
LINEAR TRANSFORMATIONS

MATH 196, SECTION 57 (VIPUL NAIK)

Corresponding material in the book: Section 2.1.

Executive summary

(1) A n × m matrix defines a function from Rm to Rn via matrix-vector multiplication. A function
arising in this manner is termed a linear transformation. Every linear transformation arises from
a unique matrix, i.e., there is a bijection between the set of n × m matrices and the set of linear
transformations from Rm to Rn.

(2) A function (also called map) f : A → B of sets is termed injective if no two elements of A map to
the same element of B. It is termed surjective if B equals the range of f . It is termed bijective if it
is both injective and surjective. A bijective map has a unique inverse map.

(3) The standard basis vector ~ei is the vector with a 1 in the ith coordinate and 0s elsewhere. The image
of ~ei is precisely the ith column of the matrix describing the linear tranformation.

(4) A linear transformation can alternatively be defined as a map that preserves addition and scalar
multiplication. Explicitly, T : Rm → Rn is a linear transformation if and only if T (~x + ~y) =
T (~x) + T (~y) (additivity) and T (a~x) = aT (~x) (scalar multiples) for all ~x, ~y ∈ Rm and all a ∈ R.

(5) A linear transformation T : Rm → Rn is injective if the matrix of T has full column rank, which in
this case means rank m, because the dimensions of the matrix are n×m. Note that this in particular
implies that m ≤ n. The condition m ≤ n is a necessary but not sufficient condition for the linear
transformation to be injective.

(6) A linear transformation T : Rm → Rn is surjective if the matrix of T has full row rank, which in this
case means rank n, because the dimensions of the matrix are n ×m. Note that this in particular
implies that n ≤ m. The condition n ≤ m is a necessary but not sufficient condition for the linear
transformation to be surjective.

(7) A linear transformation T : Rm → Rn is bijective if the matrix of T has full row rank and full column
rank. Thus forces m = n, and forces the (now square) matrix to have full rank. As mentioned before,
this is equivalent to invertibility.

(8) The inverse of a diagonal matrix with all diagonal entries nonzero is the matrix obtained by inverting
each diagonal entry individually.

(9) A permutation matrix is a matrix where each row has one 1 and all other entries 0, and each column
has one 1 and all other entries 0. A permutation matrix acts by permuting the standard basis vectors
among themselves. It can be inverted by permuting the standard basis vectors among themselves
in the reverse direction. Hence, the inverse is also a permutation matrix. If the permutation matrix
just flips two basis vectors, it is self-inverse.

(10) The inverse of a shear operation is the shear operation obtained by using the negative of the shear.
In particular:

[
1 1
0 1

]−1

=

[
1 −1
0 1

]
(11) Inverting a matrix requires solving a system of simultaneous linear equations with that as coefficient

matrix and with the augmenting column a generic output vector, then using the expression for the
input in terms of the output to get the matrix of the transformation. It can alternatively be done
by augmenting the matrix with the identity matrix, row-reducing the matrix to the identity matrix,
and then looking at what the augmented side has become.

1

(12) We can use linear transformations for the purposes of coding, compression, and extracting relevant
information. In many of these practical applications, we are working, not over the real numbers,
but over the field of two elements, which is ideally suited for dealing with the world of bits (binary
digits).

1. Linear transformations from one space to another

1.1. Matrix-vector multiplication defines a map between vector spaces. Recall that if A is a n×m
matrix, and ~x is a m× 1 column vector (i.e., ~x is a m-dimensional vector written as a column vector) then
A~x is a n× 1 vector, i.e., A~x is a n-dimensional vector written as a column vector. We can thus think of the
matrix A as describing a function:

m-dimensional column vectors → n-dimensional column vectors
Further, recall that a vector can be thought of as describing the coordinates of a generic point in the space

of the same number of dimensions. In particular, m-dimensional column vectors can be considered points in
Rm and n-dimensional column vectors can be considered points in Rn. Thus, A can be viewed as defining,
via matrix-vector multiplication, a map:

Rm → Rn

In other words, every n×m matrix defines a map from Rm to Rn via matrix-vector multiplication.
Please note very carefully that the dimension of the input space is the number of columns in the matrix

and coincides with the dimension of the row vectors in the matrix. The dimension of the output space is the
number of rows in the matrix and coincides with the dimension of the column vectors in the matrix.

