
GEOMETRY OF LINEAR TRANSFORMATIONS

MATH 196, SECTION 57 (VIPUL NAIK)

Corresponding material in the book: Section 2.2.

Executive summary

(1) There is a concept of isomorphism as something that preserves essential structure or feature, where
the concept of isomorphism depends on what feature is being preserved.

(2) There is a concept of automorphism as an isomorphism from a structure to itself. We can think of
automrohpisms of a structure as symmetries of that structure.

(3) Linear transformations have already been defined. An affine linear transformation is something
that preserves lines and ratios of lengths within lines. Any affine linear transformation is of the

form ~x 7→ A~x + ~b. For the transformation to be linear, we need ~b to be the zero vector, i.e., the
transformation must send the origin to the origin. If A is the identity matrix, then the affine linear
transformation is termed a translation.

(4) A linear isomorphism is an invertible linear transformation. For a linear isomorphism to exist
from Rm to Rn, we must have m = n. An affine linear isomorphism is an invertible affine linear
transformation.

(5) A linear automorphism is a linear isomorphism from Rn to itself. An affine linear automorphism is
an affine linear isomorphism from Rn to itself.

(6) A self-isometry of Rn is an invertible function from Rn to itself that preserves Euclidean distance.
Any self-isometry of Rn must be an affine linear automorphism of Rn.

(7) A self-homothety of Rn is an invertible function from Rn to itself that scales all Euclidean distances
by a factor of λ, where λ is the factor of homothety. We can think of self-isometries precisely as the
self-homotheties by a factor of 1. Any self-homothety of Rn must be an affine linear automorphism
of Rn.

(8) Each of these forms a group: the affine linear automorphisms of Rn, the linear automorphisms of
Rn, the self-isometries of Rn, the self-homotheties of Rn.

(9) For a linear transformation, we can consider something called the determinant. For a 2 × 2 linear
transformation with matrix [

a b
c d

]
the determinant is ad− bc.
We can also consider the trace, defined as a+ d (the sum of the diagonal entries).

(10) The trace generalizes to n× n matrices: it is the sum of the diagonal entries. The determinant also
generalizes, but the formula becomes more complicated.

(11) The determinant for an affine linear automorphism can be defined as the determinant for its linear
part (the matrix).

(12) The sign of the determinant being positive means the transformation is orientation-preserving. The
sign of the determinant being negative means the transformation is orientation-reversing.

(13) The magnitude of the determinant gives the factor by which volumes are scaled. In the case n = 2,
it is the factor by which areas are scaled.

(14) The determinant of a self-homothety with factor of homothety λ is ±λn, with the sign depending on
whether it is orientation-preserving or orientation-reversing.

(15) Any self-isometry is volume-preserving, so it has determinant ±1, with the sign depending on whether
it is orientation-preserving or orientation-reversing.
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(16) For n = 2, the orientation-preserving self-isometries are precisely the translations and rotations. The
ones fixing the origin are precisely rotations centered at the origin. These form groups.

(17) For n = 2, the orientation-reversing self-isometries are precisely the reflections and glide reflections.
The ones fixing the origin are precisely reflections about lines passing through the origin.

(18) For n = 3, the orientation-preserving self-isometries fixing the origin are precisely the rotations about
axes through the origin. The overall classification is more complicated.

1. Geometry of linear transformations

1.1. Geometry is secondary, but helps build intuition. Our focus on linear transformations so far
has been information-centric: they help reframe existing pieces of information in new ways, allowing us to
extract things that are valuable to us. This information-centric approach undergirds the applicability of
linear algebra in the social sciences.

We will now turn to a geometric perspective on linear transformations, restricting largely to the case n = 2
for many aspects of our discussion. A lot of this geometry is more parochial than the information-centric
approach, and is not too important for the application of linear algebra to the social sciences. The main
reason the geometry is valuable to us is that it can help build intuition regarding what is going on with the
algebraic operations and hence offer another way of “sanity checking” our algebraic intuitions. As a general
rule, always try to come up with reasons that are algebraic and information-centric, but in cases where we
can perform sanity checks using geometric intuitions, use them.

1.2. Composition of transformations. If f : A → B is a function and g : B → C is a function, we
can make sense of the composite g ◦ f . The key feature needed to make sense of the composite is that
the co-domain (the target space) of the function applied first (which we write on the right) must equal the
domain (the starting space) of the function applied next (which we write later).

