
REVIEW SHEET FOR MIDTERM 1: BASIC

MATH 195, SECTION 59 (VIPUL NAIK)

We will not be going over this sheet, but rather, we’ll be going over the advanced review sheet in the
session. Please review this sheet on your own time.

1. Formula summary

1.1. Parametric. Set x = f(t), y = g(t), parametric curve in R2.
• dy/dt = g′(t) and dx/dt = f ′(t).
• dy

dx = g′(t)
f ′(t) .

• d2y
dx2 = f ′(t)g′′(t)−g′(t)f ′′(t)

(f ′(t))3

• Arc length:
∫ √

(f ′(t))2 + (g′(t))2 dt

1.2. Polar. Set r = F (θ), polar equation of a curve.
• y = F (θ) sin θ and x = F (θ) cos θ.
• dy/dθ = F ′(θ) sin θ + F (θ) cos θ and dx/dθ = F ′(θ) cos θ − F (θ) sin θ.
• dy

dx = F ′(θ) sin θ+F (θ) cos θ
F ′(θ) cos θ−F (θ) sin θ

• Arc length:
∫ √

(F (θ))2 + (F ′(θ))2 dθ

1.3. Three-dimensional geometry.
• Distance formula between (x1, y1, z1) and (x2, y2, z2):

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

• Sphere with center having coordinates (h, k, l) and radius r is (x− h)2 + (y − k)2 + (z − l)2 = r2.

1.4. Vectors.
• Vector dot product: 〈v1, v2, . . . , vn〉 · 〈w1, w2, . . . , wn〉 = v1w1 + v2w2 + · · ·+ vnwn.
• Length of vector 〈v1, v2, . . . , vn〉 is

√
v2
1 + v2

2 + · · ·+ v2
n.

• Unit vector in the direction of a vector v is v/|v|. Unit vector in opposite direction but along same
line (so parallel) is −v/|v|.

• Vector cross product: 〈a1, a2, a3〉 × 〈b1, b2, b3〉 = 〈a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1〉.
• For nonzero vectors v and w in three dimensions, we have |v × w| = |v||w| sin θ where θ is the angle

between v and w.
• Scalar triple product is a · (b× c).
• Angle between nonzero vectors v and w is arccos

(
v·w

|v||w|

)
.

• Scalar projection of b onto a is (a · b)/|a|. Note: Be careful what is being projected onto what.
• Vector projection of b onto a is ((a · b)/|a|2)a.
• Area of triangle with vertices P , Q and R is (1/2)|PQ × PR|. Need to: (i) compute difference

vectors, (ii) take cross product, (iii) compute length of the cross product, (iv) divide by 2.
• Area of parallelogram with vertices P , Q, R, S is |PQ× PR| or |PQ× PS| (same number). Steps

(i)-(iii) of above.
• Volume of parallelepiped is absolute value of scalar triple product of vectors for adjacent triple of

edges.

2. Quickly: what you should know from one-variable calculus

You need to be able to do the following from one-variable calculus and before:
(1) Finding domains of functions
(2) Basic algebraic manipulation and trigonometric identities

1



(3) Graphing: Know equation of circle centered at origin, graph linear functions, sine, cosine.
(4) Differentiation and integration: Everything you saw in one-variable calculus. However, for this

midterm, you will get only simple integrations that rely on the very basic formulas and not, for
instance, those that use integration by parts.

3. Parametric stuff

Words ...

(1) A parametric description of a curve is one where both coordinates are expressed as functions of
of a parameter, typically denoted t. Parametric descriptions offer an alternative to functional and
implicit (relational) descriptions of curves. Here, t varies over some subset of the real numbers. In
symbols, we have something like x = f(t), y = g(t), where t varies over some subset D of the real
numbers.

(2) Descriptions where x is a function of y or y is a function of x are special cases of parametric
descriptions.

(3) The same curve may admit multiple parametrizations, and different parameterizations may corre-
spond to different speeds and different orderings of traversal of the point. The curve itself only
contains the information of what points were traversed, not the information of the sequence and pace
in which they were traversed.

(4) The curve traced by a parameterization depends not only on the coordinate functions but also the
domain for the parameter. The larger the domain, in general, the larger the curve traced. However,
in some cases, expanding the domain may not make the curve strictly larger. This happens in cases
where both coordinate functions are even or have commensurable periods.

(5) A parameterization of a curve may involve self-intersections, retracings (e.g., tracing back for even
function pairs), or even wrapping around itself (for periodic function pairs).

(6) Function composition allows us to switch between multiple parameterizations.
(7) In some cases, it is possible to move back and forth between parametric and relational descriptions.
(8) Parametric differentiation: if x = f(t) and y = g(t), then dy/dx = (dy/dt)/(dx/dt) = g′(t)/f ′(t).

