, the descended maps:

ωE : E/Z(E)× E/Z(E) → E′

and

ωN : N/Z(N)×N/Z(N) → N ′

are in correspondence. �

24.6.3. Relation between the middle groups. We have demonstrated the existence of canonical isomorphisms
between the left groups and between the right groups in the two short exact sequences:

0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G,A) → 0
↓ ↓

0 → Ext1Z(L;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0

As described in Sections 24.4 and 24.5, both short exact sequences split. Therefore, it is possible to find
an isomorphism H2(G;A) → H2

Lie(L;A) that establishes an isomorphism of the short exact sequences:

0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G,A) → 0
↓ ↓ ↓

0 → Ext1Z(L;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0
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Note, however, that the middle isomorphism is not canonical. In fact, choosing a middle isomorphism is
equivalent to choosing a splitting of the top sequence. This is because the bottom sequence splits canonically,
as described in Section 24.5.3. We will return to a discussion of this in Sections 24.8 and 24.9.

24.7. The Baer correspondence up to isoclinism for groups: filling the details. We are now in a
position to flesh out the remaining details of the Baer correspondence up to isoclinism, which we defined in
Section 24.2:

Equivalence classes up to isoclinism of groups of nilpotency class at most two ↔ Equivalence classes up to
isoclinism of Lie rings of nilpotency class at most two

There are two pending facts we need to establish:

(1) For every group G of nilpotency class at most two, there exists a Lie ring L of nilpotency class at
most two such that G is in Baer correspondence up to isoclinism with L.

(2) For every Lie ring L of nilpotency class at most two, there exists a group G of nilpotency class at
most two such that G is in Baer correspondence up to isoclinism with L.

We had already noted in Section 24.2 that (1) can be achieved by using the associated graded Lie ring
for the group. We will now provide a better way to think about both (1) and (2). We will begin with (1).

24.7.1. Explicit construction from the group to the Lie ring. We are given a group G of nilpotency class at
most two, and we need to find a Lie ring L of nilpotency class at most two such that L and G are in Baer
correspondence up to isoclinism.

(a) Consider G as a central extension:

0 → Z(G) → G→ G/Z(G) → 1

Consider the equivalence class up to isoclinism of this extension.
(b) Based on the discussion in Section 24.6.2, this equivalence class corresponds to an equivalence class up

to isoclinism of Lie ring extensions with central subring log(Z(G)) and quotient Lie ring log(G/Z(G)).
Let L be any extension Lie ring in this equivalence class.

(c) By Lemma 24.1, L and G are in Baer correspondence up to isoclinism.

Note that in this direction, one can make a canonical choice of L based on G, namely, one can take the
associated graded ring for the central series 0 ≤ Z(G) ≤ G. Note that this choice of L will be the same
for all G in the equivalence class up to isoclinism. The ability to make a canonical choice here is related to
the canonical splitting of the short exact sequence for Lie ring extensions with abelian quotient group, as
discussed in Section 24.5.3.

24.7.2. Explicit construction from the Lie ring to the group. We are given a Lie ring L of nilpotency class
at most two, and we need to find a group G of nilpotency class at most two such that L and G are in Baer
correspondence up to isoclinism.

(a) Consider L as a central extension:

0 → Z(L) → L→ L/Z(L) → 0

Consider the equivalence class up to isoclinism of this extension.
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(b) Based on the discussion in Section 24.6.2, this equivalence class corresponds to an equivalence class up
to isoclinism of group extensions with central subgroup exp(Z(L)) and quotient group exp(L/Z(L)). Let
G be any extension group in this equivalence class.

(c) By Lemma 24.1, L and G are in Baer correspondence up to isoclinism.

24.7.3. Preservation of order. In both directions, the constructions preserve the orders. In other words, if
we start with a finite group and use the construction in the direction from groups to Lie rings, the Lie ring
that we obtain has the same order as the group that we started with. Similarly, if we start with a finite Lie
ring and use the construction in the direction from Lie groups to groups, the group that we obtain has the
same order as the Lie ring that we started with.

This does not imply that every group and every Lie ring that are in Baer correspondence up to isoclinism
must have the same order. Rather, we are saying that the answer to the existence question continues to be
affirmative even after we impose the condition that the orders have to be equal.

In particular, given a a finite 2-group of nilpotency class 2, we can find a finite 2-Lie ring (i.e., a Lie ring
whose additive group is a finite 2-group) of nilpotency class 2 such that the group and Lie ring are in Baer
correspondence up to isoclinism. Similarly, given a finite 2-Lie ring of nilpotency class 2, we can find a finite
2-group of nilpotency class 2 such that the group and Lie ring are in Baer correspondence up to isoclinism.

24.8. Relating the Baer correspondence and the Baer correspondence up to isoclinism. If a Baer
Lie group G is in Baer correspondence with a Baer Lie ring L, then G and L are in Baer correspondence
up to isoclinism (as defined in Section 24.2). Explicitly, the Baer correspondence between G and L can be
used to define an isomorphism ζ between Inn(G) and the additive group of Inn(L), and also an isomor-
phism ϕ between G′ and the additive group of L′, satisfying the compatibility condition for being a Baer
correspondence up to isoclinism.

Another way of framing this is that if we restrict attention to Baer Lie groups and Baer Lie rings, then
the Baer correspondence up to isoclinism can be refined to a correspondence that works up to isomorphism,
namely the usual Baer correspondence up to isomorphism. In fact, it can be refined even further to obtain
the strict Baer correspondence between individual groups and Lie rings, as has been done in the previous
two sections (Sections 21 and 22).

We now turn to how the Baer correspondence relates to the Baer correspondence up to isoclinism for
group extensions. Let G and A be abelian groups, and let L = logG be the abelian Lie ring with additive
group G. In Section 24.6, we worked out the following relation between the universal coefficient theorem
short exact sequences, where the downward maps are isomorphisms:

0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G,A) → 0
↓ ↓

0 → Ext1Z(L;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0

We had also noted in Section 24.5.3 that the second short exact sequence splits canonically, i.e.,:

H2
Lie(L;A) ∼= Ext1Z(L;A)⊕Hom(L ∧ L,A)

Thus, as observed in Section 24.6.3, specifying an isomorphism between the middle groups such that the
diagram commutes is equivalent to specifying a splitting of the first short exact sequence.

Now, consider the case that G and A are both 2-powered abelian groups. In that case, by Lemma 17.12,
all the extensions with central subgroup A and quotient group G are themselves 2-powered, and are therefore
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Baer Lie groups. Similarly, all the extension Lie rings with central subring A and quotient Lie ring L are
Baer Lie rings. Further, the Baer correspondence establishes a bijection between the group extensions and
Lie ring extensions in such a manner that the diagram commutes. Equivalently, it provides a canonical
splitting of the top row. Explicitly, we now obtain a commutative diagram with the middle isomorphism
filled in:

0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G,A) → 0
↓ ↓ ↓

0 → Ext1Z(L;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0

Equivalently, we have an explicit splitting:

H2(G;A) ∼= Ext1Z(G;A)⊕Hom(G ∧G,A)

We will now discuss explicitly how this splitting works.

24.9. Cocycle-level description of the Baer correspondence. Suppose G and A are abelian groups
(we will soon restrict to the case that one or both of G and A is 2-powered). Consider the following two
short exact sequences. The first is the short exact sequence relating the coboundary, cocycle and cohomology
groups, originally described in Section 8.4:

0 → B2(G;A) → Z2(G;A) → H2(G;A) → 0

The second is the universal coefficient theorem short exact sequence, originally described in Section 11.4
and described specifically for abelian G in Section 24.4:

0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G,A) → 0

The first short exact sequence need not split. An example where it does not split was discussed in Section
8.4. The second short exact sequence does always split but the splitting need not be canonical (see Section
11.4.5).

The right parts of these short exact sequences give surjective homomorphisms, which we can compose:

Z2(G;A) → H2(G;A) → Hom(G ∧G,A)

As we discussed in Section 24.4.2, the composite of these maps is the skew map. Explicitly, the composite
is the map f 7→ Skew(f), that sends a function f to the function:

Skew(f) = (x, y) 7→ f(x, y)− f(y, x)

Note that the function Skew(f) is a Z-bilinear map G×G to A, which can be interpreted as a homomor-
phism G ∧G→ A.

Now, suppose that G and A are both 2-powered abelian groups. In that case, there is a canonical splitting
of the composite map, given as follows:

f 7→ 1
2
f

In other words, a Z-bilinear map f : G × G → A is sent to 1
2f : G × G → A. Note that any Z-bilinear

map is a 2-cocycle (in general, any n-linear map is a n-cocycle) so this works.
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In particular, both the short exact sequences split, and we get canonical direct sum decompositions:

Z2(G;A) ∼= B2(G;A)⊕H2(G;A), splitting is H2(G;A) → Z2(G;A)

H2(G;A) ∼= Ext1Z(G;A)⊕Hom(G ∧G,A), splitting is Hom(G ∧G,A) → H2(G;A)

Note that the first short exact sequence need not split for all G and A (see the discussion in Section 8.4)
and the existence of a splitting is itself a piece of information. The second short exact sequence does split for
all G and A, but the splitting is not in general canonical, as discussed in Section 11.4.5, so the case where
G and A are both 2-powered is special in that we obtain a canonical splitting.

The splitting map Hom(G∧G,A) → H2(G;A) is the same as the one arising from the Baer correspondence.
Explicitly, as noted in Section 24.6.3, specifying the splitting map Hom(G∧G,A) → H2(G;A) is equivalent
to specifying an isomorphism of H2(G;A) and H2

Lie(L;A) such that the diagram below commutes:

0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G,A) → 0
↓ ↓ ↓

0 → Ext1Z(L;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0

This isomorphism can be described in an alternative way. Let E be an extension group corresponding
to an element of H2(G;A). Let N = log(E) via the Baer correspondence. We can relate two short exact
sequences via a log functor.

0 → A→ E → G→ 1
↓log ↓log ↓log

0 → A→ N → L→ 0

Note that we abuse notation again, using the same letter A for A as a group and as a Lie ring.
Then, the element of H2

Lie(L;A) that corresponds to the second row is the same as the image of the
element of H2(G;A) under the isomorphism described earlier.

24.10. Relaxation of the 2-powered assumption. We consider what can be said when the assumption
that both G and A are 2-powered is relaxed.

0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G,A) → 0

Note that if the group Hom(G ∧ G,A) itself is 2-powered, then the preceding construction can still be
carried out, and we can obtain a splitting of the short exact sequence. The correspondence between the
extension group and the extension Lie ring need no longer be an instance of the Baer correspondence.
However, it will continue to be an instance of the divided Baer correspondence described in Section 23.4.
Note in particular that this includes the case where the group A alone is 2-powered. It will also include the
case where the group G alone is 2-powered.

In the case that Hom(G∧G,A) is not 2-powered, the preceding method for obtaining a splitting will not
work. However, we know that the short exact sequence must still split. For some choices of G and A, it is
possible to obtain an automorphism-invariant splitting, even though such a splitting does not arise from the
Baer correspondence or any of its generalizations described here.
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24.11. Inner automorphisms and inner derivations in the context of the correspondence up to

isoclinism. Many aspects of the relationship between inner automorphisms and inner derivations described
in Section 22.8 continue to be valid, with suitable modification, for the Baer correspondence up to isoclinism.

Suppose G is a group of nilpotency class two and L is a Lie ring of nilpotency class two such that G and
L are in Baer correspondence up to isoclinism. In particular, this means that the groups G/Z(G) ∼= Inn(G)
and L/Z(L) ∼= Inn(L) are in abelian Lie correspondence up to isomorphism.

The adjoint action of G on L is defined as follows:

Ad : G→ Aut(L)

For any u ∈ G, define Adu as follows. Denote by u the image of u in G/Z(G). Denote by x an element
of L such that the image of x in L/Z(L) corresponds to the element u under the abelian Lie correspondence
between L/Z(L) and G/Z(G). We define Adu as the following automorphism of L:

Adu(g) = g + [x, g]

It can easily be verified that Adu is an automorphism of L. It can also be verified that Aduv = Adu Adv,
making Ad a homomorphism.

More conceptually, we can write the description as follows:

Adu = 1 + adx

where the images of u and x modulo the respective centers are in abelian Lie correspondence.

25. Examples of the Baer correspondence up to isoclinism

In the case that G and A are odd-order abelian groups, the original Baer correspondence works. To obtain
finite examples where the Baer correspondence works only up to isoclinism, we need to look at 2-groups.
Further, our examples must be cases where the quotient Hom(G ∧ G,A) is nontrivial, so that there is at
least some non-abelian extension.24

25.1. Extensions with quotient the Klein four-group and center cyclic of order two. The smallest
sized example is: A = Z2 is the cyclic group of order 2 and G = V4 is the Klein four-group, isomorphic to
Z2 × Z2.

The short exact sequences discussed in Sections 24.4 and 24.5, along with the canonical isomorphisms
discussed in Section 24.6, give the following:

0 → Ext1(V4; Z2) → H2(V4; Z2) → Hom(V4 ∧ V4,Z2) → 0
↓ ↓

0 → Ext1(V4; Z2) → H2
Lie(V4; Z2) → Hom(V4 ∧ V4,Z2) → 0

Recall that both short exact sequences split, and, as per the discussion in Section 24.5, the Lie ring short
exact sequence splits canonically (with the splitting separating out the addition and Lie bracket parts).

It turns out that:

• Ext1(V4; Z2) is itself isomorphic to V4, the Klein four-group.

24The abelian extensions can be put in correspondence based on the correspondence between abelian groups and abelian Lie
rings, which, although not strictly part of the Baer correspondence as have defined it, falls under the generalization described
in Section 23.1
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• (V4 ∧ V4) is isomorphic to Z2, and thus, Hom(H2(V4; Z),Z2) is isomorphic to Z2.
• Thus, both of the second cohomology groups (the group and Lie ring side) are isomorphic to the

elementary abelian group of order eight.

On the group side, we have the following eight extensions (eight being the order of the cohomology group):

(a) Elementary abelian group of order eight (1 time).
(b) Z4 ⊕ Z2 (3 times).
(c) D8 (3 times).
(d) Q8 (1 time).

(a) and (b) together form the image of Ext1 (total size 4) while (c) and (d) form the non-identity coset
of that image.

On the Lie ring side, the eight extensions (eight being the order of the cohomology group) are:

(a) Abelian Lie ring, additive group elementary abelian of order eight (1 time)
(b) Abelian Lie ring, additive group direct product of Z4 and Z2 (3 times).
(c) The niltriangular matrix Lie ring (3×3 strictly upper triangular matrices) over the field of two elements.

(1 time)
(d) The semidirect product of Z4 and Z2 as Lie rings. (3 times).

(a) and (b) together form the image of Ext1 (total size 4) while (c) and (d) form the non-identity coset
of that image.

Note that there is no canonical bijection between the set of eight group extensions and the set of eight
Lie ring extensions, but we can naturally correspond the images of Ext1 in both. The problem arises when
attempting an element-to-element identification of the non-identity cosets in the two cases. In other words,
we have a correspondence at a coset level:

{D8, D8, D8, Q8} ↔ {The four non-abelian Lie ring extensions}

But there is no clear-cut way of making sense of which Lie ring extension to correspond to which group.
This is an example of a situation where the Baer correspondence up to isoclinism does not seem to have any
natural refinement to a correspondence up to isomorphism.

Note that in this case, it so happens that we can use an automorphism-invariance criterion and get a unique
automorphism-invariant bijection. This would map the niltriangular matrix Lie ring to the quaternion
group and the semidirect product of Z4 and Z2 to the dihedral group. However, this does not give a
meaningful bijection at the level of elements. For instance, as described in Section 22.7, one feature that
holds in all generalizations described so far for the Baer correspondence is that the correspondence restricts
to isomorphism between cyclic subgroups and cyclic subrings. In particular, the rder statistics of the group
(i.e., the multiset of the orders of the elements) in the group must match the order statistics of the additive
group of the Lie ring. However, the order statistics of D8 do not match the order statistics of any abelian
group of order 8. The same is true for Q8.

25.2. Extensions with quotient the Klein four-group and center cyclic of order four. We consider
a slight variation of the preceding example. We set G = V4 as before, but now set A = Z4, so A is the cyclic
group of order four. The extension groups and extension Lie rings are all of order 16.

It turns out that:

• Ext1(V4; Z4) is itself isomorphic to V4, the Klein four-group.
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• (V4 ∧ V4) is isomorphic to Z2, and thus, Hom(H2(V4; Z),Z4) is isomorphic to Z2.
• Thus, both of the second cohomology groups (the group and Lie ring side) are isomorphic to the

elementary abelian group of order eight.

On the group side, we have the following eight extensions (eight being the order of the cohomology group):

(a) Z4 ⊕ V4 (1 time).
(b) Z8 ⊕ Z2 (3 times).
(c) The group M16 = M4(2), given by the presentation 〈a, x | a8 = x2 = 1, xax−1 = a5〉 (3 times). This

group has ID (16,6) in the SmallGroups library used in GAP and Magma.
(d) The group D8 ∗Z2 Z4 = Q8 ∗Z2 Z4 (1 time). This group has ID (16,13) in the SmallGroups library used

in GAP and Magma.

(a) and (b) together form the image of Ext1 (total size 4) while (c) and (d) form the non-identity coset
of that image.

On the Lie ring side, we have the following eight extensions (eight being the order of the cohomology
group):

(a) Abelian Lie ring with additive group Z4 ⊕ V4 (1 time).
(b) Abelian Lie ring with additive group Z8 ⊕ Z2 (3 times).
(c) Lie ring with presentation 〈a, x | 8a = 2x = 0, [a, x] = 4a〉 (3 times).
(d) Lie ring with presentation 〈a, x, y | 4a = 2x = 4y = 0, 2a = 2y, [a, x] = 2a, [a, y] = [x, y] = 0〉 (1 time).

(a) and (b) together form the image of Ext1 (total size 4) while (c) and (d) form the non-identity coset
of that image.

We can naturally correspond the images of Ext1 in both. We also have a correspondence at a coset level:

The four non-abelian group extensions ↔ The four non-abelian Lie ring extensions

In general, we cannot refine this to a canonical bijection at the level of individual extensions. However,
in this case, there does exist an automorphism-invariant splitting, under which the type (c) for groups
corresponds to the type (c) for Lie rings, and the type (d) for groups corresponds to the type (d) for Lie
rings. The splitting here is somewhat nicer than the splitting in the preceding example because for each
group and Lie ring in correspondence, we can obtain a bijection between the group and the Lie ring that
preserves the cyclic subgroup structure, similar to the description in Section 22.7.

26. Adjoint groups and the exponential and logarithm maps

26.1. Remarks on the approach followed from this point onward. Many of the identities that we
will obtain in this section and the subsequent sections are formal identities. They make sense in a wide array
of situations, if appropriately interpreted. Below, we outline our typical logic flow.

• Some of our identities start off as identities involving infinite series that make sense over the reals,
or over real Lie groups. In those contexts, the identities may have specific interpretations related to
differential equations, although those interpretations do not concern us directly.

• Our identities are valid formally in a noncommutative (but associative) power series algebra over Q.
Note that we need to use power series algebras because the identities involve infinite series.
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• As a result, our identities are valid in free nilpotent associative Q-algebras of nilpotency class c, where
the identities get truncated to expressions of finite length. We therefore get identities involving the
truncated expressions of finite length with the assumption about nilpotency class.

• We notice that the truncated expressions, for which the identity is valid, have only a finite number of
coefficients, that in turn have only a finite number of prime divisors of their denominators. Typically,
the truncated expression to class c uses only the primes that are less than or equal to c. Denote this
prime set by πc.

• We then notice that our identities (in truncated form) are valid in free nilpotent (associative) Z[π−1
c ]-

algebras of nilpotency class c.
• We conclude that our identities (in truncated form) are valid in all nilpotent (associative) Z[π−1

c ]-
algebras of nilpotency class at most c, on account of our being able to express such algebras as
quotients of the free nilpotent Z[π−1

c ]-algebras of nilpotency class c.

26.2. Some background on adjoint groups and algebra groups. An associative (not necessarily unital)
ring N is termed a radical ring if for every x ∈ N there exists y ∈ N such that x+ y + xy = 0.

For any radical ring N , we define the adjoint group corresponding to N as the set 1 +N , i.e., the set of
formal symbols:

{1 + x | x ∈ N}

equipped with the multiplication:

(1 + x)(1 + y) = 1 + (x+ y + xy)

The identity element for this adjoint group is 1 + 0 (simply denoted as 1). For any x ∈ N , the inverse of
1 + x is the element 1 + y where y is an element satisfying x + y + xy = 0. Such an element exists by the
assumption that N is radical. The uniqueness and two-sidedness of inverses follows from group theory.25

An algebra group over a field F is defined as a group arising as the adjoint group corresponding to an
associative algebra N over F that is also a radical ring.

Suppose G is an algebra group over a field F corresponding to a radical ring N that is an associative
algebra over F . A subgroup H of G is termed an algebra subgroup if H = 1 +M for a subalgebra M of N
(note that M must also be a radical ring for H to be a subgroup).

The following facts about algebra groups can be easily checked.

(1) An associative ring in which every element is nilpotent is a radical ring. In particular, an associative
ring that is itself nilpotent is a radical ring.

The proof of this assertion relies on the observation that if xn = 0, then the element y =∑n−1
i=1 (−1)ixi = −x+ x2 − x3 + · · ·+ (−1)n−1xn−1 satisfies x+ y+ xy = 0. Secretly, the expression

above relies on expanding (1− (−x)n)(1− (−x)) as a power series in x.
(2) Suppose K is a field extension of a field F . Then, any K-algebra group naturally acquires the

structure of a F -algebra group. In particular, any algebra group over a field of characteristic zero is
a Q-algebra group. Similarly any algebra group over a field of characteristic p is a Fp-algebra group.

(3) It is possible to have two non-isomorphic Fp-algebras N1 and N2 such that the algebra group corre-
sponding to N1 is isomorphic (as an abstract group) to the algebra group corresponding to N2. In

25Specifically, if every element of a monoid has a right inverse, then every element has a two-sided inverse and the two-sided
inverse is unique.
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fact, we can construct examples of non-isomorphic associative algebras over F2 whose corresponding
algebra groups are both isomorphic to Z/4Z⊕ Z/2Z.

(4) Suppose N is a radical Fp-algebra where p is a prime number. Then, we have (1 + x)p = 1 + xp for
all x ∈ N . In other words, the pth power map in the algebra and the algebra group correspond to
each other.

(5) A finite Fp-algebra N is radical if and only if every element of N is nilpotent. One direction was
already established in (1). For the reverse direction, note that if 1 + x has finite order pk, then
1 + xpk

= (1 + x)pk

= 1, so xpk

= 0, and thus, x is nilpotent.
(6) For any field F and a positive integer n, consider the group UT (n, F ) of upper triangular unipotent

matrices over F . UT (n, F ) is the algebra group corresponding to NT (n, F ), the strictly upper
triangular matrices over F , where we view NT (n, F ) as an associative F -algebra with the usual
addition and multiplication of matrices.

(7) Any Fq-algebra group G = 1 + N of order qm is isomorphic to an algebra subgroup of the algebra
group UT (m+ 1, q) = UT (m+ 1,Fq). The proof idea is to consider G as a multiplicative subgroup
of the ring N + Fq (the unitization of N) and then consider the action of G on the underlying vector
space of N + Fq by multiplication. This action is faithful, and defines an injective homomorphism
G → GL(m + 1,Fq). By Sylow’s theorem, G can be conjugated to a subgroup inside any p-Sylow
subgroup of GL(m+ 1, q) (where p is the underlying prime of q). UT (m+ 1, q) is one such p-Sylow
subgroup.

26.3. Exponential map inside an associative ring: the torsion-free case. Suppose R is an associative
unital ring. For now, assume that the additive group of R is torsion-free (we will later relax the assumption).
An element x ∈ R is termed exponentiable if the following sum makes sense, and if so the sum is termed the
exponential of x:

exp(x) = ex =
∞∑

m=0

xm

m!
= 1 + x+

x2

2!
+
x3

3!
+ . . .

The notations exp(x) and ex are both used. The exp notation is more helpful when the argument to the
function is complicated and cumbersome to write in a superscript.

Here, x0 = 1, and xm/m! is the unique element y ∈ R such that m!y = xm. Note that uniqueness follows
from our assumption that R is torsion-free.

For the sum to make sense, we need two conditions:

• x is nilpotent, i.e., there exists a natural number n such that xn = 0. The smallest such n is the
nilpotency of x.

• For all positive integers m < n, m! divides xm, i.e., there exists an element y ∈ R (unique by the
torsion-free assumption) such that m!y = xm.

If both the above conditions hold, then we can rewrite:

ex =
n−1∑
m=0

xm

m!

For an element x ∈ R, we say that x is logarithmable if there exists a positive integer n such that
(x− 1)n = 0, and the following can be computed:
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log x := (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · ·+ (−1)n(x− 1)n−1

n
Explicitly, x is logarithmable if the following two conditions hold:

• x is unipotent, or equivalently, x − 1 is nilpotent, i.e., there exists a natural number n such that
(x− 1)n = 0. The smallest such n is termed the unipotency of x.

• For all positive integers m < n, m divides (x − 1)m, i.e., there exists an element y ∈ R such that
my = (x− 1)m.

The following can be deduced from formal manipulation:

• If x ∈ R is exponentiable and ex is logarithmable, then log(ex) = x.
• If x ∈ R is logarithmable and log x is exponentiable, then elog x = x.

This follows from the fact that the identities hold formally on account of these being the usual Taylor
series for the exponential and logarithm functions that are inverses of each other.

26.4. Exponential to and logarithm from the adjoint group. Suppose N is an associative (but not
necessarily commutative and generally not unital) ring whose additive group is torsion-free and x is a nilpotent
element of N satisfying the following two conditions:

• x is nilpotent, i.e., there exists a natural number n such that xn = 0. The smallest such n is the
nilpotency of x.

• For all positive integers m < n, m! divides xm, i.e., there exists an element y ∈ R (unique by the
torsion-free assumption) such that m!y = xm.

Then, we can make sense of the element ex as an element of the adjoint group 1 +N . Explicitly:

ex := 1 +
(
x+

x2

2!
+
x3

3!
+ . . .

xn−1

(n− 1)!

)
Similarly, for an element 1 + x, x ∈ N , we say that 1 + x is logarithmable if the following two conditions

hold:

• x is nilpotent, i.e., there exists a natural number n such that xn = 0. The smallest such n is the
nilpotency of x.

• For all positive integers m < n, m divides xm, i.e., there exists an element y ∈ R (unique by the
torsion-free assumption) such that my = xm.

We then define log(1 + x) as an element of N :

log(1 + x) = x− x2

2
+
x3

3
− · · ·+ (−1)nxn−1

n− 1
We have observations similar to those in Section 26.3:

• If x ∈ N is exponentiable and ex is logarithmable, then log(ex) = x.
• If x ∈ N is logarithmable and log x is exponentiable, then elog x = x.

Note that this notion of exponential differs slightly from the preceding definition in that the exponential
of an element is now no longer in the ring but rather in its adjoint group. However, we can embed N inside
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its unitization R = N + Z and both the definitions would then agree.26 In fact, via this method, we can
deduce all results here from the results of Section 26.3 without redoing any of the work.

26.5. The exponential and logarithm as global maps. Suppose N is an associative ring whose additive
group is torsion-free and in which every element is exponentiable (to the adjoint group) and every element
of the adjoint group is logarithmable. Then, the exponential can be defined as a global set map:

exp : N → 1 +N

In this case, the logarithm is also a global map:

log : 1 +N → N

and further, the two maps are inverses of each other.
The following are some cases where these hypotheses are satisfied:

• The case that N is a nilpotent Q-algebra. This will be the case that interests us the most in the
beginning.

• The case that N is a torsion-free Z[π−1
c ]-algebra of nilpotency class at most c where πc is the set of

all primes less than or equal to c. Many of our generalizations will apply to this case. (See the next
subsection regarding relaxation to the non-torsion-free case).

26.6. Truncated exponentials and the case of torsion. So far, we have considered the definition of
exponential and logarithm in the context of torsion-free additive groups. The torsion-free assumption is
significant because it guarantees that all the summands of the form xn/n! or xn/n are uniquely defined if
they exist. We now consider whether this torsion-free assumption can be relaxed somewhat.

In the case that an element x satisfies xn = 0 for some natural number n, we can truncate the exponential
series and get:

ex = 1 +
(
x+

x2

2!
+ · · ·+ xn−1

(n− 1)!

)
Similarly, we can truncate the logarithm series and get:

log(1 + x) = x− x2

2
+
x3

3
− · · ·+ (−1)nxn−1

n− 1
Thus, we can relax the torsion-free assumption to the assumption that the ring is π-torsion-free where π

is the set of all primes strictly less than the nilpotency. Alternatively, if N is a nilpotent associative ring of
nilpotency class c (explicitly, this means that x1x2 . . . xcxc+1 = 0 for all x1, x2, . . . , xc, xc+1 ∈ N) that is
πc-torsion-free where πc is the set of primes less than or equal to c, then we can make unique sense of the
terms xm/m! and xm/m used in the definitions of the exponential and logarithm maps.

In particular, if N is a Z[π−1
c ]-algebra of nilpotency class at most c, then the exponential and logarithm

maps make sense globally.
There is, however, a small caveat. Namely, the process of truncating the exponential map involves a

choice, even though the choice we have made is a canonical choice. Consider again the infinite series for the
exponential:

26Note that the definition of “unitization” depends on what commutative unital ring we are considering N as an algebra over.
The default assumption is to treat it as an algebra over Z, in which case the unitization is N + Z. If, howevever, we are viewing
N as an algebra over a field F , the unitization is N + F .
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ex = 1 +
(
x+

x2

2!
+
x3

3!
+ . . .

)
The mth term of the summation is xm

m! . In the case that m ≥ n, the numerator is the zero element of N .
We are therefore trying to make sense of the computation:

0
m!

A canonical candidate for the answer is 0. However, if N has p-torsion for some prime p less than or equal
to m, this is not the unique candidate for the answer. Our decision to truncate the exponential implicitly
involves making the canonical choice of the answer of 0 for all terms xm/m!, even though this choice is not
uniquely fixed.

Despite the non-uniqueness of these choices, all the formal manipulations involving exponentials and loga-
rithms continue to be valid. A quick explanation for this is as follows: all the proofs for these manipulations
involve using the existing (truncated) expressions and then applying the operations of addition, subtraction,
multiplication, and composition. None of these operations is capable of introducing new primes into the
denominators. Thus, we do not ever need to confront the non-uniqueness of division by larger primes when
mimicking the proofs that work over the rational numbers.

26.7. Exponential and logarithm maps preserve abelian and cyclic subgroup structures. The
following lemmas follow from manipulation similar to the formal manipulation used when dealing with
power series over the reals. We therefore omit the proofs.

Lemma 26.1. Suppose c is a positive integer and πc is the set of primes less than or equal to c. Suppose
N is an associative Z[π−1

c ]-algebra of nilpotency class less than or equal to c. Suppose x, y ∈ N are elements
such that xy = yx. Then, the exponential map exp : N → 1 +N satisfies the condition that:

exp(x+ y) = exp(x) exp(y)

Lemma 26.2. Suppose c is a positive integer and πc is the set of primes less than or equal to c. Suppose
N is an associative Z[π−1

c ]-algebra of nilpotency class less than or equal to c. Suppose x ∈ N and n ∈ Z.
Then, the exponential map exp : N → 1 +N satisfies the condition that:

exp(nx) = (exp(x))n

This follows from the preceding lemma, combined with a proof by induction.

27. Free nilpotent groups and the exponential and logarithm

27.1. Free associative algebra and free nilpotent associative algebra. The notation and results here
follow Khukhro’s book [27], Chapters 9 and 10. For brevity, we omit some proofs and provide citations to
Khukhro.
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For this and the next few subsections, c is a fixed but arbitrary positive integer. The algebraic structures
F , A, and L are all dependent on c. However, to keep the notation as uncluttered as possible, we will not
use c as an explicit parameter to these.

Denote by A the free associative Q-algebra on a generating set S = {x1, x2, . . . } The generating set may
have any cardinality. By the well-ordering principle, we will index the generating set by a well-ordered set.

The algebra A is naturally a graded associative algebra. Explicitly, the ith graded component of A is the
Q-subspace generated by all products of length i of elements from the generating set. Formally, A has the
following direct sum decomposition as a vector space:

A =
∞⊕

i=1

Ai

and further:

AiAj ⊆ Ai+j

For any positive integer i, we can define an ideal:

Ai =
∞⊕

j=i

Aj

For any positive integer c, define the associative algebra:

A = A/Ac+1

A can be described as the free nilpotent associative algebra of class c on the same generating set S.
Explicitly, this means that all products in A of length more than c become zero.

Based on the discussion in Sections 26.4 and 26.5, the exponential and logarithm map are globally defined,
i.e., we have global maps:

exp : A→ 1 +A, log : 1 +A→ A

that are inverses of each other. Explicitly:

exp(x) = 1 +
(
x+

x2

2!
+ · · ·+ xc

c!

)
log(1 + x) = x− x2

2
+ · · ·+ (−1)c−1xc

c

27.2. Free Lie algebra and free nilpotent Lie algebra. Denote by L the Lie subring of A generated
by the free generating set S. Note that L is only a Lie ring, not a Q-Lie algebra. QL is the Q-Lie algebra
generated by S in A.

By [27], Theorem 5.39, L is the free Lie ring on S, and QL is the free Q-Lie algebra on S. Further, for
every prime set π, Z[π−1]L is the free π-powered Lie ring on S.

We can define L in the following equivalent ways:

• L = L/γc+1(L) = L/(L ∩ Ac+1).
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• L is the Lie subring generated by the image of S inside A, i.e., it is the Lie subring generated by the
freely generating set inside A.

Denote by 1 +A the adjoint group to A.
Denote by F the subgroup of 1 +A generated by the elements exi , xi ∈ S.

Lemma 27.1. 1 +A is a rationally powered group.

Proof. The maps log : 1 + A → A and exp : A → 1 + A are inverses of each other. We know that A is a
Q-algebra, and Lemma 26.2 tells us that the map exp : A → 1 + A preserves the cyclic subgroup structure
(i.e., exp(nx) = (exp(x))n for any n ∈ Z). Thus, 1 +A is also rationally powered. �

Theorem 27.2. (1) For each xi in the generating set S, choose an element yi ∈ A that has no
homogeneous degree one component. Then, the subgroup of 1+A generated by the elements 1+xi+yi

is a free nilpotent group of class c on the generating set {1 + xi + yi | i ∈ I}.
(2) The subgroup F of 1 + A generated by the elements exi , xi ∈ S is a free nilpotent group of class c

on the generating set exi , xi ∈ S. Thus, it is canonically isomorphic to the free nilpotent group of
class c on S.

(3) For any prime set σ, the subgroup σ
√
F of 1+A (where F is defined as in part (2)) is a free σ-powered

nilpotent group of class c on the generating set exi , xi ∈ S.

Proof. Proof of (1): See [27], Theorem 9.2.
Proof of (2): This follows from (1), setting

yi =
c∑

j=2

xj
i

j!

Proof of (3): By (2), we obtain that F̂σ is the free σ-powered free class c nilpotent group on the set
exi , xi ∈ S. We also know that the group 1 + A is rationally powered, hence in particular it is torsion-free
and σ-powered. Thus, F̂σ is canonically isomorphic to σ

√
F inside 1 +A. This proves the result. �

28. Baker-Campbell-Hausdorff formula

We use the same notation as in the preceding section (Section 27).