Note also that the ith coordinate of the output is obtained as the dot product of the ith row of A with
the input vector.

1.2. First definition of linear transformation. We give the first definition:

Definition (Linear transformation). A function T : Rm → Rn is termed a linear transformation if there
exists a n × m matrix A (dependent on T) such that T (~x) = A~x for all ~x in Rm (writing ~x as a column
vector).

In other words, a transformation is linear if it can be represented via multiplication by a matrix.
We can think of a map at the meta level:
(Set of n×m matrices over R) → (Linear transformations Rm → Rn)
The map takes a matrix as input and outputs the linear transformation induced via multiplication by the

matrix.
Note that the set of outputs of the map is itself a set of functions. That’s why I said above that this is a

map at the meta level.

1.3. Injectivity, surjectivity, and bijectivity. The following terminology, which you may or may not
have seen, will be useful in coming discussions.

Suppose f : A→ B is a function (also called a map or a mapping). We say that f is:

• injective or one-one or one-to-one if different inputs always give different outputs, i.e., if whenever
x, y ∈ A satisfy f(x) = f(y), then x = y. Another framing of this is that every element of B is the
image of at most one element of A.

• surjective if the range of f is B, i.e., every element of B arises as the image of at least one element
of A.

• bijective if it is both injective and surjective. Another framing is that every element of B arises as
the image of exactly one element of A. If f is bijective, it establishes a “one-one correspondence”
between the sets A and B.

2

1.4. Bijectivity between matrices and linear transformations. We noted a while back the existence
of the map:

(Set of n×m matrices over R) → (Linear transformations Rm → Rn)
The map is surjective by the definition of linear transformation. But is it injective? That’s a trickier

question. At its heart is the question of whether two matrices that are not identical can give rise to the same
linear transformation. If that cannot happen, the map is injective.

The map is indeed injective, but to better understand this, we need to think a little bit more about the
outputs of specific vectors.

The space Rm has m very special vectors called the standard basis vectors:1 these are vectors with a 1 in
one coordinate and 0s in all the other coordinates. The basis vector ei is the vector whose ith coordinate is
a 1 and remaining coordinates are all 0s. In other words, the standard basis vectors ~e1, ~e2, . . . , ~em are the
vectors:

~e1 =


1
0
·
·
·
0

 , ~e2


0
1
0
·
·
0

 , . . . , ~em =


0
0
·
·
·
1


The following will turn out to be true:

• If a matrix A describes a linear transformation T : Rm → Rn, then T (~ei) is the ith column of A.
Note that T (~ei) is a n-dimensional column vector.

• In particular, knowledge of the outputs T (~e1), T (~e2), . . . T (~em) is sufficient to reconstruct the whole
matrix A.

• Thus, knowledge of T as a function (which would entail knowledge of the image of every input under
T) is sufficient to reconstruct A.

• Thus, the mapping from the set of n × m matrices over R to linear transformations Rm → Rn is
injective. Since we already noted that the mapping is surjective, it is in fact bijective. In other
words, every matrix gives a linear transformation, and every linear transformation arises from a
unique matrix.

1.5. An alternative definition of linear transformation. We can also define linear transformation in
another, albeit related, way. This definition relies on some universal equalities that the map must satisfy.
First, recall that we can add vectors (addition is coordinate-wise) and multiply a real number and a vector
(the real number gets multiplied with each coordinate of the vector).

Definition (Linear transformation (alternative definition)). A function T : Rm → Rn is termed a linear
transformation if it satisfies the following two conditions:

(1) Additivity: T (~x + ~y) = T (~x) + T (~y) for all vectors ~x, ~y ∈ Rm. Note that the addition on the inside
in the left side is in Rm and the addition on the right side is in Rn.

(2) Scalar multiples: T (a~x) = aT (~x) for all real numbers a and vectors ~x ∈ Rm.

To show that this definition is equivalent to the earlier definition, we need to show two things:

• Every linear transformation per the original definition (i.e., it can be represented using a matrix) is
a linear transformation per the new definition: This follows from the fact that matrix-vector multi-
plication is linear in the vector. We noted this earlier when we defined matrix-vector multiplication.