This means that if we have a collection of maps all from a space to itself, it makes sense to compose any
two maps in the collection. We can even compose more than two maps if necessary.

The geometry of linear transformations that we discuss here is in the context of transformations from Rn

to Rn. Here, we can compose, and if the transformations are bijective, also invert.
A small note is important here. We often see maps from Rn to Rn where, even though both the domain

and co-domain space have the same dimension, they do not represent the “same space” conceptually. For
instance, one side may be measuring masses, while the other side may be measuring prices. In this case,
composing multiple such maps does not make sense because even though the domain and co-domain are
mathematically Rn, they are conceptually different.

2. Particular kinds of transformations in linear algebra

2.1. The concept of isomorphism and automorphism. We will briefly describe two central mathemat-
ical concepts called isomorphism and automorphism. You are not expected to understand these concepts,
but they help demystify some of the following discussion.

Understanding the concept of isomorphism is central to abstraction and to human intelligence, even though
the word is not too well-known outside of mathematics and philosophy. When looking at different structures,
we may be interested in whether they have a certain feature in common. For instance, when looking at sets,
we may be interested in judging them by the number of elements in them. If we care only about size, then
in our tunnel vision, all other aspects of the set are irrelevant. For our purposes, then, a set of three rabbits
is effectively the same as a set of three lions, or a set of three stars. As another related example, suppose
the only thing you care about potential mates in the dating market is their bank balance. In that case, two
potential mates with the same bank balance are effectively the same, i.e., they are isomorphic.

This kind of abstraction is crucial to humans being able to understand numbers in the first place. If you
crossed that hurdle back at the age of 3, 4, 5, or 6 (or whenever you understood the idea of counting), it’s
high time you went a step further.

One way of capturing the idea that two sets have the same size is as follows. We say that two sets have
the same size if it is possible to construct a bijective function from one set to the other. In fact, roughly
speaking, this is the only way to define the concept of “same size”. In other words, we can define the size
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(technical term: cardinality) of a set as that attribute that is preserved by bijections and is different for sets
if there is no bijection between them.

Another way of framing this is to christen bijective functions as isomorphisms of sets. In other words,
a function from a set to a (possibly same, possibly different) set is termed an isomorphism of sets if it is
a bijective function of sets. “Iso+morph” stands for “same shape” and signifies that the bijective function
preserves the shape.

Why is this important? Instead of caring only about size, we can ratchet up our caring levels to care
about more structural aspects of the sets we are dealing with. If we do so, our definition of “isomorphism”
will become correspondingly more stringent, since it will require preserving more of the structure.

A related notion to isomorphism is that of automorphism. An automorphism is an isomorphism (in
whatever sense the term is being used) from a set to itself.

Whatever our definition of isomorphism and automorphism, the identity map from a set to itself is always
an automorphism.

Non-identity automorphisms from a set to itself signify symmetries of the set. This will become clearer
as we proceed.

2.2. Linear isomorphisms and automorphisms. A linear isomorphism is defined as a bijective linear
transformation. We can think of a linear isomorphism as a map that preserves precisely all the “linear
structure” of the set.

Note that for a linear transformation to be bijective, the dimensions of the start and end space are the
same. Explicitly, if T : Rm → Rn is a bijective linear transformation, then m = n. Also, the matrix for T
has full rank. It is also a square matrix, since m = n.

In other words, the dimension of a vector space is invariant under linear isomorphisms. In fact, the rela-
tionship between linear isomorphisms and dimension is similar to the relationship between set isomorphisms
and cardinality (set size).

A linear automorphism is defined as a linear isomorphism from a vector space Rn to itself. Based on the
above discussion, you might believe that every linear isomorphism must be a linear automorphism. This is
not quite true. The main caveat at the moment (there will be more later) is that Rn and Rn could refer to
different spaces depending on what kinds of things we are storing using the real numbers (for instance, one
Rn might be masses, the other Rn might be prices, and so on). A linear isomorphism between a Rn of one
sort and a Rn of another sort should not rightly be considered a linear automorphism.

2.3. Affine isomorphisms. An affine linear transformation is a function that preserves collinearity and
ratios within lines, T : Rm → Rn is affine if the image of any line (not necessarily through the origin) in Rm

is a line (not necessarily through the origin) in Rn, and moreover, it preserves the ratios of lengths within
each line. So in particular, if ~x, ~y ∈ Rm, then T (a~x + (1 − a)~y) = aT (~x) + (1 − a)T (~y). In particular, it
preserves midpoints.