28.1. Introduction. Consider the case of a generating set {x1, x2} of size two. A is the free associative
algebra of class c generated by {x1, x2}. L is the Lie subring of A generated by the elements x1 and x2.
Note that A is powered over all primes on account of being a Q-algebra, and further, every element of A
is nilpotent, in fact, uc+1 = 0 for all u ∈ A. Thus, for all u ∈ A, it makes sense to consider the element
eu ∈ 1 +A defined as follows:

eu = 1 +
(
u+

u2

2!
+
u3

3!
+ · · ·+ uc

c!

)
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The Baker-Campbell-Hausdoroff formula for class c is a formal expression Hc(x1, x2) with the property
that:

eHc(x1,x2) = ex1ex2

It is not a priori obvious that Hc(x1, x2) exists, but [27], Section 9.2 demonstrates that Hc(x1, x2) exists,
and moreover, that Hc(x1, x2) ∈ QL, i.e., it is in the Q-Lie subalgebra generated by x1 and x2.

It is easy to see that in the Baker-Campbell-Hausdorff formula for class c, truncating to products of length
c−1 and lower gives the Baker-Campbell-Hausdorff formula for class c−1. Equivalently, the Baker-Campbell-
Hausdorff formula for class c can be obtained by adding a degree c term to the Baker-Campbell-Hausdorff
formula for class c− 1.

We can thus define an infinite Baker-Campbell-Hausdorff formula as follows:

H(x1, x2) = t1(x1, x2) + t2(x1, x2) + . . .

where each ti(x1, x2) is in the ith homogeneous component of QL, with the further property that if we
truncate the summation to:

Hc(x1, x2) = t1(x1, x2) + t2(x1, x2) + · · ·+ tc(x1, x2)

then for A = A/Ac+1, we have:

eHc(x1,x2) = ex1ex2

28.2. Computational procedure for the Baker-Campbell-Hausdorff formula. The following proce-
dure can be used to compute the Baker-Campbell-Hausdorff formula. The procedure as described here is
incomplete, because it only gives the formula inside the associative algebra, but does not express it in terms
of Lie products. There are closed-form expressions using Lie products, but these are extremely messy to
work with, so we provide only the conceptual outline for obtaining H(x1, x2) as an expression in terms of
x1 and x2 in the associative algebra. See [27], Sections 5.3 and 9.9 for more more details, and see [8] for the
most efficient known computational procedure.

First, we begin by considering the product:

ex1ex2 =
∞∑

k=0

∞∑
l=0

xk
1

k!
xl

2

l!

Subtract 1 and obtain:

w = ex1ex2 − 1 =
∑

k,l≥0,0<k+l

xk
1x

l
2

k!l!

We have a formal power series:

log(1 + w) = w − w2

2
+
w3

3
− . . .

It can also be formally verified that:

elog(1+w) = 1 + w = 1 + (ex1ex2 − 1) = ex1ex2
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Thus, H(x1, x2) = log(1 + w). Formally:

H(x1, x2) =
∑

k,l≥0,0<k+l

xk
1x

l
2

k!l!
− 1

2

 ∑
k,l≥0,0<k+l

xk
1x

l
2

k!l!

2

+
1
3

 ∑
k,l≥0,0<k+l

xk
1x

l
2

k!l!

3

− . . .

The above calculation gives the full Baker-Campbell-Hausdorff formula. If we are interested in the class c
Baker-Campbell-Hausdorff formula, we can use truncated versions of both the exponential and the logarithm
power series.

28.3. Homogeneous terms of the Baker-Campbell-Hausdorff formula. The infinite Baker-Campbell-
Hausdorff formula has the form:

H(x1, x2) = t1(x1, x2) + t2(x1, x2) + . . .

where ti(x1, x2) is the homogeneous component of degree i. The first few homogeneous components are
given below:

Table 4. Truncations of the Baker-Campbell-Hausdorff formula

i ti(x1, x2) Hi(x1, x2)
1 x1 + x2 x1 + x2

2 1
2 [x1, x2] x1 + x2 + 1

2 [x1, x2]
3 1

12 ([x1, [x1, x2]]− [x2, [x1, x2]]) x1 + x2 + 1
2 [x1, x2] + 1

12 ([x1, [x1, x2]]− [x2, [x1, x2]])
4 − 1

24 [x2, [x1, [x2, x2]]] H3(x1, x2)− 1
24 [x2, [x1, [x2, x2]]]

The case i = 1 is obvious. The case i = 2 is derived in the Appendix, Section F.1. The case i = 3 is
derived in the Appendix, Section F.2.

For explicit descriptions of higher degree terms of the Baker-Campbell-Hausdorff formula, see [8].

28.4. Universal validity of the Baker-Campbell-Hausdorff formula. The Baker-Campbell-Hausdorff
formula is valid wherever it makes sense. Explicitly, the following holds. Note that Lemma 26.1 can be
viewed as a special case of this theorem (or rather, of Theorem 28.4, the generalization to Z[π−1

c ]-algebras).

Theorem 28.1. Suppose R is a nilpotent Q-algebra. Then, the Baker-Campbell-Hausdorff formula is
valid for any x, y ∈ R:

eH(x,y) = exey

where we make sense of the exponentials as expressions in the adjoint group 1 +R, which can be viewed
as a multiplicative subgroup inside the unitization Q⊕R.

Proof. Denote by c the nilpotency class of R. Let A be the free nilpotent Q-algebra of class c on two
generators x1 and x2. There is a unique Q-algebra homomorphism θ : A→ R that sends x1 to x and x2 to
y. The existence of this homomorphism is guaranteed by A being the free class c nilpotent Q-algebra on two
generators.

It is useful to extend θ to a homomorphism between the unitizations:
177



ϕ : Q⊕A→ Q⊕R

where ϕ acts as the identity map on the first coordinate and acts as θ on the second coordinate. ϕ is a
Q-algebra homomorphism satisfying ϕ(x1) = x and ϕ(x2) = y.

We now use the fact that the corresponding identity holds in A, and the fact that homomorphisms preserve
all formulas, to obtain the identity for x and y. Explicitly, we know that:

eHc(x1,x2) = ex1ex2

Apply ϕ to both sides:

ϕ(eHc(x1,x2)) = ϕ(ex1ex2)

Q-algebra homomorphisms commute with exponentiation and with products, so this becomes:

eϕ(Hc(x1,x2)) = eϕ(x1)eϕ(x2)

Q-algebra homomorphism also commute with Hc, and we get:

eHc(ϕ(x1),ϕ(x2)) = eϕ(x1)eϕ(x2)

We had set ϕ(x1) = x and ϕ(x2) = y, so we get:

eHc(x,y) = exey

as desired. �

28.5. Formal properties of the Baker-Campbell-Hausdorff formula. Below are some important prop-
erties of the Baker-Campbell-Hausdorff formula:

(1) The ith homogeneous component ti(x1, x2) of the Baker-Campbell-Hausdorff formula is symmetric
if i is odd and skew-symmetric if i is even. Explicitly:

ti(x1, x2) = (−1)i−1ti(x2, x1)

(2) The Baker-Campbell-Hausdorff formula is associative, i.e., we have the following formal identity:

H(H(x1, x2), x3) = H(x1,H(x2, x3))

Equivalently, for every positive integer c, the following identity holds in class c:

Hc(Hc(x1, x2), x3) = Hc(x1,Hc(x2, x3))

Note that by “holds in class c” we mean that we truncate the formula to all Lie products of degree
at most c, and set all higher degree Lie products to be zero.

(3) The Baker-Campbell-Hausdorff formula satisfies:

H(x, 0) = H(0, x) = x

Equivalently, for every positive integer c, we have:
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Hc(x, 0) = Hc(0, x) = x

Note that in this case, explicit truncation to class c is not necessary.
(4) The Baker-Campbell-Hausdorff formula satisfies:

H(x,−x) = H(−x, x) = 0

Equivalently, for every positive integer c, we have:

Hc(x,−x) = Hc(−x, x) = 0

Note that in this case, explicit truncation to class c is not necessary.

28.6. Universal validity of the formal properties of the Baker-Campbell-Hausdorff formula.

Note that the universal validity being alluded to here differs in spirit from the universal validity that was
alluded to in Section 28.4. The universal validity alluded to earlier was the universal validity of the Baker-
Campbell-Hausdorff formula in relation with the exponential map in an associative algebra. The universal
validity alluded to here is in Lie algebras.

Theorem 28.2. Suppose N is a nilpotent Q-Lie algebra of nilpotency class c for some positive integer c.
Then, the following hold for all x, y, z ∈ N :

Hc(Hc(x, y), z) = Hc(x,Hc(y, z))

Hc(x, 0) = x

Hc(0, x) = x

Hc(x,−x) = 0

Hc(−x, x) = 0

Proof. All identities except the first are obvious from the expressions. We therefore concentrate on the first
identity.

Denote by L the free Lie ring on the set {x1, x2, x3}. Then, QL is the free Q-Lie algebra on {x1, x2, x3}.
Consider the unique Q-algebra homomorphism ϕ : QL → N defined as follows: ϕ(x1) = x, ϕ(x2) = y, and
ϕ(x3) = z.

We know that Hc(Hc(x1, x2), x3) = Hc(x1,Hc(x2, x3)) by the formal associativity of the Baker-Campbell-
Hausdorff formula. The homomorphism ϕ is a homomorphism of Q-Lie algebras, hence it preserves the
identity, and we obtain that:

Hc(Hc(x, y), z) = Hc(x,Hc(y, z))

�
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28.7. Primes in the denominator for the Baker-Campbell-Hausdorff formula. The lemma below
allows us to restrict the Baker-Campbell-Hausdorff formula to Z[π−1

c ]L where πc is the set of primes less
than or equal to c.

Lemma 28.3. It is possible to express the Baker-Campbell-Hausdorff formula Hc(x, y) in a manner where
all primes that appear as divisors of denominators of the coefficients are less than or equal to c.

Proof. The Baker-Campbell-Hausdorff formula is obtained from the class c exponential and logarithm for-
mulas using the operations of addition, subtraction, multiplication, and composition. The class c exponential
and logarithm formulas use only the primes less than or equal to c, and the operations of addition, sub-
traction, multiplication and composition cannot introduce new prime divisors into the denominators, so the
Baker-Campbell-Hausdorff formula does not have any other primes in its denominator.

Note that the above only demonstrates the result for the associative expression for the Baker-Campbell-
Hausdorff formula. However, [27], Theorem 5.3927 demonstrates that we can rewrite the expression as a sum
of basic Lie products in a manner that does not use any new prime divisors in the denominator. �

A somewhat stronger result is true: Suppose p is a prime. Then, the largest k such that pk divides
one or more of the denominators in the coefficients for Hc(x1, x2) is at most

⌊
c−1
p−1

⌋
. This is derived in the

Appendix, Section F.3. Note that this would immediately imply the preceding lemma, but it has additional
significance.

28.8. Universal validity assuming powering over the required primes. Below, we present results
analogous to those described in Sections 28.4 and 28.6, but with the base ring taken to be Z[π−1

c ] instead of
Q, where πc is the set of primes less than or equal to c.

Theorem 28.4. Suppose c is a positive integer, πc is the set of all primes less than or equal to c, and R
is an associative Z[π−1]-algebra that is nilpotent of nilpotency class at most c. Then, the Baker-Campbell-
Hausdorff formula is valid for any x, y ∈ R:

eHc(x,y) = exey

where we make sense of the exponentials as expressions in the adjoint group 1 +R, which can be viewed
as a multiplicative subgroup inside the unitization Z[π−1]⊕R.

Proof. Let A be the free nilpotent associative Q-algebra of class c on the two generators x1 and x2 and let B
be the Z[π−1]-subalgebra generated by x1 and x2. Clearly, B is the free Z[π−1]-algebra on x1 and x2. There
is a natural homomorphism θ : B → R of Z[π−1]-algebras that sends x1 to x and x2 to y. The existence of
this homomorphism is guaranteed by B being the free class c nilpotent Z[π−1]-algebra on two generators.
Further, θ extends uniquely to a homomorphism ϕ : Z[π−1] ⊕ B → Z[π−1] ⊕ R between the unitizations of
B and R as Z[π−1]-algebras.

Note that the Baker-Campbell-Hausdorff formula is valid for the elements x1, x2 ∈ A, i.e., we have:

27It would be helpful to read the surrounding discussion in Section 5.3
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eHc(x1,x2) = ex1ex2

Both sides of the identity and all intermediate calculations happen inside B, because the exponential map
as well as the Baker-Campbell-Hausdorff formula all involve division only by the primes in πc (by Lemma
28.3). Thus, the above identity holds in B.

We now apply ϕ to both sides and obtain the conclusion. The details are analogous to those of Theorem
28.1. The main difference is that the homomorphism ϕ is now a Z[π−1]-algebra homomorphism rather than
a Q-algebra homomorphism. The reason it commutes with the formulas is that all the formulas involved
make sense over Z[π−1]. �

Theorem 28.5. Suppose c is a positive integer and πc is the set of all primes less than or equal to c.
Suppose N is a nilpotent Z[π−1]-Lie algebra of nilpotency class c. Then, the following hold for all x, y, z ∈ N :

Hc(Hc(x, y), z) = Hc(x,Hc(y, z))

Hc(x, 0) = x

Hc((0, x) = x

Hc(x,−x) = 0

Hc(−x, x) = 0

Proof. All identities except the first one are obvious from the expressions. We therefore concentrate on
proving the first identity.

Denote by L the free Lie ring on the set {x1, x2, x3}. Then, Z[π−1]L is the free Z[π−1]-Lie algebra on
the set {x1, x2, x3}. Consider the unique Z[π−1]-algebra homomorphism ϕ : Z[π−1]L → N defined by the
conditions ϕ(x1) = x, ϕ(x2) = y, ϕ(x3) = z.

We know that Hc(Hc(x1, x2), x3) = Hc(x1,Hc(x2, x3)) by the formal associativity of the Baker-Campbell-
Hausdorff formula. Lemma 28.3 tells us that this identity holds inside Z[π−1]L. The homomorphism ϕ :
Z[π−1]L→ N is a homomorphism of Z[π−1]-algebras, hence it preserves the identity, and we obtain that:

Hc(Hc(x, y), z) = Hc(x,Hc(y, z))

�

29. The inverse Baker-Campbell-Hausdorff formulas

29.1. Brief description of the formulas. There are two inverse Baker-Campbell-Hausdorff formulas. The
first inverse Baker-Campbell-Hausdorff formula is a formula to compute:

h1(x, y) = exp(log x+ log y)

The second inverse Baker-Campbell-Hausdorff formula is a formula to compute:
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h2(x, y) = exp([log x, log y])

We will now provide a few important details regarding the formulas that will help understand the cor-
respondence. However, we do not attempt to be comprehensive here. More information about the inverse
Baker-Campbell-Hausdorff formula is in [27], Section 10.1. Lemma 10.7 in particular establishes the key
nature of the formula. For an explicit description of the first few terms for both h1 and h2, as well as an
efficient computation strategy, see [8].

29.2. Origin of the formulas. We follow the notation of Section 27. The highlights of the notation follow:
A is the free associative Q-algebra on a generating set S = {x1, x2, . . . }. L is the Lie subring (not the Q-Lie
subalgebra, but just the Z-Lie subalgebra) of A generated by S. c is a fixed positive integer. We denote
by Ac the cth graded component in the natural gradation of A, and we denote by Ac the sum of all graded
components at and beyond c. Define A = A/Ac+1 and define L to be the Lie subring of A generated by S.28

By Theorem 27.2, the set {exi | xi ∈ S} generates a free nilpotent group of class c and is a freely generating
set for it. We denote this group as F .

Corollary 9.22 in Khukhro’s book ([27]) states that
√
F is a free rationally powered nilpotent group

of nilpotency class c. This is a consequence of Theorem 19.3. Further, Theorem 10.4 of [27] states that√
F = eQL. Thus, every element of eQL can be expressed in terms of the elements exi using group operations

as well as taking roots.
The first inverse Baker-Campbell-Hausdorff formula expresses ex1+x2 as a word in terms of ex1 and ex2

using the group operations and taking roots. Explicitly, the first inverse Baker-Campbell-Hausdorff formula
in class c is a formula h1,c such that:

ex1+x2 = h1,c(ex1 , ex2)

Note importantly that the element ex1+x2 need not lie inside F , but it does lie inside
√
F .

Similarly, the second inverse Baker-Campbell-Hausdorff formula expresses e[x1,x2] as a word in terms of
ex1 and ex2 using the group operations and taking roots. The second inverse Baker-Campbell-Hausdorff
formula in class c is a formula h2,c such that:

e[x1,x2] = h2,c(ex1 , ex2)

Here, [x1, x2] denotes the Lie bracket of x1 and x2 inside L. Inside A, this can be viewed as the expression
x1x2 − x2x1. However, the latter does not make sense as an expression inside L.

29.3. Formal properties of the inverse Baker-Campbell-Hausdorff formulas.

• As with the original Baker-Campbell-Hausdorff formula, both the inverse
Baker-Campbell-Hausdorff formulas can be truncated to class c for any positive integer c. We will
denote the truncations as h1,c and h2,c respectively.

• The class c + 1 inverse Baker-Campbell-Hausdorff formula is obtained by taking the class c inverse
Baker-Campbell-Hausdorff formula and multiplying by a suitable product of iterated commutators,

28Note that the S viewed as a subset inside A is the image of the S viewed as a subset of A.
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each of length c+ 1. Note that the precise nature of the terms depends on whether we multiply on
the left or the right.29

• For h1(x1, x2), the degree one term is x1x2 and the degree two term is [x1, x2]−1/2, the reciprocal of
the square root of the group commutator.

• For h2(x1, x2), there is no degree one term, and the degree two term is the group commutator [x1, x2].

29.4. Universal validity of Lie ring axioms for inverse Baker-Campbell-Hausdorff formulas. We
begin by establishing the universal validity over rationally powered nilpotent groups.

Theorem 29.1. Suppose G is a rationally powered nilpotent group of nilpotency class c. Then, the
following are true for all x, y, z ∈ G:

h1,c(h1,c(x, y), z) = h1,c(x, h1,c(y, z))

h1,c(x, 1) = x

h1,c(1, x) = x

h1,c(x, x−1) = 1

h1,c(x
−1, x) = 1

h1,c(x, y) = h1,c(y, x)

h2,c(x, h1,c(y, z)) = h1,c(h2,c(x, y), h2,c(x, z))

h2,c(h1,c(x, y), z) = h1,c(h2,c(x, z), h2,c(y, z))

h2,c(x, x) = 1

h1,c(h1,c(h2,c(h2,c(x, y), z), h2,c(h2,c(y, z), x)), h2,c(h2,c(z, x), y)) = 1

Proof. Let S = {x1, x2, x3} and use the setup of Section 29.2. F is therefore a free nilpotent group of class c
with freely generating set comprising ex1 , ex2 , ex3 . There is therefore a unique group homomorphism from
F to G sending ex1 to x, ex2 to y, and ex3 to z. By Theorem 19.3 and the fact that G is rationally powered,
this extends to a unique group homomorphism from

√
F to G. All the above identites hold for

√
F because

of the Lie ring structure on L. The identities are preserved under homomorphisms, therefore they also hold
in G (the proof details are similar to those for Theorems 28.1 and 28.2). �

29.5. Universal validity of Lie ring axioms: the πc-powered case. Denote by πc the set of all primes
less than or equal to c. Theorem 10.22 of Khukhro’s book [27] states that for any prime set σ ⊇ πc, we have
σ
√
F = eZ[σ−1]L. In particular, this means that πc

√
F = eZ[π−1

c ]L. Therefore, both the formulas h1,c and h2,c

(which describe elements of eL and hence elements of eZ[π−1
c ]L) can be written using pth roots only for the

primes p that are in πc.
We will later see, in Lemma 33.2, that a slightly stricter bound applies to h2,c, though the bound here is

tight for h1,c. However, we do not need the stricter bound for our present purpose.

29Technically, the new term that needs to be inserted is the same whether on the left or on the right, because it is central and
therefore commutes with the rest of the expression. However, the choice of whether previous terms were inserted on the left
or the right affects the precise choice of the term being inserted at a given stage, so in that sense, it does matter whether the
higher degree terms are being inserted on the left or the right.

183



Based on this, we can formulate a πc-powered version of the preceding theorem.

Theorem 29.2. Suppose G is a πc-powered nilpotent group of nilpotency class c. Then, the following
are true for all x, y, z ∈ G:

h1,c(h1,c(x, y), z) = h1,c(x, h1,c(y, z))

h1,c(x, 1) = x

h1,c(1, x) = x

h1,c(x, x−1) = 1

h1,c(x−1, x) = 1

h1,c(x, y) = h1,c(y, x)

h2,c(x, h1,c(y, z)) = h1,c(h2,c(x, y), h2,c(x, z))

h2,c(h1,c(x, y), z) = h1,c(h2,c(x, z), h2,c(y, z))

h2,c(x, x) = 1

h1,c(h1,c(h2,c(h2,c(x, y), z), h2,c(h2,c(y, z), x)), h2,c(h2,c(z, x), y)) = 1

Proof. Let S = {x1, x2, x3} and use the setup of Section 29.2. F is therefore a free nilpotent group of class c
with freely generating set comprising ex1 , ex2 , ex3 . There is therefore a unique group homomorphism from
F to G sending ex1 to x, ex2 to y, and ex3 to z. By Theorem 19.3 and the fact that G is πc-powered,
this extends to a unique group homomorphism from πc

√
F to G. All the above identities hold inside πc

√
F ,

therefore, they also hold in G. �

30. The Malcev correspondence

30.1. The class c Malcev correspondence. The class c Malcev correspondence is a correspondence:
Rationally powered nilpotent groups of nilpotency class at most c ↔ Rationally powered nilpotent Lie

rings of nilpotency class at most c (i.e., nilpotent Q-Lie algebras)
The class c Malcev correspondence has a number of features similar to the abelian Lie correspondence

(described in Section 3) and the Baer correspondence (described in Sections 21 and 22). To avoid repetition,
we refer to relevant sections for the earlier correspondences where helpful.

Given a rationally powered nilpotent Lie ring L of nilpotency class at most c, the Malcev Lie group for
L, denoted exp(L), is a rationally powered nilpotent group of nilpotency class at most c defined as follows:

• The underlying set of exp(L) is the same as the underlying set of L.
• The group operation of exp(L) is defined as follows: xy = Hc(x, y) where Hc is the class c Baker-

Campbell-Hausdorff formula, and the operations in the formula are interpreted over L.
• The identity element 1 ∈ exp(L) of the group is the same as the zero element 0 ∈ L.
• The inverse map is defined as x−1 := −x.
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Conversely, given a rationally powered nilpotent group G of nilpotency class at most c, the Malcev Lie
ring for G, denoted log(G), is a rationally powered nilpotent Lie ring of nilpotency class at most c defined
as follows:

• The underlying set of log(G) is the same as the underlying set of G.
• The Lie ring addition is defined using the first inverse Baker-Campbell-Hausdorff formula in terms

of the group operations. Explicitly, we define x + y := h1,c(x, y), where h1,c is the first inverse
Baker-Campbell-Hausdorff formula for class c, and the operations in the formula are interpreted
over G.

• The Lie bracket is defined using the second inverse-Baker-Campbell-Hausdorff formula in terms of the
group operations. Explicitly, we define [x, y] := h2,c(x, y), where h2,c is the inverse Baker-Campbell-
Hausdorff formula for class c, and the operations in the formula are interpreted over G.

• The zero element 0 ∈ log(G) is defined to be the identity element 1 ∈ G.
• The negation map in log(G) is defined to be the same as the inverse map in the group, i.e., −x := x−1.

30.2. Why the class c Malcev correspondence works. The class c Malcev correspondence works in the
direction from Lie rings to groups due to Theorem 28.2. It works in the reverse direction due to Theorem
29.1. The fact that the two directions are inverses of each other (i.e., applying the correspondence in one
direction and then in the other direction returns to the original object) also follows from the original setup
of the formulas.

30.3. Description of the Malcev correspondence (combining all possibilities for nilpotency

class). The class c Malcev correspondences for different values of c are related in the following manner.
Suppose c1 ≤ c2. Then, the class c1 Malcev correspondence is a subcorrespondence of the class c2 Malcev
correspondence. Explicitly, this means that the subcategory (on the group side and the Lie ring side respec-
tively) for the class c1 Malcev correspondence is a full subcategory of the subcategory (on the group and the
Lie ring side respectively) for the class c2 Malcev correspondence. Further, the exp and log functors for the
class c1 Malcev correspondence are obtained by restricting to that subcategory the exp and log functors for
the class c2 Malcev correspondence.

Thus, as we increase the value of c, both sides of the correspondence become larger. We can thus consider
a combined correspondence for all classes. This is the Malcev correspondence. The Malcev correspondence
is a correspondence:

Rationally powered nilpotent groups ↔ Rationally powered nilpotent Lie rings

30.4. The Malcev correspondence as an isomorphism of categories over Set. We can use reasoning
analogous to that used for the Baer correspondence in Section 21.7 to deduce that the Malcev correspondence
defines an isomorphism of categories over the category of sets between the following two categories: the
category of rationally powered nilpotent groups and the category of rationally powered nilpotent Lie rings.
We can also deduce some immediate consequences similar to those deduced for the Baer correspondence in
Section 21.8.

31. The global Lazard correspondence

Remark about the “global” and “3-local” terminology. Although the terms “Lazard Lie group” and
“Lazard Lie ring” are reasonably standard, the prefix adjectives “global” and “3-local” are not standard.
Some sources, such as Khukhro’s book [27], use the term “Lazard correspondence” only for the global Lazard

185



correspondence, and do not describe the 3-local Lazard correspondence. Others, including Lazard’s original
paper [28], describe the 3-local Lazard correspondence.

We will separate the two ideas because the statements and proofs are easier to understand in the global
class case, and due to considerations of space and complexity, we provide complete proofs only for the global
class case. We begin by understanding the global class case of the Lazard correspondence.

31.1. Definitions of global class Lazard Lie group and global class Lazard Lie ring.

Definition (Global class c Lazard Lie group). Suppose G is a nilpotent group and c is a positive integer.
Denote by πc the set of all primes less than or equal to c. We say that G is a global class c Lazard Lie group
if the following two conditions are satisfied:

• The nilpotency class of G is at most equal to c.
• G is πc-powered, i.e., G is powered over all primes less than or equal to c.

We say that G is a global Lazard Lie group if G is a global class c Lazard Lie group for some positive
integer c. Equivalently, G is a global Lazard Lie group if it is powered over all primes less than or equal to
its nilpotency class.

Definition (Global class c Lazard Lie ring). Suppose L is a nilpotent Lie ring and c is a positive integer.
Denote by πc the set of all primes less than or equal to c. We say that L is a global class c Lazard Lie ring
if the following two conditions are satisfied:

(1) The nilpotency class of L is at most equal to c.
(2) L is πc-powered, i.e., L is powered over all primes less than or equal to c.

We say that L is a global Lazard Lie ring if L is a global class c Lazard Lie ring for some positive integer c.
Equivalently, L is a global Lazard Lie ring if L is powered over all primes less than or equal to its nilpotency
class.

31.2. Possibilities for the set of values of c for a global class c Lazard Lie group. We re-examine
the two conditions for a group G to be a “global class c Lazard Lie group”:

(1) The nilpotency class of G is at most equal to c.
(2) G is powered over all primes less than or equal to c.

Condition (1) becomes weaker as we increase c. Condition (2), on the other hand, becomes stronger as
we increase c. Overall, therefore, being a global class c Lazard Lie group is neither stronger nor weaker than
being a global class (c+ 1) Lazard Lie group.

For instance, an abelian group with 2-torsion is a global class 1 Lazard Lie group, but not a global class
2 Lazard Lie group. On the other hand, a finite non-abelian p-group of class two for odd p (such as the
unitriangular group UT (3, p), which is a non-abelian group of order p3 and exponent p) is a global class 2
Lazard Lie group, but not a global class 1 Lazard Lie group. Thus, neither condition implies the other.

We now turn to what we can say about the set of possible values c for which a given group is a global
class c Lazard Lie group.
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Suppose G is a nilpotent group. Denote by c0 the nilpotency class of G. Let p0 be the smallest prime
such that G is not powered over p0, if there exists such a prime (G is rationally powered if and only if no
such p0 exists). There are four possibilities:

• c0 ≥ p0: In this case, G is not a global class c Lazard Lie group for any value of c.
• c0 = p0 − 1: In this case, G is a global class c0 Lazard Lie group, but is not a global class c Lazard

Lie group for any other value of c.
• c0 < p0 − 1: In this case, G is a global class c Lazard Lie group for all c satisfying c0 ≤ c ≤ p0 − 1.
• G is rationally powered: In this case, G is a global class c Lazard Lie group for all c satisfying c0 ≤ c.

The upshot is that the set of values c for which G is a global class c Lazard Lie group is either empty or
a single value or a contiguous (possibly finite and possibly infinite) subsegment of the nonnegative integers.

Analogous remarks apply for the case of nilpotent Lie rings.

31.3. The global class c Lazard correspondence. The global class c Lazard correspondence is a corre-
spondence:

Global class c Lazard Lie groups ↔ Global class c Lazard Lie rings

The global class c Lazard correspondence operates in a manner quite similar to the class c Malcev corre-
spondence. We describe it explicitly below.

Given a global class c Lazard Lie ring L, the corresponding global class c Lazard Lie ring exp(L) is defined
as follows:

• The underlying set of exp(L) is the same as the underlying set of L.
• The group operation of exp(L) is defined as follows: xy = Hc(x, y) where Hc is the class c Baker-

Campbell-Hausdorff formula, and the Lie brackets in the formula are interpreted as Lie brackets in
L. The reason this makes sense is that we have assumed that L powered over all primes less than or
equal to c, and by Lemma 28.3, these are the only primes that appear as divisors of the denominators
in Hc(x, y).

• The identity element 1 ∈ exp(L) of the group is the same as the zero element 0 ∈ L.
• The inverse map is defined as x−1 := −x.

In the reverse direction, given a global class c Lazard Lie group G of nilpotency class c, the Lazard Lie
ring for G is a rationally powered nilpotent Lie ring log(G) of nilpotency class c defined as follows:

• The underlying set of log(G) is the same as the underlying set of G.
• The Lie ring addition is defined using the first inverse Baker-Campbell-Hausdorff formula h1,c in

terms of the group operations. Note that, as explained in Section 29.5, the formula for h1,c makes
sense in a πc-powered nilpotent group of nilpotency class at most c.

• The Lie bracket is defined using the second inverse-Baker-Campbell-Hausdorff formula in terms of
the group operations. Note that, as explained in Section 29.5, the formula for h2,c makes sense in a
πc-powered nilpotent group of nilpotency class at most c.

• The zero element of log(G) is defined to be the identity element of G.
• The negation map in the Lie ring is defined to be the same as the inverse map in the group, i.e.,
−x := x−1.

The forward direction (from Lie rings to groups) works because of Theorem 28.5. The reverse direction
works due to Theorem 29.2. The directions are reverses of each other due to the formal properties of the
formulas.
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31.4. The global class one Lazard correspondence is the abelian Lie correspondence. The global
class one Lazard correspondence is the abelian Lie correspondence described in Section 3:

Abelian groups ↔ Abelian Lie rings

31.5. The global class two Lazard correspondence is the Baer correspondence. Recall the defini-
tion of Baer Lie group from Section 21.1: a 2-powered group of nilpotency class at most two. This agrees
with the definition of a global class 2 Lazard Lie group. Similarly, the definition of Baer Lie ring in Section
21.1 agrees with the definition of a global class 2 Lazard Lie ring.

The class two Baker-Campbell-Hausdorff formula, stated in Section 28.3 and worked out in the Appendix,
Section F.1, is:

H2(x, y) = x+ y +
1
2
[x, y]

This is precisely the same as the formula in the direction from Lie rings to groups in the Baer correspon-
dence. Similarly, the class two inverse Baker-Campbell-Hausdorff formulas are:

x+ y =
xy√
[x, y]

[x, y]Lie = [x, y]Group

These are precisely the same as the formulas in the direction from groups to Lie rings in the Baer
correspondence.

Thus, the Baer correspondence is the same as the global class two Lazard correspondence.

31.6. Interaction of global Lazard correspondences for different classes. In Section 31.2, we noted
that a given global Lazard Lie group may be a global class c Lazard Lie group for multiple values of c. The
analogous observation applies to Lie rings. This leads to potential for ambiguity regarding which global class
c Lazard correspondence we are referring to.

It turns out that the global class c Lazard correspondences for different values of c agree with each other
wherever both are applicable. Explicitly, the following are true:

• Suppose G is a group of nilpotency class exactly c0, and p0 is the smallest prime for which G is not
powered (see below for the case that G is rationally powered). Suppose that c0 ≤ p0 − 1. Then, for
each c satisfying c0 ≤ c ≤ p0 − 1, G is a global class c Lazard Lie group. Therefore, for each such c,
we can consider a definition of log(G) based on the global class c Lazard correspondence. All these
definitions coincide.

In the case that G is rationally powered and has class exactly c0, we can consider a definition of
log(G) based on the global class c Lazard correspondence for all c ≥ c0. All the definitions coincide.

• Suppose L is a Lie ring of nilpotency class exactly c0, and p0 is the smallest prime for which L is
not powered (see below for the case that L is rationally powered). Suppose that c0 ≤ p0 − 1. Then,
for each c satisfying c0 ≤ c ≤ p0− 1, L is a global class c Lazard Lie ring. Therefore, for each such c,
we can consider a definition of exp(L) based on the global class c Lazard correspondence. All these
definitions coincide.

In the case that L is rationally powered and has class exactly c0, we can consider a definition of
exp(L) based on the global class c Lazard correspondence for all c ≥ c0. All the definitions coincide.
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Thus, we can define the global Lazard correspondence as the union of all the global class c Lazard
correspondences. We now make a brief philosophical remark regarding why this behaves a little worse than
the correspondences discussed earlier.

An observation people make early on in their study of algebraic structures is that whereas intersections
behave nicely with respect to presrving closure and important structural attributes, unions rarely do. For
instance, an intersection of subgroups is a subgroup, but a union of two subgroups is not a subgroup unless
one of them contains the other. In general, unions are not guaranteed to preserve closure except in situations
where they are unions of ascending chains or of directed sets.

We encounter a similar type of problem dealing with the global Lazard correspondence, albeit the problem
is now at a higher level of abstraction. Each of the individual global class c Lazard correspondences behaves
very nicely, just as the Baer correspondence and the abelian Lie correspondence do. However, when we
combine the correspondences, we are dealing with heterogeneous types of objects, and we need to be more
careful. In particular, the combined correspondence does not behave well with respect to direct products.
Also, it does not behave well with respect to the relation between subgroups and quotient groups: the normal
subgroups that are in the category are not the same as the normal subgroups for which the quotient groups
are in the category. We will return to these in more detail in Section 31.8.

31.7. Isomorphism of categories. We follow here the general template outlined in Section 3.9.
Each global class c Lazard correspondence defines an isomorphism of categories over the category of sets30

between the full subcategory of the category of groups comprising the global class c Lazard Lie groups and
the full subcategory of the category of Lie rings comprising the global class c Lazard Lie rings. The functor
from Lie rings to groups is the exp functor and the functor from groups to Lie rings is the log functor.

The global Lazard correspondence can be viewed as an isomorphism of categories over the category of
sets between the full subcategory of the category of groups comprising all the global Lazard Lie groups, and
the full subcategory of the category of Lie rings comprising all the global Lazard Lie rings.

The set of objects involved in the global Lazard correspondence is the union of the sets of objects involved
in each of the global class c Lazard correspondences. The set of morphisms, however, is strictly larger,
because the new correspondence includes morphisms between global class c Lazard Lie groups for different
values of c. For instance, an inclusion of Z in UT (3,Q) is a morphism in the category on the group side,
because Z is a global class 1 Lazard Lie group and UT (3,Q) is a global class 2 Lazard Lie group.