• Every linear transformation per the new definition is a linear transformation per the original defini-
tion: The idea here is to start with the linear transformation T per the new definition, then construct
the putative matrix for it using the values T (~e1), T (~e2), . . . , T (~em) as columns. Having constructed

1This is a lie in some ways, but that does not matter right now

3

the putative matrix, we then need to check that this matrix gives the linear transformation (per the
new definition) that we started with.

2. Behavior of linear transformations

2.1. Rank and its role. The rank of a linear transformation plays an important role in determining
whether it is injective, whether it is surjective, and whether it is bijective. Note that our earlier discussion
of injective, surjective and bijective was in the context of a “meta” map from a set of matrices to a set of
linear transformations. Now, we are discussing the injectivity, surjectivity, and bijectivity of a specific linear
transformation.

Note that finding the pre-images for a given linear transformation is tantamount to solving a linear system
where the augmenting column is the desired output. And, we have already studied the theory of what to
expect with the solutions to systems of linear equations. In particular, we have that:

• A linear transformation is injective if and only if its matrix has full column rank. In other words,
T : Rm → Rn is injective if and only if its matrix, which is a n×m matrix, has rank m. Note that
this is possible only if m ≤ n.

This is because, as we saw earlier, the dimension of the solution space for any specific output is
the difference (number of variables) - (rank). In order to get injectivity, we wish for the solution
space to be zero-dimensional, i.e., we wish that whenever the system has a solution, the dimension
of the solution space is zero. This means that the rank must equal the number of variables.

The condition m ≤ n is necessary but not sufficient for the linear transformation to be injective.
Intuitively, this makes sense. For a map to be injective, the target space of the map must be at least
as big as the domain. Since the appropriate size measure of vector spaces in the context of linear
transformations is the dimension, we should expect m ≤ n. Note that m ≤ n is not sufficient: any
linear transformation whose matrix does not have full column rank is not injective, even if m ≤ n.
An extreme example is the zero linear transformation, whose matrix is the zero matrix. This is not
injective for m > 0.

• A linear transformation is surjective if and only if its matrix has full row rank. In other words,
T : Rm → Rn is surjective if and only its matrix, which is a n ×m matrix, has rank n. Note that
this is possible only if n ≤ m.

This is because, as we saw earlier, if the coefficient matrix has full row rank, the system is always
consistent. Hence, every output vector occurs as the image of some input vector, so the map is
surjective.

The condition n ≤ m is necessary but not sufficient for the linear trasnformation to be surjective.
Intuitively, this makes sense. For a map to be surjective, the target space must be at most as large as
the domain. The appropriate size measure of vector spaces in the context of linear transformations
is dimension, so n ≤ m follows. Note that n ≤ m is not sufficient: any linear transformation whose
matrix does not have full row rank is not surjective, even if n ≤ m. An extreme example is the zero
linear transformation, given by the zero matrix. This is not surjective if n > 0.

• A linear transformation can be bijective only if its domain and co-domain space have the same
dimension, so that its matrix is a square matrix, and that square matrix has full rank.

Our interest for now will be in bijective linear transformations of the form T : Rn → Rn, for which, as
noted above, the rank is n, and thus, the rref is the identity matrix.

For a bijective linear transformation, we can define an inverse transformation that sends each element of
the target space to the unique domain element mapping to it. This inverse transformation will also turn out
to be linear.

Note that the inverse is unique, and the inverse of the inverse is the original linear transformation.
We will later on see the matrix algebra definition and meaning of the inverse.

3. Some important linear transformations and their inverses

3.1. Linear transformations with diagonal matrices. Consider a linear transformation T : Rn → Rn

whose matrix is a diagonal matrix. For instance, consider this linear transformation T given by the matrix:
4

A =

3 0 0
0 7 0
0 0 4


This means that:

T (~e1) = 3~e1, T (~e2) = 7~e2, T (~e3) = 4~e3

Diagonal linear transformations are special in that they send each standard basis vector to a multiple
of it, i.e., they do not “mix up” the standard basis vectors with each other. To invert a diagonal linear
transformation, it suffices to invert the operation for each standard basis vector, while keeping it diagonal.
In other words, we invert each diagonal entry, keeping it in place.

A−1 =

1/3 0 0
0 1/7 0
0 0 1/4


Note that for a diagonal matrix where one or more of the diagonal entries is zero, the matrix does not

have full rank. In fact, the corresponding standard basis vector gets killed by the linear transformation.
Thus, the inverse does not exist.