This can also be used to differentiate repeatedly. Note that the derivative is a function of t rather
than of (x, y), so to find the derivative given the point (x, y) we need to go back and determine t.

(9) Higher derivatives can be computed iteratively using parametric differentiation. But note that it is
not true that d2y/dx2 = (d2y/dt2)/(d2x/dt2). The actual formula/procedure is more complicated
(see lecture notes or formula summary).

(10) Arc length: The formula for arc length from t = a to t = b (with a < b) is
∫ b

a

√
(dx/dt)2 + (dy/dt)2 dt.

Actions ...

(1) Parametric to relational: elimination of parameter: In many cases, it is possible to eliminate a pa-
rameter from a parametric description. The idea is to use some well known identities or manipulation
techniques to try to directly relate x and y by finding some equation between them that is true for
all t. However, this is not the full story. We next need to see if there are additional restrictions on
x and y deducible from the fact that they arose as function of t, also keeping in mind the domain
restrictions on t.

For instance, the parameterization x = t2, y = t4 for t ∈ R can be rewritten as y = x2, but we
need the additional condition that x ≥ 0.

See more examples in the lecture notes, quizzes, and homeworks.
(2) Relational to parametric: Here, we see a relation between x and y, and try to choose a parametric

description that would give rise to the relation. Again, the domain of choice for the parameter needs
to be chosen wisely.

See more examples in the lecture notes and quizzes.
(3) Parametric differentiation and geometric consequences: We use the formula (dy/dt)/(dx/dt). If

x = f(t) and y = g(t), then this becomes g′(t)/f ′(t). This is valid for all t in the interior of the
domain of definition where both f ′ and g′ are defined and f ′ 6= 0. If f ′(t) = 0 but g′(t) 6= 0, we have
a vertical tangent situation. If g′(t) = 0 but f ′(t) 6= 0, we have a horizontal tangent situation.
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4. Polar coordinates

Words ...
(1) Specifying a polar coordinate system: To specify a polar coordinate system, we need to choose a

point (called the origin or pole), a half-line starting at the point (called the polar axis or reference
line) and an orientation of the plane (chosen counter-clockwise in the usual depictions).

(2) Finding the polar coordinates of a point and vice versa: The radial coordinate r is the distance
between the point and the pole. The angular coordinate θ is the angle (measured in the counter-
clockwise direction) from the polar axis to the line segment from the pole to the point. Note that θ
is uniquely defined up to addition of multiples of 2π, and it becomes truly unique if we restrict it to
a half-open half-closed interval of length 2π. The exception is the pole itself, for which θ is undefined
in the sense that any value of θ could be chosen.

(3) Converting between Cartesian and polar coordinates: If we take the polar axis as the positive x-axis
and the axis at an angle of +π/2 from it as the positive y-axis, we get a Cartesian coordinate system.
The point defined by polar coordinates (r, θ) has Cartesian coordinates (r cos θ, r sin θ). Conversely,
given a point with Cartesian coordinates (x, y) the corresponding polar coordinates are r =

√
x2 + y2

and θ is the unique angle (up to addition of multiples of 2π) such that x = r cos θ, y = r sin θ.
Actions ...
(1) A functional description of the form r = F (θ) gives rise to a parametric description in Cartesian

coordinates: x = F (θ) cos θ and y = F (θ) sin θ. We can do the usual things (like find slopes of
tangent lines) using this parametric description. Note that here, θ is typically allowed to vary over
all of R rather than simply being restricted to an interval of length 2π. The slope of the tangent line
in Cartesian terms is given by:

dy

dx
=

dy/dθ

dx/dθ
=

d(F (θ) sin θ)/dθ

d(F (θ) cos θ)/dθ
=

F ′(θ) sin θ + F (θ) cos θ

F ′(θ) cos θ − F (θ) sin θ

(2) The arc length is given by integrating
√

(F (θ))2 + (F ′(θ))2 for θ in the suitable interval. (See quiz
question on this).

(3) An implicit (relational) description in Cartesian coordinates can be converted to a description in
polar coordinates by replacing x by r cos θ and y by r sin θ.

(4) An implicit (relational) description in polar coordinates can sometimes be converted to a description
in Cartesian coordinates, but with some ambiguity. General idea: replace r by

√
x2 + y2, cos θ by

x/
√

x2 + y2, and sin θ by y/
√

x2 + y2.

5. Three-dimensional geometry

Words ...
(1) Three-dimensional space is coordinatized using a Cartesian coordinate system by selecting three

mutually perpendicular axes passing through a point called the origin: the x-axis, y-axis, and z-axis.
These satisfy the right-hand rule. The coordinates of a point are written as a 3-tuple (x, y, z).