We can deduce a number of immediate consequences of the isomorphism of categories similar to those in
Section 21.8.

31.8. Subgroups, quotients, and direct products. We describe how subgroups, quotient groups, and
direct products interact with the global class c Lazard correspondence.

31.8.1. Subgroups. Suppose G is a global class c Lazard Lie group and L = log(G) is the corresponding global
class c Lazard Lie ring. Then, the global class c Lazard correspondence gives a bijective correspondence:

Global class c Lazard Lie subgroups of G ↔ Global class c Lazard Lie subrings of L

The global Lazard correspondence gives a bijective correspondence:

Global Lazard Lie subgroups of G ↔ Global Lazard Lie subrings of L

30This means that the functors in both directions preserve the underlying set.
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The latter correspondence is somewhat more general than the former, because it includes subgroups
(respectively, subrings) that are global Lazard Lie groups (respectively, global Lazard Lie rings) for smaller
nilpotency class values. In particular, it includes all abelian subgroups and abelian subrings, as well as all
Baer Lie subgroups and Baer Lie subrings. These may not qualify for the earlier correspondence because
they may not be powered over all the primes less than or equal to c. For instance, any copy of Z inside
UT (3,Q) is part of the latter correspondence but not the former.

31.8.2. Quotient groups. Suppose G is a global class c Lazard Lie group and L = log(G) is the corresponding
global class c Lazard Lie ring. We have a correspondence:

Global class c Lazard Lie groups that are quotient groups of G ↔ Global class c Lazard Lie rings that are
quotient Lie rings of L

We also obtain correspondences between the corresponding kernels:

Global class c Lazard Lie groups that are normal subgroups of G ↔ Global class c Lazard Lie rings that
are ideals of L

Note that the equivalence relies on Theorem 17.27 and Lemma 18.1. These show that in a πc-powered
nilpotent group (respectively, πc-powered nilpotent Lie ring) a normal subgroup (respectively, ideal) is πc-
powered if and only if the quotient group (respectively, quotient Lie ring) is πc-powered. Here, we take πc

to be the set of all primes less than or equal to c.
We also have a correspondence:

Global Lazard Lie groups that are quotient groups of G ↔ Global Lazard Lie rings that are quotient Lie
rings of L

This gives rise to another correspondence:

Normal subgroups of G for which the quotient group is a global Lazard Lie group ↔ Ideals of L for which
the quotient Lie ring is a global Lazard Lie ring

Note, however, that these normal subgroups are not necessarily the same as the normal subgroups that
are also global Lazard Lie groups. For instance, consider the global class two Lazard Lie group (i.e., the Baer
Lie group) G = UT (3,Q). A subgroup H isomorphic to Z inside the center of G is a normal subgroup that
is a global class one Lazard Lie group. However, G/H is not a global Lazard Lie group, because it has class
two but has 2-torsion in the center. On the other hand, consider the subgroup K of G such that K/Z(G) is
isomorphic to Z×Z inside G/Z(G) ∼= Q×Q. K is a normal subgroup that is not a global Lazard Lie group,
but the quotient group G/K is a global Lazard Lie group.

31.8.3. Direct products. Suppose Gi, i ∈ I, are all global class c Lazard Lie groups for the same value
of c. Then, the external direct product

∏
i∈I Gi is also a global class c Lazard Lie group. Moreover,

log(
∏

i∈I Gi) =
∏

i∈I log(Gi).
On the other hand, it may happen that G1 is a global class c1 Lazard Lie group, G2 is a global class c2

Lazard Lie group, and the direct product G1 ×G2 is not a global class c Lazard Lie group for any value of
c. For instance, this happens if G1 = Z/2Z (with c1 = 1) and G2 = UT (3,Q) (with c2 = 2).

31.9. Inner derivations and inner automorphisms. Suppose G is a global class c Lazard Lie group and
L is the corresponding global class c Lazard Lie ring. The group G/Z(G) ∼= Inn(G) is in global class c − 1
Lazard correspondence with the Lie ring L/Z(L) ∼= Inn(L). In particular, G/Z(G) and L/Z(L) have the
same underlying set.
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For any x in the common underlying set of G and L, denote by x its image in the common underlying set
of G/Z(G) and L/Z(L). We have two set maps of interest from L to itself induced by x:

• The automorphism of L arising from the inner automorphism of G given by conjugation by x, i.e.,
the map g 7→ xgx−1. We denote this as Adx.

• The inner derivation of L given as g 7→ [x, g]. We denote this as adx.

We then have the relationship:

Adx = exp(adx)

where the exponentiation occurs inside the ring EndZ(L) of the additive group of L.
Deducing the result would require us to return to the free group scenario, obtain the result in that scenario

where the group and Lie ring are both subsets in an associative ring, and then apply homomorphisms. We
are not using this result for our main proofs, so we skip the proof. Interested readers may look at Lemma
3.3 of George Glauberman’s paper [18].

This relationship continues to be valid in the general case (the 3-local case) that we discuss in the next
section.

31.10. The case of adjoint groups. In Section 26, we introduced the general idea of the adjoint group of
a radical ring. Suppose N is a nilpotent associative ring of nilpotency class c (this means that any product
of length c+ 1 or more is zero) and 1 +N is the corresponding adjoint group. We can view N as a Lie ring
by using the same additive structure and defining:

[x, y] := xy − yx

N as a Lie ring also has nilpotency class at most c (although the nilpotency class as a Lie ring could be
smaller). The following turn out to be true.

• The adjoint group 1 + N is a nilpotent group of nilpotency class at most c. Note that this is true
regardless of whether N is powered over any primes.

• Suppose the additive group of N is powered over the set πc of all primes less than or equal to c. Then,
the Lie ring N and the group 1 +N are in global class c Lazard correspondence up to isomorphism.
Moreover, the isomorphism is given by the set maps exp : N → 1 + N and log : 1 + N → N

described in Section 26 (specifically, see Section 26.6). This follows quite directly from the analytical
framework described in Section 26.

31.11. The case of the niltriangular matrix Lie ring and the unitriangular matrix group. The
material discussed here builds on Section 1.6 in the introduction.

Suppose R is a commutative associative unital ring and n is a positive integer. We define UT (n,R) as the
group of n× n upper triangular matrices with 1s on the diagonal, with the group operation being the usual
matrix multiplication. we define NT (n,R) as the Lie ring of n× n strictly upper triangular matrices, with
the Lie bracket defined as [x, y] = xy − yx where the multiplication here is matrix multiplication. We had
considered groups of the form UT (n,R) and NT (n,R) (in the case n = 3) when describing counterexamples
to naively plausible statements about powering and divisibility in Sections 17.13 and 18.6.

The following turn out to be true for any positive integer c. Denote by πc the set of all primes less than
or equal to c.
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(1) The group UT (c+ 1, R) is a group of nilpotency class c and the Lie ring NT (c+ 1, R) is a Lie ring
of nilpotency class c.

(2) The group UT (c+1, R) is the adjoint group to the radical ring NT (c+1, R), based on the definitions
in Section 26.

(3) If the additive group of R is πc-powered, the additive group of NT (c+ 1, R) is also πc-powered, and
the group UT (c+1, R) is also πc-powered. This follows from (2) and the discussion in Section 31.10.

(4) If the equivalent conditions for (3) hold, then the group UT (c + 1, R) is in global class c Lazard
correspondence up to isomorphism with NT (c+1, R). The logarithm and exponential maps used to
describe the bijection of sets are the usual matrix logarithm and exponential maps. This follows by
combining (2) and the discussion in Section 31.10.

Particular cases of interest for the above scenario are:

• R is a field of characteristic zero. Note that in this case, we get an instance of the class c Malcev
correspondence.

• R is a field of characteristic p, where p > c.
• R is a local ring of characteristic pk, where p is the underlying prime and p > c. For instance, the

case c = 2 and R = Z/9Z.

32. The general definition of the Lazard correspondence: 3-local case

32.1. Definition of local nilpotency class. This is the general version of the Lazard correspondence.

Definition (k-local nilpotency class). Suppose G is a group and k is a positive integer (we are generally
interested in k ≥ 2). The k-local nilpotency class of G is the supremum over all subgroups H of G with
generating set of size at most k of the nilpotency class of H. Note that if any subgroup of G with generating
set of size at most k is non-nilpotent, or if there is no common finite upper bound on the nilpotency classes
of all such subgroups, then the k-local nilpotency class is ∞.

We say that G is a group of k-local nilpotency class (at most) c if the k-local nilpotency class of G is
finite and less than or equal to c.

Definition (k-local nilpotency class of a Lie ring). Suppose L is a Lie ring and k is a positive integer (we
are generally interested in k ≥ 2). The k-local nilpotency class of L is the supremum over all Lie subrings
M of L with generating set of size at most k of the nilpotency class of M . Note that if any Lie subring of
L with generating set of size at most k is non-nilpotent, or if there is no common finite upper bound on the
nilpotency classes of all such subgroups, then the k-local nilpotency class is ∞.

We say that L is a Lie ring of k-local nilpotency class (at most) c if the k-local nilpotency class of L is
finite and less than or equal to c.

32.2. Definition of Lazard Lie group and Lazard Lie ring, and the correspondence. We can now
define Lazard Lie group and Lazard Lie ring.
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Definition (Lazard Lie group). Suppose G is a group and c is a positive integer. G is termed a class c
Lazard Lie group if both the following conditions are satisfied:

(1) The 3-local nilpotency class of G is at most c.
(2) G is powered over all primes less than or equal to c.

Definition (Lazard Lie ring). Suppose L is a Lie ring and c is a positive integer. L is termed a class c
Lazard Lie ring if both the following conditions are satisfied:

(1) The 3-local nilpotency class of L is at most c.
(2) L is powered over all primes less than or equal to c.

The (3-local) class c Lazard correspondence is a correspondence:

(3-local) class c Lazard Lie groups ↔ (3-local) class c Lazard Lie rings

Note that the “(3-local)” qualifier may be specified on occasions where there is potential for confusion
with the global class c Lazard correspondence. However, by default, in this section and later, if we just say
class c Lazard (followed by any of the terms correspondence, Lie group, and Lie ring), we are referring to
the 3-local case.

This correspondence works in a manner analogous to the global class c Lazard correspondence, and the
remarks made in the preceding section (Section 31) about the global Lazard correspondence apply to the
(3-local) Lazard correspondence. For brevity, we will not repeat the observations.

Note that the formulas use only 2 elements at a time. So one might naively expect that a “2-local”
condition would suffice. However, the associativity condition for groups, and correspondingly, many of the
Lie ring identities (associativity of addition, distributivity, and the Jacobi identity), reference three arbitrary
elements at a time. This is why we need to impose the “3-local” condition. With this caveat, the reasoning
is similar to that for the global class c Lazard correspondence. All the other remarks made in the previous
section also apply. We had touched on the significance of the numbers 2 and 3 in an introductory section
(Section 1.11) and we are now making use of the observations made at the time.

32.3. Divergence between the 3-local and global class cases. For c = 1, 2, 3, the global class c Lazard
correspondence coincides with the class c Lazard correspondence. The cases c = 1 and c = 2 are obvious: if
every 3-generated subgroup (respectively Lie subring) is abelian, the whole group (respectively, Lie ring) is
abelian. Similarly, if every 3-generated subgroup (respectively Lie subring) has class at most two, the whole
group (respectively, Lie ring) has class at most two. This is because the class two condition involves checking
the triviality of [[x, y], z], and this expression uses only three elements. The case c = 3 is more interesting,
because it is not immediate. However, providing details of this case would distract us from our main goal,
so we omit it. The case of c = 3 for Lie rings is discussed in the Appendix, Section G.1.

The global class c Lazard correspondence becomes strictly weaker than the class c Lazard correspondence
for c ≥ 4, as demonstrated by Lazard in [28]. For more about the relationship between local and global
nilpotency, see the literature on Engel conditions and local nilpotency. In particular, the paper [37] by
Pilgrim and the paper [38] by Plotkin provide a summary of the known results relating local and global
nilpotency.
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32.4. The p-group case of the Lazard correspondence. Recall that a p-group is a group in which the
order of every element is a power of p. We use the term p-Lie ring for a Lie ring whose additive group is a
p-group.

The global Lazard correspondence is a correspondence:
p-groups of nilpotency class at most p− 1 ↔ p-Lie rings of nilpotency class at most p− 1
The Lazard correspondence (including the 3-local case) is a correspondence:
p-groups of 3-local nilpotency class at most p− 1 ↔ p-Lie rings of 3-local nilpotency class at most p− 1.

33. The Lie bracket and group commutator in terms of each other: prime bounds

33.1. Group commutator formula in terms of the Lie bracket. For reasons that will become clear
later, we will work with the class (c + 1) Baker-Campbell-Hausdorff formula instead of the class c Baker-
Campbell-Hausdorff formula, where c is a positive integer. This is purely a matter of notation, and its main
advantage is that later results that use the results here can do so directly without needing to increase or
decrease the values by one.

In the usual Lazard correspondence, there is an explicit formula for the group commutator of two elements
in terms of Lie brackets. In fact, there is an infinite series, which can be obtained from the Baker-Campbell-
Hausdorff formula series, whose truncations give the formula for the group commutator. We will now describe
how this formula is obtained.

Note that the explicit expressions here are sensitive to whether we use the left or right action convention
for computing the group commutator. We will use the left action convention.

[x, y]Group = (xy)(yx)−1

Inverses in the group correspond to taking the negative in the Lie ring, so this becomes:

[x, y]Group = (xy)(−(yx))

We now need to apply the Baker-Campbell-Hausdorff formula to expand each piece.
We have the following in the class (c+ 1) case:

xy = x+ y + t2(x, y) + t3(x, y) + · · ·+ tc+1(x, y)

yx = y + x+ t2(y, x) + t3(y, x) + · · ·+ tc+1(y, x)

We thus get the following expression for [x, y]Group.

(x + y + t2(x, y) + t3(x, y) + · · · + tc+1(x, y))

−(y + x + t2(y, x) + t3(y, x) + · · · + tc+1(y, x))

+t2(xy,−(yx)) + t3(xy,−(yx)) + · · · + tc+1(xy,−(yx))

Based on the symmetry and skew symmetry properties deduced in the preceding section, we obtain the
following, where c′ is the largest even number less than or equal to c+ 1:
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[x, y]Group = 2(t2(x, y) + t4(x, y) + · · · + tc′(x, y)) + t2(xy,−(yx)) + t3(xy,−(yx)) + · · · + tc+1(xy,−(yx))

It is also the case that tc+1(xy,−(yx)) = 0. This is because when we expand these out, all the degree
c terms in the product are iterated products with each piece equal to (x + y) or −(x + y), and all higher
degree terms are anyway zero. Thus, the group commutator simplifies to:

[x, y]Group = 2(t2(x, y) + t4(x, y) + · · · + tc′(x, y)) + t2(xy,−(yx)) + t3(xy,−(yx)) + · · · + tc(xy,−(yx))

Denote this formula of x and y by Mc+1(x, y). In other words:

[x, y]Group = Mc+1(x, y)

Note that in the case that we are using the Lazard correspondence up to isomorphism, such as the case
where we are using the exponential and logarithm maps inside an associative ring of class c + 1, Mc+1 can
be interpreted as follows:

eMc+1(x,y) = [ex, ey]Group

The distinction between this and the earlier interpretation is that with the earlier intepretation, we
identified x and ex as the same element, whereas now, we are treating them as different elements. The latter
interpretation makes sense when we are describing the exponential and logarithm maps inside an associative
ring.

Note that the explicit formula Mc+1 is sensitive to whether we are using the left action convention or
the right action convention, but the existence of a formula of the sort is not, and the general properties
of the prime divisors of denominators for the formula are not. The corresponding formula with the right
action convention would expand the product (yx)−1(xy) instead of (xy)(yx)−1, and the steps would be fairly
similar. The results from this point onward do not depend on the choice of action convention (left versus
right).

We are now in a position to prove a lemma.

Lemma 33.1. In the formula Mc+1(x, y) for the group commutator [x, y]Group in terms of Lie ring
operations (addition and Lie bracket) in class c+ 1, all prime divisors of the denominators are less than or
equal to c.

Proof. We divide into cases:

• c = 1, so that c+1 = 2: In this case, we can work the formula out and we get that [x, y]Group = [x, y].
This satisfies the condition, since there are no prime factors of the denominator.

• c is even, so that c + 1 is odd: In this case, the formula above shows that we use terms only up to
tc, and do not use tc+1. Thus, we can only get the primes less than or equal to c.
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• c is odd and at least 3, so that c+ 1 is even and greater than 2: In this case, c+ 1 is composite. We
know from the formula that we only use primes less than or equal to c+ 1. Since c+ 1 is composite,
this means we only use primes less than or equal to c.

�

It is also possible to construct an infinite series expression whose truncations give the group commutator
formulas for various choices of 3-local nilpotency class.

The importance of these observations is as follows. We can make sense of the formula for Mc+1(x, y) for
certain Lie rings that are not Lazard Lie rings. Specifically, we can make sense of this formula for Lie rings
of 3-local nilpotency class (c + 1) which are uniquely divisible by primes strictly less than c + 1, but not
by c + 1 itself. This case is of interest (i.e., it conveys nontrivial information) when c + 1 itself is a prime
number. We will build on the results here in Sections 35.4 and 39.

The procedure outlined above has been used to compute Mc+1 for small values of c in the Appendix. The
case c = 2 is described in Section F.4 and the case c = 3 is described in Section F.5.

33.2. Inverse Baker-Campbell-Hausdorff formula: bound on denominators. We want to prove a
similar result for the bounds on prime powers of denominators for the formula h2 that describes the Lie
bracket of the Lie ring in terms of group commutators. The result follows from Theorem 6.4 in [8], but we
provide a minimalistic proof below that builds on Lemma 33.1.

Lemma 33.2. In the formula h2,c+1(x, y) for the Lie bracket [x, y]Lie in terms of group commutators, all
prime divisors of the denominators in the exponents are less than or equal to c.

Proof. Recall that Mc+1(x, y) expresses the group commutator in terms of the Lie bracket and its iterations,
whereas h2,c+1(x, y) expresses the Lie bracket in terms of the group commutator and its iterations. These
formulas are therefore “inverses” of each other in the following sense. Denote by (h2,c+1 ◦Mc+1)(x, y) the
formula that substitutes, in each of the commutators appearing in the expression for h2,c+1, the formula for
Mc+1, and then expands group products of these commutators as Lie ring expressions using the class (c+1)
Baker-Campbell-Hausdorff formula. Then:

(h2,c+1 ◦Mc+1)(x, y) ≡ [x, y]Lie,

where the equality is considered modulo Ac+2 where A is the free associative Q-algebra with generators
x and y. Replacing c+ 1 by c above, we obtain:

(h2,c ◦Mc)(x, y) ≡ [x, y]Lie (mod Ac+1)

Thus, we get that:

(h2,c ◦Mc)(x, y) ≡ [x, y]Lie + χc+1(x, y) (mod Ac+2)

where χc+1 is a Q-linear combination of weight c + 1 Lie products. Note that since χc+1 is obtained by
composing and manipulating terms from h2,c, Mc, and the class c Baker-Campbell-Hausdorff formula, all
the prime divisors appearing in its denominators are less than or equal to c.

We also have that:
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Mc+1(x, y) = Mc(x, y) + ξc+1(x, y)

where, by Lemma 33.1, all the prime divisors of denominators appearing in the expression for ξc+1 are
less than or equal to c. It follows that:

(h2,c ◦Mc+1)(x, y) ≡ [x, y]Lie + χc+1(x, y) + ξc+1(x, y)

It now follows that:

h2,c+1(x, y) = h2,c(x, y)(χ̃c+1(x, y)ξ̃c+1(x, y))−1

where χ̃ and ξ̃ denote the same expressions as those used for χ and ξ but interpreting the Lie brackets
as commutators. This works because the (c + 1)-fold iterated commutator coincides with the (c + 1)-fold
iterated Lie bracket in class c+ 1. In other words, the set map:

(x1, x2, . . . , xc+1) 7→ [[. . . [x1, x2], x3], . . . , xc], xc+1]

is the same whether we interpret the brackets on the right as group commutators or as Lie brackets: this
follows immediately from the formula Mc+1.

In particular, note that the only prime divisors that appear in the denominators of the exponents on the
right are primes less than or equal to c, completing the proof. �

The case c = 2 (so that c+ 1 = 3) has been worked out in the Appendix, Section F.6. Readers interested
in understanding the proof via a concrete illustration are advised to read this.

34. Lazard correspondence, commutativity relation, and central series

34.1. The commutativity relation and the upper central series. We begin with an important lemma.

Lemma 34.1. Suppose G is a (3-local) class c Lazard Lie group and L = log(G) is its Lazard Lie ring.
Then, for elements x, y ∈ G, the commutator [x, y] is the identity element of G if and only if the Lie bracket
[x, y] is zero. In other words, x and y commute as group elements if and only if they commute as Lie ring
elements.

Proof. In Section 33.1, we described a formula Mc+1 for the group commutator in terms of the Lie bracket.
The formula makes it clear that if the Lie bracket is zero, the group commutator is the identity element.

In Section 29, we described a formula h2,c+1 for the Lie bracket in terms of the group commutator. The
formula makes it clear that if the group commutator is the identity element, then the Lie bracket is zero. �

It is possible to prove one direction directly from the Baker-Campbell-Hausdorff formula rather than
referencing the above sections. The idea behind a direct proof would be to show that if the Lie bracket [x, y]
is 0, then xy = x+ y = yx, so that the group commutator is zero.

We now show that the Lazard correspondence relates the upper central series of the Lie ring with the
upper central series of the group.
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Theorem 34.2. Suppose G is a (3-local) class c Lazard Lie group and L = log(G) is its Lazard Lie ring.
Then the following are true:

(1) log(Z(G)) = Z(L) (this is an instance of the 3-local class c Lazard correspondence)
(2) log(G/Z(G)) = L/Z(L) (this is an instance of the 3-local class c Lazard correspondence)
(3) For all positive integers i, we have log(Zi(G)) = Zi(L) and log(G/Zi(G)) = L/Zi(L). where Zi

denotes the ith member of the upper central series (for G or L respectively).
(4) For all positive integers i > j, log(Zi(G)/Zj(G)) = Zi(L)/Zj(L) where Zi, Zj denote the ith and

jth members of the lower central series (for G or L respectively).

Note that since we are in general using the 3-local class c Lazard correspondence, the global class of G
and L may be greater than c. Thus, the result is potentially of interest even for i ≥ c.

Proof. Proof of (1): The fact that log(Z(G)) = Z(L) follows immediately from the preceding lemma (Lemma
34.1). By Lemmas 17.5 and 18.3, Z(G) and Z(L) are both πc-powered, so this is an instance of the 3-local
class c Lazard correspondence.

Proof of (2): This follows from (1) and from facts for the 3-local class c Lazard correspondence similar to
those for the global Lazard correspondence described in Section 31.8.2. Thus, log(G/Z(G)) = L/Z(L).

Proof of (3): We obtain this by induction using (1) and (2).
Proof of (4): This follows from (3), using reasoning similar to that in (2). �

34.2. The commutator map and the lower central series. We begin with a lemma.

Lemma 34.3. Suppose G is a 3-local class c Lazard Lie group and L = log(G) is its Lazard Lie ring.
Suppose H is a πc-powered normal subgroup of G and I = log(H) is the corresponding πc-powered ideal of L.
Then, [G,H] is a πc-powered normal subgroup of G, [L, I] is a πc-powered ideal of L, and [L, I] = log([G,H]).

Proof. [G,H] is normal by basic group theory, and it is πc-powered by Lemma 17.22. [L, I] is a πc-powered
ideal by basic Lie ring theory. Thus, log([G,H]) is a 3-local class c Lazard Lie subring of L, and exp([L, I])
is a 3-local class c Lazard Lie subgroup of G. It therefore suffices to show that a generating set for [G,H] is
inside [L, I] and that a generating set for [L, I] is inside [G,H].

Proof that log([G,H]) ⊆ [L, I]: It suffices to show that every element of the form [g, h], for g ∈ G, h ∈ H,
is in [L, I]. This follows from the formula [g, h] = Mc+1(g, h) described in Section 33.1. In particular, we use
Lemma 33.1 to argue that the expression is in [L, I].

Proof that [L, I] ⊆ log([G,H]): It suffices to show that every element of the form [x, y], for x ∈ L, y ∈ I,
is in [G,H]. This follows from the formula [x, y] = h2,c+1(x, y) described as the second inverse Baker-
Campbell-Hausdorff formula in Section 29. In particular, we use Lemma 33.2 to argue that the expression
is in [G,H]. �

We now show that the Lazard correspondence relates the lower central series of the Lie ring with the
lower central series of the group.
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Theorem 34.4. Suppose G is a 3-local class c Lazard Lie group and L = log(G) is its Lazard Lie ring.
Then, the following hold.

(1) For all positive integers i, log(γi(G)) = γi(L) where γi denotes the ith member of the lower central
series (for G or L respectively).

(2) For all positive integers i < j, log(γi(G)/γj(G)) = γi(L)/γj(L). In particular, setting i = 1,
log(G/γj(G)) = L/γj(L).

Proof. Proof of (1): This follows by inducting on Lemma 34.3. The base case i = 1 is given. For the
inductive step from i to i+ 1, set H = γi(G) and I = γi(L).

Proof of (2): This follows from (1). �

35. The Malcev and Lazard correspondence in the free case

35.1. Setup. We use the same notation as in Section 27.1. The notation is reviewed below for convenience.
Denote by A the free associative Q-algebra on a generating set S = {x1, x2, . . . }. The generating set may
have any cardinality. By the well-ordering principle, we will index the generating set by a well-ordered set.
For a positive integer c, define A := A/Ac+1. A can be described as the free nilpotent associative algebra
of class c on the same generating set S. Explicitly, this means that all products in A of length more than c
become zero.

Denote by L the Lie subring of A generated by the free generating set S. Note that L is only a Lie ring,
not a Q-Lie algebra. QL is the Q-Lie algebra generated by S in A.

We can define L in the following equivalent ways:

• L = L/γc+1(L) = L/(L ∩ Ac+1).
• L is the Lie subring generated by the image of S inside A, i.e., it is the Lie subring generated by the

freely generating set inside A.

Denote by F the group generated by the elements exi , xi varying over the generating set S of L. As per
Theorem 27.2, F is a free nilpotent group with exi forming a freely generating set.

We can define an exponential map

exp : L→ 1 +A

by:

exp(x) = 1 + x+
x2

2!
+ · · ·+ xc

c!
We can also define a logarithm map:

log : F → A

by:

log x = (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · ·+ (−1)c(x− 1)c

c
We might naively hope that exp(L) = F and log(F ) = L. This, however, is not the case. A somewhat

weaker version of the statement is true, as described in Section 29.5 (the original proof is in Khukhro’s
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book [27], Theorem 10.22), and we recall that below, because we will be using it extensively in some of
our proofs. Denote by πc the set of all primes less than or equal to c. Then, for any prime set σ ⊇ πc,
σ
√
F = exp(Z[σ−1]L). In particular, both of these hold:

• πc
√
F = exp(Z[π−1

c ]L)
•
√
F = exp(QL)

35.2. Interpretation as correspondences up to isomorphism. In Section 3.5, we had described the
abelian Lie correspondence up to isomorphism. This differs from the abelian Lie correspondence in the
important sense that the group and the Lie ring need not have the same underlying set. Instead, we are
given a set map (denoted exp) from the Lie ring to the group and a set map (denoted log) from the group
to the Lie ring that play the role of identifying the sets with each other. We noted in Section 3.9 that this
notion of relaxing up to isomorphism applies to all the similarly defined correspondences in this document.
In Section 21.8, we noted that the notion applies to the Baer correspondence.

The notion of a correspondence up to isomorphism also applies to the Malcev correspondence and the
Lazard correspondence. In both cases, we need to specify a set map from the Lie ring to the group (cus-
tomarily denoted exp) and a set map from the group to the Lie ring (customarily denoted log) that play the
role of identifying the sets.

Using the same notation as in Section 35.1, we obtain the following correspondences up to isomorphism:

• The Lie ring QL and the group
√
F are in class c Malcev correspondence up to isomorphism. The

exp and log maps defining the correspondence coincide with the exp and log maps defined in Section
35.1. This is not a coincidence: the terminology exp and log that we introduced in the abstract
setting was specifically chosen based on this setup.

• For any prime set σ containing πc, the Lie ring Z[σ−1]L and the group σ
√
F are in global class

c Lazard correspondence up to isomorphism. The exp and log maps defining the correspondence
coincide with the exp and log maps defined in Section 35.1.

• In particular, the Lie ring Z[π−1
c ]L and the group πc

√
F are in global class c Lazard correspondence

up to isomorphism, with the same exp and log maps.

35.3. Restriction of the Malcev correspondence to groups and Lie rings that lack adequate

powering. We continue using the same notation as above: L is a free nilpotent Lie ring of class c on the
generating set S, and F is a free nilpotent group of class c on the generating set eS , which is in canonical
bijection with S. We had already noticed that L and F are not in Lazard correspondence with one another.
We will now take a closer look at the statement.

Any element of L can be written as a sum involving the xis and Lie products involving the xis. Consider,
for instance, the case that |S| = 2 and the generating set is {x1, x2}. Consider the element x1 + x2 of L.
Then, to find ex1+x2 , we can use the inverse Baker-Campbell-Haudorff formula, and obtain:

ex1+x2 = h1,c(ex1 , ex2)

The formula h1,c involves taking pth roots for primes p ∈ πc. Therefore, even though the elements ex1

and ex2 are in F , the element ex1+x2 is not in F if c ≥ 2.
Consider a more complicated element of L.

z = x1 + x2 + 3[x1, x2]
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We can compute ez by splitting z as a sum (x1 + x2) + 3[x1, x2], then splitting x1 + x2 as a sum again,
and also h2,c to compute e[x1,x2]. The final formula is:

ez = h1,c(h1,c(ex1 , ex2), (h2,c(ex1 , ex2))3)

Once again, we are guaranteed that ez ∈ πc
√
F . However, it will not in general be in F itself.

There do exist some elements of L whose exponential is in F . For instance, all the elements of the
generating set S have exponentials in F . Other examples also exist. For instance, in the case c = 2,
the exponential of [x1, x2] is [ex1 , ex2 ] and is inside F . The subset of L comprising those elements whose
exponential is in F is a generating set for L as a Lie ring (because in particular it contains S) and therefore
in particular it is not a subring of L.

Suppose now that we consider the Lie ring Z[σ−1]L and the group σ
√
F , where σ is a subset of πc that does

not include all the primes in πc. Note that the whole Lie ring Z[σ−1]L is not in Lazard correspondence with
the whole group σ

√
F . In particular, exp(Z[σ−1]L) is not contained in σ

√
F , and log( σ

√
F ) is not contained in

Z[σ−1]L.
It might still be the case, however, that there are subrings of Z[σ−1]L that are in Lazard correspondence

with certain subgroups of σ
√
F . The naive intuition is that, as long as the formulas involved require division

only by the primes in σ and not by any of the other primes in πc, the correspondence should work.
We will now establish a few important results of this sort.

35.4. Lazard correspondence between derived subgroup and derived subring. The following result
is an extremely important first step both in defining and in establishing important aspects of the Lazard
correspondence up to isoclinism.

We will perform our calculuations in class c+1. This will make it easier to use our results directly in later
sections. However, it will be a slight departure from the preceding discussion. For clarity, we use subscripts
to remind ourselves of the class we are operating in.

Let c be a positive integer and πc be the set of all primes less than or equal to c. Let S be a set. The
algebra A = Ac+1, the Lie ring L = Lc+1, and the group F = Fc+1 are defined the same way as in Sections
35.1 and 35.2, but replacing c by c+ 1. In particular, A is a free Q-algebra on S of nilpotency class c+ 1, L
is the Lie subring of Ac+1 generated by S, and D is the group generated by exi , xi ∈ S.

Let K be the group πc
√
F and N be the group Z[π−1

c ](L). As shown in Theorem 27.2, K is a free πc-
powered class (c+ 1) group on eS (and therefore canonically isomorphic to the free πc-powered class (c+ 1)
group on S), and N is a free πc-powered class (c+ 1) Lie ring on S.

Before proceeding, we note a few basic facts that we will repeatedly use in the course of our proofs.

•
√
F =

√
K is the free Q-powered group on eS .

• QN = QL is the free Q-powered Lie ring on S.

Our eventual goal will be to show that the exponential and logarithm map establish a Lazard corespon-
dence between [N,N ] and [K,K]. We will begin by establishing some preliminaries.

Lemma 35.1. With notation as above, the following are true:

(1) [N,N ] is a global class c Lazard Lie ring, i.e., it is a πc-powered Lie ring of nilpotency class at most
c.
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(2) [K,K] is a global class c Lazard Lie group, i.e., it is a πc-powered group of nilpotency class at most
c.

(3) Under the exponential map from A to 1 + A, exp([N,N ]) is a πc-powered subgroup of 1 + A (in
fact, it is a subgroup of

√
F ). Moreover, the exponential and logarithm maps establish a Lazard

correspondence up to isomorphism between [N,N ] and exp([N,N ]).
(4) Under the logarithm map from 1+A to A, log([K,K]) is a πc-powered Lie subring of A (in fact, it is a

Lie subring of QL). Moreover, the exponential and logarithm maps establish a Lazard correspondence
up to isomorphism between log([K,K]) and [K,K].

Proof. We prove the parts one by one.

(1) [N,N ] is a global class c Lazard Lie ring:
• [N,N ] is πc-powered: This follows from the fact that N is πc-powered and Lemma 18.8.
• [N,N ] has nilpotency class at most c: In fact, since N has nilpotency class c + 1, [N,N ] has

nilpotency class at most b(c+ 1)/2c, which is less than or equal to c.
(2) [K,K] is a global class c Lazard Lie group:

• [K,K] is πc-powered: The follows from the fact that K is πc-powered and Theorem 17.20.
• [K,K] has nilpotency class at most c: In fact, since K has nilpotency class c + 1, [K,K] has

nilpotency class at most b(c+ 1)/2c, which is less than or equal to c.
(3) This follows directly from (1) and applying the global Lazard correspondence between subrings and

subgroups described in Section 31.8.1, to the Lazard correspondence between QL and
√
F .

(4) This follows directly from (2) and applying the global Lazard correspondence between subrings and
subgroups described in Section 31.8.1, to the Lazard correspondence between QL and

√
F .

�

Lemma 35.2. With notation as above, the following are true (recall that Z(
√
K) is the center of

√
K =√

F ):

(1) Under the exponential map exp : QL = QN →
√
F =

√
K (which in turn is obtained from the

exponential map exp : A→ 1 +A), we have exp(N) ⊆ KZ(
√
K).

(2) Under the logarithm map log :
√
F =

√
K → QL = QN (which in turn is obtained from the

logarithm map log : 1 +A→ A), we have log(K) ⊆ N + Z(QN).
(3) Under the exponential map exp : QL = QN →

√
F =

√
K (which in turn is obtained from the

exponential map exp : A→ 1 +A), we have K ⊆ exp(N)Z(
√
K).

(4) Under the logarithm map log :
√
F =

√
K → QL = QN (which in turn is obtained from the

logarithm map log : 1 +A→ A), we have N ⊆ log(K) + Z(QN).

Proof. Consider the quotient map A→ A/Ac+1. This map factors out the products of length c+ 1 and the
quotient is therefore the free nilpotent associative algebra of nilpotency class c on S. Based on the setup
described in Section 27, the image of F under the quotient map is Fc (the class c version of F ) and the image
of L under the quotient map is Lc (the class c version of L). Denote by Kc and Nc the images of K and
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N under the quotient map. Then, Kc = πc
√
Fc and Nc = Z[π−1

c ]Lc, so that Kc and Nc are in global class c
Lazard correspondence up to isomorphism.