3.2. Linear transformations that permute the coordinates. Consider the linear transformation T
with matrix:

A =

[
0 1
1 0

]
We can describe T as follows:

T (~e1) = ~e2, T (~e2) = ~e1

In other words, T interchanges the two standard basis vectors ~e1 and ~e2. To invert T , we need to do T
again: interchage them back! Thus, the inverse matrix is:

A−1 = A =

[
0 1
1 0

]
Let’s take a 3× 3 matrix that cycles the vectors around:0 1 0

0 0 1
1 0 0


We can read off the images of ~e1, ~e2, and ~e3 by looking at the respective columns. The first column

describes T (~e1), and it is ~e3. The second column describes T (~e2), and it is ~e1. The third column describes
T (~e3), and it is ~e2. In other words:

T (~e1) = ~e3, T (~e2) = ~e1, T (~e3) = ~e2

Thus, this linear transformation cycles the vectors around as follows:

~e1 → ~e3 → ~e2 → ~e1

To invert this, we need to cycle the vectors in the reverse order:

~e1 → ~e2 → ~e3 → ~e1

For ~e1 → ~e2, we need the first column to be ~e2. For ~e2 → ~e3, we need the second column to be ~e3. For
~e3 → ~e1, we need the third column to be ~e1.

5

0 0 1
1 0 0
0 1 0


A square matrix is termed a permutation matrix if it has one 1 and the remaining entries 0 in each row,

and similarly it has one 1 and the remaining entries 0 in each column. There is a rich theory of permutation
matrices that relies only on the theory of what are called permutation groups, which deal with finite sets.
Enticing though the theory is, we will not explore it now.

3.3. Shear operations and their inverses. Consider the shear operation T with matrix:[
1 1
0 1

]
This matrix does not keep each coordinate within itself, nor does it merely permute the coordinates.

Rather, it adds one coordinate to another. Explicitly:

T (~e1) = ~e1, T (~e2) = ~e1 + ~e2

The operation T−1 should behave as follows:

T−1(~e1) = ~e1, T
−1(~e1 + ~e2) = ~e2

Thus:

T−1(~e2) = T−1(~e1 + ~e2)− T−1(~e1)

We get that:

T−1(~e2) = ~e2 − ~e1

Thus, we get that: [
1 1
0 1

]−1

=

[
1 −1
0 1

]
Note that the choice of the word “shear” is not a coincidence. We had talked earlier of operations on

systems of equations. One of these operation types, called a shear operation, involved adding a multiple of
one row to another row. You can see that this is similar in broad outline to what we are trying to do here.
Is there a formalization of the relationship? You bet! It has to do with matrix multiplication, but we’ll have
to skip it for now.

4. Computing inverses in general

4.1. Procedure for computing the inverse: a sneak preview. Note: We will return to this topic in
more detail later, after describing matrix multiplication. For the moment, think of this as a very quick sneak
preview. It’s a tricky collection of ideas, so multiple rounds of exposure help. At this stage, you are not
expected to acquire computational fluency.

Consider a n×n matrix A. Suppose that A has full rank. Hence, it is invertible. For any vector ~x, A−1~x
is the unique vector ~y such that A~y = ~x. To obtain this vector, we need to solve the linear system with A
as the coefficient matrix and ~y as the augmenting column. The fact that A has full row rank guarantees
consistency. The fact that A has full column rank guarantees that the solution is unique.

This is great for finding A−1~x for individual vectors x. But it would be ideal if we can obtain A−1 qua
matrix, rather than solving the linear system separately for each ~x.

There are two equivalent ways of thinking about this.
One is to solve the linear system for an arbitrary vector ~x, i.e., without putting in actual numerical values,

and get A−1~x functionally in terms of ~x, then pattern match that to get a matrix.
A more sophisticated approach is to calculate A−1~e1, A

−1~e2, . . . A
−1~en separately, then combine them

into a matrix. Note that all of them use the coefficient matrix A, so instead of writing each augmented
matrix separately, we could just write A and augment it with multiple columns, one for each standard basis

6

vector. That is equivalent to augmenting A with the identity matrix. Row reduce A, and keep applying
the operations to the identity matrix. When A gets row reduced to the identity matrix, the identity matrix
is converted to A−1. We will return to this procedure later, after we have an understanding of matrix
multiplication.