Note that any linear transformation is affine linear. The main thing we get by allowing “affine” is that
the origin need not go to the origin. An important class of affine linear transformations that are not linear
is the class of translations. Explicitly, for a nonzero vector ~v ∈ Rn, the function T : Rn → Rn given by
~x 7→ ~x + ~v is affine linear but not linear. In fact, all affine linear transformations can be obtained by
composing translations with linear transformations.

An affine linear isomorphism (or affine isomorphism for short) is a bijective affine linear transformation.
An affine linear automorphism is an affine linear isomorphism from a vector space to itself.
Every linear automorphism is an affine linear automorphism. Nonzero translations give examples of

affine linear automorphisms that are not linear. In an important sense, these cover all the affine linear
automorphisms: every affine linear automorphism can be expressed as a composite of a translation and a
linear automorphism.

2.4. Linear and affine linear: the special case of one dimension. In the case of one dimension, a linear
isomorphism is a function of the form x 7→ mx,m 6= 0. The matrix of this, viewed as a linear transformation,
is [m]. In other words, it is a linear function with zero intercept.

An affine linear isomorphism is a function of the form x 7→ mx+ c, m 6= 0. In other words, it is a linear
function with the intercept allowed to be nonzero.
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2.5. The general description of affine linear transformations. A linear transformation T : Rm → Rn

can be written in the form:

~x 7→ A~x+~b

where A is a n × m matrix and ~v is a vector in Rn. Explicitly, the matrix A describes the linear

transformation part and the vector ~b describes the translation part. Notice how this general description
parallels and generalizes the description in one dimension.

2.6. Understanding how transformations and automorphisms behave intuitively. In order to un-
derstand transformations and automorphisms using our geometric intuitions, it helps to start off with some
geometric picture in the plane or Euclidean space that we are transforming, then apply the transformation to
it, and see what we get. It is preferable to not take something too symmetric, because the less the symmetry,
the more easily we can discern what features the transformation preserves and what features it destroys. Hu-
man stick features with asymmetric faces may be a good starting point for intuitive understanding, though
more mundane figures like triangles might also be reasonable.

3. Euclidean geometry

3.1. Euclidean distance and self-isometries. The geometry of Rn is largely determined by how we define
distance between points. The standard definition of distance is Euclidean distance. Explicitly, if ~x and ~y are
in Rn, then the Euclidean distance between ~x and ~y is:√√√√ n∑

i=1

(xi − yi)2

If a transformation preserves Euclidean distance, then it preserves all the geometry that we care about.
In particular, it preserves shapes, sizes, angles, and other geometric features.

A bijective function from Rn to itself that preserves Euclidean distance is termed a self-isometry of Rn.
We now proceed to an explanation of why self-isometries of Rn must necessarily be affine linear automor-

phisms of Rn. The claim is that if something preserves distance, it must preserve linearity.
One way of characterizing the fact that three points A,B,C ∈ Rn are collinear, with B between A and C,

is that we get the equality case for the triangle inequality. Explicitly:

(the distance between A and B) + (the distance between B and C) = (the distance between A and C)

Suppose T is a self-isometry of Rn. Then, we have:

The distance between T (A) and T (B) = The distance between A and B

The distance between T (B) and T (C) = The distance between B and C

The distance between T (A) and T (C) = The distance between A and C

Combining all these, we get that:

(the distance between T (A) and T (B))+(the distance between T (B) and T (C)) = (the distance between T (A) and T (C))

The conclusion is that T (A), T (B), and T (C) are collinear with T (B) between T (A) and T (C). In other
words, collinear triples of points get mapped to collinear triples of points, so T preserves collinearity. Further,
it obviously preserves ratios of lengths within lines. Thus, T is an affine linear automorphism of Rn. The
upshot: every self-isometry is an affine linear automorphism.

Self-isometries preserve not just collinearity, but all the geometric structure. What they are allowed
to change is the location, angling, and orientation. They do not affect the shape and size of figures. In
particular, they send triangles to congruent triangles.
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3.2. Self-homotheties. A self-homothety or similarity transformation or similitude transformation is a
bijective map T : Rn → Rn that scales all distances by a fixed nonzero factor called the ratio of similitude
or factor of similitude of T . For instance, a self-homothety by a factor of 1/2 will have the property that the
distance between T (A) and T (B) is half the distance between A and B.