Proof of (1): For x ∈ N , denote by x the image of x in Nc. Then, exp(x) = exp(x) ∈ Kc, so exp(x) can
be written in the form g + a where g ∈ K and a is in the (c + 1)th graded component of A. This can be
rewritten as g(1 + g−1a). The element 1 + g−1a is an element of

√
F =

√
K, and g−1a is in the (c + 1)th

graded component of A, so that 1 + g−1a ∈ Z(
√
F ) = Z(

√
K).

Proof of (2): For g ∈ K, denote by g the image of g in Kc. Then, log(x) = log(x) ∈ Nc, so log x
can be written in the form x + a where x ∈ N and a is in the (c + 1)th graded component of A, so that
a ∈ Z(QL) = Z(QN).

Proof of (3): For g ∈ K, part (2) says that we can write log g = x+ a where a is central. Exponentiating
both sides, we obtain that g = exea, with ea ∈ Z(

√
K).

Proof (4): For x ∈ N , part (1) says that we can write ex = gu where g ∈ K and u ∈ Z(
√
K). Taking

logarithms both sides, and using the centrality of u, we obtain that x = log g+log u, with log u ∈ Z(QN). �

Theorem 35.3 (Lazard correspondence between derived subgroup and derived subring). With notation
as above, the derived subgroup [K,K] and the derived subring [N,N ] are in Lazard correspondence up to
isomorphism. Moreover, this Lazard correspondence arises as a restriction of the Malcev correspondence
between

√
F = K̂ and QN = QL described in Section 35.2.

Before we begin the proof, we make a few remarks. First, note that K and N are very close to being
in Lazard correspondence themselves. If we had inverted all primes in πc+1, then we would have obtained
the Lazard correspondence. This also means that if c + 1 is composite, then K and N are in Lazard
correspondence. In that case, the result follows from Theorem 34.4.

The case of interest is where c+1 is prime, so that K and N are not in Lazard correspondence themselves.
In other words, when we compute eu for some u ∈ N , we do obtain an element of

√
K but not necessarily

an element of K. We want to show that if the element of N that we start with is in [N,N ], then computing
the exponential gives an element in [K,K], and that every element of [K,K] can be obtained in this fashion.

We are now in a position to begin the proof.

Proof. By Lemma 35.1, it suffices to show that exp([N,N ]) = [K,K], or equivalently, that log([K,K]) =
[N,N ]. We can show this in two steps: showing that [K,K] ⊆ exp([N,N ]) and showing that [N,N ] ⊆
log([K,K]).

(1) Proof that [K,K] ⊆ exp([N,N ]): Lemma 35.1 established that exp([N,N ]) is a group. Thus, it
suffices to show that a generating set of [K,K] is in exp([N,N ]). Specifically, it suffices to show that
for all g, h ∈ K, [g, h] ∈ exp([N,N ]).

By Lemma 35.2 (part (3)), g = exu and h = eyv where x, y ∈ N and u, v ∈ Z(
√
K). Thus,

[g, h] = [ex, ey] = eMc+1(x,y). By Lemma 33.1, Mc+1 uses only division by primes in πc, so that
[g, h] ∈ exp([N,N ]).

(2) Proof that [N,N ] ⊆ log([K,K]): We showed in Lemma 35.1 that log([K,K]) is a Lie ring. Thus, it
suffices to show that a generating set of [N,N ] is in log([K,K]). Specifically, it suffices to show that
for x, y ∈ N , [x, y] ∈ log([K,K]).
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By Lemma 35.2 (part (4)), x = log g + s and y = log k + t where g, k ∈ K and s, t ∈ Z(QN).
Thus, [x, y] = [log g, log k] = log(h2,c+1(g, k)). By Lemma 33.2, h2,c+1(g, k) ∈ [K,K], so [x, y] ∈
log([K,K]).

�

In later applications of the result, we will use the result in its abstract form, i.e., instead of treating K
and N as subsets inside Q + A as we did above, we will treat them as the abstract free πc-powered group
and Lie ring respectively of class c+ 1.

Lemma 35.4. Continuing notation from the preceding theorem (Theorem 35.3), let K1 = K/γc(K) and
N1 = N/γc(N). Let R be the πc-powered normal subgroup of K containing γc(K) while J is a πc-powered
ideal of N containing γc(N). Let R1 = R/γc(K) and J1 = J/γc(N). Further, suppose that R1 = exp(J1)
with respect to the Lazard correspondence given by the usual logarithm and exponential map between N1

and K1. Then, the following are true:

(1) Under the exponential map exp : QL = QN →
√
F =

√
K (which in turn is obtained from the

exponential map exp : A→ 1 +A), we have exp(J) ⊆ RZ(
√
K).

(2) Under the logarithm map log :
√
F =

√
K → QL = QN (which in turn is obtained from the

logarithm map log : 1 +A→ A), we have log(R) ⊆ J + Z(QN).
(3) Under the exponential map exp : QL = QN →

√
F =

√
K (which in turn is obtained from the

exponential map exp : A→ 1 +A), we have R ⊆ exp(J)Z(
√
K).

(4) Under the logarithm map log :
√
F =

√
K → QL = QN (which in turn is obtained from the

logarithm map log : 1 +A→ A), we have J ⊆ log(R) + Z(QN).

Proof. The proof is analogous to the proof of Lemma 35.2. �

Theorem 35.5. Continuing notation from Lemma 35.4, the Lazard correspondence between [K,K] and
[N,N ] restricts to a Lazard correspondence between R ∩ [K,K] and J ∩ [N,N ].

Before we begin the proof, note that R and J are not themselves necessarily in Lazard correspondence.
They would be in Lazard correspondence if c+ 1 were composite, because in that case, πc = πc+1. We want
to show here that even though R and J may themselves fail to be in Lazard correspondence, their respective
intersections with [K,K] and [N,N ] are in Lazard correspondence.

Proof. We prove the result in several steps:

(1) R ∩ [K,K] is a global class c Lazard Lie group: By Lemma 35.1, [K,K] is a global class c Lazard
Lie group. In particular, it is πc-powered and has nilpotency class at most c. R is given to be
πc-powered. Thus, R∩ [K,K] is πc-powered, and its nilpotency class is at most c. Note that the only
bound we have on the nilpotency class of R is c+ 1, but bounding the class of [K,K] is sufficient to
bound the class of R ∩ [K,K].

(2) J ∩ [N,N ] is a global class c Lazard Lie ring: By Lemma 35.1, [N,N ] is a global class c Lazard Lie
ring. In particular, it is πc-powered and has nilpotency class at most c. J is πc-powered. Thus,
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J ∩ [N,N ] is πc-powered, and its nilpotency class is at most c. Note that the only bound we have
on the nilpotency class of J is c+ 1, but bounding the class of [N,N ] is sufficient to bound the class
of J ∩ [N,N ].

(3) exp(J ∩ [N,N ]) ⊆ R ∩ [K,K]: We know that exp([N,N ]) = [K,K], so exp(J ∩ [N,N ]) ⊆ [K,K]. In
addition, exp(J ∩ [N,N ]) ⊆ exp(J). By Lemma 35.4 (part (1)), we obtain that exp(J ∩ [N,N ]) ⊆
RZ(

√
K), and hence exp(J ∩ [N,N ]) ⊆ RZ(

√
K) ∩ [K,K]. We will show that RZ(

√
K) ∩ [K,K] =

R ∩ [K,K], completing the proof.
Consider an element g ∈ RZ(

√
K) ∩ [K,K]. Then, g = uv with u ∈ R and v ∈ Z(

√
K). We

obtain that v = u−1g. Since both R and [K,K] are subgroups of K, we obtain that v ∈ K, so
v ∈ Z(

√
K) ∩K, so that v ∈ Z(K). But Z(K) = γc(K) (both are precisely the elements in K that

have the form 1 + a with a a homogeneous degree c + 1 element of A), so v ∈ γc(K) ⊆ R. Thus,
g = uv ∈ R, so that g ∈ R ∩ [K,K] as desired.

(4) log(R ∩ [K,K]) ⊆ J ∩ [N,N ]: We know that log([K,K]) = [N,N ], so log(R ∩ [K,K]) ⊆ [N,N ]). In
addition, log(R ∩ [K,K]) ⊆ log(R). By Lemma 35.4 (part (2)), we obtain that log(R ∩ [K,K]) ⊆
J + Z(QN), and hence log(R ∩ [K,K]) ⊆ (J + Z(QN)) ∩ [N,N ]. We will now show that (J +
Z(QN)) ∩ [N,N ] = J ∩ [N,N ], completing the proof.

Consider an element x ∈ (J + Z(QN)) ∩ [N,N ]. Then, x = y + z with y ∈ J and z ∈ Z(QN).
We obtain that z = x − y. Since both J and [N,N ] are subrings of N , we obtain that z ∈ N , so
z ∈ Z(QN) ∩N , so z ∈ Z(N). We have Z(N) = γc(N), so z ∈ γc(N) ⊆ J . Thus, x = y + z ∈ J , so
x ∈ J ∩ [N,N ] as desired.

�

Theorem 35.6. Continuing notation from the preceding theorem (Theorem 35.3), the Lazard correspon-
dence between [K,K] and [N,N ] restricts to a Lazard correspondence between [K,R] and [N, J ].

Proof. (1) [K,R] is a global class c Lazard Lie group and [N, J ] is a global class c Lazard Lie ring: This
requires verifying that both [K,R] and [N, J ] are πc-powered, and both have class at most c. We
break this down further:
• [K,R] is a πc-powered group: This follows from Lemma 17.22.
• [N, J ] is a πc-powered Lie ring: This follows from N and J both being πc-powered, and the

additivity of the Lie bracket.
• [K,R] has nilpotency class at most c: [K,R] is a subgroup of [K,K], which has nilpotency class

at most c as established in Theorem 35.3.
• [N, J ] has nilpotency class at most c: [N, J ] is a subring of [N,N ], which has nilpotency class

at most c as established in Theorem 35.3.
(2) exp([N, J ]) is a group with which [N, J ] is in global class c Lazard correspondence up to isomorphism

via exp, and log([K,R]) is a Lie ring that is in global class c Lazard correspondence with it via
exp: These follow from Step (1) and the fact that the exponential and logarithm maps establish
correspondences between global class c Lazard Lie subgroups and global class c Lazard Lie subrings.

(3) [K,R] ⊆ exp([N, J ]) and [N, J ] ⊆ log([K,R]): We show both parts:
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• [K,R] ⊆ exp([N, J ]): In Step (2), we established that exp([N, J ]) is a group. Thus, it suffices
to show that every commutator between an element of K and an element of R is in exp([N, J ]).
Explicitly, given g ∈ K and h ∈ R, we need to show that [g, k] ∈ exp([N, J ]).
By Lemma 35.2 (part (3)) and Lemma 35.4 (part (3)), g = exu and h = eyv where x ∈ N ,
y ∈ J and u, v ∈ Z(

√
K). Thus, [g, h] = [ex, ey] = eMc+1(x,y). By Lemma 33.1, Mc+1 uses only

division by primes in πc, so that [g, h] ∈ exp([N, J ]).
• [N, J ] ⊆ log([K,R]): In Step (2), we established that log([K,R]) is a Lie ring. Thus, it suffices

to show that a generating set of [N, J ] is in log([K,R]). Specifically, it suffices to show that for
x ∈ N and y ∈ J , [x, y] ∈ log([K,R]).
By Lemma 35.2 (part (4)) and Lemma 35.4 (part (4)), x = log g + s and y = log k + t where
g ∈ K, k ∈ R, and s, t ∈ Z(QN). Thus, [x, y] = [log g, log k] = log(h2,c+1(g, k)). By Lemma
33.2, h2,c+1(g, k) ∈ [K,R], so [x, y] ∈ log([K,R]).

Combining these, we obtain the result. �

36. Homology of powered nilpotent groups

36.1. Hopf’s formula variant for Schur multiplier of powered nilpotent group. So far, we have
studied the extension theory and homology theory of groups qua groups. We now consider the extension
theory and homology theory in the context of π-powered groups. For the results presented throughout this
section, π is any set of primes. Later, we will apply the results to the case where π = πc is the set of all
primes less than or equal to c, but the results for this section are not restricted to such sets of primes.

It turns out that, in the nilpotent case, the Schur multiplier, Schur covering group, exterior square, and
all related constructions qua group are the same as the corresponding constructions qua π-powered group.
This is specific to the nilpotent case.

Lemma 36.1. Suppose G is a π-powered nilpotent group. Then, the following hold:

(1) All the homology groups Hi(G; Z), i > 0, are π-powered abelian groups.
(2) The Schur multiplier M(G), which is H2(G; Z), is a π-powered abelian group.

Proof. Proof of (1): This follows from May and Ponto’s text, [31], Theorem 6.1.1, implication (iii) =⇒
(iv), setting Z = K(G, 1) and T as the complement of π in the set of primes. The result appeared earlier in
[23], Theorem 2.9. However, the notation and surrounding explanation in May and Ponto’s text are easier
to follow.

Proof of (2): This follows immediately from (1). �

Lemma 36.2. Suppose G is a π-powered nilpotent group. Every Schur covering group of G is π-powered.
Since Schur covering groups exist and are by definition initial objects in the category of central extensions of
G with homoclinisms, there exist initial objects in the category of extensions of G with homoclinisms that
are π-powered.
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Proof. By the preceding lemma (Lemma 36.1), M(G) = H2(G; Z) is π-powered. Consider a Schur covering
group E of G. E is a central extension of the form:

0 →M(G) → E → G→ 1

By Lemma 17.12, E is also π-powered. By definition, any Schur covering group gives an inital object in
the category of central extensions of G with homoclinisms, so the last part of the statement follows.

Schur covering groups exist by Theorem 11.3, so the final sentence follows. �

We are now in a position to prove results that establish analogues of Hopf’s formula (discussed in Section
11.9):

Theorem 36.3. Suppose π is a set of primes and G is a π-powered nilpotent group. Express G in the
form G ∼= F/R where F is a free π-powered group. Then, the following are true.

(1) The group E1 = F/[F,R], with the natural quotient map E1 → G, is an initial object in the category
of central extensions of G with homoclinisms.

(2) The exterior square G ∧G is canonically isomorphic to the quotient group [F, F ]/[F,R].
(3) The Schur multiplier M(G) is canonically isomorphic to the quotient group (R ∩ [F, F ])/[F,R]:

(12) M(G) ∼= (R ∩ [F, F ])/[F,R]

Proof. Proof of (1): Let E2 be a Schur covering group of G. By Lemma 36.2, E2 is π-powered.
Consider the commutator map ω1 : G × G → E1 and denote by Ω1 the corresponding group homomor-

phism:

Ω1 : G ∧G→ [E1, E1]

Consider also the extension:

0 → A→ E2
µ→ G→ 1

with the natural commutator map ω2 : G×G→ E2 and the corresponding commutator map homomor-
phism:

Ω2 : G ∧G→ [E2, E2]

Our goal is to show that there there exists a unique homomorphism ϕ : [E1, E1] → [E2, E2] such that
ϕ ◦ ω1 = ω2, or equivalently, ϕ ◦ Ω1 = Ω2.

The map ν : F → G lifts to a map ψ : F → E2 on account of F being a free π-powered group and E2

being a π-powered group (note that the lift is not necessarily unique). Explicitly, this means that µ ◦ψ = ν.
We know that ν(R) is trivial, so µ(ψ(R)) is trivial. Thus, ψ(R) lands inside the kernel of µ, which is the

image of A in E2. Thus, ψ(R) is a central subgroup of E2. Therefore, ψ([F,R]) = [ψ(F ), ψ(R)] is trivial.
Thus, ψ descends to a homomorphism θ : E1 → E2, where E1 = F/[F,R] as defined above, with the

property that µ ◦ θ = ν. The condition µ ◦ θ = ν can be interpreted as saying that θ is a homomorphism
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between the central extensions (E1, ν) and (E2, µ). Denote by ϕ : E′1 → E′2 the restriction of θ to E′1. Thus,
by Lemma 9.1, ϕ defines a homoclinism of the central extensions.

Now, we know that (E2, µ) is an initial object in the category, so there is a homoclinism from it to any
other object in the category. Composing with the above gives a homoclinism from (E1, ν) to any central
extension of G. By Lemma 9.2, this homoclinism is unique. Finally, Lemma 9.3 establishes from this that
(E1, ν) defines an initial object in the category of central extensions of G with homoclinisms.

Proof of (2): By definition, G ∧G is isomorphic to the derived subgroup [E1, E1] on account of E1 being
an initial object in the category of central extensions with homoclinisms. [E1, E1] is canonically isomorphic
to [F, F ]/[F,R].

Proof of (3): The Schur multiplier is the kernel of the map [E1, E1] → [G,G], or equivalently, it is the
kernel of the map [F, F ]/[F,R] → [F, F ]/(R ∩ [F, F ]). The kernel works out to (R ∩ [F, F ])/[F,R]. �

36.2. Hopf’s formula variant for Schur multiplier of powered nilpotent group: class one more

version. Suppose π is a set of primes and G is a π-powered nilpotent group of nilpotency class c. Suppose
G can be expressed in the form F/R where F is a free π-powered nilpotent group of class c+ 1 and R is a
normal subgroup of F . Then:

(13) M(G) ∼= (R ∩ [F, F ])/([F,R])

Also:

(14) G ∧G ∼= [F, F ]/[F,R]

Our application of these results, in Section 39, will combine these results with the results of Section 35.
In that section, we use the letter K for the free group, and R for the normal subgroup that is being factored
out. Therefore, in our application of the above theorem, the letter K will appear instead of the letter F .

36.3. Remark on powered Schur multipliers and powered Schur covering groups. It is possible
to define concepts of Schur multiplier, Schur covering group, and exterior square, all within the variety of
π-powered groups. In other words, we can mimic the steps of Section 9, replacing “group” by π-powered
group”, and obtain corresponding notions of π-powered exterior square and π-powered Schur multiplier. We
can also define π-powered Schur covering group.

The results of Sections 36.1 and 36.2 tell us that for nilpotent groups, the π-powered Schur multiplier
coincides with the usual Schur multiplier and the π-powered exterior square coincides with the usual exterior
square.

36.4. Results about isoclinisms for π-powered central extensions. The results here follow from the
results of Section 19.8 using reasoning similar to the way the results in Section 9.9 follow from the results in
Section 4.6. Note that we restrict our statements to π-powered class c nilpotent groups and π-powered class
c words. Note that although the result is stated for π-powered class c words, it also applies to π-powered
words in general, because a π-powered class c word can be viewed as an equivalence class of π-powered words
that are equal in any π-powered class c group.
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Lemma 36.4. Suppose c ≥ 1 and π is a set of primes. SupposeG is a π-powered group and w(g1, g2, . . . , gn)
is a π-powered class c word in n letters with the property that w evaluates to the identity element in every
π-powered abelian group. The following are true.

(1) For every π-powered central extension E of G such that E has class at most c, w can be used to
define a set map χw,E : Gn → [E,E].

(2) For any homoclinism between π-powered central extensions E1 and E2, with the central extension
specified via a homomorphism ϕ : [E1, E1] → [E2, E2], we have that:

ϕ ◦ χw,E1 = χw,E2

Proof. Proof of (1): This is similar to the proof of Theorem 19.6. Alternatively, we can deduce it from the
result of Theorem 19.6 by noting that the map factors as follows:

Gn → (E/Z(E))n → [E,E]

Proof of (2): This is similar to the proof of Theorem 19.7. Alternatively, we can deduce it from the result
of Theorem 19.7 by factoring through E/Z(E). �

We can now prove the theorem.

Theorem 36.5. Suppose π is a set of primes. SupposeG is a π-powered nilpotent group and w(g1, g2, . . . , gn)
is a π-powered word in n letters with the property that w evaluates to the identity element in every π-powered
abelian group. Then, there exists a set map Xw : Gn → G ∧ G with the property that for any π-powered
central extension E of G, ΩE,G ◦Xw = χw,E .

Proof. Set c to be one more than the nilpotency class of G, and treat w as a π-powered class c word. Apply
Part (1) of Lemma 36.4 to the case where the extension E0 is an initial object in the category of central
extensions of G, and E0 is π-powered (this is possible by Lemma 36.2). The rest of the proof is analogous
to Theorem 9.5. �

37. Homology of powered Lie rings

This section develops the Lie ring analogues of the results in Section 36. One key difference is that whereas
the results of the previous section were restricted to nilpotent groups, some of the results in this section apply
in full generality to all Lie rings.

37.1. Hopf’s formula for powered Lie rings. We now establish the Lie ring analogues of the results
describe in Section 36.1.

Lemma 37.1. Suppose L is a π-powered Lie ring. Then, the following hold:

(1) All the homology groups Hi(L; Z), i > 0, are π-powered abelian groups.
(2) The Schur multiplier M(L), which is H2(L; Z), is a π-powered abelian group.
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Proof. Proof of (1): This is a direct consequence of how we define cohomology, and follows from the fact
that the universal enveloping algebra is the same except in degree zero whether taken over Z or Z[π−1], and
the homology groups are defined in terms of the universal enveloping algebra.

Proof of (2): This follows immediately from (1). �

Lemma 37.2. Suppose L is a π-powered Lie ring. Every Schur covering Lie ring of L is π-powered.
Since Schur covering Lie rings exist and are by definition initial objects in the category of extensions of L
with homoclinisms, there exist initial objects in the category of extensions of L with homoclinisms that are
π-powered.

Proof. By the preceding lemma (Lemma 37.1), M(L) is π-powered. Consider a Schur covering Lie ring N
of L. N is a central extension of the form:

0 →M(L) → N → L→ 1

By Lemma 18.1, N is also π-powered. By definition, any Schur covering Lie ring gives an inital object in
the category of central extensions of L with homoclinisms, so the last part of the statement follows.

Schur covering Lie rings exist by Theorem 12.3, so the final sentence follows. �

We are now in a position to prove results that establish analogues of Hopf’s formula (discussed in Section
11.9):

Theorem 37.3. Suppose π is a set of primes and L is a π-powered Lie ring. Express L in the form
L ∼= F/R where F is a free π-powered Lie ring. Then, the following are true.

(1) The Lie ring N1 = F/[F,R], with the natural quotient map N1 → L, is an initial object in the
category of central extensions of L with homoclinisms.

(2) The exterior square L ∧ L is canonically isomorphic to the quotient Lie ring [F, F ]/[F,R].
(3) The Schur multiplier M(L) is canonically isomorphic to the quotient Lie ring (R ∩ [F, F ])/[F,R]:

(15) M(L) ∼= (R ∩ [F, F ])/[F,R]

Proof. Proof of (1): Let N2 be a Schur covering Lie ring of L. By Lemma 37.2, N2 is π-powered.
Consider the commutator map ω1 : L× L→ N1 and denote by Ω1 the corresponding Lie ring homomor-

phism:

Ω1 : L ∧ L→ [N1, N1]

Consider also the extension:

0 → A→ N2
µ→ L→ 1
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with the natural commutator map ω2 : L × L → N2 and the corresponding commutator map homomor-
phism:

Ω2 : L ∧ L→ [N2, N2]

Our goal is to show that there there exists a unique homomorphism ϕ : [N1, N1] → [N2, N2] such that
ϕ ◦ ω1 = ω2, or equivalently, ϕ ◦ Ω1 = Ω2.

The map ν : F → L lifts to a map ψ : F → N2 on account of F being a free pi-powered Lie ring and
N2 being a π-powered Lie ring (note that the lift is not necessarily unique). Explicitly, this means that
µ ◦ ψ = ν.

We know that ν(R) is trivial, so µ(ψ(R)) is trivial. Thus, ψ(R) lands inside the kernel of µ, which is the
image of A in N2. Thus, ψ(R) is a central Lie subring of N2. Therefore, ψ([F,R]) = [ψ(F ), ψ(R)] is trivial.

Thus, ψ descends to a homomorphism θ : N1 → N2, where N1 = F/[F,R] as defined above, with the
property that µ ◦ θ = ν. The condition µ ◦ θ = ν can be interpreted as saying that θ is a homomorphism
between the central extensions (N1, ν) and (N2, µ). Denote by ϕ : N ′

1 → N ′
2 the restriction of θ to N ′

1. Thus,
by Lemma 10.4, ϕ defines a homoclinism of the central extensions.

Now, we know that (N2, µ) is an initial object in the category, so there is a homoclinism from it to any
other object in the category. Composing with the above gives a homoclinism from (N1, ν) to any central
extension of L. By Lemma 10.5, this homoclinism is unique. Finally, Lemma 10.6 establishes from this that
(N1, ν) defines an initial object in the category of central extensions of L with homoclinisms.

Proof of (2): By definition, L ∧ L is isomorphic to the derived subring [N1, N1] on account of N1 being
an initial object in the category of central extensions with homoclinisms. [N1, N1] is canonically isomorphic
to [F, F ]/[F,R].

Proof of (3): The Schur multiplier is the kernel of the map [N1, N1] → [L,L], or equivalently, it is the
kernel of the map [F, F ]/[F,R] → [F, F ]/(R ∩ [F, F ]). The kernel works out to (R ∩ [F, F ])/[F,R]. �

37.2. Hopf’s formula variant for Schur multiplier of powered nilpotent Lie ring: class one more

version. Suppose π is a set of primes and L is a π-powered nilpotent Lie ring of nilpotency class c. Suppose
L can be expressed in the form F/R where F is a free π-powered nilpotent Lie ring of class c+ 1 and R is
an ideal of F . Then:

(16) M(L) ∼= (R ∩ [F, F ])/([F,R])

Also:

(17) L ∧ L ∼= [F, F ]/[F,R]

Our application of these results, in Section 39, will combine these results with the results of Section 35. In
that section, we used the letter N for the free Lie ring, and J for the ideal is being factored out. Therefore,
in our application of the above theorem, the letter N will appear instead of the letter F , and the letter J
will appear instead of the letter R.

37.3. Sidenote on powered Schur multipliers and powered Schur covering Lie rings. It is possible
to define concepts of Schur multiplier, Schur covering group, and exterior square, all within the variety of
π-powered Lie rings. In other words, we can mimic the steps of Section 10, replacing “Lie ring” by π-powered
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Lie ring”, and obtain corresponding notions of π-powered exterior square and π-powered Schur multiplier.
We can also define π-powered Schur covering Lie ring.

The results of Sections 37.1 and 37.2 tell us that the π-powered Schur multiplier coincides with the usual
Schur multiplier and the π-powered exterior square coincides with the usual exterior square.

37.4. Results about isoclinisms for π-powered central extensions of Lie rings. The results here
follow from the results of Section 19.8 using reasoning similar to the way the results in Section 9.9 follow
from the results in Section 4.6. Unlike the corresponding section for groups (Section 36.4), we do not restrict
ouselves to the nilpotent case. However, we can formulate all our results for the nilpotent setting. The proofs
remain similar.

Lemma 37.4. Suppose π is a set of primes. Suppose L is a π-powered Lie ring and w(g1, g2, . . . , gn) is a
π-powered Lie ring word in n letters with the property that w evaluates to the zero element in every abelian
Lie ring. The following are true.

(1) For every central extension N of L, w can be used to define a set map χw,N : Ln → [N,N ].
(2) For any homoclinism between central extensions N1 and N2, with the central extension specified via

a homomorphism ϕ : [N1, N1] → [N2, N2], we have that:

ϕ ◦ χw,N1 = χw,N2

Proof. Proof of (1): This is similar to the proof of Theorem 20.1. Alternatively, we can deduce it from the
result of Theorem 20.1 by noting that the map factors as follows:

Ln → (N/Z(N))n → [N,N ]

Proof of (2): This is similar to the proof of Theorem 20.2. Alternatively, we can deduce it from the result
of Theorem 20.2 by factoring through N/Z(N). �

We can now prove the theorem.

Theorem 37.5. Suppose π is a set of primes. Suppose L is a π-powered Lie ring and w(g1, g2, . . . , gn) is
a π-powered Lie ring word in n letters with the property that w evaluates to the identity element in every
abelian Lie ring. Then, there exists a set map Xw : Ln → L ∧ L with the property that for any central
extension N of L, ΩN,L ◦Xw = χw,N .

Proof. Apply Part (1) of Lemma 37.4 to the case where the extension N0 is an initial object in the category
of central extensions of L and such that N0 is π-powered. Such an extension exists by Lemma 37.2. The
rest of the proof is analogous to the proof of Theorem 10.8. �

38. Commutator-like and Lie bracket-like maps

This section describes maps that can be used to compute a “commutator-like” expression for Lie rings
whose nilpotency class is one more than desired (or the 3-local variant thereof), and correspondingly, a “Lie
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bracket-like” expression for groups whose nilpotency class is one more than desired (or the 3-local variant
thereof). We use the formula Mc+1 (introduced in Section 33.1) to express the group commutator as a
πc-powered word that makes use of the Lie bracket. We use the formula h2,c+1 (the second inverse Baker-
Campbell-Hausdorff formula) to express the Lie bracket as a πc-powered word that makes use of the group
commutator.

For simplicity, we will restrict our definitions to situations where the groups and Lie rings involved are
globally nilpotent, but without any restriction on their global nilpotency class. This will allow us to apply
the theorems stated about nilpotent groups and Lie rings. It is possible to relax these assumptions to some
extent, but the ensuing greater generality will not be worth the additional cost in the complexity of proofs.

38.1. Commutator-like map for Lie ring whose class is one more. Suppose c is a natural number
and πc is the set of primes less than or equal to c.

Suppose L is a πc-powered nilpotent Lie ring such that the inner derivation Lie ring L/Z(L) is a 3-local
class c Lazard Lie ring. We can define a set map:

ωGroup
L : Inn(L)× Inn(L) → [L,L]

The set map is defined as follows:

ωGroup
L (x, y) := Mc+1(x̃, ỹ)

where Mc+1 is the formula for the group commutator in terms of the Lie bracket described in Section
33.1, and x̃, ỹ are elements of L that map to x and y respectively in L/Z(L). Note that this is defined
because of the following:

• The expression Mc+1 makes sense because L is πc-powered, and Lemma 33.1 shows that all prime
divisors of the denominators of coefficients for Mc+1 are in πc.

• The output of the expression is independent of the choice of lifts, because the Lie bracket map
descends to a map L/Z(L) × L/Z(L) → [L,L], and Mc+1 is obtained by using the Lie bracket and
its iterations. See Theorem 20.1 for an explanation.

Further, in the case that L itself is a 3-local class c Lazard Lie ring, ωGroup
L (x, y) agrees with the

commutator-induced map ωG : Inn(G) × Inn(G) → G′ where G is the Lazard Lie group for L. Recall
that ωG was originally defined in Section 4.1 along with the definition of isoclinism.

This again follows from the definition of Mc+1 as introduced in Section 33.1.
We now show that the map ωGroup is an isoclinism-invariant.

Lemma 38.1. Suppose c is a natural number and πc is the set of primes less than or equal to c. Suppose
L1 and L2 are isoclinic πc-powered Lie rings, such that Inn(L1) ∼= Inn(L2) is a 3-local class c Lazard Lie
ring.

Suppose (ζ, ϕ) is an isoclinism from L1 to L2: ζ is the isomorphism Inn(L1) → Inn(L2) and ϕ is the
isomorphism L′1 → L′2. Then:

ϕ(ωGroup
L1

(x, y)) = ωGroup
L2

(ζ(x), ζ(y))
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Proof. Apply Theorem 20.2 to the word ωGroup and obtain the result. �

38.2. Lie bracket-like map for group whose class is one more. A special case of the map described
here appeared in Theorem 5.1 of the 2008 paper [19] by George Glauberman. Glauberman’s paper proves
certain properties of the map that we do not prove in this section, but that follow from stronger results we
will prove later in the course of establishing the global Lazard correspondence up to isoclinism. We discuss
the relationship in more detail in Section 40.1.

Suppose c is a natural number and πc is the set of primes less than or equal to c.
Suppose G is a πc-powered nilpotent group such that the inner automorphism group G/Z(G) is a 3-local

class c Lazard Lie group. We can define a set map:

ωLie
G : G/Z(G)×G/Z(G) → [G,G]

The set map is defined as follows:

(x, y) 7→ h2,c+1(x̃, ỹ)

where h2,c+1 is the formula for the Lie bracket in terms of the group commutator and its iterations. It is
the second of the two inverse Baker-Campbell-Hausdorff formulas described in Section 29. Note that this is
defined because:

• The expression h2,c+1 makes sense because G is πc-powered, and Lemma 33.2 shows that all prime
divisors of the denominators of coefficients for h2,c+1 are in πc.

• The output of the expression is independent of the choice of lifts, because the commutator map
descends to a map G/Z(G) × G/Z(G) → [G,G], and h2,c+1 is obtained by using the commutator
map and its iterations. See Theorem 19.6 for an explanation.

Further, in the case that G itself is a 3-local class c Lazard Lie group, ωLie
G (x, y) agrees with the definition

of the Lie bracket-induced map ωL : Inn(L) × Inn(L) → L′ where L is the Lazard Lie ring for G. Recall
that ωL was defined in Section 5.1 where we introduced the definition of isoclinism and homoclinism for Lie
rings.

This again follows from the definition of h2,c+1.
We now show that ωLie

G is an isoclinism-invariant.

Lemma 38.2. Suppose c is a natural number and πc is the set of primes less than or equal to c. Suppose
G1 and G2 are isoclinic πc-powered groups such that Inn(G1) ∼= Inn(G2) is a 3-local class c Lazard Lie group.

Suppose (ζ, ϕ) is an isoclinism from G1 to G2: ζ is the isomorphism Inn(G1) → Inn(G2) and ϕ is the
isomorphism G′1 → G′2. Then:

ϕ(ωLie
G1

(x, y)) = ωLie
G2

(ζ(x), ζ(y))

Proof. Apply Theorem 19.7 to the word ωLie and obtain the result. Note that the c used in that theorem
refers to a bound on the global class of G1 and G2, and may be a different value from the value of c used
here. The fact of significance is that G1 and G2 are nilpotent, so the theorem can be applied. �
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38.3. Commutator-like map for Lie ring extensions. In Section 38.1, we described a commutator-like
map that can be defined for any πc-powered Lie ring whose inner derivation Lie ring is nilpotent and of
3-local nilpotency class at most c. We will now consider the corresponding notion for Lie ring extensions.
Consider a central extension of Lie rings, with the following central extension short exact sequence:

0 → A→ N → L→ 0

The Lie bracket map in N descends to a Z-bilinear map:

ωN,L : L× L→ [N,N ]

Suppose now that N is πc-powered and that L has 3-local nilpotency class at most c. Then, we can define
a commutator-like map:

ωGroup
N,L : L× L→ [N,N ]

The map ωGroup
N,L can be defined as the map χw,N described in Lemma 37.4 where w is the word Mc+1.

ωGroup
N,L can be obtained by composing the quotient map L×L→ N/Z(N)×N/Z(N) with the map ωGroup

N

described in Section 38.1 (the Lie ring is now N instead of L).

38.4. Lie bracket-like map for group extensions. In Section 38.2, we described a Lie bracket-like
map that can be defined for any πc-powered nilpotent group whose inner automorphism group is of 3-local
nilpotency class at most c. We will now consider the corresponding notion for Lie ring extensions. Consider
a central extension of groups, with the following central extension short exact sequence:

0 → A→ E → G→ 1

The commutator map in E descends to a set map:

ωE,G : G×G→ [E,E]

Suppose now that E is πc-powered and that G has 3-local nilpotency class at most c. Then, we can define
a Lie bracket-like map:

ωLie
E,G : G×G→ [E,E]

The map ωLie
E,G can be defined as the map χw,N described in Lemma 36.4 where w is the word Mc+1.

This map ωLie
E,G can be obtained by composing the quotient map G × G → E/Z(E) × E/Z(E) with the

map ωLie
E described in Section 38.2 (the group is now E instead of G).