Yet another way of thinking of this is that each of the elementary row operations on A undoes A a bit,
and all of them put together undo A to the identity matrix. Doing all these operations one after the other
gives us the entire recipe for undoing A, and hence, applying that recipe to the identity matrix gives A−1.

4.2. Formula for the inverse of a 2× 2 matrix. Suppose we have a 2× 2 matrix:[
a b
c d

]
It can be verified that:

• The matrix has full rank (or equivalently, is invertible) if and only if ad− bc 6= 0.
• If the matrix has full rank, then the inverse is:[

a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
The expression ad − bc controls whether or not the matrix has full rank. This expression is termed the

determinant of the matrix. We hope to discuss determinants at a later stage in the course.

4.3. Time complexity of computing the inverse. The row reduction approach described above for
computing the inverse has roughly the same complexity as ordinary Gauss-Jordan elimination. In particular,
the arithmetic time complexity of the process is Θ(n3). There are better approaches to matrix inversion in
many situations. However, as a general rule, the time complexity cannot be brought down to a lower order
using known and easy-to-implement algorithms.

5. Real-world applications

5.1. Binary content storage. Content on computers is mostly stored in the form of bits. A bit or binary
digit can take values 0 or 1. The set {0, 1} has the structure of a field. This is called the field of two elements.
The general theory of vector spaces and linear transformations applies here. This is part of a general theory
of finite fields, exploring which would take us too far afield.

A piece of content looks like a sequence of bits. For instance, a 1 KB file is a sequence of 213 bits (210

bytes, and each byte is 23 bits). We can think of the individual bits in the file as the coordinates of a vector.

The dimension of the vector space for a 1 KB file is 213. Note that the number of possible 1 KB files is 22
13

.
Transformations that take in files of a certain size and output files of another size may well arise as linear

transformations between the corresponding vector spaces. For instance, a linear transformation:

{0, 1}2
33

→ {0, 1}2
13

represents a transformation that takes as input a 1 GB file and outputs a 1 KB file.
Note that not every transformation must be linear, but a lot of the kinds of things we wish to achieve can

be achieved via linear transformations.

5.2. Coding/encryption. Suppose there are two people, Alice and Bob, who wish to communicate mes-
sages (which we can think of as binary files) with each other over an insecure channel, where a third party,
called Carl, can eavesdrop. Alice and Bob have a little time before they start sending messages (but be-
fore they actually know what communications they would like to exchange). They can use this secure,
eavesdropper-free meeting to decide on a protocol to encode and decode messages.

Alice and Bob know the size of the file they expect to need to exchange. Let us say the file is n bits long.
Alice and Bob agree upon an invertible linear transformation T : {0, 1}n → {0, 1}n. When Alice wants to
send Bob a file that can be described by a vector ~v with n coordinates, she does not send ~v. Instead, she
sends T~v over the insecure channel.

7

Bob, who knows T already, also knows T−1. Therefore, he can apply T−1 to T (~v) and recover ~v. Another
way of thinking about this is that Bob needs to solve the linear system whose coefficient matrix is the matrix
of T and whose augmenting column is the vector T (~v).

Carl, who overhears T (~v), does not know T (because this was decided by Alice and Bob earlier through a
secure communication channel that Carl could not eavesdrop upon). Since Carl has no idea about what T
is, it is very difficult for him to decipher ~v.

In the process above, the linear transformation T is termed the encoding transformation and its inverse
transformation T−1 is termed the decoding transformation. The matrix for T is the encoding matrix and the
matrix for T−1 is termed the decoding matrix.

What kind of linear transformation should ideally be chosen for T? There are many competing consider-
ations, which we cannot cover here. The criteria are similar to the criteria for choosing a good password.

There is a problem with this sort of coding. It is not a secure form of encryption. The main problem is
that insofar as the encoding matrix needs to be communicated between the sender and receiver, people may
intercept it. Once they know the encoding matrix, all they need is elementary linear algebra and they have
the decoding matrix. Now, if they intercept any communication, they will be able to decode it. The key
problem with this method is that the decoding matrix is easy to deduce from the encoding matrix, because
the algorithm for matrix inversion can run in polynomial time, since it essentially relies on Gauss-Jordan
elimination.