Self-isometries can be described as self-homotheties by a factor of 1.
Self-homotheties are affine linear automorphisms for roughly the same reason that self-isometries are.
A special kind of self-homothety is a dilation about a point. A dilation about the origin, for instance,

would simply mean multiplying all the position vectors of points by a fixed nonzero scalar. The absolute
value of that scalar will turn out to be the factor of similitude. The matrix for such a dilation is a scalar
matrix. For instance, the matrix: [

5 0
0 5

]
represents a dilation by a factor of 5 about the origin.
Self-homotheties send triangles to similar triangles.

3.3. Other types of transformations. One important type of linear transformation that is not a self-
homothety is a transformation with diagonal matrix where the diagonal entries are not all the same. For
instance, consider the linear transformation with matrix the following diagonal matrix:[

1 0
0 2

]
This sends ~e1 to itself and sends ~e2 to 2~e2. Pictorially, it keeps the x-axis as is and stretches the y-axis by

a factor of 2. It distorts shapes, but preserves linearity. It is not a self-homothety because of the different
scaling factors used for the axes.

3.4. Group structure. A collection of bijective functions from Rn to Rn is said to form a group if it satisfies
these three conditions:

• The composite of two functions in the collection is in the collection.
• The identity function is in the collection.
• The inverse to any function in the collection is in the collection.

The set of all automorphisms of any structure forms a group. Here is the stylized argument:

• Automorphisms preserve some particular structural feature. Composing two automorphisms will
therefore also preserve the structural feature.

• The identity map preserves everything. Therefore, it must be an automorphism.
• Since an automorphism preserves a specific structural feature, doing it backwards must also preserve

the structural feature.

All the examples we have seen above give groups of linear transformations. Explicitly:

• The set of all affine linear automorphisms of Rn is a group, because these are precisely the invertible
functions that preserve the collinearity and ratios-within-lines structure.

• The set of all linear automorphisms of Rn is a group, because these are precisely the invertible
functions that preserve the linear structure.

• The set of all self-isometries of Rn is a group, because these are precisely the invertible functions
that preserve the Euclidean distance.

• The set of all self-homotheties of Rn of a group, because these are precisely the invertible functions
that preserve the “ratios of Euclidean distances” structure.

Further, these groups have containment relations:
Group of all self-isometries of Rn ⊆ Group of all self-homotheties of Rn ⊆ Group of all affine linear

automorphisms of Rn

And also, separately:
Group of all linear automorphisms of Rn ⊆ Group of all affine linear automorphisms of Rn
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4. The case of two dimensions

If n = 2, we can obtain a relatively thorough understanding of the various types of linear transformations.
These are discussed in more detail below.

4.1. Trace and determinant. There are two interesting invariants of 2 × 2 matrices, called respectively
the trace and determinant. The trace of a 2× 2 matrix:[

a b
c d

]
is defined as the quantity a+ d. It is the sum of the diagonal entries. The significance of the trace is not

clear right now, but will become so later.
The other important invariant for 2× 2 matrices is the determinant. The determinant of a 2× 2 matrix:[

a b
c d

]
is defined as the quantity ad− bc. As we noted in a homework exercise, the determinant is nonzero if and

only if the matrix is invertible.
Both the trace and the determinant generalize to n×n matrices. The trace of a n×n matrix is defined as

the sum of all the diagonal entries of the matrix. The determinant is defined in a more complicated fashion.
The trace and determinant of a linear transformation are defined respectively as the trace and determinant

of the matrix for the linear transformation.
For an affine linear transformation, the trace and determinant are defined respectively as the trace and

determinant of the linear part of the transformation.
The role of the determinant is somewhat hard to describe, but it can be split into two aspects:

• The absolute value of the determinant is the factor by which volumes multiply. In the case n = 2, it
is the factor by which areas multiply. In particular, the determinant of a 2× 2 matrix is ±1 if and
only if the corresponding linear transformation is area-preserving.

• The sign of the determinant describes whether the linear transformation is orientation-preserving or
orientation-reversing. A positive sign means orientation-preserving, whereas a negative sign means
orientation-reversing. Here, orientation-preserving means that left-handed remains left-handed while
right-handed remains right-handed. In contrast, orientation-reversing means that left-handed be-
comes right-handed while right-handed becomes left-handed. Note that any transformation that can
be accomplished through rigid motions, i.e., through a continuous deformation of the identity trans-
formation, must be orientation-preserving. The reason is that continuous change cannot suddenly
change the orientation status.