38.5. The commutator in terms of the Lie bracket: the central extension and exterior square

version. Suppose c is a positive integer and L is a πc-powered nilpotent Lie ring of 3-local nilpotency class
at most c. Our goal is to define a set map:

M̃c+1(x, y) : L× L→ L ∧ L

where L ∧ L is the exterior square of L as defined in Section 10.1 (and later explicitly in Section 14.3).
The definition of M̃c+1 is as follows: it is the map Xw of Theorem 37.5 where π = πc and w is the word

Mc+1. The word Mc+1 satisfies the hypotheses of the theorem, so the theorem applies.
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Using Theorem 37.5 again, the map ωGroup
N,L defined in Section 38.3 is related to the map M̃c+1 defined in

Section as follows:

ωGroup
N,L (x, y) = ΩN,L(M̃c+1(x, y))

where the maps are ωGroup
N,L : L× L→ [N,N ], ΩN,L : L ∧ L→ [N,N ], and M̃c+1 : L× L→ L ∧ L.

38.6. The Lie bracket in terms of the commutator: the central extension and exterior square

version. Suppose c is a positive integer and G is a πc-powered nilpotent group of 3-local nilpotency class
at most c. Our goal is to define a set map:

h̃2,c+1(x, y) : G×G→ G ∧G

where G ∧G is the exterior square of G as defined in Section 9.1 (and later explicitly in Section 13.4).
The definition of h̃2,c+1 is as follows: it is the map Xw of Theorem 36.5 where π = πc, w is the word

h2,c+1, and the value c of the theorem is taken to be c+ 1. The word h2,c+1 satisfies the hypotheses of the
theorem, so the result applies.

Using Theorem 36.5 again, the map ωLie
E,G defined in Section 38.4 is related to the map h̃2,c+1 as follows:

ωLie
E,G(x, y) = ΩE,G(h̃2,c+1(x, y))

where the maps are ωLie
E,G : G×G→ [E,E], ΩE,G : G ∧G→ [E,E], and h̃2,c+1 : G×G→ G ∧G.

39. Lazard correspondence up to isoclinism

39.1. Definition of Lazard correspondence up to isoclinism. The Lazard correspondence up to iso-
clinism combines the idea of isoclinism with the idea of the Lazard correspondence.

Definition (3-local class (c+ 1) Lazard correspondence up to isoclinism). Suppose c is a positive integer
and πc is the set of all prime numbers less than or equal to c. Suppose G is a πc-powered nilpotent group
whose inner automorphism group and derived subgroup are both 3-local class c Lazard Lie groups, and L is
a πc-powered nilpotent Lie ring whose inner derivation Lie ring and derived subring are both 3-local class
c Lazard Lie rings. A Lazard correspondence up to isoclinism from L to G is a pair of isomorphisms (ζ, ϕ)
where ζ is an isomorphism from Inn(L) to log(Inn(G)) and ϕ is an isomorphism from L′ to log(G′) such
that:

ϕ(ωL(x, y)) = ωLie
G (ζ(x), ζ(y))

This is equivalent to the requirement that:

ϕ(ωGroup
L (x, y)) = ωG(ζ(x), ζ(y))

The following are easy to verify for the 3-local class (c+ 1) Lazard correspondence up to isoclinism. All
the groups mentioned below are πc-powered groups that have the property that their inner automorphism
group and derived subgroup are both 3-local class c Lazard Lie groups, and all the Lie rings mentioned below
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are πc-powered Lie rings that have the property that their inner derivation Lie ring and derived subring are
both 3-local class c Lazard Lie rings.

• If G1 and G2 are isoclinic groups, and G1 and L are in 3-local class (c+1) Lazard correspondence up
to isoclinism, then G2 and L are also in 3-local class (c+1) Lazard correspondence up to isoclinism.
This follows from Lemma 38.2.

• If L1 and L2 are isoclinic Lie rings, and G and L1 are in 3-local class (c+ 1) Lazard correspondence
up to isoclinism, then G and L2 are in 3-local class (c+ 1) Lazard correspondence up to isoclinism.
This follows from Lemma 38.1.

• If G1 and G2 are groups and L is a Lie ring such that G1 is in 3-local class (c + 1) Lazard corre-
spondence up to isoclinism with L and G2 is also in 3-local class (c+ 1) Lazard correspondence up
to isoclinism with L, then G1 and G2 are isoclinic.

• If L1 and L2 are Lie rings and G is a group such thatG is in 3-local class (c+1) Lazard correspondence
up to isoclinism with L1 and G is in 3-local class (c + 1) Lazard correspondence up to isoclinism
with L2, then L1 and L2 are isoclinic Lie rings.

In other words, the definition we gave above establishes a correspondence between some equivalences
classes up to isoclinism of groups and some equivalence classes up to isoclinism of Lie rings. However, it
is not yet clear that the correspondence applies to every equivalence class up to isoclinism of groups of the
specified type and to every equivalence class up to isoclinism of Lie rings of the specified type. Ideally, we
would like to demonstrate the following two facts:

(1) For every πc-powered group G whose inner automorphism group and derived subgroup are both
3-local class c Lazard Lie groups, there exists a πc-powered Lie ring L whose inner derivation Lie
ring and derived subring are both 3-local class c Lazard Lie rings such that G is in 3-local class
(c+ 1) Lazard correspondence up to isoclinism with L.

(2) For every πc-powered Lie ring L whose inner derivation Lie ring and derived subring are both 3-local
class c Lazard Lie rings, there exists a πc-powered group G whose inner automorphism group and
derived subgroup are both 3-local class c Lazard Lie groups, such that G is in 3-local class (c + 1)
Lazard correspondence up to isoclinism with L.

Unfortunately, the full proofs of these results would require us to develop further machinery and notation
that would take too much work. Therefore, we restrict attention to the global class case. The proofs in the
3-local case are analogous, but would require us to deal with a 3-local version of the free constructions that
we used earlier, which would considerably complicate the presentation. For this reason, we restrict our proof
to the global case.

39.2. Global Lazard correspondence up to isoclinism. We begin with a couple of lemmas about the
structures between which we aim to establish the correspondence.

Lemma 39.1. Suppose c is a positive integer and πc is the set of all primes less than or equal to c.
Suppose G is a πc-powered nilpotent group of nilpotency class at most c+ 1. Then, both Inn(G) and G′ are
global class c Lazard Lie groups, i.e., both Inn(G) and G′ are πc-powered groups of nilpotency class at most
c.
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Proof. We need to establish four facts:

(1) Inn(G) has nilpotency class at most c: This is obvious from the condition on the nilpotency class of
G.

(2) Inn(G) is πc-powered: This follows from Lemma 17.7.
(3) G′ has nilpotency class at most c: In fact, G′ has nilpotency class at most b(c+1)/2c, which in turn

is at most c, but the naive bound of c can be established in a straightforward manner by looking at
the lower central series of G and comparing with that of G′. More explicitly, this follows from the
fact that the lower central series is a strongly central series. See the Appendix, Section C.4 for more
details.

(4) G′ is πc-powered: This follows from Theorem 17.20.

�

Lemma 39.2. Suppose c is a positive integer and πc is the set of all primes less than or equal to c.
Suppose L is a πc-powered Lie ring of nilpotency class at most c+ 1. Then, both Inn(L) and L′ are global
class c Lazard Lie rings, i.e., both Inn(L) and L′ are πc-powered groups of nilpotency class at most c.

Proof. We need to establish four facts:

(1) Inn(L) has nilpotency class at most c: This is obvious from the condition on the nilpotency class of
L.

(2) Inn(L) is πc-powered: This follows from Theorem 18.4.
(3) L′ has nilpotency class at most c: In fact, L′ has nilpotency class at most b(c+ 1)/2c, which in turn

is at most c, but the naive bound of c can be established very straightforwardly by looking at the
lower central series of L and comparing with that of L′.

(4) L′ is πc-powered: This follows from Lemma 18.8.

�

We can now define the correspondence:

Definition (Global class (c+1) Lazard correspondence up to isoclinism). Suppose c is a positive integer
and πc is the set of (all) prime numbers less than or equal to c. Suppose G is a πc-powered group of
nilpotency class at most c + 1, and L is a πc-powered Lie ring of nilpotency class at most c + 1. A global
class (c+ 1) Lazard correspondence up to isoclinism from L to G is a pair of isomorphisms (ζ, ϕ) where ζ is
an isomorphism from Inn(L) to log(Inn(G)) (note that this log uses the global Lazard correspondence) and
ϕ is an isomorphism from L′ to log(G′) such that:

ϕ(ωL(x, y)) = ωLie
G (ζ(x), ζ(y))

This is equivalent to the requirement that:

ϕ(ωGroup
L (x, y)) = ωG(ζ(x), ζ(y))
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The observations from Section 39.1 about the 3-local class (c+1) Lazard correspondence up to isoclinism
continue to apply here: the correspondence establishes a correspondence between some πc-powered groups
of class at most c+ 1 and some πc-powered Lie rings of class at most c+ 1. However, it is not yet clear that
the correspondence applies to every equivalence class up to isoclinism of groups of the specified type and to
every equivalence class up to isoclinism of Lie rings of the specified type. Essentially, we need to establish
two facts:

(1) For every πc-powered group G of nilpotency class at most c+1, there exists a πc-powered Lie ring L
of nilpotency class at most c+1 such that L and G are in global class (c+1) Lazard correspondence
up to isoclinism.

(2) For every πc-powered Lie ring L of nilpotency class at most c+1, there exists a πc-powered group G
of nilpotency class at most c+1 such that L and G are in global class (c+1) Lazard correspondence
up to isoclinism.

39.3. The Baer correspondence up to isoclinism is the case c = 1. If we set c = 1, then the global
class (c + 1) Lazard correspondence up to isoclinism reduces to the Baer correspondence up to isoclinism,
as described in Section 24. The general proof that we will now give follows steps very similar to the proof
of the statement for the Baer correspondence. The key difference is that the group whose Schur multiplier
and exterior square we are computing is no longer an abelian group. Therefore, we have to explicitly use
the Lazard correspondence rather than the abelian Lie correspondence to move back and forth between the
group and the Lie ring.

39.4. Global Lazard correspondence preserves Schur multipliers. For both groups and Lie rings, the
Schur multiplier is the object that controls the equivalence class of the extension up to isoclinism. The first
step in establishing the global Lazard correspondence up to isoclinism is therefore to establish that Schur
multipliers are preserved under the global Lazard correspondence.

A particular case of this statement appeared as a conjecture in the paper [12] by Eick, Horn, and Zandi
in September 2012, stated informally after Theorem 2 of the paper. Specifically, the authors conjectured
that for a finite p-groups of nilpotency class at most p− 1, the Schur multiplier of the group coincides with
the Schur multiplier of its Lazard Lie ring. The authors proved the corresponding statement for p-groups of
nilpotency class at most p−2 by noting that the central extensions of the group are in Lazard correspondence
with the central extensions of the Lie ring.31

Theorem 39.3. Suppose c is a positive integer and πc is the set of all primes less than or equal to c.
Suppose G is a πc-powered group of nilpotency class at most c and L is its Lazard Lie ring under the global
Lazard correspondence. Then:

(1) The short exact sequences:

0 →M(L) → L ∧ L→ [L,L] → 0

and

31The authors write: “Based on various example computations, see also [7], we believe that Theorems 1 and 2 also hold for
finite p-groups of class p− 1. However, our proofs do not extend to this case.” The reference [7] alluded to by the authors has
not yet been published or made available online.
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0 →M(G) → G ∧G→ [G,G] → 1

are canonically in Lazard correspondence.
(2) L∧L and G∧G are in Lazard correspondence up to canonical isomorphism. Moreover, if we denote

the isomorphism as a set map exp : L ∧ L → G ∧ G, we have exp(x ∧ y) = h̃2,c+1(x, y) where
h̃2,c+1 is the adaptation of h2,c+1 described in Section 38.6. Similarly, under the inverse set map
log : G ∧ G → L ∧ L, we have log(x ∧ y) = M̃c+1(x, y), where M̃c+1 is the adaptation of Mc+1

described in Section 38.5.
(3) M(L) and M(G) are canonically isomorphic as abelian groups.

Note that these theorems are framed in terms of the Lazard correspondence up to isomorphism rather
than the strict Lazard correspondence (in the sense of equality of sets). It does not make sense to do the
latter here because a strict Lazard correspondence would require us to keep track of the strict definition of
the sets. However, although our results are up to isomorphism, they are up to canonical isomorphism, which
means that they commute with the isomorphisms induced by transitioning from a group to an isomorphic
group.

Proof. Proof of (1): Denote by K1 the free πc-powered group of class c on the underlying set of G. Denote
by R1 the kernel of the natural homomorphism K1 → G.

Denote by K the free πc-powered group of class c + 1 on the underlying set G. Denote by R the kernel
of the natural homomorphism K → G. Note that K1 = K/γc(K), and R is the inverse image of R1 under
the projection map.

Denote by N1 the free πc-powered Lie ring of class c on the underlying set of L (which is identified with
the underlying set of G). Denote by J1 the kernel of the natural homomorphism N1 → L. Denote by N the
free πc-powered Lie ring of class c + 1 on the underlying set of L. Denote by J the kernel of the natural
homomorphism N → L. Note that N1 = N/γc(N) and J is the inverse image of J1 under the projection
map.

From Theorem 35.3 (note that the notation of that theorem matches the notation here), the derived
subgroup [K,K] is in Lazard correspondence with the derived subring [N,N ]. From Theorems 35.5 and 35.6
(again, note that the notation of that theorem matches the notation here), we see that this Lazard correspon-
dence restricts to a Lazard correspondence between [K,R] and [N, J ] and also to a Lazard correspondence
between R ∩ [K,K] and J ∩ [N,N ]. Applying these to quotient groups, we obtain that:

• [K,K]/[K,R] is canonically in Lazard correspondence with the quotient Lie ring
[N,N ]/[N, J ].

• [K,K]/(R ∩ [K,K]) is canonically in Lazard correspondence with [N,N ]/(J ∩ [N,N ]).
• (R ∩ [K,K])/[K,R] is canonically in Lazard correspondence with (J ∩ [N,N ])/[N, J ].

Moreover, these short exact sequences are also in Lazard correspondence:

0 → (J ∩ [N,N ])/[N, J ] → [N,N ]/[N, J ] → [N,N ]/(J ∩ [N,N ]) → 0

0 → (R ∩ [K,K])/[K,R] → [K,K]/[K,R] → [K,K]/(K ∩ [R,R]) → 1
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By the discussion in Sections 36.2 and 37.2, these correspond respectively to the short exact sequences:

0 →M(L) → L ∧ L→ [L,L] → 0

0 →M(G) → G ∧G→ [G,G] → 1

Proof of (2): The fact of isomorphism follows directly from (1). The assertions about Mc+1 and h2,c+1

follow from the fact that the Lazard correspondence between [N,N ] and [K,K] arises as the restriction of
the Lazard correspondence between QN and

√
K, and under this correspondence, by definition, eMc+1(x,y) =

[ex, ey] (with the group commutator appearing on the right) and [log x, log y] = log(h2,c+1(x, y)) (with the
Lie bracket appearing on the left) by the respective definitions of Mc+1 and h2,c+1.

Proof of (3): This follows from (1), and the observation that the Lazard correspondence coincides with the
abelian Lie correspondence where they overlap, so M(L) and M(G) are isomorphic as abelian groups. �

39.5. The global Lazard correspondence up to isoclinism for extensions. Suppose c is a positive
integer and πc is the set of all primes less than or equal to c. Suppose A is an abelian group and G is a
global class c Lazard Lie group.

Denote by L the Lazard Lie ring of G.
We have the following short exact sequence (originally described in Section 11.4) for the central extensions

with central subgroup A and quotient group G:

0 → Ext1Z(Gab;A) → H2(G;A) → Hom(M(G), A) → 0

We also have the following short exact sequence (originally described in Section 12.4) for the central
extensions with central subring A and quotient Lie ring L:

0 → Ext1Z(Lab;A) → H2
Lie(L;A) → Hom(M(L), A) → 0

By Theorem 39.3, M(L) and M(G) are canonically isomorphic. Also, Lab is canonically in abelian Lie
correspondence with Gab. Thus, the downward arrows below are canonical isomorphisms:

0 → Ext1Z(Gab;A) → H2(G;A) → Hom(M(G), A) → 0
↓ ↓

0 → Ext1Z(Lab;A) → H2
Lie(L;A) → Hom(M(L), A) → 0

The middle groups H2(G;A) and H2
Lie(L;A) are isomorphic to each other, because both short exact

sequences split. However, we do not in general have a canonical isomorphism between the middle groups.

39.5.1. The isomorphism of the Ext1 groups on the left side, and its relation to the global class c Lazard
correspondence. We have a canonical isomorphism of groups:

Ext1Z(Gab;A) ∼= Ext1Z(Lab;A)

This is because the abelian group Gab is in abelian Lie correspondence with the abelian Lie ring Lab, so
the additive groups are the same, and Ext1 computation uses only the underlying additive group.

The elements of Ext1Z(Gab;A) correspond to the extension groups with subgroup A and quotient group
G for which the sub-extension with quotient group G′ splits (as G′ × A) and the induced extension with
subgroup A and quotient group Gab gives an abelian group. As a result, all extensions corresponding to
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elements of Ext1Z(Gab;A) have the property that the extension group is a global class c Lazard Lie group.
Similarly, the extensions corresponding to elements of Ext1Z(Lab;A) have the property that the extension
group is a global class c Lazard Lie ring. We thus obtain a correspondence:

Group extensions with subgroup A and quotient group G that are in the image of Ext1Z(Gab;A) ↔ Lie ring
extensions with subring A and quotient ring L that are in the image of Ext1Z(Lab;A)

For each group extension and Lie ring extension that are in bijection (in other words, each pair of elements
in the two isomorphic groups that are in bijection with each other), the corresponding extension group is in
global class c Lazard correspondence with the corresponding extension Lie ring.

39.5.2. The isomorphism of the Hom groups on the right side, and its relation to the Lazard correspondence
up to isoclinism. We have a canonical isomorphism:

Hom(M(G), A) ∼= Hom(M(L), A)

We reviewed the meanings of the two groups in Sections 11.3 and 11.4.2 (for groups) and Sections 12.3
and 12.4.2 (for Lie rings). The group Hom(M(G), A) classifies the central extensions with central subgroup
A and quotient group G up to isoclinism of extensions. The group Hom(M(L), A) classifies the central
extensions with central subring A and quotient Lie ring L up to isoclinism of extensions.

The two Hom groups are isomorphic because, as established above (Theorem 39.3), the Schur multipliers
M(L) and M(G) are canonically isomorphic.

The isomorphism gives a correspondence:

Equivalence classes up to isoclinism of group extensions with central subgroup A and quotient group G ↔
Equivalence classes up to isoclinism of Lie ring extensions with central subring A and quotient Lie ring L

Any particular instance of this bijection (i.e., an equivalence class of Lie ring extensions and an equivalence
class of group extensions that are in bijection with each other) is termed a global class (c + 1) Lazard
correspondence up to isoclinism for extensions.

We now state an important lemma that relates the global class (c + 1) Lazard correspondence up to
isoclinism for extensions with the global class (c+ 1) Lazard correspondence up to isoclinism.

Theorem 39.4. Suppose A is an abelian group, G is a global class c Lazard Lie group, and L = logG is
the corresponding global class c Lazard Lie ring. Suppose E is a group extension with central subgroup A

and quotient group G. Suppose N is a Lie ring extension with central subring logA (which we denote as A
via abuse of notation) and quotient Lie ring L. Suppose further that the equivalence class up to isoclinism of
the group extension E corresponds, via the above bijection, to the equivalence class of the Lie ring extension
N . Then, the following are true.

(1) The group [E,E] is in global class c Lazard correspondence with the Lie ring [N,N ].
(2) The commutator-induced group homomorphism ΩE,G : G ∧ G → [E,E] is in global class c Lazard

correspondence with the commutator-induced group homomorphism ΩN,L : L ∧ L → [N,N ], where
we use the canonical Lazard correspondence between G ∧ G and L ∧ L described in Theorem 39.3,
and the Lazard correspondence between [E,E] and [N,N ] described in part (1).

(3) Explicitly, if ϕ : [N,N ] → log([E,E]) describes the isomorphism of Step (1), then for all x, y ∈ G

(so that x, y ∈ L as well because L and G have the same underlying set):
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ϕ(ωN,L(x, y)) = ωLie
E,G(x, y)

Equivalently:

ϕ(ωGroup
N,L (x, y)) = ωE,G(x, y)

(4) The group E is in global class (c+ 1) Lazard correspondence up to isoclinism with the Lie ring N .

Proof. Proof of (1) and (2): We have the following map induced by the commutator map in E:

ωE,G : G×G→ [E,E]

Similarly, we have the following map induced by the Lie bracket map in N :

ωN,L : L× L→ [N,N ]

We can define ωLie
E,G in terms of ωE,G as explained in Section 38.4. Consider the canonical isomorphism

between L ∧ L and G ∧G (described in Theorem 39.3) and denote the set map by exp : L ∧ L→ G ∧G.
In Section 11.3, we considered short exact sequences with surjective downward maps, where βG is the

element of Hom(M(G), A) and β′ is the morphism obtained by restricting βG to its image, which we call B:

0 → M(G) → G ∧G → [G,G] → 1
↓β′G ↓ ↓id

0 → B → [E,E] → [G,G] → 1

In Section 12.3, we considered a similar short exact sequence with surjective downward maps, where βL

is the element of Hom(M(L), A) and β′L is the morphism obtained by restricting βL to its image, which we
call B:

0 → M(L) → L ∧ L → [L,L] → 1
↓ ↓β′L ↓ ↓ ↓
0 → B → [N,N ] → [L,L] → 1

Under the canonical isomorphism of M(L) and M(G), βL and βG are canonically identified, so that the
subgroups B in both cases are the same, and β′L and β′G are canonically identified as well.

The left and right downward maps for the group short exact sequence are in Lazard correspondence
respectively with the left and right downward maps for the Lie ring short exact sequence. Therefore, the
middle maps for these sequences, which are determined uniquely up to isomorphism, are also in Lazard
correspondence up to isomorphism.32 In particular, [E,E] and [N,N ] are in Lazard correspondence up to
isomorphism and the maps G ∧G→ [E,E] and L ∧ L→ [N,N ] are in Lazard correspondence.

Proof of (3): The explicit description of the Lazard correspondence between G∧G and L∧L described in
Theorem 39.3 gives us that, for x, y ∈ L (so that x, y ∈ G because L and G have the same underlying set):

exp(x ∧ y) = h̃2,c+1(x, y)
where the x ∧ y on the left is interpreted as an element of L ∧ L.

32To see this, we could apply exp to the diagram for Lie rings and note that that diagram is equivalent up to isomorphism with
the diagram for groups.
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Apply ΩE,G to both sides and obtain:

ΩE,G(exp(x ∧ y)) = ΩE,G(h̃2,c+1(x, y))

The right side is ωLie
E,G(x, y), as described at the end of Section 38.6. We thus obtain:

ΩE,G(exp(x ∧ y)) = ωLie
E,G(x, y)

The left side involves composing the set map exp : L ∧ L → G ∧ G and the group homomorphism
ΩE,G : G∧G→ [E,E]. By Part (2), this is equivalent to composing the map ΩN,L : L∧L→ [N,N ] with the
Lazard correspondence up to isomorphism between [N,N ] and [E,E]. The statement of the theorem uses
the symbol ϕ to denote the isomorphism [N,N ] → log([E,E]) describing the correspondence, so we obtain:

ϕ(ΩN,L(x ∧ y)) = ωLie
E,G(x, y)

ΩN,L(x ∧ y) = ωN,L(x, y), and we obtain:

ϕ(ωN,L(x, y)) = ωLie
E,G(x, y)

as desired.
The proof of the other identity is similar.
Proof of (4): The image of Z(N) in L is precisely the set {x ∈ L | ωN,L(x, y) = 0∀ y ∈ L}. The image

of Z(E) in G is precisely the set {x ∈ G | ωE,G(x, y) = 1 ∀ y ∈ G}. The condition ωE,G(x, y) = 1 implies
that ωLie

E,G(x, y) = 0 which in turn implies that ωN,L(x, y) = 0. Similarly, the condition that ωN,L(x, y) = 0
implies that ωGroup

N,L (x, y) = 1 which in turn implies that ωE,G(x, y) = 1. The upshot is that the image of
Z(N) in L coincides with the image of Z(E) in G.

Thus, the quotient of L by the image of Z(N) in L is in strict Lazard correspondence with the quotient of
G by the image of Z(E) in G. The former is canonically isomorphic to N/Z(N) and the latter is canonically
isomorphic to E/Z(E). Thus, N/Z(N) is in Lazard correspondence with E/Z(E). Finally, the maps ωN,L

and ωE,G descend in the same way to maps ωN and ωE , and we obtain, for all x, y ∈ Inn(N):

ϕ(ωN (x, y)) = ωLie
E (x, y)

We thus obtain that N and E are in global class (c+ 1) Lazard correspondence up to isoclinism. �

39.5.3. Relation between the middle groups. We have demonstrated the existence of canonical isomorphisms
between the left groups and between the right groups in the two short exact sequences:

0 → Ext1Z(Gab;A) → H2(G;A) → Hom(G ∧G,A) → 0
↓ ↓

0 → Ext1Z(Lab;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0

As described in Sections 11.4 and 12.4, both short exact sequences split. Therefore, it is possible to find
an isomorphism H2(G;A) → H2

Lie(L;A) that establishes an isomorphism of the short exact sequences:

0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G,A) → 0
↓ ↓ ↓

0 → Ext1Z(L;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0
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Note, however, that the middle isomorphism is not canonical. In general, here, neither sequence splits
canonically. This is in contrast with the Baer correspondence up to isoclinism, where the short exact
sequence for Lie rings splits, as per Section 24.6.3. For the Baer correspondence up to isoclinism, specifying
an isomorphism of the middle groups is equivalent to specifying a splitting of the short exact sequence
corresponding to group extensions. For the global Lazard correspondence up to isoclinism, however, the
analogous statement is not true.

39.6. The global Lazard correspondence up to isoclinism: filling the details. Suppose c is a positive
integer and πc is the set of all primes less than or equal to c.

We are now in a position to flesh out the remaining details of the global Lazard correspondence up to
isoclinism, which we defined in Section 39.2:
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Equivalence classes up to isoclinism of πc-powered groups of nilpotency class at most c+ 1 ↔ Equivalence
classes up to isoclinism of πc-powered Lie rings of nilpotency class at most c+ 1

There are two pending facts we need to establish:

(1) For every πc-powered group G of nilpotency class at most c+1, there exists a πc-powered Lie ring L
of nilpotency class at most c+1 such that G and L are in global class (c+1) Lazard correspondence
up to isoclinism.

(2) For every πc-powered Lie ring L of nilpotency class at most c+1, there exists a πc-powered group G
of nilpotency class at most c+1 such that G and L are in global class (c+1) Lazard correspondence
up to isoclinism.

39.6.1. Explicit construction from the group to the Lie ring. We are given a πc-powered group G of nilpotency
class at most c+ 1, and we need to find a πc-powered Lie ring L of nilpotency class at most c+ 1 such that
L and G are in global class c+ 1 Lazard correspondence up to isoclinism.

(a) Consider G as a central extension:

0 → Z(G) → G→ G/Z(G) → 1

Consider the equivalence class up to isoclinism of this extension.
(b) Based on the discussion in Section 39.5.2, this equivalence class corresponds to an equivalence class up

to isoclinism of Lie ring extensions with central subring log(Z(G)) and quotient Lie ring log(G/Z(G)).
Let L be any extension Lie ring in this equivalence class.

(c) By Theorem 39.4, L and G are in global Lazard correspondence up to isoclinism.

39.6.2. Explicit construction from the Lie ring to the group. We are given a πc-powered Lie ring L of nilpo-
tency class at most c+ 1, and we need to find a πc-powered group G of nilpotency class at most c+ 1 such
that L and G are in global class c+ 1 Lazard correspondence up to isoclinism.

(a) Consider L as a central extension:

0 → Z(L) → L→ L/Z(L) → 0

Consider the equivalence class up to isoclinism of this extension.
(b) Based on the discussion in Section 39.5.2, this equivalence class corresponds to an equivalence class up

to isoclinism of group extensions with central subgroup exp(Z(L)) and quotient group exp(L/Z(L)). Let
G be any extension group in this equivalence class.

(c) By Theorem 39.4, L and G are in global class (c+ 1) Lazard correspondence up to isoclinism.

39.6.3. Preservation of order. In both directions, the constructions preserve the orders. In other words, if
we start with a finite group and use the construction in the direction from groups to Lie rings, the Lie ring
that we obtain has the same order as the group that we started with. Similarly, if we start with a finite Lie
ring and use the construction in the direction from Lie groups to groups, the group that we obtain has the
same order as the Lie ring that we started with.

This does not imply that every group and every Lie ring that are in global Lazard correspondence up
to isoclinism must have the same order. Rather, we are saying that the answer to the existence question
continues to be affirmative even after we impose the condition that the orders have to be equal.
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In particular, given a a finite p-group of nilpotency class p, we can find a finite p-Lie ring (i.e., a Lie ring
whose additive group is a finite p-group) of nilpotency class p such that the group and Lie ring are in global
class p Lazard correspondence up to isoclinism. Similarly, given a finite p-Lie ring of nilpotency class p, we
can find a finite p-group of nilpotency class p such that the group and Lie ring are in global class p Lazard
correspondence up to isoclinism.

39.7. Relating the global Lazard correspondence and the global Lazard correspondence up to

isoclinism. Suppose c is a positive integer and πc is the set of all primes less than or equal to c. In Section
39.5, we considered the case where A is an abelian group and G is a global class c Lazard Lie group (i.e., a
πc-powered group of nilpotency class at most c) with Lazard Lie ring L. Recall the short exact sequences
described in Section 39.5:

0 → Ext1Z(Gab;A) → H2(G;A) → Hom(M(G), A) → 0
↓ ↓

0 → Ext1Z(Lab;A) → H2
Lie(L;A) → Hom(M(L), A) → 0

We had noted at the time that both short exact sequences split, and therefore the middle groups are
isomorphic. However, in general, neither splitting is canonical (the splitting on the Lie ring side is canonical
for abelian L, as described in Section 24.5.3, but this is an exceptional situation). Moreover, in general,
there is no canonical isomorphism between the middle groups.

Suppose now that A and G (and therefore also L) are powered over the set of all primes less than or equal
to c+1. Note that in the case that c+1 is composite, this is always true, but it may also be true for specific
choices of A and G even in the case that c+1 is prime. In this case, all the elements of H2(G;A) correspond
to global class (c+1) Lazard Lie groups and all the elements of H2

Lie(L;A) correspond to global class (c+1)
Lazard Lie rings. Moreover, the global class (c+1) Lazard correspondence induces an isomorphism between
these groups that defines a canonical isomorphism of the short exact sequences:

0 → Ext1Z(Gab;A) → H2(G;A) → Hom(M(G), A) → 0
↓ ↓ ↓

0 → Ext1Z(Lab;A) → H2
Lie(L;A) → Hom(M(L), A) → 0

Note that in this situation, both short exact sequences split, neither splits canonically (unless c = 1), yet
there is a canonical isomorphism between them.

Another way of framing this is that, wherever applicable, the global class (c+ 1) Lazard correspondence
refines the global class (c+ 1) Lazard correspondence up to isoclinism.

40. Applications and related results

The Lazard correspondence up to isoclinism can be used as an analytical framework for the study of
previous extensions of the Lazard correspondence. Some of these are discussed in this section. For simplicity,
we restrict our statements to the global Lazard correspondence up to isoclinism.

40.1. Relation with past work of Glauberman. A special case of the Lie bracket-like map for groups,
described in Section 38.2, was described by Glauberman in Section 5 of his 2008 paper [19]. Theorem 5.1 of
the paper demonstrated that the map is alternating and bilinear when viewed as a map from the Lazard Lie
ring of the inner automorphsim group. Explicitly, the statement of Theorem 5.1 was as follows:
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Theorem 40.1 (Theorem 5.1 of [19]). Suppose S has nilpotence class at most p and Z = Z(S). Then
the following assertions hold.

(1) Both S/Z and S′ have nilpotence class at most p− 1.
(2) Define addition (and bracket multiplication) on S/Z and S′ as in Theorem 2.1 (of [19]). Then there

exists an alternating bi-additive function f from (S/Z)× (S/Z) into S′ such that, for all u, v in S,

f(uZ, vZ) = 0 if and only if uv = vu.

Moreover, the image of f generates S′ as an additive group.

Part (1) of the theorem is straightforward, and is a special case of Lemma 39.1. Part (2) of the Theorem
describes the map ωLie

S described in Section 38.2. The statement of part (2) follows indirectly from the
discussion in Section 39 as follows. The commutator map defines a map (S/Z) ∧ (S/Z) → S′ from the
exterior square of S/Z as a group. The Lie bracket map ωLie

S correspondingly defines a Lie ring map
log(S/Z) ∧ log(S/Z) → log(S′). Here, log(S/Z) ∧ log(S/Z) denotes the exterior square of log(S/Z) as a Lie
ring. Essentially, this follows from Theorem 39.3 where L = log(S/Z) and G = S/Z and part of the work
done in the proof of Theorem 39.4.

The main way that our results are more general than Glauberman’s is that our results establish the
existence of a Lie ring that is a counterpart to the whole group (S in Glauberman’s theorem) whose Lie
bracket map realizes the map log(S/Z)∧ log(S/Z) → log(S′). The crucial additional ingredient in our proof
is the use of the surjectivity of the universal coefficient theorem short exact sequence (described in Section
12.4, and applied in Theorem 39.4) to demonstrate the existence of an appropriate Lie ring extension.

40.2. Correspondences between subgroups and subrings. The Lazard correspondence up to isoclinism
is a correspondence between some equivalence classes up to isoclinism of groups and some equivalence classes
up to isoclinism of Lie rings. This fact immediately constrains the utility of the correspondence to the study
of attributes that are invariant under isoclinism. Explicitly, any attribute of a group that we wish to study
using the Lazard correspondence up to isoclinism should be an attribute that is invariant under isoclinisms
of groups. Keeping this in mind, we apply the Lazard correspondence up to isoclinism to relate subgroups
of the group and subrings of the Lie ring.

In Section 4.8, we described some aspects of the subgroup structure that are invariant under isoclinism.
In particular, we noted there that we have a correspondence between subgroups containing the center for
the two groups. We discussed the similar situation for Lie rings in Section 5.5.

In Section 31.8.1, we described how the global Lazard correspondence gives a correspondence between
some subgroups of the group and some subrings of the Lie ring. Explicitly, the correspondence is between
the global Lazard Lie subgroups of the group and the global Lazard Lie subrings of the Lie ring.

The global Lazard correspondence up to isoclinism combines the above ideas to give a correspondence
between some subgroups of the group and some subrings of the Lie ring. We now describe this correspondence.

Suppose c is a positive integer. Denote by πc the set of primes that are less than or equal to c. Suppose
G is a πc-powered group of class (c+ 1) and L is a πc-powered Lie ring of class (c+ 1), and suppose G and
L are in global class (c+ 1) Lazard correspondence. We have a correspondence:

πc-powered subgroups of G containing Z(G) ↔ πc-powered Lie subrings of L containing Z(L)
228



Further, if a subgroup H of G and a subring M of L correspond to each other by the correspondence
above, then H and M are in global class c Lazard correspondence up to isoclinism. Even in the case that H
is a global Lazard Lie group or M is a global Lazard Lie ring, H and M are not necessarily in global Lazard
correspondence up to isomorphism.