There are more secure cryptographic methods, including RSA and the Diffie-Hellman key exchange. The
key ideas are described below:

(1) The key principle of RSA (public key cryptography) is to use the fact that factoring a number is
much harder than finding large primes to construct a pair of (encoding, decoding) such that, even if
the encoding procedure is publicly known, the decoding procedure cannot be deduced quickly from
that. With RSA, Bob has an (encoding, decoding) pair. He publishes the encoding information
(called the public key) to the public. This includes Alice and Carl. Alice then sends Bob a message
encoded using the public key. Bob then uses his decoding procedure (his private key) to decode the
message. Alice herself cannot decode her own message after she has encoded it, even though she
knows the original message.

Carl, who is overhearing, knows the encoding procedure and knows the result of the encoding,
but he still cannot deduce what the original message was.

The reason that linear transformations are not amenable to this approach is that with linear
transformations, the inverse of a linear transformation can be computed quickly (in time Θ(n3)
where n is the dimension of the spaces being transformed). So, publishing the encoding procedure
is tantamout to publishing the decoding procedure. Note that when working over the field of two
elements, as we are here, we do not need to distinguish between arithmetic complexity and bit
complexity, because the numbers are always 0 or 1. They don’t get arbitrarily complicated.

(2) Diffie-Hellman key exchange involves two people using a possibly insecure channel to exchange infor-
mation that allows both of them to agree upon an encoding and decoding procedure whereas other
people listening in on the same channel cannot figure out what procedure has been decided upon.
The idea is that each person contributes part of the procedure in a way that third parties have no
way of figuring out what’s going on.

In both cases (RSA and Diffie-Hellman) the security of the protocols rests on the computational difficulty
of certain mathematical problems related to prime numbers and modular arithmetic. This computational
difficulty has not been mathematically proved, so it is possible that there exist fast algorithms to break these
allegedly secure protocols. However, theoretical computer scientists and cryptographers believe it is highly
unlikely that such fast algorithms exist.

The upshot of that is that the reason linear encoding is insecure is precisely that linear algebra is compu-
tationally too easy! Even if you don’t think of it that way right now.

5.3. Redundancy. Return to the use of linear transformations for encoding. One of the problems with
using an invertible (i.e., bijective) linear transformation is that it leaves no room for redundancy. If any bit
gets corrupted, the original message can appear very different when decoded from what it was intended to

8

look like. One way of handling with is to build redundancy by using a linear transformation that is injective
but not surjective. Explicitly, use an injective linear transformation:

T : {0, 1}n → {0, 1}n+p

for the purpose of encoding. Here, p > 0 describes the extent of redundancy in the message.
Injectivity still guarantees that the original message can be recovered uniquely from the encoded message.

What we need to do is solve a linear system with a (n + p) × n coefficient matrix and full column rank.
Assuming the message is not corrupted, the solution is unique.

What happens if the message gets corrupted? Note that since the system has rank n but has n + p rows
(equations), there are p redundant conditions. These p redundant conditions means that with a corrupted
message, it is quite likely that the system will become inconsistent and we will not be able to decode the
message, as we rightly should not, since it is corrupt. The probability that a corrupted message will still
appear like a genuine message (i.e., it will give a consistent system to solve) is 1/2p. By choosing p reasonably
large, we can make this probability quite small. Note that over the reals, the probability is effectively zero,
but we are working over the field of two elements.

If you are interested more in this, look up error-detecting codes and error-correcting codes.

5.4. Compression and more on redundancy. In some cases, linear transformations can be used for
purposes such as hashing, checksums, and various forms of compression. The idea is to take the original
vector, which may live in a very huge dimension, and use a linear transformation to map it to a smaller
dimension. The mapping is not injective, hence it is theoretically conceivable for two different vectors to
give the same image. Nonetheless, the probability that two randomly chosen vectors give the same output
is very small.

Suppose there are two files, ~v and ~w, stored on different nodes of a network, both of size 1 GB. This
means that both files can be viewed as vectors with 233 coordinates. We want to check if ~v and ~w are equal.
It would be very difficult to send the entire vectors across the network. One approach to checking equality
probabilistically is to check if, say, the first 210 coordinates of ~v are the same as the first 215 coordinates of
~w (this is basically the first 4 KB of the files). This method may be misleading because there may have been
copy errors made near the end which will not be caught by just looking at a subset of the coordinates.