4.2. Justifying statements about the determinant using diagonal matrices. Consider a linear trans-
formation with diagonal matrix: [

a 0
0 d

]
The trace of this matrix is a+ d and the determinant is ad. Here is the justification for both observations

made above:

• The absolute value of the determinant is the factor by which volumes multiply: Think of a rectangle
with sides parallel to the axes. The x-dimension gets multiplied by a factor of |a| and the y-dimension
gets multiplied by a factor of |d|. The area therefore gets multiplied by a factor of |a||d| which is
|ad|, the absolute value of the determinant.

• The sign of the determinant describes whether the linear transformation is orientation-preserving or
orientation-reversing. The sign of a determines whether the x-direction gets flipped. The sign of d
determines whether the y-direction gets flipped. The sign of the product determines whether the
overall orientation stays the same or gets reversed.
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4.3. Abstract considerations: determinants of self-homotheties. Consider a linear transformation
that is a self-homothety with factor of similitude λ. This linear transformation scales all lengths by a factor
of λ. If n = 2 (i.e., we are in two dimensions) then it scales all areas by a factor of λ2. In particular:

• If it is orientation-preserving, then the determinant is λ2.
• If it is orientation-reversing, then the determinant is −λ2.

In particular, for a self-isometry:

• If it is orientation-preserving, then the determinant is 1.
• If it is orientation-reversing, then the determinant is −1.

4.4. Rotations. A particular kind of transformation of interest in the two-dimensional case is a rotation. A
rotation is specified by two pieces of information: a point (called the center of rotation) and an angle (called
the angle of rotation). The angle is defined only up to additive multiples of 2π, i.e., if two rotations have the
same center and their angles differ by a multiple of 2π, then they are actually the same rotation.

Note that we set a convention in advance that we will interpret rotations in the counter-clockwise sense.
For a rotation whose angle of rotation is not zero (or more precisely, is not a multiple of 2π), the center

of rotation is uniquely determined by the rotation and is the only fixed point of the rotation.
The rotation by an angle of π about a point is termed a half turn about the point and can alternatively

by thought of as reflecting relative to the point. This is not to be confused with reflections about lines in R2.
All rotations are self-isometries of R2. Thus, they are affine linear automorphisms. They are also area-

preserving. They are also orientation-preserving, since they can be obtained through continuous rigid mo-
tions. However, unless the center of rotation is the origin, the rotation is not a linear automorphism.
Rotations centered at the origin are linear transformations. We will now proceed to describe rotations
centered at the origin in matrix terms.

To describe a rotation centered at the origin, we need to describe the images of the two standard basis
vectors ~e1 and ~e2. These images form the first and second column respectively of the matrix describing the
rotation as a linear transformation.

Suppose the rotation is by an angle θ. Then ~e1 goes to the vector with coordinates (cos θ, sin θ). ~e2 goes
to the vector with coordinates (− sin θ, cos θ). The matrix for the rotation is thus:[

cos θ − sin θ
sin θ cos θ

]
Note that the inverse to rotation about the origin by θ is rotation by −θ. Using the fact that cos is an

even function and sin is an odd function ,the matrix for the inverse operation is:[
cos θ sin θ
− sin θ cos θ

]
Some specific rotations of interest are listed below:
Angle Matrix of rotation

0 (no change)

[
1 0
0 1

]
π/4

[
1/
√

2 −1/
√

2

1/
√

2 1/
√

2

]
π/2 (right angle)

[
0 −1
1 0

]
π (half turn)

[
−1 0
0 −1

]
3π/2 (right angle clockwise)

[
0 1
−1 0

]
Let us try predicting the determinant of a rotation matrix theoretically, then proceed to verify it compu-

tationally.
Theoretically, we know that rotations are both area-preserving (on account of being self-isometries) and

orientation-preserving (on account of being realized through rigid motions). The area-preserving nature tells
us that the magnitude of the determinant is 1, i.e., the determinant is ±1. The orientation-preserving nature
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tells us that the determinant is positive. Combining these, we get that the determinant must be 1. Let’s
check this. The determinant of [

cos θ − sin θ
sin θ cos θ

]
is cos2 θ + sin2 θ, which is 1.

4.5. Reflections and orientation-reversal. A reflection about a line does exactly what it is supposed to
do: it sends each point to another point such that the line of reflection is the perpendicular bisector of the
line segment joining them.