The correspondence restricts to a correspondence between normal subgroups and ideals:

πc-powered normal subgroups of G containing Z(G) ↔ πc-powered ideals of L containing Z(L)

We can generalize the correspondence somewhat. For any d ≤ c, denote by πd the set of all primes less
than or equal to d. We have a correspondence:

πd-powered subgroups of G of class at most (d+ 1) containing Z(G) ↔ πd-powered Lie subrings of L of
class at most (d+ 1) containing Z(L)

This also restricts to a correspondence between normal subgroups and ideals:

πd-powered normal subgroups of G of class at most (d+ 1) containing Z(G) ↔ πd-powered ideals of L of
class at most (d+ 1) containing Z(L)

40.3. Correspondence between abelian subgroups and abelian subrings. In Section 4.10 (respec-
tively, Section 5.7), we noted that for two groups (respectively, two Lie rings) that are isoclinic, the abelian
subgroups (respectively, abelian subrings) that contain the center are in correspondence. We now state sim-
ilar results describing a correspondence between a group and a Lie ring that are in Lazard correspondence
up to isoclinism. Suppose c is a positive integer. Denote by πc the set of primes that are less than or equal
to c. Suppose a group G is in global class (c+ 1) Lazard correspondence up to isoclinism with a Lie ring L.
Then, the following hold:

• The Lazard correspondence up to isoclinism establishes a correspondence between abelian subgroups
of G containing Z(G) and abelian subrings of L containing Z(L).

• The Lazard correspondence up to isoclinism establishes a correspondence between the abelian sub-
groups of G that are self-centralizing and the abelian subrings of L that are self-centralizing.

• In the case that G and L are both finite, the Lazard correspondence up to isoclinism establishes a
correspondence between abelian subgroups of maximum order in G and abelian subrings of maximum
order in L.

• For each of the correspondences above, normal subgroups correspond with ideals.
• If G and L are both finite, then each of the correspondences above preserves index.

40.4. Normal subgroups that are global Lazard Lie groups. We begin with a lemma. We omit the
proof because the lemma is straightforward.

Lemma 40.2. The following are equivalent for a group G.

(1) Any two elements of G that are conjugate to each other commute.
(2) Every element of G is contained in an abelian normal subgroup of G.
(3) The normal closure of every element of G is abelian.
(4) G is a union of abelian normal subgroups.
(5) For all x, y ∈ G, [[x, y], y] = 1, i.e., G satisfies a 2-Engel condition.
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Groups that satisfy the equivalent conditions of the lemma are termed Levi groups or 2-Engel groups. We
can now state the next lemma.

Lemma 40.3. Suppose G is a nilpotent group of nilpotency class two. Then, G is a Levi group.

We can now state an important result relating the nilpotency class of a group and the nilpotency class
of normal closures of elements. The result follows from the above lemma and induction on the nilpotency
class.

Lemma 40.4. Suppose G is a nilpotent group of nilpotency class c + 1 where c ≥ 1. Then, the normal
closure of any element of G is a nilpotent group of nilpotency class at most c. In other words, G is a union
of normal subgroups each of which has nilpotency class at most c.

Proof. We prove the claim by induction on c. The base case c = 1 follows from the preceding lemma. We
proceed to demonstrate the inductive step, assuming c ≥ 2.

Let x ∈ G and let H be the normal closure of x in G.
Denote by x the image of x in G/Z(G). It is easy to verify that the normal closure of x in G/Z(G) is

the image of H in G/Z(G). Denote this by H. By assumption, G/Z(G) has class c. Thus, by the inductive
hypothesis, H has class at most c− 1. Therefore, H has class at most c. �

The relevance of this result to the global Lazard correspondence is as follows.

Lemma 40.5. Suppose c is a positive integer, πc is the set of all primes less than or equal to c, and G is
a πc-powered group of nilpotency class at most (c+ 1). Then, the following hold:

(1) Every element of G is contained in a normal subgroup of G that is a global class c Lazard Lie group.
Equivalently, G is a union of normal subgroups that are global class c Lazard Lie groups.

(2) G is a union of normal subgroups that are global class c Lazard Lie groups such that all the subgroups
contain the center of G.

Proof. Proof of (1): We will show that for every element g ∈ G, g is contained in global class c Lazard Lie
subgroup of G. By the preceding lemma (Lemma 40.4), the normal closure of g in G is a group of nilpotency
class c. Denote this normal closure as H. Then, by Theorem 19.3, the subgroup πc

√
H is a πc-powered

normal subgroup of G. Thus, πc
√
H is a global class c Lazard Lie group that is a normal subgroup of G.

Proof of (2): We can replace each of the normal subgroups obtained for part (1) by its product with the
center of G. �

In Section 39, we showed that for a group G satisfying the hypotheses of the lemma above, we can find a
Lie ring L such that G is in global class (c+ 1) Lazard correspondence up to isoclinism with L. In Section
40.2, we showed that the πc-powered normal subgroups of G that contain the center Z(G) are in Lazard
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correspondence up to isoclinism with the πc-powered ideals of L that contain the center Z(L). In particular,
this means that there is a correspondence:

Normal subgroups of G containing the center that are global class c Lazard Lie groups ↔ Ideals of L
containing the center that are global class c Lazard Lie rings

Note, however, that even though the objects on both sides of the correspondence are in the domain of
the global Lazard correspondence, the correspondence itself is only a global Lazard correspondence up to
isoclinism.

This raises the following question:

Given a πc powered group G of nilpotency class (c+1), is it possible to choose a πc-powered
Lie ring L such that, under the above correspondence, each of the corresponding objects are
in global Lazard correspondence (not just up to isoclinism)?

In general, the answer to this question is no. We can see examples even for 2-groups of class two, such as
the case where c = 2 and G = D8. Our conclusion can be deduced from the discussion in Section 25.

40.5. Adjoint action. Many aspects of the relationship between inner automorphisms and inner derivations
described in Section 31.9 continue to be valid, with suitable modification, for the global Lazard correspon-
dence up to isoclinism (and also for the 3-local Lazard correspondence up to isoclinism). We will state
our results for the global Lazard correspondence up to isoclinism, and mention at the end why the results
generalize to the 3-local Lazard correspondence up to isoclinism.

Suppose c is a positive integer and πc is the set of all primes less than or equal to c. Suppose G is a
πc-powered group of class at most c + 1 and L is a πc-powered Lie ring of class at most c + 1 such that G
and L are in global class (c+ 1) Lazard correspondence up to isoclinism.

The adjoint action of G on L is defined as follows:

Ad : G→ Aut(L)

For any u ∈ G, define Adu as follows. Denote by u the image of u in G/Z(G). Denote by x an element
of L such that the image of x in L/Z(L) corresponds to the element u under the global class c Lazard
correspondence between L/Z(L) and G/Z(G). We define Adu as the following automorphism of L:

Adu = exp(adx)

where exp is understood to mean the actual power series of exp, with the addition and multiplication
happening inside EndZ(L), the ring of endomorphisms of the underlying additive group of L. Explicitly:

Adu = 1 + adx +
ad2

x

2!
+ . . .

adc
x

c!
Or even more explicitly:

Adu(g) = g + [x, g] +
1
2!

[x, [x, g]] + · · ·+ 1
c!

[x, [x, . . . [x, g] . . . ]]

where the x appears c times in the last iterated Lie bracket.
It can easily be verified that Adu is an automorphism of L (this follows, for instance, by noting that adx

is a derivation of L satisfying the conditions of Proposition 2.5 in Alperin and Glauberman’s paper [1]). It
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can also be verified that Aduv = Adu Adv, making Ad a homomorphism. Note that both these verifications
use only three elements at a time:

• The verification that Adu is an automorphism requires us to consider the effect of Adu on an arbitrary
Lie product [g, h], and therefore involves three elements: x, g, and h.

• The verification that Aduv = Adu Adv requires us to consider an arbitrary element g ∈ L and
elements (say x and y) that correspond to u and v when considered modulo the center. Therefore,
this involves three elements.

Thus, the proofs generalize to the 3-local case.

40.6. Adjoint group and unitriangular matrix group. In Section 31.10, we noted that for a nilpotent
associative ring N of class c, its associated Lie ring and adjoint group 1 +N are both nilpotent. We further
noted that if the additive group of N is πc-powered where πc is the set of primes less than or equal to c,
then N (as a Lie ring) is in global class c Lazard correspondence with the adjoint group 1 +N .

The result has an analogue for the global class (c+ 1) Lazard correspondence up to isoclinism, as follows.
Suppose N is a nilpotent associative ring of nilpotency class c+ 1 (i.e., all products of length c+ 2 or more
are zero). Suppose further that the additive group of N is πc-powered. Then, the Lie ring N and the adjoint
group 1 +N are in global class (c+ 1) Lazard correspondence up to isoclinism.

We can therefore also obtain an analogue of the result described in Section 31.11. Explicitly, this says the
following: if the additive group of a commutative associative unital ring R is πc-powered, then NT (c+2, R),
viewed as a Lie ring, is in global class (c + 1) Lazard correspondence up to isoclinism with the group
UT (c+ 2, R).

41. Possible extensions

41.1. Relaxing the πc-powered assumption on the whole group. It is possible to reframe the existence
result of the global class (c + 1) Lazard correspondence in a manner that replaces the assumption that the
group itself is πc-powered by the assumption that the inner automorphism group and derived subgroup
are πc-powered. Similarly, we can replace the assumption that the Lie ring itself is πc-powered by the
assumption that the inner derivation Lie ring and derived subring are both πc-powered. We can ahow both
results either by making modifications to the proofs or by first passing from the group to an isoclinic group
that is πc-powered.

Note that we do need to make the assumption of πc-powering for both the inner automorphism group and
the derived subgroup. If we assume only that the inner automorphism group is πc-powered, it does follow
from that that the derived subgroup is πc-divisible, but the derived subgroup need not be πc-torsion-free and
therefore need not be πc-powered. For instance, for c ≥ 2, consider the group G = UT (c + 2,Q)/Z, where
the subgroup Z being factored out is inside the central subgroup Q. G is a global class (c + 1) group and
Inn(G) is πc-powered (in fact, it is rationally powered), but G′ is not πc-powered (in fact, it is not powered
over any prime, because it contains Q/Z as a subgroup).

41.2. 3-local Lazard correspondence up to isoclinism: proof of existence. In Section 39, we defined
the Lazard correspondence up to isoclinism in the 3-local setting, but we proved existence only in the global
setting. We expect the results to hold in the 3-local setting. Explicitly, we expect the following results
described in the outline to hold:
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• For a Lie ring L, if both Inn(L) and L′ are (3-local) Lazard Lie rings, then we can find a group G

such that L is in (3-local) Lazard correspondence up to isoclinism with G.
• For a group G, if both Inn(G) and G′ are (3-local) Lazard Lie groups, then we can find a Lie ring L

such that L is in Lazard correspondence up to isoclinism with G.

We believe that proofs analogous to those presented in Section 39 of this thesis can be used to show the
above. However, executing these proofs would require us to define a number of intermediate objects more
generally, making the exercise of generalizing the proofs more difficult.

41.3. More results about primes appearing in denominators. The literature on the Baker-Campbell-
Hausdorff formula and the Lazard correspondence includes a number of bounds on primes that appear in
denominators in these formulas. Some of the relevant literature is discussed below.

• Theorem C of Easterfield’s paper [10] provides bounds on the exponents of primes appearing in
formulas for commutators between powers of elements. The paper does not explicitly discuss the
Lazard correspondence or the Baker-Campbell-Hausdorff formula, but the results are closely related,
and the relationship is elucidated further by Glauberman in his paper [18] on partial extensions of
the Lazard correspondence.

• The paper [8], a paper describing a computationally effective version of the Lazard correspondence,
provides bounds on the exponents of primes in denominators for the formula. The bounds for the
inverse Baker-Campbell-Hausdorff formula are in Section 6 of the paper.

• Thomas Weigel’s doctoral dissertation [44] contains strong bounds on the primes that appear in the
denominators for formulas for Md and h2,d where d ≤ 2c− 2. These results are related to the results
we describe in the Appendix, Section F.3.

41.4. Potential extension to a Lazard correspondence up to n-isoclinism. In the Appendix, Section
E, we describe the notions of isologism and homologism for groups. Similar concepts can be defined for Lie
rings (and in fact, for more general varieties of algebras). The corresponding generalization of the Schur
multiplier is an abelian group termed the Baer invariant. The paper [29] by Leedham-Green and McKay is
an important source of results about isologisms.

A particular form of isologism of interest to us is n-isoclinism for a positive integer n. The concepts of
n-isoclinism and n-homoclinism are described in the Appendix, Section E.7 and also in [22] (for groups) and
[36] (for Lie rings). Recall that an isoclinism between groups is an equivalence between their commutator
structures. The commutator structure is precisely the structure that becomes trivial in all abelian groups.
Thus, we can think of isoclinism as “equivalence modulo the subvariety of abelian groups.” In a similar
vein, n-isoclinism is an equivalence between the (n+ 1)-fold commutator structures, and we can think of it
as “equivalence modulo the subvariety of groups of nilpotency class n.” The corresponding generalization of
the Schur multiplier is an abelian group termed the n-nilpotent multiplier. The n-nilpotent multiplier of a
group G is denoted M (n)(G), and we use similar notation for Lie rings. Note that the Schur multiplier is
the n-nilpotent multiplier for the case n = 1.

It may be possible to generalize the “global class (c + 1) Lazard correspondence up to isoclinism” to a
“global class (c + n) Lazard correspondence up to n-isoclinism” for some values of n > 1. Weigel’s results,
alluded to in Section 41.3, suggest that it may be possible to define the notion for some values of n > 1
(dependent on c).

233



However, there are important parts of the theory developed in Sections 11 and 12 that do not generalize
in the expected manner. For instance, the paper [29] by Leedham-Green and McKay suggests that the
approach that we have used in this thesis cannot be used to show existence. In particular, instead of the
universal coefficient theorem short exact sequence described in Section 11.4, we obtain a long exact sequence.
Specifically, the analogue of right exactness (the surjectivity of the right map) fails. For a more detailed
discussion of the failure of surjectivity, see Section 2 of the paper by Leedham-Green and McKay.

41.5. Glauberman’s partial extension. In his 2007 paper [18], George Glauberman described a general-
ization of the Lazard correspondence. His Theorem A and Theorem B are restated below.

Theorem 41.1 (Theorem A of [18]). Suppose p is a prime and S is a finite p-group. Then [x, y] (in the
Lie bracket sense) is well defined whenever x and y are elements of (possibly different) normal subgroups of
S of nilpotence class at most p− 1.

In addition, suppose A and B are normal subgroups of S of nilpotence class at most p− 1. Define + and
[ , ] on A and B as in the Lazard correspondence. Then:

(i) for each u in A and v in B, the elements [u, v] and [v, u] lie in A ∩B, and [v, u] = [u, v]−1.
(ii) for each u, u′ in A and v in B,

[u+ u′, v] = [u, v] + [u′, v] and [[u, u′], v] = [[u, v], u′] + [u, [u′, v]]

Theorem 41.2 (Theorem B of [18]). Suppose S is a finite p-group generated by a set S of normal
subgroups N of S having nilpotence class at most p− 1. Let U be the set-theoretic union of the elements of
S. For each N in S, define + on N by Lazard’s definition. For each u, v ∈ U, define [u, v] as in Theorem A.

Let E = End(S) be the set of all mappings φ from U to U such that, for each N in S,
φ maps N into N and induces an endomorphism of N under +.
Define addition and multiplication on E by

(φ+ φ′)(x) = φ(x) + φ′(x) and (φφ′)(x) = φ(φ′(x))

For each v ∈ U, define a mapping ad v on U by

(ad v)(u) = [u, v]

Then:

(i) ad v lies in E for each v in U.
(ii) for each N in S and each v, w ∈ N , ad(v + w) = ad v + adw.
(iii) for v, w ∈ U:

[ad v, adw] = ad[w, v] = − ad[v, w]

ad v = adw ⇐⇒ v ≡ w (mod Z(S))

(iv) The additive subgroup L(S) of E spanned by mappings ad v for v in U is a Lie subring of E, and
(v) for L(S) as in part (iv), each element φ of L(S) satisfies
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φ([u, v]) = [φ(u), v] + [u, φ(v)] ∀u, v ∈ U

In the special case that S is a finite p-group of nilpotency class p, the existence of a collection S satisfying
the hypotheses of the theorems is guaranteed by Lemma 40.5. We can also deduce that L(S) is isomorphic
to the Lazard Lie ring log(Inn(S)), regardless of the choice of S. We also know that in this case there exists
a Lie ring N that is in global class p Lazard correspondence up to isoclinism with S, and therefore, that
Inn(N) ∼= L(S).

Thus, in the case that S is a finite p-group of nilpotency class greater than p but admitting such a
collection of normal subgroups S, the Lie ring L(S) can be thought of as our attempt to define log(Inn(S)),
even though the latter does not exist.33 This raises the question of whether we can define a generalization
of the Lazard correspondence up to isoclinism that would guarantee the existence of a Lie ring N such that
we can think of S and N as being related via that appropriate generalization, and such that Inn(N) ∼= L(S).

41.6. Possible generalization of the Kirillov orbit method. The Kirillov orbit method is a method
used to compute the degrees of the irreducible representations of a finite Lazard Lie group. The following is
the procedure for computing the degrees of irreducible representations of a finite group G:

• Denote by L the Lazard Lie ring corresponding to G.
• Denote by L̂ the Pontryagin dual to L, viewed only as an additive group. Note that L̂ is isomorphic

to L, but there is no natural isomorphism.
• The natural action of G on L (called the adjoint representation, and described in Section 31.9)

induces a natural action of G on L̂ (called the coadjoint representation). The orbits under this
action correspond to the irreducible representations. Moreover, the size of any orbit is the square of
the degree of the irreducible representation to which it corresponds. Note that this is combinatorially
consistent with the fact that the sum of squares of the degrees of irreducible representations of G
equals the order of G (because the order of G equals the order of L, and this in turns equals the
order of L̂).

For a detailed discussion of the method, see the papers [?], [?], and [?].
In the Appendix, Section H, we show that if two finite groups are isoclinic, they have the same proportions

of degrees of irreducible representations, and in particular, if they have the same order, then they have the
same multiset of degrees of irreducible representations, and therefore they have isomorphic group algebras
over the field of complex numbers.

In particular, suppose G1 and G2 are isoclinic and both are finite p-groups of the same order that are
Lazard Lie groups. Denote by L1 the Lazard Lie ring of G1 and denote by L̂1 the Pontryagin dual to L1. In
order to find the degrees of irreducible representations of G1, we consider its coadjoint representation (action
on L̂1). Note that this action factors through the group G1/Z(G1) ∼= Inn(G1). In particular, since G2 is
isoclinic to G1, we can also view the coadjoint action as an action of G2 on L̂1. Moreover, the sizes of the
orbits here are the squares of the degrees of irreducible representations of G1, and hence also of G2.

This has an important implication, namely, that if our goal behind using the Kirillov orbit method is
solely to find the degrees of the irreducible representations rather than determine the actual irreducible

33In private correspondence, George Glauberman shared an example of a finite p-group S of class greater than p for which the
isomorphism type of L(S) is dependent on the choice of S, i.e., different choices of S may yield different isomorphism types for
L(S). The example has not yet been published.
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representations, then we can use the Lazard Lie ring of any isoclinic group. This suggests that we might be
able to generalize the method to the situation of the Lazard correspondence up to isoclinism.

In Section 40.5, we noted that if G and L are in global class (c+1) Lazard correspondence up to isoclinism,
then we can define an adjoint action of G on L. We can use this to obtain a coadjoint action of G on the
Pontryagin dual L̂.

This leads to the following conjecture.

Conjecture 41.3 (Kirillov orbit method for correspondence up to isoclinism). Suppose p is a prime
number, G is a finite p-group of nilpotency class p, and L is a finite p-Lie ring of nilpotency class p such
that G and L are in global class p Lazard correspondence up to isoclinism, and such that G and L have the
same order. Consider the coadjoint action of G on the Pontryagin dual L̂ described above. The sizes of the
orbits for this coadjoint action are the squares of the degrees of irreducible representations.

Note that, even if the conjecture were true, the method would be weaker than the actual Kirillov orbit
method, because the actual Kirillov orbit method can be used to find explicitly the characters of the irreducible
representations. However, this method can only provide the degrees of the irreducible representations. It
cannot reveal the characters themselves because the characters are not invariant under isoclinism. In fact,
this method can only reveal isoclinism-invariant information.

41.7. Other possibilities: the use of multiplicative Lie rings. In [16], Graham Ellis defined multiplica-
tive Lie rings, which have been further considered in [4]. The theory of multiplicative Lie rings is powerful
enough to encapsulate both the theory of groups and the theory of Lie rings. This theory is, however, rela-
tively non-standard and not sufficiently well-developed in the literature, so we do not use this framework in
the document. It would be a potentially interesting exercise to reformulate the results and proofs presented
here in the language of multiplicative Lie rings.

236



Appendix A. Background definitions and basic theory

A.1. Rings and associativity. A ring is an abelian group R (with the abelian group operation denoted
additively) equipped with a Z-bilinear operation R×R→ R called the ring multiplication. Here, “Z-bilinear”
is equivalent to the left and right distributivity laws. The multiplication operation of a ring may be denoted
by an explicit multiplicative symbol such as ∗ or · but it will often be denoted by concatenation (also known
as juxtaposition), i.e., we will denote by ab the image of (a, b).

An associative ring is a ring where the multiplication is associative. With the notation above, R is
associative if the following holds:

(ab)c = a(bc) ∀ a, b, c ∈ R

Note that we do not assume associativity as part of the definition of ring. Thus, our definition of ring
includes associative rings, Lie rings, and other kinds of rings. The use of concatenation can be misleading in
the non-associative case, because the string abc has two differing interpretations: (ab)c versus a(bc). When
considering products of length more than two in a non-associative ring, we must take care to use parentheses
to clarify the order of operations.

Note that when we use the term “commutative unital ring” we are by default referring to rings that are
both commutative and associative and where the ring multiplication has an identity element, that we denote
as 1.

A.2. Algebras over a commutative unital ring. Suppose R is a commutative (associative) unital ring.
An algebra over R, also called a R-algebra, is a R-module A equipped with a R-bilinear operation A×A→
A called the multiplication or product. Note that any algebra over R is naturally also a ring. If the
multiplication of A is associative, we say that A is an associative algebra over R. We can in fact define a
ring as a Z-algebra.

A.3. Structure constants and multilinear identities. Suppose R is a commutative (associative) unital
ring and A, B, C are R-modules, with f : A × B → C a R-bilinear map. Suppose (ai), (bj), (ck) form
generating sets for A, B, and C as R-modules. We can find values λk

ij ∈ R, called the structure constants of
f , such that the following holds for all i, j:

f(ai, bj) =
∑

k

λk
ijck

Note that the structure constants need not be uniquely determined by the knowledge of f and the
generating sets. However, in the case that C is a free R-module and the (ck) form a freely generating set for
C, the structure constants are uniquely determined by f and the choice of generating sets. The converse is
always true: if we are given the structure constants and the generating sets, f is uniquely determined.

The typical case where we talk of structure constants is where A, B, and C are all free R-modules and
each of the generating sets is a freely generating set. In this case, every possible tuple of values for λk

ij can be
realized via a bilinear map. A further special case of this is where R is a field. In this case, all R-modules are
free (explicitly, they are vector spaces over the field, and each generating set is a basis for the corresponding
vector space).

In particular, given an algebra A over a commutative unital ring R such that the additive group of A
is a free R-module, we can describe A by choosing a freely generating set for it and then using structure
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constants for the multiplication of A. In this case, we will call the structure constants for the multiplication
of A the structure constants of A.

A.4. Lie rings and Lie algebras. A Lie ring is defined as an abelian group L equipped with a Z-bilinear
map [ , ] : L× L→ L called the Lie bracket satisfying the following conditions:

• Alternating property: [x, x] = 0 for all x ∈ L. It also follows from this that [x, y] = −[y, x] for all x, y ∈
L. The latter condition is termed skew symmetry. The proof of the implication uses that [ , ] is Z-
bilinear. Explicitly, the proof uses Z-bilinearity to show that [x, y]+[y, x] = [x+y, x+y]−[x, x]−[y, y],
and we then note that the right side is zero by the alternating property.

The converse implication does not hold, i.e., skew symmetry does not imply the alternating
property, although it does so if L is 2-torsion-free. Explicitly, [x, y] = −[y, x] for all x, y implies that
[x, x] = −[x, x] for all x, so 2[x, x] = 0. In the case that L is torsion-free, this implies that [x, x] = 0.

• Jacobi identity: There are two versions, both of which are equivalent under skew symmetry (and
hence under the alternating property):

– Left normed Jacobi identity: [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 for all x, y, z ∈ L.
– Right normed Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L.

Let R be a commutative (associative) unital ring. A Lie algebra over R is a R-module L equipped with
a R-bilinear map [ , ] : L × L → L called the Lie bracket satisfying the two conditions above, namely, the
alternating property and the Jacobi identity.

Note in particular that any R-Lie algebra can naturally be viewed as a Lie ring. A Lie ring can be defined
as a Z-Lie algebra.

The following additional definitions are useful:

• Subring of a Lie ring: A subset S of a Lie ring is termed a subring (or Lie subring) if it is an additive
subgroup of L and is closed under the Lie bracket, i.e., [x, y] ∈ S for all x, y ∈ S.

• Ideal of a Lie ring: A subset I of a Lie ring L is termed an ideal if I is an additive subgroup of L
and [x, y] ∈ I for all x ∈ I, y ∈ L.

Any ideal is a subring, but a subring need not be an ideal.
• Homomorphism of Lie rings: Given Lie ring L1 and L2, a homomorphism from L1 to L2 is a set

map ϕ : L1 → L2 that is a homomorphism between L1 and L2 as groups and such that ϕ([x, y]) =
[ϕ(x), ϕ(y)] for all x, y ∈ L.

• Quotient Lie ring: Given a Lie ring L and an ideal I of L, the quotient group L/I naturally inherits
the structure of a Lie ring from L.

We can also define corresponding notions of subalgebra of a Lie algebra, ideal of a Lie algebra, homo-
morphism of Lie algebras, and quotient Lie algebra, all in the context of a R-Lie algebra for a commutative
(associative) unital ring R.

There are analogues in Lie rings (and also in R-Lie algebras) of the four isomorphism theorems for groups.

A.5. The relationship between Lie rings and Lie algebras. Most of the basic ideas and definitions
associated with Lie rings (that we can think of as Z-Lie algebras) generalize to R-Lie algebras for any
commutative (associative) unital ring R. In the Appendix, we discuss how the definitions for Lie rings relate
to corresponding definitions for R-Lie algebras. However, all the definitions and results in the main document
are framed in terms of Lie rings.
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Many of the results in the main document generalize to Lie algebras. However, to correctly generalize the
main results (which are about correspondences between groups and Lie rings) we need to develop a concept
of a group powered over an arbitrary commutative (associative) unital ring.

A.6. Verification of multilinear identities: associativity and the Jacobi identity. Suppose R is a
commutative unital ring and M is a R-module. We use the term R-multilinear identity for an identity of the
form:

F (x1, x2, . . . , xn) = 0

where F : M ×M × · · · ×M →M is R-linear in each coordinate. We say that the identity holds in M if
the above holds for all x1, x2, . . . , xn ∈M , i.e., F is identically the zero function.

For any commutative unital ring R and any R-algebra A, associativity of A is a R-multilinear identity
(that may or may not hold for A). Similarly, the left-normed Jacobi identity for A is a R-multilinear identity
(that may or may not hold for A).

For any R-multilinear identity being considered on a R-module M , the following are true:

• It suffices to verify the identity on a generating set for M as a R-module, i.e., it suffices to verify the
identity for each xi varying arbitrarily over a generating set for M as a R-module.

• In the case that M is a free R-module and the multilinear operation F is built from a R-bilinear
operation f : M ×M → M , the multilinear identity reduces to a polynomial condition in terms of
the structure constants for f (this will be clearer from the examples below).

Suppose R is a commutative unital ring and A is a R-algebra with multiplication ∗, i.e., A is a R-module
and ∗ : A × A → A is a R-bilinear map. The associator of ∗ is a R-trilinear function a : A × A × A → A

defined as:

a(x, y, z) := ((x ∗ y) ∗ z)− (x ∗ (y ∗ z))

∗ is associative if and only if a is the zero function. In order to verify that a is the zero function, it suffices
to choose a generating set S for A as a R-module and then verify that a(x, y, z) = 0 for all x, y, z ∈ S.

In the case that A is a free R-module with freely generating set ei, i ∈ I and structure constants λk
ij for

the multiplication, the associativity condition can be written as follows, for all i, j, k, l ∈ I:

∑
m∈I

λm
ijλ

l
mk =

∑
m∈I

λl
imλ

m
jk

Suppose R is a commutative unital ring and L is a R-algebra with multiplication denoted by a bracket
[ , ]. The left-normed and right-normed Jacobi identities respectively mean that the following R-trilinear
functions are zero everywhere:

Jl(x, y, z) = [[x, y], z] + [[y, z], x] + [[z, x], y]

Jr(x, y, z) = [x, [y, z]] + [y, [z, x]] + [z, [x, y]]
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In order to verify either of these identities, it suffices to verify it on a generating set for L as a R-module.
Explicitly, if S generates L as a R-module, then Jl(x, y, z) = 0 for all x, y, z ∈ L if and only if Jl(x, y, z) = 0
for all x, y, z ∈ S. Similarly, Jr(x, y, z) = 0 for all x, y, z ∈ L if and only if Jr(x, y, z) = 0 for all x, y, z ∈ S.

In the case that L is free as a R-module, the left-normed and right-normed Jacobi identities can be verified
in terms of the structure constants. Explicitly, if ei, i ∈ I form a freely generating set for L, and λk

ij denote
the structure constants, then the following hold:

• The left-normed Jacobi identity is equivalent to the condition that:

∑
m∈I

(λm
ijλ

l
mk + λm

jkλ
l
mi + λm

kiλ
l
mj) = 0

• The right-normed Jacobi identity is equivalent to the condition that:

∑
m∈I

(λl
imλ

m
jk + λl

jmλ
m
ki + λl

kmλ
m
ij ) = 0

A.7. Derivation of a ring and of an algebra. We define derivations for rings, and also for algebras for
commutative unital rings.

Definition (Derivation). Suppose A is a ring with multiplication denoted by ∗. A set map d : A→ A is
termed a derivation of A if it satisfies both these conditions:

• d is an endomorphism of the additive group of A.
• d satisfies the following condition, called the Leibniz condition:

d(x ∗ y) = (d(x) ∗ y) + (x ∗ d(y)) ∀ x, y ∈ R

Note that we typically do not use parentheses for the inputs to derivations if they are single letters,
so the above is often written as:

d(x ∗ y) = (dx ∗ y) + (x ∗ dy) ∀ x, y ∈ R

The set of derivations of a ring forms a Lie ring, where the addition is pointwise, and the Lie bracket is
defined as [d1, d2] = d1 ◦ d2− d2 ◦ d1 (with ◦ denoting composition of set maps). For a ring A, we will denote
the Lie ring of derivations of A by Der(A).

We now consider the definition of derivation for an algebra over a commutative unital ring.

Definition (Derivation of an algebra). Suppose R is a commutative unital ring and A is a R-algebra. A
set map d : A → A is termed a derivation of A as a R-algebra if d is a R-module endomorphism of A and
satisfies the Leibniz condition (stated in the preceding definition).

The set of derivations of a R-algebra forms a R-Lie algebra.
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A.8. Derivation of a Lie ring and of a Lie algebra. Suppose L is a Lie ring. For any x ∈ L, consider
the set map adx : L→ L given by adx(y) = [x, y]. adx is termed the left adjoint map, or simply the adjoint
map corresponding to x.

It follows from the distributivity of the Lie bracket that adx is an additive group endomorphism, and the
Jacobi identity along with skew symmetry give us that adx satisfies the Leibniz condition. Similarly, if L is
a Lie algebra over a commutative unital ring R, then adx is a derivation in the R-algebra sense.

The derivations of the form adx are termed inner derivations of L. We can easily verify that two elements
x, y ∈ L satisfy adx = ady if and only if adx−y = 0, and the set of values z ∈ L for which adz = 0 is precisely
the center of L (defined as the set {z ∈ L | [z, y] = 0 ∀ y ∈ L}). We obtain the following:

• The inner derivations of L form an ideal inside Der(L). We will denote this ideal by Inn(L).
• The set map x 7→ adx defines a Lie ring homomorphism from L to Der(L) with image Inn(L) and

kernel Z(L). Thus, by the first isomorphism theorem, L/Z(L) is canonically isomorphic to Inn(L).

Appendix B. Abstract nonsense

B.1. Basic category theory: categories, functors, and natural transformations. We define here
three foundational ideas of category theory: categories, functors, and natural transformations.

B.1.1. Definition of category. A category C is the following data:

• Objects: A collection Ob C of objects.34

• Morphisms: For any objects A,B ∈ Ob C, a collection C(A,B) of morphisms. Every element in
C(A,B) is termed a morphism from A (i.e., with source or domain A) to B (i.e., with target or
co-domain B). The morphism sets for different pairs of objects are disjoint. Note that f ∈ C(A,B)
is also written as f : A → B. The collection C(A,B) is sometimes also denoted HomC(A,B) or
simply Hom(A,B).

• Identity morphism: For every object A ∈ Ob C, a distinguished morphism idA ∈ C(A,A). This is
called the identity morphism of A.

• Composition rule: For A,B,C ∈ Ob C, a map, called composition of morphisms, from C(B,C) ×
C(A,B) to C(A,C). This map is denoted by ◦.

satisfying the following compatibility conditions:

• Associativity of composition: For A,B,C,D ∈ Ob C, with f ∈ C(A,B), g ∈ C(B,C), h ∈ C(C,D), we
have h ◦ (g ◦ f) = (h ◦ g) ◦ f .

• Identity behaves as an identity: For A,B ∈ Ob C, with f ∈ C(A,B), we have f ◦ idA = idB ◦f = f .

We will also use the following terms:

• For A ∈ Ob C, an endomorphism of A is defined as an element of C(A,A). The endomorphisms of
A form a monoid under composition, denoted EndC(A). The identity morphism IdA is the identity
element of this monoid.

• For A,B ∈ Ob C, an isomorphism from A to B is defined as an element f ∈ C(A,B) such that there
exists an element g ∈ C(B,A) for which g ◦ f = IdA and f ◦ g = IdB .

• For A ∈ Ob C, an automorphism of A is defined an an endomorphism of A that is also an isomorphism.
The automorphisms of A form a group under composition, denoted AutC(A). The identity morphism

34There are some set theory paradoxes due to which we are using the term “collection” rather than “set” here.
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IdA is the identity element of this group. AutC(A) is the subgroup of EndC(A) comprising all the
elements with two-sided inverses.

The categories that we will consider in this document include:

• The category of groups, where the morphisms are group homomorphisms. The notions of endomor-
phism, isomorphism, and automorphism in this case coincide with our usual notions. Similarly, we
consider the category of Lie rings where the morphisms are Lie ring homomorphisms. Note that
these are the default category structures on group and Lie rings respectively.

• The category of groups with homoclinisms, described in Section 4 (specifically, Section 4.4). The
isomorphisms in this category are isoclinisms of groups. Similarly, we consider the category of Lie
rings with homoclinisms in Section 5.

• The category of short exact sequences of groups, described in Section 6. Similarly, we consider the
category of short exact sequences of Lie rings in Section 7.

• The category of central extensions of a group, described in Section 6.6. Similarly, we consider the
category of central extensions of a Lie ring in Section 7.5.

• The category of central extensions of a group with homoclinisms, described in Section 9.3. Similarly,
we consider the category of central extensions of a Lie ring with homoclinisms in Section 10.5.