A better way is to choose a linear transformation T : {0, 1}233 → {0, 1}215 that uses all the coordinates
in a nontrivial fashion, apply T to ~v and ~w separately, then look at the outputs T (~v) and T (~w) and check
whether they are equal (by communicating them across the network). The files that need to be compared
are now just 4 KB long, and this comparison can be made relatively easily.

A couple of other remarks:

• If we wish, we could pick a random linear transformation T . A random linear transformation will
most likely have rank equal to the output dimension, which is in this case 215. The probability of
full rank is hard to calculate precisely, but it is almost 1.

• The probability of a collision, i.e., the probability that two different vectors ~v and ~w give rise to

the same output, is quite low. Explicitly, if T has full rank, the probability is 1/22
15

. The intuitive
explanation is that the probability that each bit happens to agree is 1/2, and we multiply these
probabilities. The independence of the probabilities requires full rank.

5.5. Getting relevant information: the case of nutrition. Suppose there are m different foodstuffs,
and n different types of nutrients, and each food contains a fixed amount of each given nutrient per unit
quantity of the good. The “foodstuffs vector” of your diet is a vector whose coordinates describe how much
of each foodstuff you consume. The “nutrient vector” of your diet describes how much of each nutrient you
obtain. There is a matrix describing the nutritional content of the food that defines a linear transformation
from your food vector to your nutrition vector. The matrix has rows corresponding to nutrients and columns
corresponding to foodstuffs, with the entry in each cell describing the amount of the row nutrient in the
column food. This matrix defines a linear transformation from food vectors to nutrient vectors, i.e., whatever
your foodstuff vector is, multiplying it by the matrix gives your nutrient vector.

If you wish for a balanced, healthy, and nutritious diet, this typically involves some constraints on the
nutrient vector. Specifically, for some nutrients, there are both minimum and maximum values. For some

9

nutrients, there may be only minimum values. The goal is to find a foodstuff vector whose image under
the linear transformation satisfies all the constraints. This requires solving a system of linear inequalities.
Whether a solution exists or not depends on the nature of the matrix describing the nutritional contents of
the foods. For instance, if the only foodstuffs available to you are Coca Cola and Doritos, you are unlikely
to be able to find a food vector that gives you a nutrient vector satisfying the constraints.

Note that the linearity assumption is a reasonable approximation for most nutrients, but there may be
cases where this linear model fails. This occurs if there are complicated interactions between the nutrients
or between various types of foods, and/or diminishing returns in nutrient content as you consume more of
a certain food. For instance, it may be the case that consuming food A and food B does not just give you
the sum of the nutritional content you would get from consuming foods A and B separately. The linear
assumption is probably a reasonable approximation that works for most nutrients and hence one worth using
insofar as it keeps the problem tractable.

5.6. Many different dot products with a fixed vector. One way of thinking of matrix-vector multipli-
cation is in terms of there being many different dot products we want to compute where one of the vectors
in the dot product is fixed, and the other one takes a finite list of values. The varying list is put as rows in
a matrix, and the vector that is fixed is put as the column vector to be multiplied.

10

	Executive summary
	1. Linear transformations from one space to another
	1.1. Matrix-vector multiplication defines a map between vector spaces
	1.2. First definition of linear transformation
	1.3. Injectivity, surjectivity, and bijectivity
	1.4. Bijectivity between matrices and linear transformations
	1.5. An alternative definition of linear transformation

	2. Behavior of linear transformations
	2.1. Rank and its role

	3. Some important linear transformations and their inverses
	3.1. Linear transformations with diagonal matrices
	3.2. Linear transformations that permute the coordinates
	3.3. Shear operations and their inverses

	4. Computing inverses in general
	4.1. Procedure for computing the inverse: a sneak preview
	4.2. Formula for the inverse of a 2 2 matrix
	4.3. Time complexity of computing the inverse

	5. Real-world applications
	5.1. Binary content storage
	5.2. Coding/encryption
	5.3. Redundancy
	5.4. Compression and more on redundancy
	5.5. Getting relevant information: the case of nutrition
	5.6. Many different dot products with a fixed vector