Every reflection is an affine linear automorphism. A reflection is a linear automorphism if and only if
the line of reflection passes through the origin. If that is the case, we can write the matrix of the linear
transformation. Let’s consider the case of a reflection about the x-axis.

This reflection fixes all points on the x-axis, and sends all points on the y-axis to their mirror images
about the origin. In particular, it sends ~e1 to ~e1 and sends ~e2 to −~e2.

The matrix of the linear transformation is: [
1 0
0 −1

]
More generally, consider a reflection about a line through the origin that makes an angle of θ/2 counter-

clockwise from the x-axis. The reflection sends ~e1 to a vector making an angle θ counter-clockwise from the
horizontal, and sends ~e2 to the vector making an angle of θ − (π/2) counter-clockwise from the horizontal.
The matrix is thus: [

cos θ sin θ
sin θ − cos θ

]
This reflection matrix has trace zero. For the determinant, let us first predict it theoretically, then

verify it computationally. Theoretically, we know that reflections are self-isometries, hence they are area-
preserving. So, the absolute value of the determinant is 1, and the determinant is ±1. Reflections are also
orientation-reversing, so the determinant is negative. Thus, the determinant must be −1. Let’s check this.
The determinant of: [

cos θ sin θ
sin θ − cos θ

]
is − cos2 θ − sin2 θ = −1.

4.6. Shear operations. A shear operation is an operation where one axis is kept fixed, and the other axis
is “sheared” by having stuff from the fixed axis added to it.

For instance, suppose the x-axis is the fixed axis and we add the standard basis vector for the x-axis to
the y-axis. Explicitly, ~e1 stays where it is, but ~e2 gets sent to ~e1 + ~e2. The matrix of this looks like:[

1 1
0 1

]
Note that unlike translations, rotations, and reflections, shear operations are not self-isometries.
More generally, we can have a shear of the form:[

1 λ
0 1

]
This sends ~e1 to ~e1 and sends ~e2 to λ~e1 + ~e2.
We could also shear in the other direction: [

1 0
λ 1

]
Here, ~e2 is fixed, and ~e1 gets sends to ~e1 + λ~e2.
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The trace of a shear operation is 2, and the determinant is 1. Thus, shear operations are both area-
preserving and orientation-preserving. This can be verified pictorially.

4.7. Composites of various types, including glide reflections. We have considered translations, ro-
tations, and reflections. All of these are self-isometries. Self-isometries form a group, so composing things
of these types should also give a self-isometry. Two interesting questions:

• Is every self-isometry a translation, rotation, or reflection?
• Can every self-isometry be obtained by composing translations, rotations, and reflections?

It turns out that the answers are respectively no and yes. Let’s look at various sorts of composites:

(1) Composite of translations: Translations form a subgroup of the group of all self-isometries of R2.
In other words, the composite of two translations is a translation, the identity map is a translation
(namely, by the zero vector) and the inverse of a translation is a translation.

(2) Composite of rotations centered at the same point: The rotations centered at a particular point form
a subgroup of the group of all self-isometries of R2. In other words, the composite of two rotations
centered at the same point is a rotation, the identity map is a rotation with any point as center
(namely, with zero angle of rotation), and the inverse of a rotation is a rotation with the same center
of rotation. However, the set of all rotations is not a subgroup, as is clear from the next point.

(3) Composite of rotations centered at different points: If two rotations centered at different points are
composed, the composite is typically a rotation about yet a third point, with the angle of rotation
the sum of the angles. The exception is when the angles add up to a multiple of 2π. In that case,
the composite is a translation. It is easy to convince yourself by using human stick figures that the
angles of rotation add up.

(4) Composite of rotation and translation: The composite is again a rotation with the same angle of
rotation, but about a different center of rotation.

(5) Composite of two reflections: If the lines of reflection are parallel, the composite is a translation by
a vector perpendicular to both. If the lines of reflection intersect, then the composite is a rotation
by twice the angle of intersection between the lines.

(6) Composite of reflection and translation: This gives rise to what is called a glide reflection, which
is a new type of self-isometry of R2.

(7) Composite of reflection and rotation: This is trickier. It could be a reflection or a glide reflection,
depending on whether the center of rotation lies on the line of reflection.

The upshot is that:

• The orientation-preserving self-isometries of R2 are precisely the translations and rotations. Note
that these form a group.

• The orientation-reversing self-isometries of R2 are precisely the reflections and glide reflections. Note
that these do not form a group, but together with translations and rotations, they form the group
of all self-isometries.