• The category of π-powered groups for a prime set π, described in Section 17. Similarly, the category
of π-powered Lie rings for a prime set π, described in Section 18.

B.1.2. Definition of functor. Suppose C,D are categories. A functor (also called covariant functor) F from
C to D comprises the following data:

• Object level mapping: A mapping F : Ob C → ObD.
• Morphism level mapping: For any A,B ∈ C, a mapping F : C(A,B) → D(FA,FB).

satisfying the following conditions:

• It preserves the identity morphism: For any A ∈ C, F(idA) = idF(A).
• It preserves composition: For any A,B,C ∈ C, and f ∈ C(A,B), g ∈ C(B,C), we have F(g ◦ f) =
Fg ◦ Ff .

Suppose C,D are categories. A contravariant functor F : C → D is defined by the following data:

• A mapping F : Ob C → ObD.
• For every A,B ∈ Ob C, a mapping F : C(A,B) → D(FB,FA).

satisfying the following conditions:

• It preserves the identity map: For any A ∈ Ob C, F(idA) = idFA.
• It preserves composition, albeit reversing the order of composition: For any A,B,C ∈ Ob C, and
f ∈ C(A,B), g ∈ C(B,C), we have F(g ◦ f) = Ff ◦ Fg.

We use the following terminology for functors. As above, let F : C → D be a functor.

• F is faithful if the induced set map C(A,B) → D(FA,FB) is injective for all A,B ∈ Ob C.
• F is full if the induced set map C(A,B) → D(FA,FB) is surjective for all A,B ∈ Ob C.
• F is essentially surjective on objects if every object of D is isomorphic in D to some object in the

image of F .
• F is an equivalence of categories if it is full, faithful, and essentially surjective on objects. An

equivalence of categories preserves many of the features we care about. In particular, it preserves
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the existence of initial objects and terminal objects, the nature of homomorphism sets, and the
isomorphism types of endomorphism monoids and automorphism groups.

• F is an isomorphism of categories if it is full, faithful, and bijective on objects.

We will use functors in one important way. For each of the correspondences between suitably chosen
groups and Lie rings, we will first identify full subcategories of the category of groups and the category
of Lie rings respectively. Here, full subcategory means a subcategory where the inclusion functor into the
whole category is a full functor. In other words, the full subcategory may not contain all the objects of the
big category, but given two objects of the big category, it contains all the morphisms between them. Our
correspondence will then explicitly describe functors exp and log between these full subcategories, where exp
is from Lie rings to groups and log is from groups to Lie rings. The functors exp and log will turn out to be
two-sided inverses of each other, and the full subcategories will therefore turn out to be isomorphic.

Section 3 describes all the details for the abelian Lie correspondence. Similar ideas apply to the Baer cor-
respondence (described in Section 21.8), Malcev correspondence, global Lazard correspondence, and Lazard
correspondence.

We also use the idea of equivalence of categories when relating two alternate descriptions of the category of
central extensions of a group where the morphisms are homomorphisms of central extensions. There are two
alternative definitions of this category, and these definitions do not define isomorphic categories. However,
they do define equivalent categories. In fact, there is a forgetful functor from one category (that stores the
short exact sequence) to the other category (that simply stores the quotient map of the short exact sequence)
that serves as the equivalence of categories. For more details, see Section 6.6.

Apart from the above fairly foundational uses of functors, we do not use functors explicitly.
However, many of the constructions we use throughout the document are functorial, although we do not

explicitly use that fact. Some examples are below.

• The exterior square of a group, described in Section 9.1, defines a functor from the category of
groups to itself. In other words, given any homomorphism ϕ : G1 → G2 of groups, there is an
induced homomorphism ϕ ∧ ϕ : G1 ∧G1 → G2 ∧G2 satisfying the conditions for being a functor.

• The Schur multiplier of a group, described in Section 9.1, defines a functor from the category of
groups to itself (or, alternatively, to the category of abelian groups).

• The exterior square of a Lie ring, described in Section 10.1, defines a functor from the category of
Lie rings to itself.

• The Schur multiplier of a Lie ring, described in Section 10.1, defines a functor from the category of
Lie rings to the category of abelian groups.

• There are a number of free and forgetful functors we see. We discuss these a little later in the
Appendix.

B.1.3. Definition of natural transformation. Given two functors F ,G : C → D, a natural transformation
η from F to G associates to each A ∈ Ob C a morphism ηA : FA → GA such that for every morphism
f ∈ C(A,B) for A,B ∈ Ob C, we have:

ηB ◦ F(f) = G(f) ◦ ηA

Equivalently, the following diagram commutes:
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F(A)
F(f)→ F(B)

ηA ↓ ηB ↓

G(A)
G(f)→ G(B)

We call η a natural isomorphism if ηA is an isomorphism in D for each A ∈ Ob C.
We can also define an analogous concept of natural transformation between contravariant functors.
In our main proofs, we often use the term canonical. The definition of canonical transformation is similar

to that of natural transformation, except that we impose the above condition only when f is an isomorphism.
In other words, natural means that the transformation behaves well (in the sense of giving a commutative
diagram) for all morphisms, whereas canonical means that the transformation behaves well for isomorphisms.
A canonical isomorphism is a canonical transformation that is an isomorphism in every instance.

It turns out that most of the canonical constructions that we use in our main proofs are also natural.
This is not hard to prove, but we do not demonstrate it because it is not necessary for our main proofs. We
list below some important instances of this.

• In Section 9.1, we define the following short exact sequence associated with any group G:

0 →M(G) → G ∧G→ [G,G] → 1

All the groups appearing in the short exact sequence are functorial in G, and all the morphisms
appearing in the short exact sequence are natural in G, i.e., they define natural transformation
between the functors. Thus, we can view the short exact sequence itself as functorial in G, i.e., we
can define a functor from the category of groups to the category of short exact sequences of groups
that sends a group G to the above short exact sequence.

A similar observation applies to the corresponding short exact sequence for Lie rings described in
Section 10.1.

• In Section 11.4, we define the following short exact sequence associated with a group G and an
abelian group A:

0 → Ext1Z(G;A) → H2(G;A) → Hom(M(G), A) → 0

All the groups appearing in the short exact sequence are contravariant functors of G (holding
A constant) and (covariant) functors of A (holding G constant). Further, the morphisms of the
short exact sequence are natural transformations with respect to both G and A: they are natural
transformations between the contravariant functors of G (holding A constant) and also between the
covariant functors of A (holding G constant).

A similar observation applies to the corresponding short exact sequence for Lie ring extensions
described in Section 12.4.

• In Section 8.4, we consider the following short exact sequence associated with a group G and an
abelian group A:

0 → B2(G;A) → Z2(G;A) → H2(G;A) → 0

All the groups appearing in the short exact sequence are contravariant functors of G (holding
A constant) and (covariant) functors of A (holding G constant). Further, the morphisms of the

244



short exact sequence are natural transformations with respect to both G and A: they are natural
transformations between the contravariant functors of G (holding A constant) and also between the
covariant functors of A (holding G constant).

B.2. Initial objects, terminal objects, and zero objects. Suppose C is a category. We define the
following:

• An initial object of C is an object A of C such that for every object B of C, there is a unique morphism
from A to B, i.e., there is a unique element of C(A,B). Any two initial objects must be isomorphic
and have a unique isomorphism between them. A category may or may not have an initial object.
For a category that has initial objects, we therefore abuse notation by talking of the initial object of
the category.

• A terminal object of C is an object A of C such that for every object B of C, there is a unique
morphism from B to A, i.e., there is a unique element of C(B,A). Any two terminal objects must
be isomorphic and have a unique isomorphism between them. A category may or may not have a
terminal object. For a category that has terminal objects, we therefore abuse notation by talking of
the terminal object of the category.

• A zero object of C is an object that is both an initial object and a terminal object. A category
may or may not have a zero object. Any two zero objects must be isomorphic and have a unique
isomorphism between them.

Note that even if a category has an initial object and a terminal object, it may lack a zero object
because the initial objects and terminal objects are not isomorphic. For instance, for the category
of commutative unital rings, the initial object is Z and the terminal object is the zero ring, so there
is no zero object. For a category that has terminal objects, we therefore abuse notation by talking
of the terminal object of the category.

For a category that has a zero object, we can define, between any two objects of the category, a
morphism called the zero morphism. This is the morphism that is obtained by composing the map
from the source object to the zero object and the map from the zero object to the target object.
For instance, for the category of groups, the zero object is the trivial group, and the corresponding
notion of zero morphism is the trivial homomorphism between any two groups.

The discussion in Sections 9.1 and 10.1 is motivated by the goal of finding an initial object in a category,
namely, the category of central extensions of a particular group (or Lie ring) with the morphisms being
homoclinisms of central extensions. We show that initial objects do exist for these categories, and these
initial objects play an important role in the study of the categories.

B.3. Left and right adjoint functors. Suppose C,D are categories and F : C → D and G : D → C are
covariant functors. We say that F is left adjoint to G, or equivalently, that G is right adjoint to F , if there
is a family of bijections:

D(FA,B) ∼= C(A,GB)

for all A ∈ Ob C and B ∈ ObD, such that the bijection is natural (in the sense of being a natural
transformation) in both the variables A and B. The use of the word “adjoint” here is in analogy with the
idea of adjoint linear transformations with respect to an inner product.
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B.4. Universal algebra. Universal algebra is a branch of mathematics that provides a unifying framework
for the study of algebraic structures. Universal algebra is fairly general and it is ill-suited to proving deep
facts about specific structures (such as advanced results in group theory or in ring theory). Nonetheless,
basic vocabulary from universal algebra is useful in the study of specific algebraic structures.

The first concept we define is the concept of signature. A signature is a function from a fixed set (that we
call the operator domain) to N0 (the set of nonnegative integers). The elements of the operator domain are
the operators and the signature sends each operator to a nonnegative integer that is its arity. An algebra of a
given signature is defined to be a set equipped with operations as follows: for each operator in the operator
domain, there is a n-ary operation from the set to itself where n equals the arity of the operator. Note that
a 0-ary operation is understood to mean a constant function.

An identity refers to a formal equality of two formal expressions that are constructed using operators
in the operator domain, where the expressions make sense given what we know about the arities of the
operations. An algebra is said to satisfy the identity if that identity holds for all choices of elements in that
algebra.

Given a signature and a collection of identities, the collection of all algebras of the signature satisfying all
the identities in the collection will be called a variety of algebras.

For instance, consider the signature with operator domain Ω = {∗} where the arity of ∗ is 2. We will use
infix notation to denote ∗, i.e., ∗(x, y) will be denoted as x ∗ y. An algebra with this signature is equivalent
to a set with a binary operation, also called a magma.35

Then, associativity of ∗ is an identity. Explicitly, it is the identity:

(a ∗ b) ∗ c = a ∗ (b ∗ c)

The collection of all magmas that satisfy the identity of associativity is a variety of algebras. Algebras of
this type are termed semigroups, and the variety of algebras is termed the variety of semigroups.

Groups also form a variety of algebras. The variety of groups has an operator domain with three opera-
tions:

• An operation ∗ of arity 2, called the group multiplication or product (denoted using infix notation)
• An operation e of arity 0, called the identity element or neutral element.36

• An operation −1 of arity 1, called the inverse map (denoted using postfix superscript notation).

The identities that need to be universally satisfied are:

(a ∗ b) ∗ c = a ∗ (b ∗ c) (Associativity)

a ∗ e = e ∗ a = a (Identity element)

a ∗ a−1 = a−1 ∗ a = a (Inverse map)

The following notions can readily be defined in the context of algebras of a given signature:

• Subalgebra refers to a subset of the underlying set of the algebra that is closed under all the operations
defined for the algebra structure.

35Historically, the term “groupoid” was used but that term now has a somewhat different meaning.
36We use 1 to denote the identity element in this document, but it is more helpful to use the letter e here for pedagogical
reasons.
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• Homomorphism of algebras (between algebras of the same signature) refers to a set map between
the algebras that commutes with all the algebra operations.

• Based on the definition of homomorphism, we can define isomorphism, endomorphism, and auto-
morphism.

• Direct product of algebras (where all the algebras have the same signature) is defined as follows: we
take the Cartesian product of the underlying sets, and define each of the operations coordinate-wise.

An important theorem about varieties of algebras is Birkhoff’s theorem. The theorem states that a
collection of algebras is a variety of algebras if and only if it is closed under taking subalgebras, homomorphic
images, and direct products. One direction of the proof is easy: any variety of algebras is closed under taking
subalgebras, homomorphic images, and direct products. The reverse direction is hard, and we omit the proof.

The following are some examples of varieties of algebras that we consider in this document:

• The variety of groups.
• The variety of Lie rings.
• The variety of abelian groups.
• The variety of associative rings.
• For a fixed commutative unital ring R, the variety of R-Lie algebras.
• For a fixed commutative unital ring R, the variety of associative R-algebras.
• For a fixed commutative unital ring R, the variety of R-modules.
• For a set π of primes, the variety of π-powered groups, described in Section 17.
• For a set π of primes, the variety of π-powered Lie rings, described in Section 18.
• The variety of groups of nilpotency class c, for some fixed positive integer c.
• The variety of Lie rings of nilpotency class c, for some fixed positive integer c.
• The variety of π-powered groups of nilpotency class c.
• The variety of π-powered Lie rings of nilpotency class c.

B.5. Universal algebra and category theory combined: free and forgetful functors. Every variety
of algebras can naturally be interpreted as a category. The objects of the category are the algebras of the
variety. The morphisms of the category are homomorphisms between the algebras of the variety. Note that
the definition of homomorphism uses only the signature and not the identities.

The following are some immediate observations about the category corresponding to a particular variety
of algebras:

• The notions of isomorphism, endomorphism, and automorphism defined in universal algebra coincide
with the corresponding notions for the category.

• The terminal object has an underlying set of size one, and all the operations are defined in the unique
manner possible.

• The category does have an initial object. If the variety has no 0-ary operations, the initial object of
the variety has an empty underlying set. If the varety has 0-ary operations, the initial object has a
nonempty underlying set.

• In general, the initial object and terminal object need not coincide, and therefore the zero object
need not exist. Some varieties where they do coincide are the variety of groups, variety of Lie rings,
variety of abelian groups, variety of R-modules for a commutative unital ring R, and variety of R-Lie
algebras for a commutative unital ring R. A variety where they do not coincide is the variety of
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commutative unital rings. The initial object for this variety is Z and the terminal object is the zero
ring.

Suppose V1 and V2 are two varieties of algebras such that the operator domain of V2 is a subset of the
operator domain of V1, with the operators having the same arities, and every identity true in V2 is also true
in V1. Formally, we say that the variety V2 is a reduct of V1.

In this case, there is a natural forgetful functor from the category corresponding to V1 to the category
corresponding to V2. This functor is faithful: for any algebras A and B of V1, the set map HomV1(A,B) →
HomV2(A,B) is injective. However, the functor is not necessarily full because the set map above need not
be surjective. The functor also need not be essentially surjective: it is not necessary that every isomorphism
type of algebra in V2 must arise from an isomorphism type of algebra in V1.

There is also a natural free functor from the category corresponding to V2 to the category corresponding
to V1. This functor sends any algebra of V2 to the algebra of V1 “generated” by it, with all the identities of
V1. The free functor is left adjoint to the forgetful functor.

Below are some cases of interest:

(1) V2 is the variety with no operations and no identities, so that the corresponding category is the
category of sets. In this case, the forgetful functor simply sends an algebra to its underlying set.
The free functor sends a set to the free algebra of the variety V1 generated by the set.

(2) The varieties V1 and V2 have the same operator domain, so the only difference is that V1 may have
more identities than V2. In this case, we say that V1 is a subvariety of V2, and the forgetful functor
from the category for V1 to the category for V2 is a full functor in this case. An example is the case
where V1 is the variety of groups of nilpotency class c (for some positive integer c) and V2 is the
variety of all groups.

(3) Cases other than (2) where the forgetful functor is still full, i.e., every homomorphism in V2 between
two algebras of V1 defines a homomorphism in V1. For instance, the forgetful functor from the
variety of groups to the variety of semigroups that “forgets” the identity element and inverse map
is full: any homomorphism of semigroups between two groups is also a homomorphism of groups.
Similarly, for a prime set π, the forgetful functor from the variety of π-powered groups to the variety
of groups is a full functor: any homomorphism of groups between two π-powered groups is also a
homomorphism of π-powered groups.

Appendix C. Foundational results for manipulations in nilpotent groups

C.1. Central series and nilpotency for groups and Lie rings. Suppose G is a group. A subgroup
series:

G = K1 ≥ K2 ≥ . . .Kc ≥ Kc+1 = 1

is termed a central series if it satisfies the following conditions:

(1) It is a normal series:37 every Ki is normal in G.
(2) For every i, Ki/Ki+1 is contained in the center of G/Ki+1.

Equivalently, it should satisfy the condition that for every i:

37Some people use the term “normal series” for a series where each term is normal in its predecessor, and use the term “strongly
normal series” for a series satisfying the condition stated here.
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[G,Ki] ⊆ Ki+1

Note that the notation above uses a descending series, but the series may also be described as an ascending
series.
G is termed a nilpotent group if it has a central series. The nilpotency class of G is defined as the smallest

c for which there exists a central series of length c (matching the above notation). We say that G is a group
of nilpotency class (at most) c if the nilpotency class of G is less than or equal to c. We often drop the “(at
most)” qualifier for nilpotency class and simply say “G is a group of nilpotency class c” to mean that G is
a nilpotent group and its nilpotency class is at most c.

There is an ascending series termed the upper central series and a descending series termed the lower
central series. Both of these can be defined for all groups. For each series, it reaches the other end in finitely
many steps if and only if the group is nilpotent, and if so, its length is the nilpotency class of the group.

The upper central series of G is an ascending series (Zi(G))i∈N0 of subgroups of G defined as follows:

• Z0(G) is the trivial subgroup of G.
• For i > 0, Zi(G) is defined as the unique subgroup of G such that Zi(G)/Zi−1(G) = Z(G/Zi−1(G)),

where Z(G/Zi−1(G)) denotes the center of G/Zi−1(G). In particular, Z1(G) = Z(G) is the center
of G. The subgroup Z2(G) is termed the second center of G, and so on.

The upper central series reaches the whole group G in finitely many steps if and only if G is nilpotent.
Further, if G has nilpotency class c, then Zc(G) = G. More explicitly, if the nilpotency class of G is precisely
c, then Zc(G) = G and Zi(G) 6= G for i < c. In fact, the upper central series is the fastest ascending central
series possible.38

The lower central series of G is a descending series of subgroups γi(G), i ∈ N, defined as follows:

• γ1(G) = G

• For i ∈ N, γi+1(G) = [G, γi(G)] = [γi(G), G] is the commutator of the subgroups G and γi(G).

The lower central series reaches the trivial subgroup in finitely many steps if and only if G is nilpotent.
Further, if G has nilpotency class c, then γc+1(G) = 1. More explicitly, if the nilpotency class of G is precisely
c, then γc+1(G) = 1 and γi+1(G) 6= 1 for i < c. In fact, the lower central series is the fastest descending
central series possible.39

C.2. Witt’s identity and the three subgroup lemma. Witt’s identity (stated here with the right action
convention) applies to any elements a, b, c in any group G. It says that:

[[a, b−1], c]b · [[b, c−1], a]c · [[c, a−1], b]a = 1

The three subgroup lemma follows directly from Witt’s identity:

38Technically, although we can define the upper central series for a non-nilpotent group, and this definition is useful, the upper
central series is not a central series if the group is non-nilpotent.
We can also define a transfinite upper central series, where we define Zα(G) for all ordinals α. However, we do not need to use
the transfinite upper central series here, so we will not define it.
39Technically, although we can define the lower central series for a non-nilpotent group, and this definition is useful, the lower
central series is not a central series if the group is non-nilpotent.
The subgroup γ2(G), also denoted G′, is the derived subgroup of G, and is sometimes also referred to as the commutator
subgroup of G (note that the term “commutator subgroup” may also be used for a commutator of two subgroups). The quotient
group G/γ2(G) = G/G′ is denoted Gab and is termed the abelianization of G.
We can also define a transfinite lower central series, where we define γα(G) for all ordinals α. However, we do not need to use
the transfinite lower central series here, so we will not define it.
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Lemma C.1 (Three subgroup lemma). Suppose G is a group and A, B, and C are subgroups of G.
Then, any two of these three statements implies the third:

• [[A,B], C] = 1
• [[B,C], A] = 1
• [[C,A], B] = 1

C.3. Commutator of element with products, and commutator as a homomorphism. The following
computational result regarding the commutator of an element and a product is useful. The result has
somewhat different explicit formulations depending on whether we use

With the left action convention, where we denote by xg the element xgx−1 and where we denote by [x, y]
the commutator xyx−1y−1, the result states that:

• [x, yz] = [x, y](y[x, z])
• [xy, z] = (x[y, z])[x, z]

With the right action convention, where we denote by gx the element x−1gx and where we denote by
[x, y] the commutator x−1y−1xy,the result states that:

• [x, yz] = [x, z][x, y]z

• [xy, z] = ([x, z]y)[y, z]

Lemma C.2. (1) Independent of the action convention: Suppose G is a group of nilpotency class
two. For any fixed x ∈ G, the commutator maps y 7→ [x, y] and y 7→ [y, x] are endomorphisms
of G. Note that since the image of both endomorphisms is inside [G,G], they can be viewed as
homomorphisms to [G,G].

(2) Formulation specific to the left action convention: Suppose G is a group, H is a subgroup of G, and
x is an element of G such that [x,H] ⊆ CG(H), or equivalently, [[x, h1], h2] = 1 for all h1, h2 ∈ H.
Then, the map y 7→ [x, y] is a homomorphism from H to G. Note that with the right action
convention, the map may become an anti-homomorphism, and the corresponding statement for the
right action convention would use y 7→ [y, x].

(3) Independent of the action convention: Suppose G is a group of nilpotency class c. Consider the set
map:

T : G×G× · · · ×G→ G

where G occurs c times on the left, given by:

T (x1, x2, . . . , xc) := [[. . . [[x1, x2], x3], . . . , xc−1], xc]

Choose any i with 1 ≤ i ≤ c and fix the values of xj , j 6= i. Then, T , viewed solely as a function
of xi, defines an endomorphism of G. The image of T is inside γc(G), so viewed this way, T defines
a homomorphism from G to γc(G). In fact, T descends to a homomorphism from G/Zc−1(G) to
γc(G).
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We will use the left action convention for our proofs, including proofs of the statements that are indepen-
dent of the action convention.

Proof. Proof of (1): Showing that the map y 7→ [x, y] is an endomorphism is equivalent to showing that
[x, yz] = [x, y][x, z]. This in turn follows from the identity [x, yz] = [x, y](y[x, z]) and the assumption of class
two allowing us to deduce that [x, z] = y[x, z]. The proof for the other map is similar.

Proof of (2): This is similar to (1). Explicitly, we want to show that for y, z ∈ H, we have [x, yz] =
[x, y][x, z]. This follows from the identity [x, yz] = [x, y](y[x, z]) combined with the fact that, since z ∈ H,
[x, z] ∈ CG(H) by assumption, so [x, z] commutes with y.

Proof of (3): We prove the statement by induction on c. The base case c = 2 follows from (1). Suppose
now that the statement is true for all smaller classes, and we want to prove it for class c.

By the inductive hypothesis, the map:

Tc−1 : (x1, x2, . . . , xc−1) 7→ [. . . [x1, x2], . . . , xc−1] mod γc(G)

satisfies all the hypotheses: it is a homomorphism in each coordinate holding the other coordinates fixed.
Further, the image of the map is in γc−1(G)/γc(G).

Now, note that the commutator map:

γc−1(G)×G→ γc(G)

satisfies the condition that the image is in the center of G. In particular, by (2), we obtain that the
commutator map is a homomorphism with respect to both coordinates. The map descends to the following
map which is also a homomorphism in both coordinates:

U : γc−1(G)/γc(G)×G→ γc(G)

We now see that:

T (x1, x2, . . . , xc) = U(Tc−1(x1, x2, . . . , xc−1), xc)

The fact that both Tc−1 and U are homomorphisms in each of their coordinates gives us that T is a
homomorphism in each coordinate.

The proof of the statement that T descends to a map from G/Zc−1(G) follows from the three subgroup
lemma, discussed in Section C.2. �

C.4. Strongly central series. A descending series of subgroups:

G = G1 ≥ G2 ≥ G3 ≥ · · · ≥ Gn = 1 = Gn+1 = Gn+2 = . . .

is termed a strongly central series if [Gi, Gj ] ≤ Gi+j for any positive integers i and j.

Lemma C.3. For any group G and any positive integers i and j, we have that [γi(G), γj(G)] ≤ γi+j(G).
In particular, the lower central series of a nilpotent group is a strongly central series.

Proof. This follows from the three subgroup lemma and proof by induction. �
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Appendix D. The use of grading

D.1. Graded ring. Suppose G is an abelian group with the group operation denoted additively. Suppose
R is a commutative (associative) unital ring. A G-graded R-algebra is a R-algebra A whose additive group
has a direct sum decomposition as a sum of R-submodules indexed by the group elements:

A =
⊕
g∈G

Ag

such that for all g, h ∈ G, we have:

AgAh ⊆ Ag+h

An element of A that lies inside Ag for some g ∈ G is termed a homogeneous element.
A G-graded ring is a G-graded Z-algebra.
The following cases are of particular interest:

• A Z-graded R-algebra is a R-algebra graded over the group of integers Z.
• A N0-graded R-algebra is a Z-graded R-algebra A where Ai = 0 for all i < 0.
• A N-graded R-algebra a Z-graded R-algebra A where Ai = 0 for all i ≤ 0.

Generally, the term graded R-algebra is used for a N0-graded R-algebra, and the term graded ring is used
for a N0-graded Z-algebra. We will follow this convention for the rest of the appendix and in the main
document.

D.2. Verification of multilinear identities for graded rings. A R-multilinear identity holds in a graded
R-algebra A if and only if it holds in the case where all inputs are homogeneous elements. This is because the
set of homogeneous elements forms a generating set for A as a R-module, and multilinear identities can be
verified on a generating set, as described in Section A.6. In particular, this applies to verifying associativity
and the Jacobi identity.

D.3. Associated graded Lie algebra for a Lie algebra. Suppose L is a Lie algebra over a commuative
(associative) unital ring R. The associated graded R-Lie algebra for L is a graded R-Lie algebra defined as
follows. The underlying R-module is:

∞⊕
i=1

γi(L)/γi+1(L)

where the ith component is the direct summand γi(L)/γi+1(L), where γi(L) and γi+1(L) are the ith

and (i + 1)th members respectively of the lower central series of L. We now define the Lie bracket on the
associated graded R-Lie algebra.

First, note that the Lie bracket restricts to the following R-bilinear maps:

γi(L)× γj(L) → γi+j(L)

γi+1(L)× γj(L) → γi+j+1(L)

γi(L)× γj+1(L) → γi+j+1(L)
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As a result, we get a canonical R-bilinear map:

γi(L)/γi+1(L)× γj(L)/γj+1(L) → γi+j(L)/γi+j+1(L)

The Lie bracket on the associated graded R-Lie algebra of L is defined as the Lie bracket whose restriction
to the bracket of the ith graded component and the jth graded component is the above map for all i and j.
In order to show that this is a Lie bracket, we need to verify the Jacobi identity. Due to the multilinearity
of the Jacobi identity, it suffices to verify it in the case that all three inputs are homogeneous (as explained
in the preceding section, Section D.2), and in that case, it follows from the Jacobi identity in the original
R-Lie algebra L.

Note in particular that if L is a nilpotent R-Lie algebra of nilpotency class at most c, then the direct sum
above is the finite direct sum:

c⊕
i=1

γi(L)/γi+1(L)

For the case that R = Z, we are thinking of L simply as a Lie ring, and the corresponding associated
graded Z-Lie algebra will be called the associated graded Lie ring. Note that for any commutative unital
ring R and any R-Lie algebra L, the following coincide:

• The associated graded Lie ring of L, viewed as a Lie ring (ignoring its structure as a R-Lie algebra).
• The underlying Lie ring for the associated graded R-Lie algebra of L.

The definition of associated graded Lie ring can also be generalized to any strongly central series of a
(nilpotent) Lie ring. Strongly central series for Lie rings are defined analogously to the definition for groups
in Section C.4. In the context of this more general definition, the usual associated graded Lie ring is the
associated graded Lie ring for the lower central series.

D.4. Associated graded Lie ring for a group. Suppose G is a group. The associated graded Lie ring
for G is a graded Lie ring defined as follows. The additive group is:

∞⊕
i=1

γi(G)/γi+1(G)

where the ith component is the direct summand γi(G)/γi+1(G).
First, note that the Lie bracket restricts to the following Z-bilinear maps:

γi(G)× γj(G) → γi+j(G)

γi+1(G)× γj(G) → γi+j+1(G)

γi(G)× γj+1(G) → γi+j+1(G)

As a result, we get a canonical Z-bilinear map:

γi(G)/γi+1(G)× γj(G)/γj+1(G) → γi+j(G)/γi+j+1(G)

The Lie bracket on the associated graded Lie ring of G is defined as the Lie bracket whose restriction to
the bracket of the ith graded component and the jth graded component is the above map for all i and j. In
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order to show that this is a Lie bracket, we need to verify the Jacobi identity. Due to the multilinearity of
the Jacobi identity, it suffices to verify it in the case that all three inputs are homogeneous (as explained
in the preceding section, Section D.2). The Jacobi identity in the homogeneous case follows from Witt’s
identity, described in Section C.2.

The definition of associated graded Lie ring can also be generalized to any strongly central series of a
(nilpotent) Lie ring. Strongly central series were defined for groups in Section C.4. In the context of this
more general definition, the usual associated graded Lie ring is the associated graded Lie ring for the lower
central series.

D.5. Associated graded Lie ring as a functor. The associated graded Lie ring is functorial both for
groups and for Lie rings. Explicitly, we can define a functor from the category of groups to the category of
Lie rings such that its mapping on objects sends a group to its associated graded Lie ring. Similarly, we can
define a functor from the category of Lie rings to itself such that its mapping on objects sends a Lie ring to
its associated graded Lie ring.

We can think of taking the associated graded Lie ring as “flattening” the structure of the original object
(the group or the Lie ring) thereby forgetting some aspects of the cohomology. Note, however, that taking the
associated graded Lie ring does preserve the order and the nilpotency class. We discover that the following
are true:

• If a group and Lie ring are in global class c Lazard correspondence, they define the same associated
graded Lie ring.

• If two nilpotent groups are isoclinic to each other, then their associated graded Lie rings are isoclinic
to each other. We can actually make a slightly stronger statement: if two groups are isoclinic as
central extensions with the same base and same quotient group, then their associated graded Lie
rings are isomorphic. Here, “isoclinic as central extensions” is being used in the sense of Sections
11.2 and 11.3.

• If two Lie rings are isoclinic to each other, then their associated graded Lie rings are isoclinic to each
other. We can actually make a slightly stronger statement: if two Lie rings are isoclinic as central
extensions with the same base and same quotient Lie rings, then their associated graded Lie rings
are isomorphic. Here, “isoclinic as central extensions” is being used in the sense of Sections 12.2 and
12.3.

• If a group and Lie ring are in global class c + 1 Lazard correspondence up to isoclinism, then their
associated graded Lie rings are isoclinic. We can make a slightly stronger statement: if a group and
Lie ring are in global class (c+ 1) Lazard correspondence up to isoclinism as central extensions (as
described in Section 39.5.2), then their corresponding associated graded Lie rings are isomorphic.

In the case of class two, the associated graded Lie ring offers an essentially complete classification of
the equivalence type up to isoclinism for the extension. This is because the “flattening” it does forgets
only the abelian part of the group structure, and not the commutator structure. For higher class, however,
although the associated graded Lie ring is invariant under taking isoclinisms of extensions, it is not a complete
invariant, because passing to the associated graded Lie ring “flattens” out part of the commutator structure
as well.
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Appendix E. Homologism theory for arbitrary varieties

The material discussed in this section of the Appendix is used in Section 41.4 when discussing a potential
extension of the Lazard correspondence up to isoclinism. It is not used elsewhere in the document, although
it may help provide better perspective on the material elsewhere in the document as well.

For basic background material on varieties of algebras, see the Appendix, Sections B.4 and B.5.
The terms and concepts alluded to in this section can be found in the paper [29] by Leedham-Green and

McKay. The concepts of n-isoclinism and n-homoclinism are also described in [22] (for groups) and [36] (for
Lie rings).

E.1. Word maps: definition for an arbitrary variety of algebras. Suppose V is a variety of algebras.
A word in n letters in V is defined as an element of the free algebra (with respect to the variety V) in terms
of the n letters. A word can be represented using an expression in terms of the n letters and the operations
of the variety. Two expressions describe the same word if they are formally equal, i.e., their equality can be
dedued from the formal identities of the variety. We will often abuse notation by conflating the concepts of
the word with a formal expression used to describe the word.

Given a word w in n letters for the variety V, and an algebra A in V, w defines a set map An → A as
follows. Denote by F the free algebra on the n letters, and denote the letters by g1, g2, . . . , gn. Then, for
any tuple (x1, x2, . . . , xn) ∈ An, we can consider the unique homomorphism ϕ : F → A such that ϕ(gi) = xi.
The image ϕ(w) is the image of the tuple (x1, x2, . . . , xn) under the word map. Abusing notation, we will
use w to denote the word itself, the expression describing the word, and the word map, i.e., the image of the
tuple (x1, x2, . . . , xn) will be denoted w(x1, x2, . . . , xn).

For some varieties, such as the variety of groups, there is a concept of a reduced word expression. Any
element of the free group on n letters has a unique reduced expression, and the equality of two words can
be determined by converting both of them to their corresponding reduced expressions and then checking for
literal equality.

For the variety of groups, words involve group multiplication and inverse map operations, and a word in
reduced form is an expression written as a product of the letters and their inverses, with no letter and its
inverse occurring adjacent to one another. For instance, the following is an example word in two letters g1
and g2:

w(g1, g2) := g1g2g1g
2
2g
−1
1

We say that a group G satisfies a word w in n letters (with respect to the variety of groups) if the
image of the word map corresponding to w is the trivial subgroup of G, i.e., w(x1, x2, . . . , xn) = 1 for all
x1, x2, . . . , xn ∈ G.

The concept generalizes to any variety of algebras with zero, i.e., a variety of algebra with a distinguished
0-ary operation called the zero element. Given a variety V with zero, an algebra A is said to satisfy a word w
in n letters with respect to the variety V if w(x1, x2, . . . , xn) is the zero element of A for all x1, x2, . . . , xn ∈ A.
For the variety of groups, the zero element is the identity element.

E.2. Word maps and subvarieties of the variety of groups. To specify a subvariety of the variety of
groups, we need to specify a set of identities that define the subvariety. Note that the set of identities we
choose need not be an exhaustive list of identities satisfied in the subvariety, but it needs to be sufficient to
generate all other identities satisfied in the subvariety.
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An identity in the variety of groups has the form:

w1(x1, x2, . . . , xn) = w2(x1, x2, . . . , xn)

We can define a new word:

w(x1, x2, . . . , xn) := w1(x1, x2, . . . , xn)(w2(x1, x2, . . . , xn))−1

The identity can therefore be rewritten as:

w(x1, x2, . . . , xn) = 1

Thus, any subvariety of the variety of groups can be described using a set of words, and a group is in the
subvariety if and only if all the words are satisfied in the group.

E.3. Some examples of subvarieties of the variety of groups. The following are examples of subva-
rieties, each of which can be defined using one word. Note that for all these definitions, it does not matter
whether we use the left or right convention for the commutator: both define the same variety.

• The variety of abelian groups: This can be defined using the commutator word w(x1, x2) = [x1, x2].
• The variety of groups of nilpotency class at most c: This can be defined using the iterated commutator

word w(x1, x2, . . . , xc, xc+1) = [[. . . [x1, x2], . . . , xc], xc+1].
• The variety of groups of derived length at most `: This can be defined using an iterated balanced

commutator of length 2`. For instance, when ` = 2, the commutator is [[x1, x2], [x3, x4]].

E.4. Verbal and marginal subgroup corresponding to a subvariety. Suppose V is a subvariety of
the variety of groups. For a group G, the V-verbal subgroup of G is defined as the subgroup generated by
the images of the word maps in G for all words that are satisfied in the subvariety V. Equivalently, it is the
smallest normal subgroup of G for which the quotient group is in V.

Suppose C is a set of words that generates the variety V, i.e., V is precisely the subvariety of the variety
of groups comprising those groups that satisfy all the words in C. Then, the V-verbal subgroup of G is the
subgroup of G generated by the union of the images of the word maps for all words in C.

The V-marginal subgroup of G is defined as follows. It is the set of elements x in G such that for every
word w satisfied in V, the following is true. Let n be the number of letters used in w. Then, we want:

w(g1, g2, . . . , gi, . . . , gn) = w(g1, g2, . . . , xgi, . . . , gn) = w(g1, g2, . . . , gix, . . . , gn) ∀ g1, g2, . . . , gn ∈ G, ∀ i ∈ {1, 2, . . . , n}

In other words, the marginal subgroup is the set of elements that do not affect the evaluation of any of
the words that would become trivial in the variety.

Suppose C is a set of words that generates the variety V, i.e., V is precisely the subvariety of the variety
of groups comprising those groups that satisfy all the words in C. Then, we can define the V-marginal
subgroup as the set of elements of G that satisfy the above condition for the words in C alone.

Some examples of verbal and marginal subgroups are below.

• Consider the variety of abelian groups. The verbal subgroup of a group G corresponding to this
variety is the derived subgroup G′, and the marginal subgroup is the center Z(G).

• Consider the variety of groups of nilpotency class at most c. The verbal subgroup of a group G

corresponding to this variety is the lower central series member subgroup γc+1(G). The marginal
subgroup is the upper central series member Zc(G).
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E.5. Homologism for a subvariety of the variety of groups. Suppose V is a subvariety of the variety
of groups. For any group G, denote by V ∗(G) the V-marginal subgroup and by V (G) the V-verbal subgroup.

For any word w satisfied in the variety V, suppose w uses nw letters. w defines a word map:

βw,G : Gnw → G

By the definitions of marginal and verbal subgroup, the map descends to a set map:

ωw,G : (G/V ∗(G))nw → V (G)

A homologism of groups G1 and G2 with respect to V is a pair (ζ, ϕ) where ζ : G1/V
∗(G1) → G2/V

∗(G2),
ϕ : V (G1) → V (G2) are homomorphisms, and for every w satisfied in the variety V, we have:

ωw,G2(ζ(x1), ζ(x2), . . . , ζ(xnw )) = ϕ(ωw,G1(x1, x2, . . . , xnw )) ∀ (x1, x2, . . . , xn) ∈ (G1/V ∗(G1))
nw

As with all the other definitions, it suffices to check this condition on a set of words that generates the
variety rather than on all words satisfied in the variety.

A homologism is termed an isologism if both its component homomorphisms are isomorphisms, or equiv-
alently, if there is an inverse map to it that is also a homologism.

For any subvariety V of the variety of groups, we can define the category of groups with V-homologisms.
The objects of this category are groups and the morphisms are V-homologisms, with composition of homolo-
gisms defined via composition of the corresponding homomorphisms. The isomorphisms in this category are
precisely the V-isologisms. Further, a group is isomorphic to the trivial group in this category if and only
if it is in the subvariety V. Thus, the category of groups with V-homologisms can be thought of as going
“modulo” the subvariety V, in so far as the “kernel” is precisely V.

E.6. Relation between homologism categories for subvarieties. Consider two subvarieties V1 and V2

of the variety of groups. We can consider the category of groups with V1-homologisms as well as the category
of groups with V2-homologisms. Suppose V1 is a subvariety within V2 (in other words, a group being in V1

is a stronger condition than the group being in V2).
We might naively expect that there is a natural forgetful functor of some sort from the category of groups

to V1-homologisms and the category of groups with V2-homologisms. This, however, is not true. In Section
4.5, we discussed the situation in the case that V1 is the subvariety comprising only the trivial group (so that
V1-homologisms can be identified with ordinary homomorphisms) and V2 is the subvariety of abelian groups
(so that V2-homologisms are the same as homoclinisms). Using the same logic as we had used in Section
4.5, we obtain that a V1-homologism gives rise to a V2-homologism if and only if it sends the V2-marginal
subgroup to within itself. In particular, any surjective V1-homologism induces a V2-homologism. Therefore,
every V1-isologism induces a V2-isologism.

E.7. n-homoclinism and n-isoclinism. Suppose n is a positive integer. A n-homoclinism is defined as
a homologism with respect to the subvariety of the variety of groups comprising groups of nilpotency class
at most n. The subvariety is defined by the word w(x1, x2, . . . , xn, xn+1) = [[. . . [x1, x2], . . . , xn], xn+1]. The
category of groups with n-homoclinisms is the category where the objects are groups and the homomorphisms
are n-homoclinisms. A n-isoclinism is defined as an isomorphism in this category.
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The concepts of n-isoclinism and c-homoclinism are also described in [22] (for groups) and [36] (for Lie
rings).

E.8. Baer invariant and nilpotent multiplier. The Schur multiplier and exterior square are both defined
based on the commutator structure, and their definitions can be viewed as arising from the choice of the
subvariety of abelian groups and the notion of homoclinism. There exist generalizations of these to arbitrary
subvarieties of the variety of nilpotent groups. The generalization of the Schur multiplier is termed the Baer
invariant. Explicitly, for a subvariety V of the variety of groups, and any group G (not necessarily in V),
the Baer invariant of G for the subvariety V is an abelian group denoted VM(G). The definition is similar
to that for the Schur multiplier in Section 9, but now using the word maps arising from words that define
the subvariety V instead of the commutator word. Alternatively, it can be defined by generalizing Hopf’s
formula (described in Section 11.9) as follows. Interested readers are encouraged to read the paper [29] by
Leedham-Green and McKay and the paper [22] by Hekster.

In the case that V is the subvariety comprising all the groups of nilpotency class at most n (where n is a
fixed positive integer), the corresponding Baer invariant is termed the n-nilpotent multiplier and is denoted
M (n)(G). In particular, the Schur multiplier M(G) is the group M (1)(G), i.e., it is the 1-nilpotent multiplier.

We can deduce a formula for the n-nilpotent multiplier similar to Hopf’s formula described in Section
11.9, and in fact, many sources use that formula as the definition of the n-nilpotent multiplier. Write G as
a quotient F/R where F is a free group. Then:

M (n)(G) = (R ∩ γn+1(F ))/γn+1(R,F )

Note that although it is not immediately obvious by looking at the expression, we can see via the three
subgroup lemma that M (n)(G) as defined above is an abelian group, as expected.

Here, γn+1(F ) denotes the (n + 1)th member of the lower central series of F , whereas γn+1(R,F ) is the
(n+ 1)th member of the series given by γ1(R,F ) = R and γi+1(R,F ) = [F, γi(R,F )]. Note that in the case
n = 1, this givees us the formula we are already familiar with:

M(G) = (R ∩ [F, F ])/[R,F ]

Note in particular that if G = F/γc+1(F ) for some positive integer c (i.e., G is a free class c nilpotent
group), we get:

M (n)(G) = γmax{c,n}+1(F )/γc+n+1(F )

Appendix F. Some computational proofs related to the Baker-Campbell-Hausdorff

formula

F.1. Baker-Campbell-Hausdorff formula: class two: full derivation. In this case, we work with
non-commuting variables x1, x2 such that x3

1 = x2
1x2 = x1x2x1 = x1x

2
2 = x2x

2
1 = x2x1x2 = x2

2x1 = x3
2 = 0.

Thus:

exp(x1) = 1 + x1 +
x2

1

2

exp(x2) = 1 + x2 +
x2

2

2
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We thus get:
exp(x1) exp(x2) =

(
1 + x1 + x2

1
2

)(
1 + x2 + x2

2
2

)
= 1 + x1 + x2

1
2 + x2 + x1x2 + x2

1x2
2 + x2

2
2 + x1x2

2
2 + x2

1x2
2

4

We drop all products of degree three or more and rearrange the remaining terms to get:

exp(x1) exp(x2) = 1 + x1 + x2 +
x2

1

2
+ x1x2 +

x2
2

2
We thus get:

w = exp(x1) exp(x2)− 1 = x1 + x2 +
x2

1

2
+ x1x2 +

x2
2

2
Finally, we compute log(1 + w). We have:

log(1 + w) = w − w2

2
We note that w2 is the same as the square of its linear part because the square of the degree two part, as

well as products of the degree two and the linear part, are degree three or more and hence zero. Thus:
log(1 + w) = x1 + x2 + x2

1
2 + x1x2 + x2

2
2 − (x1 + x2)2/2

Simplifying, we get:
log(1 + w) = x1 + x2 + x2

1+2x1x2+x2
2−(x1+x2)

2

2

Now note that:
(x1 + x2)2 = x2

1 + x1x2 + x2x1 + x2
2

Plugging this in, we get:
log(1 + w) = x1 + x2 + x2

1+2x1x2+x2
2−(x2

1+x1x2+x2x1+x2
2)

2

Simplifying, we get:
log(1 + w) = x1 + x2 + x1x2−x2x1

2

Rewrite x1x2 − x2x1 = [x1, x2] and we get the formula:
x1 + x2 + 1

2 [x1, x2]

F.2. Baker-Campbell-Hausdorff formula: class three: full derivation. Before proceeding to work
out the formula in class three, we obtain a more concise description of w in terms of x1 and x2, thus saving
steps on the initial computation. If we are working in class c, then:

w =
∑

k,l≥0,0<k+l≤c

xk
1x

l
2

k!l!
=

c∑
n=1

1
n!

n∑
k=0

(
n

k

)
xk

1x
n−k
2

We now deduce the class three Baker-Campbell-Hausdorff formula:
w = exp(x1) exp(x2)− 1 = (x1 + x2) + 1

2! (x
2
1 + 2x1x2 + x2

2) + 1
3! (x

3
1 + 3x2

1x2 + 3x1x
2
2 + x3

2)
Since the class is three, we have w4 = 0, hence we get:
log(1+w) = w−w2

2 + w3

3 = (x1+x2)+ 1
2! (x

2
1+2x1x2+x2

2)+
1
3! (x

3
1+3x2

1x2+3x1x
2
2+x

3
2)− 1

2 ((x1+x2)+ 1
2! (x

2
1+

2x1x2 +x2
2)+

1
3! (x

3
1 +3x2

1x2 +3x1x
2
2 +x3

2))
2 + 1

3 ((x1 +x2)+ 1
2! (x

2
1 +2x1x2 +x2

2)+
1
3! (x

3
1 +3x2

1x2 +3x1x
2
2 +x3

2))
3

The calculations for the degree one and degree two parts proceed exactly as they did in the class two case
covered in the preceding section. We thus concentrate on the degree three part:

Degree three part = 1
6 (x3

1+3x2
1x2+3x1x

2
2+x

3
2)− 1

4 (x1+x2)(x2
1+2x1x2+x2

2)− 1
4 (x2

1+2x1x2+x2
2)+

1
3 (x1+x2)3

Instead of simplifying directly, we adopt the following procedure. We rewrite:
x2

1 + 2x1x2 + x2
2 = (x1 + x2)2 + [x1, x2]

We similarly rewrite:
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x3
1 + 3x2

1x2 + 3x1x
2
2 + x3

2 = (x1 + x2)3 + 2x1[x1, x2] + [x1, x2]x1 + 2[x1, x2]x2 + x2[x1, x2]
This can be further rewritten as:
x3

1 + 3x2
1x2 + 3x1x

2
2 + x3

2 = (x1 + x2)3 + 3x1[x1, x2] + 3[x1, x2]x2 − [x1, [x1, x2]] + [x2, [x1, x2]]
Now, we plug these into the expression
Degree three part = 1

6 ((x1+x2)3+3x1[x1, x2]+3[x1, x2]x2− [x1, [x1, x2]]+[x2, [x1, x2]])− 1
4 (x1+x2)((x1+

x2)2 + [x1, x2])− 1
4 ((x1 + x2)2 + [x1, x2])(x1 + x2) + 1

3 (x1 + x2)3

We rearrange to obtain:
Degree three part =

(
1
6 −

1
4 −

1
4 + 1

3

)
(x1+x2)3+ 1

2 (x1[x1, x2]+[x1, x2]x2)− 1
6 ([x1, [x1, x2]]−[x2, [x1, x2]])−

1
4 (x1 + x2)[x1, x2]− 1

4 ([x1, x2](x1 + x2))
The (x1 + x2)3 term has zero coefficient and disappears, and we are left with:
Degree three part = 1

2 (x1[x1, x2]+ [x1, x2]x2)− 1
6 ([x1, [x1, x2]]− [x2, [x1, x2]])− 1

4x1[x1, x2]− 1
4x2[x1, x2]−

1
4 [x1, x2]x1 − 1

4 [x1, x2]x2

We now use that x2[x1, x2] = [x1, x2]x2 + [x2, [x1, x2]] and [x1, x2]x1 = x1[x1, x2]− [x1, [x1, x2]] to get:
Degree three part = 1

2 (x1[x1, x2]+ [x1, x2]x2)− 1
6 ([x1, [x1, x2]]− [x2, [x1, x2]])− 1

4x1[x1, x2]− 1
4 [x1, x2]x2−

1
4 [x2, [x1, x2]]− 1

4x1[x1, x2] + 1
4 [x1, [x1, x2]]− 1

4 [x1, x2]x2

Combining coefficients, we find that the coefficients on x1[x1, x2] and [x1, x2]x2 are zero, and we are left
with:

Degree three part = − 1
6 ([x1, [x1, x2]]− [x2, [x1, x2]]) + 1

4 ([x1, [x1, x2]]− [x2, [x1, x2]])
We simplify 1/4− 1/6 = 1/12 to get:
Degree three part = 1

12 ([x1, [x1, x2]]− [x2, [x1, x2]])
Plug this back in to the formula, and get the overall formula:
x1 + x2 + 1

2 [x1, x2] + 1
12 ([x1, [x1, x2]]− [x2, [x1, x2]])

F.3. Bounds on prime power divisors of the denominator. For a prime p and a natural number c,
define f(p, c) as follows. Consider the class c Baker-Campbell-Hausdorff formula. f(p, c) is defined as the
largest positive integer k such that pk appears as a divisor of the denominator for one of the coefficients for
the formula.

It turns out that:

f(p, c) ≤
⌊
c− 1
p− 1

⌋
This was proved in Lazard’s original paper ([28]). The proof sketch for the associative version of the

formula is below. The result for the Lie version of the formula follows from Khukhro’s text [27], Theorem
5.39 (see more generally the discussion in Sections 5.3 and 9.9 of the text).

Consider the ring of formal power series over Q in the two non-commuting variables x1 and x2.
Consider a p-adic valuation on Q, i.e., a valuation vp : Q\{0} → Z that sends a rational number a/b to the

integer k such that a/(bpk) in reduced form has no divisor of p for either the numerator or the denominator.
Extend the valuation to a value 1/(p − 1) on the formal variables x1, x2. The valuation can then be

extended to the whole ring. We then use multiplicativity to compute the valuation at various terms, for
n ≤ c:
vp(xn

1/n!) = c/(p− 1)− vp(n!) ≥ 1/(p− 1)
where we have used that vp(n!) ≤ b(n− 1)/(p− 1)c. Then, vp(expx1 − 1) ≥ 1/(p − 1). Denote w =

exp(x1) exp(x2) − 1. It is easy to see that vp(w) ≥ 1/(p − 1). The Baker-Campbell-Hausdorff formula is
obtained by expanding
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log(1 + w)
Note that vp(wn/n) = nvp(w)−vp(c) ≥ n/(p−1)−vp(n!) ≥ 1/(p−1). That is, vp(log(1+w)) ≥ 1/(p−1).

For coefficients in degree n with n ≤ c, we obtain:

vp(coefficient in degree n) ≥ 1/(p− 1)− n/(p− 1) = −(n− 1)/(p− 1)

Since the above holds for all n ≤ c, we obtain that all the coefficients in degree ≤ c have prime power
divisors of the denominator less than or equal to (c−1)/(p−1). Thus, f(p, c) ≤ (c−1)/(p−1). Since f(p, c)
is an integer, we obtain that:

f(p, c) ≤
⌊
c− 1
p− 1

⌋
F.4. Finding the explicit formula Mc+1 for c = 2. In Section 33.1, we described the general approach
for computing a formula Mc+1 to describe the group commutator in terms of the Lie bracket for the class
(c + 1) Lazard correspondence. The case c = 1 (and hence c + 1 = 2) was discussed in detail in Section 21
(Lemma 21.2 says this explicitly). We consider the case c = 2, so that c + 1 = 3. In other words, we are
considering the class 3 Lazard correspondence.

We mimic the general procedure of Section 33.1.
The class three Baker-Campbell-Hausdorff formula gives us that:

xy = x+ y +
1
2
[x, y] +

1
12

([x, [x, y]]− [y, [x, y]])

yx = y + x+
1
2
[y, x] +

1
12

([y, [y, x]]− [x, [y, x]])

We will denote the degree i part as ti, as in the discussion of the Baker-Campbell-Hausdorff formula. In
other words, we have:

xy = t1(x, y) + t2(x, y) + t3(x, y)

yx = t1(y, x) + t2(y, x) + t3(y, x)

Here:

t1(x, y) = t1(y, x) = x+ y = y + x

t2(x, y) = −t2(y, x) =
1
2
[x, y]

t3(x, y) = t3(y, x) =
1
12

([x, [x, y]]− [y, [x, y]]) =
1
12

([y, [y, x]]− [x, [y, x]])

Thus:

[x, y]Group = (xy)(−(yx))

becomes:
261



t1(x, y) + t2(x, y) + t3(x, y)− (t1(y, x) + t2(y, x) + t3(y, x))+
t2(xy,−(yx)) + t3(xy,−(yx))
Based on the relationships above, this simplifies to:
[x, y]Group = 2t2(x, y) + t2(xy,−(yx)) + t3(xy,−(yx)) (∗)
We now expand each of the other terms. We have:
t2(xy,−(yx)) = 1

2 [t1(x, y) + t2(x, y) + t3(x, y),−(t1(y, x) + t2(y, x) + t3(y, x))]
Expanding this out, we obtain:
t2(xy,−(yx)) = 1

2 [t1(x, y),−t2(y, x)] + 1
2 [t2(x, y),−t1(y, x)]

= [t1(x, y), t2(x, y)] = 1
2 [x+ y, [x, y]] (∗∗)

On the other hand:
t3(xy,−(yx)) = t3(t1(x, y) + t2(x, y) + t3(x, y),−(t1(y, x) + t2(y, x) + t3(y, x))
= t3(t1(x, y),−t1(y, x)) = 0 (∗ ∗ ∗)
Plugging (**) and (***) into (*), we obtain that:
[x, y]Group = 2t2(x, y) + 1

2 [x+ y, [x, y]]
This simplifies to:

[x, y]Group = [x, y] +
1
2
[x+ y, [x, y]]

Thus, we get:

M3(x, y) = [x, y] +
1
2
[x+ y, [x, y]]

Note that the formula would look somewhat different if we used the right action convention for the group
commutator. Explicitly, the formula with the right action convention, which would be the formula for the
group commutator x−1y−1xy, would be:

x−1y−1xy = [x, y]− 1
2
[x+ y, [x, y]]

F.5. Finding the explicit formula Mc+1 for c = 3. The steps here are very similar to the steps for the
preceding example, so we go over the steps very briefly. We have:

xy = t1(x, y) + t2(x, y) + t3(x, y) + t4(x, y)

yx = t1(y, x) + t2(y, x) + t3(y, x) + t4(y, x)

Here:

t1(x, y) = t1(y, x) = x+ y = y + x

t2(x, y) = −t2(y, x) =
1
2
[x, y]

t3(x, y) = t3(y, x) =
1
12

([x, [x, y]]− [y, [x, y]]) =
1
12

([y, [y, x]]− [x, [y, x]])
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t4(x, y) = −t4(y, x) = − 1
24

[y, [x, [x, y]]]

Based on the above relationships, we get:
[x, y]Group = (xy)(−(yx)) = 2(t2(x, y) + t4(x, y)) + t2(xy,−(yx)) + t3(xy,−(yx)) + t4(xy,−(yx))
The last expression t4(xy,−(yx)) is 0 based on general reasons. We thus get:
[x, y]Group = 2(t2(x, y) + t4(x, y)) + t2(xy,−(yx)) + t3(xy,−(yx))
We simplify the pieces separately. We have:
t2(xy,−(yx)) = 1

2 [t1(x, y) + t2(x, y) + t3(x, y) + t4(x, y),−(t1(y, x) + t2(y, x) + t3(y, x) + t4(y, x))]
Note that any pair involving t4 becomes zero, so this becomes:
t2(xy,−(yx)) = 1

2 [t1(x, y) + t2(x, y) + t3(x, y),−t1(x, y) + t2(x, y)− t3(x, y)]
Note that [t1(x, y), t3(x, y)] and [t3(x, y), t1(x, y)] cancel. Also, the products [ti(x, y), tj(x, y)] are zero for

i+j ≥ 5, and also for i = j. Thus, the only products that survive are [t1(x, y), t2(x, y)] and [t2(x, y),−t1(x, y)],
and we obtain:
t2(xy,−(yx)) = 1

2 [x+ y, [x, y]] (∗∗)
We now simplify t3(xy,−(yx)):
t3(xy,−(yx)) = 1

12 [xy, [xy,−(yx)]]− 1
12 [−(yx), [xy,−(yx)]]

The product [xy,−(yx)] on the inside simplifies to [x + y, [x, y]] based on the above calculations. Thus,
we get:
t3(xy,−(yx)) = 1

12 [xy + yx, [x+ y, [x, y]]
We know that xy + yx = 2t1(x, y) + 2t3(x, y). Thus:
t3(xy,−(yx)) = 1

12 [2t1(x, y), [x+ y, [x, y]]] + 1
12 [2t3(x, y), [x+ y, [x, y]]]

The second term is zero because the degree is six. Simplifying the first term, we get:
t3(xy,−(yx)) = 1

6 [x+ y, [x+ y, [x, y]]] (∗ ∗ ∗)
Plugging (**) and (***) into the original formula (*), we obtain:
[x, y]Group = [x, y]− 1

12 [y, [x, [x, y]]] + 1
2 [x+ y, [x, y]] + 1

6 [x+ y, [x+ y, [x, y]]]
Rearranging, we obtain:
[x, y]Group = [x, y] + 1

2 [x+ y, [x, y]] + 1
6 [x+ y, [x+ y, [x, y]]]− 1

12 [y, [x, [x, y]]]

F.6. Computing the second inverse Baker-Campbell-Hausdorff formula in the case c = 2, and an

illustration of why it involves only strictly smaller primes. We will use the case c = 2 to illuminate
the discussion in Section 33.2, specifically the proof of Lemma 33.2.

We have:
M3(x, y) = [x, y] + 1

2 [x+ y, [x, y]]
Our goal is to find the expression for h2,3(x, y). In the class two case, the group commutator and Lie

bracket coincide, so we know that:
M2(x, y) = [x, y], h2,2(x, y) = [x, y]Group

Following the notation of Lemma 33.2, we have that:
(h2,2 ◦M2)(x, y) = [x, y]
Note that this case is remarkable because the equality holds exactly, rather than just modulo Ac+1. In

particular, this means that the degree (c+ 1) expression χc+1(x, y) defined in Lemma 33.2 as the expression
such that:

(h2,2 ◦M2)(x, y) = [x, y]Lie + χc+1(x, y) (mod Ac+2)
turns out to be zero, i.e., χc+1(x, y) = 0.
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We also have that:

M3(x, y) = M2(x, y) + ξc+1(x, y)

where ξc+1(x, y) = 1
2 [x+ y, [x, y]]. Thus, we obtain that:

(h2,2 ◦M3)(x, y) = [x, y]Lie + χc+1(x, y) + ξc+1(x, y)

or more explicity:

(h2,2 ◦M3)(x, y) = [x, y]Lie +
1
2
[x+ y, [x, y]]

It therefore follows that:

h2,3(x, y) =
[x, y]√

[xy, [x, y]]

Appendix G. Some results involving local nilpotency class

G.1. 3-local class three implies global class three for Lie rings. We prove that nilpotency class three
is 3-local.

Lemma G.1. Suppose L is a Lie ring with the property that for any subset of L of size at most three,
the Lie subring generated by that subset is a subring of nilpotency class at most three. In other words, L
has 3-local nilpotency class at most three. Then, L is a nilpotent Lie ring and its nilpotency class is at most
three.

Proof. The map (w, x, y, z) 7→ [w, [x, [y, z]]] is alternating and multi-linear, and hence skew-symmetric, in
all pairs of inputs. The “alternating” condition follows from the 3-local class three condition: whenever two
inputs are the same, the product is a degree four product in a subring generated by three elements, hence
it must equal zero. In particular, this means that the sign of the expression [w, [x, [y, z]]] is reversed under
any odd permutation of the inputs and is preserved under any even permutation of the inputs.

We will show that for all w, x, y, z ∈ L, the Lie bracket [w, [x, [y, z]]] equals 0. The elements w, x, y, and
z are fixed but arbitrary for the duration of this proof.

In particular, we obtain that [w, [x, [y, z]]] = [w, [y, [z, x]]] = [w, [z, [x, y]]] for all w, x, y, z ∈ L. Combining
with the Jacobi identity, we obtain that for all w, x, y, z ∈ L, we have that:

3[w, [x, [y, z]]] = 0 (†)

We also obtain that

[w, [x, [y, z]]] = [[y, z], [w, x]] (∗)

The proof is as follows: Use the Jacobi identity to get [w, [x, [y, z]]]+[x, [[y, z], w]]+[[y, z], [w, x]] = 0. Now,
the middle term [x, [[y, z], w]] is the negative of [x, [w, [y, z]]], which by the alternating condition we know to
be the negative of [w, [x, [y, z]]]. So, the middle term equals [w, [x, [y, z]]]. Thus, the Jacobi identity expression
gives 2[w, [x, [y, z]]] + [[y, z], [w, x]] = 0. Combine with (†) to obtain that [w, [x, [y, z]]] = [[y, z], [w, x]].
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Similarly, we obtain that:

[y, [z, [w, x]]] = [[w, x], [y, z]] (∗∗)

Combine (*), (**), and the fact that [w, [x, [y, z]]] = [y, [z, [w, x]]] because of the alternating nature of the
map, and obtain that:

[[y, z], [w, x]] = [[w, x], [y, z]] (∗ ∗ ∗)

On the other hand, we have, by the alternating nature of the Lie bracket, that:

[[y, z], [w, x]] = −[[w, x], [y, z]] (∗ ∗ ∗∗)

Combining (***) and (****), we obtain that:

2[[y, z], [w, x]] = 0

Combining with (*), we obtain that:

2[w, [x, [y, z]]] = 0

Combining with (†), we obtain that:

[w, [x, [y, z]]] = 0

as desired. �

Appendix H. Proofs related to isoclinism

We begin with the proof of Theorem 4.4. The theorem is restated below.

Suppose G1 and G2 are isoclinic groups. Suppose c is a positive integer. Let m1 be the
number of conjugacy classes in G1 of size c (so that the total number of elements in such
conjugacy classes is m1c). Let m2 be the number of conjugacy classes in G2 of size c (so
that the total number of elements in such conjugacy classes is m2c). Then, m1 is nonzero if
and only if m2 is nonzero, and if so, m1/m2 = |G1|/|G2|.

In particular, if G1 and G2 additionally have the same order, then they have precisely the
same multiset of conjugacy class sizes.

Proof. Let W be the group identified with Inn(G1) ∼= Inn(G2), and T be the group identified with G′1 ∼= G′2.
Denote by α1 : G1 → W and α2 : G2 → W the respective quotient maps. Denote by ω : W ×W → T the
group commutator map. Note that the map ω is the same for both groups – that’s precisely the point of
their being isoclinic.

For w ∈W , the centralizer in G1 of any element in α−1
1 (w) is precisely α−1

1 (C(w)) where

C(w) = {u ∈W | ω(u,w) is the identity element of T}

Thus, the size of the conjugacy class in G1 of any element in α−1
1 (w) is the index of the subgroup C(w)

in W .
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From this, it follows that the set of elements of G1 with conjugacy class size c is α−1
1 (S) where S is the

set of w ∈W for which the index of the subgroup C(w) = {u ∈W | ω(u,w) is the identity element of T} in
W is c.

Thus, we get the equality of the following two expressions for the number of elements of G1 in conjugacy
classes of size c:

m1c = |S||Z(G1)|

Analogously, we have:

m2c = |S||Z(G2)|

The crucial thing to note is that the subset S of W is the same in both cases.
Taking the quotient, we get that m1 is nonzero if and only if m2 is nonzero, and if so:

m1

m2
=
|Z(G1)|
|Z(G2)|

Since [G1 : Z(G1)] = |W | = [G2 : Z(G2)], we have |Z(G1)|/|Z(G2)| = |G1|/|G2|, so we obtain:

m1

m2
=
|G1|
|G2|

�

We now turn to the proof of the result on irreducible representations. We need some preliminary defini-
tions.

Definition (Projective general linear group). Suppose K is a field and d is a positive integer. The
projective general linear group of degree d over K, denoted PGLd(K), is defined as the quotient group of the
general linear group GLd(K) by the subgroup of scalar matrices in GLd(K). The subgroup of scalar matrices
in GLd(K) is precisely the center of GLd(K). Hence, PGLd(K) is isomorphic to the inner automorphism
group of GLd(K).

Definition (Projective representation). Suppose G is a group andK is a field. A projective representation
of G over K of degree d is a homomorphism from G to the projective general linear group PGLd(K) for
some positive integer d. The value d here is termed the degree of the projective representation.

A projective representation ρ : G → PGLd(K) is said to have a linear lift θ : G → GLd(K) if π ◦ θ = ρ,
where π : GLd(K) → PGLd(K) is the natural quotient map. The term “linear lift” here refers to the fact
that θ is a linear representation that serves as a “lift” of ρ.

A projective representation may or may not admit a linear lift. The next lemma describes the nature of
the set of linear lifts assuming that a linear lift exists.
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Lemma H.1. Suppose G is a finite group and ρ : G→ PGLd(C) is a projective representation. Suppose
θ : G→ GLd(C) a linear representation of G that is a lift of ρ. In other words, if π : GLd(C) → PGLd(C) is
the natural quotient map, then we want that ρ = π ◦ θ. We know that the set of one-dimensional representa-
tions of G (identified as the Pontryagin dual of G/G′) acts naturally on the set of irreducible representations
of G. The claim is that the stabilizer of θ is precisely the set of one-dimensional representations of G whose
kernel contains the subgroup generated by G′ and all the elements g of G on which the trace of θ(g) takes a
nonzero value.

Proof. One direction (one-dimensional representation whose kernel contains G′ and the elements with nonzero
trace values for θ must be in the stabilizer of θ): If a one-dimensional representation β has a kernel containing
all the points where θ has a nonzero-valued character, then that means that for any g ∈ G, either θ(g) has
trace zero or β(g) is the identity. Thus, in all cases, we have that β(g)θ(g) and θ(g) have the same trace.
Thus, βθ and θ have the same character, hence, by basic character theory, are equivalent as representations.

Reverse direction (one-dimensional representation that stabilizes θ must have kernel containing G′ and
the elements with nonzero trace values): Let β be a one-dimensional representation of G that stabilizes θ.
Note that the kernel of any one-dimensional representation already contains G′, so G′ is contained in the
kernel of β. Thus, we only need to show it contains all the elements at which the trace of θ is nonzero.
Suppose g ∈ G is an element at which θ(g) has nonzero trace, and β is a one-dimensional representation in
the stabilizer of θ. Then βθ and θ are equivalent representations, hence they have the same character. Thus,
β(g)θ(g) and θ(g) have the same trace. By assumption, θ(g) has nonzero trace, so this forces the complex
number β(g) to equal 1, so g is in the kernel of β, as desired. �

We can now turn to the proof of Theorem 4.5, the main theorem about irreducible representations.

Suppose G1 and G2 are isoclinic finite groups. Suppose d is a positive integer. Let m1

denote the number of equivalence classes of irreducible representations of G1 over C that
have degree d. Let m2 denote the number of equivalence classes of irreducible representations
of G2 over C that have degree d. Then, m1 is nonzero if and only if m2 is nonzero, and if
so, m1/m2 = |G1|/|G2|.

In particular, if G1 and G2 additionally have the same order, then they have precisely the
same multiset of degrees of irreducible representations.

Proof. Let W be the group identified with Inn(G1) ∼= Inn(G2), and T be the group identified with G′1 ∼= G′2.
Denote by α1 : G1 → W and α2 : G2 → W the respective quotient maps. ω : W ×W → T the group
commutator map, which is the same for both groups.

We have short exact sequences:

1 → Z(G1) → G1 →W → 1

and

1 → Z(G2) → G2 →W → 1

We will show the following:
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(1) For any irreducible projective representation ρ : W → PGLd(C), there exists a linear representation
of G1 that descends to ρ if and only if there exists a linear representation of G2 that descends to ρ.

(2) Further, if so, the ratio of the number of linear representations of G1 that descend to ρ equals the
number of linear representations of G2 that descend to ρ is |G1|/|G2|.

Note that once we have (1) and (2), the result will follow: first, simply list all the projective representations
of W of degree d that lift to linear representations in the groups G1 and/or G2. For each, the number of
lifts in the two groups is in the proportion |G1| : |G2|, so the overall proportion is also |G1| : |G2|.

Proof of (1): This follows from Isaacs, Theorem 11.13, and the observation that the condition Isaacs
specifies for the representation to lift is satisfied for G1 if and only if it is satisfied for G2.

Proof of (2): If a projective representation lifts to G1, then the set of lifts has a transitive action on
it of the set of one-dimensional linear representations of G1, which is the Pontryagin dual of G1/G

′
1. By

the fundamental theorem of group actions, the size of the set of lifts equals the index of the stabilizer in
this Pontryagin dual of any lift. So the question is: what is the necessary and sufficient condition for a
one-dimensional representation χ of G1/G

′
1 to fix a linear lift of ρ to G1?

The notion of whether the trace is zero is a well-defined notion for ρ, even though the outputs are in
PGLd(C) rather than being matrices themselves. Let N (ρ) be the subgroup of W generated by W ′ and all
those elements of W for which the trace of the image under ρ is nonzero. By the preceding lemma (Lemma
H.1), the stabilizer of any lift of ρ is precisely the set of one-dimensional representations of G1 whose kernel
contains α−1

1 (N (ρ)). Another way of putting it is that it is the Pontryagin dual of G1/α
−1
1 (N (ρ)), viewed

as a subgroup of the Pontryagin dual of G1/G
′
1.

The number of linear lifts is therefore:

|G1/G
′
1|

|G1/α
−1
1 (N (ρ))|

By the third isomorphism theorem of basic group theory, this is the same as:

|α−1
1 (N (ρ))/G′1|

This simplifies to:

|N (ρ)||Z(G1)|
|G′1|

Similarly, the number of lifts of ρ to G2 is:

|N (ρ)||Z(G2)|
|G′2|

Note the crucial fact that N (ρ) is the same in both cases.
Taking the quotient, we get |Z(G1)|/|Z(G2)|, which is the same as |G1/G2| because the groups have

isomorphic inner automorphism groups. This completes the proof of (2), and hence of the original statement.
�
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