4.8. Self-isometries that are linear. Let’s consider self-isometries that are linear, i.e., they fix the origin.
These are subgroups of the group of all self-isometries. Explicitly:

• The orientation-preserving linear self-isometries of R2 are precisely the rotations about the origin,
specified by the angle of rotation (determined up to additive multiples of 2π). Composing two such
rotations involves adding the corresponding angles. These form a group. This group is denoted
SO(2,R) (you don’t need to know this!) and is called the special orthogonal group of degree two over
the reals.

• The orientation-reversing linear self-isometries of R2 are precisely the reflections about lines through
the origin. These do not form a group, but together with rotations about the origin, they form
a group. The whole group is denoted O(2,R) (you don’t need to know this!) and is called the
orthogonal group of degree two over the reals.

In general, an affine linear automorphism is a self-isometry if and only if its linear automorphism part is
a self-isometry. In other words:

~x 7→ A~x+~b
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is a self-isometry if and only if ~x 7→ A~x is a self-isometry.

5. The case of three dimensions

The case of three dimensions is somewhat trickier than two dimensions, but we can still come somewhat
close to a classification.

5.1. Rotations about axes. The simplest type of orientation-preserving self-isometry is a rotation about an
axis of rotation. Euler proved a theorem (called Euler’s rotation theorem) that every orientation-preserving
self-isometry that fixes a point must be a rotation about an axis through that point. In particular, all the
orientation-preserving self-isometries of R3 that are linear (in the sense of fixing the origin) are rotations
about axes through the origin.

5.2. Rotations composed with translations. We know that translations are orientation-preserving self-
isometries of Rn for any n. So are rotations. We also know that the self-isometries form a group. Thus,
composing a rotation about an axis with a translation should yield a self-isometry. For n = 2, any such
self-isometry would already be a rotation. For n = 3, this is no longer the case. It is possible to have
orientation-preserving self-isometries that are expressible as composites of translations and rotations but are
not translations or rotations themselves. For instance, a rotation about the z-axis followed by a translation
parallel to the z-axis works.

5.3. Reflections about planes and their composites. A reflection about a plane in R3 is an orientation-
reversing self-isometry of R3. For instance, the isometry:

(x, y, z) 7→ (−x, y, z)
is a reflection about the yz-plane. It is orientation-reversing, and its matrix is:−1 0 0

0 1 0
0 0 1


We have not yet seen how to compute the determinant of a general 3×3 matrix. However, the determinant

of a diagonal matrix is simply the product of the diagonal entries. In this case, the determinant is −1, as
it should be, since the reflection is orientation-reversing but, on account of being a self-isometry, is volume-
preserving.

A composite of two reflections about different planes is an orientation-preserving self-isometry. If the
planes are not parallel, this is a rotation about the axis of intersection by twice the angle of intersection
between the planes. For instance, the transformation:

(x, y, z) 7→ (−x,−y, z)
corresponds to the diagonal matrix: −1 0 0

0 −1 0
0 0 1


This has determinant 1. It is both orientation-preserving and area-preserving. We can also think of it as

a rotation by an angle of π about the z-axis, i.e., a half-turn about the z-axis. The angle is π because the
individual planes of reflection are mutually perpendicular (angle π/2).

Finally, consider a composite of three reflections. Consider the simple case where the reflections are about
three mutually perpendicular planes. An example is:

(x, y, z) 7→ (−x,−y,−z)
This corresponds to the diagonal matrix:
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−1 0 0
0 −1 0
0 0 −1


The linear transformation here is orientation-reversing on account of being a composite of an odd number

of reflections. It is a self-isometry, so the determinant should be −1, and indeed, the determinant is −1.
More generally, we could have a map of the form:−1 0 0

0 cos θ − sin θ
0 sin θ cos θ


This map reflects the x-coordinate and performs a rotation by θ on the yz-plane.

6. Where we’re hoping to go with this

In the future, we will build on what we have learned so far in the following ways:

• We will understand the procedure for composing linear transformations (or more generally affine
linear transformations) purely algebraically, i.e., in terms of their description using matrices and
vectors.

• We will understand criteria for looking at a linear transformation algebraically to determine whether
it is a self-isometry, self-homothety, orientation-preserving, and/or area-preserving.

• We will understand more about the group structure of various kinds of groups of linear transforma-
tions and affine linear transformations.

11
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