(2) There are 23 = 8 octants based on the signs of each of the coordinates. There are three coordinate
planes, each corresponding to the remaining coordinate being zero (the xy-plane corresponds to
z = 0, etc.). There are three axes, each corresponding to the other two coordinates being zero (e.g.,
the x-axis corresponds to y = z = 0).

(3) The distance formula between points with coordinates (x1, y1, z1) and (x2, y2, z2) is:√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

This is similar to the formula in two dimensions and the squares and square root arises from the
Pythagorean theorem.

(4) The equation of a sphere with center having coordinates (h, k, l) and radius r is (x−h)2 +(y−k)2 +
(z− l)2 = r2. Given an equation, we can try completing the square to see if it fits the model for the
equation of a sphere.
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6. Introduction to vectors and relation with geometry

6.1. n-dimensional generality. Words ...
(1) A vector is an ordered n-tuple of real numbers (or quantities measured using real numbers). The

space of such n-tuples is a n-dimensional vector space over the real numbers. Vectors can be used
to store tuples of prices, probabilities, and other kinds of quantities.

(2) There is a zero vector. We can add vectors and we can multiply a vector by a scalar. Note that
these operations may or may not have an actual meaning based on the thing we are storing using
the vector.

(3) We can take the dot product v·w of two vectors v and w in n-dimensional space. if v = 〈v1, v2, . . . , vn〉
and w = 〈w1, w2, . . . , wn〉, then v · w =

∑n
i=1 viwi. The dot product is a real number (though if we

put units to the coordinates of the vector, it gets corresponding squared units).
(4) The length or norm of a vector v, denoted |v|, is defined as

√
v · v. It is a nonnegative real number.

(5) The correlation between two vectors v and w is defined as (v · w)/(|v||w|). It is in [−1, 1]. (For
geometric interpretation, see the three-dimensional case).

(6) Properties of the dot product: The dot product is symmetric, the dot product of any vector with
the zero vector is 0, the dot product is additive (distributive) in each coordinate and scalars can be
pulled out.

(7) Properties of length: The only vector with length zero is the zero vector, all other vectors have
positive length. The length of λv is |λ| times the length of v. We also have |v + w| ≤ |v| + |w| for
any vectors v and w, with equality occurring if either is a positive scalar multiple of the other or one
of them is the zero vector.

6.2. Three-dimensional geometry. Words ...
(1) We can identify points in three-dimensional space with three-dimensional vector as follows: the

vector corresponding to a point (x, y, z) is the vector 〈x, y, z〉. Physically, this can be thought of as
a directed line segment or arrow from the origin to the point (x, y, z).

(2) We can also consider vectors starting at any point in three-dimensional space and ending at any
point. The corresponding vector can be obtained by subtracting the coordinates of the points. The
vector from point P to point Q is denoted PQ.

(3) There are unit vectors i = 〈1, 0, 0〉, j = 〈0, 1, 0〉, and k = 〈0, 0, 1〉. These are thus the vectors of
length 1 along the positive x, y, and z directions respectively. A vector 〈x, y, z〉 can be written as
xi + yj + zk.

(4) Vectors can be added geometrically using the parallelogram law. This procedure gives the same
answer as the usual coordinate-wise addition.

(5) Scalar multiplication also has a geometric interpretation – the length gets scaled by the scalar
multiple, and the direction remains the same or is reversed depending on the scalar’s sign.

(6) For vectors v and w, we have v · w = |v||w| cos θ where θ is the angle between v and w. We can use
this procedure to find the angle between two vectors. The correlation between the vectors is thus
cos θ. We can interpret this specifically for θ = 0, θ an acute angle, θ = π/2, θ an obtuse angle, and
θ = π (see the table in the lecture notes).

(7) We can define the vector cross product v × w using a matrix determinant. Equivalently, if v =
〈v1, v2, v3〉 and w = 〈w1, w2, w3〉, then v × w = 〈v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1〉. This is a
specifically three-dimensional construct.

(8) The cross product has the property that cross product of any two collinear vectors is zero, cross
product of any vector with the zero vector is zero, the cross product is skew-symmetric, distributive
in each variable, and allows scalars to be pulled out. It is not associative in general. There is an
identity relating cross product and dot product: a × (b × c) = (a · c)b − (a · b)c. Also, the cross
product satisfies the relation:

a× (b× c) + b× (c× a) + c× (a× b) = 0

(9) The cross product of a and b satisfies |a× b| = |a||b| sin θ where θ is the angle between a and b, and
further, the cross product vector is perpendicular to both a and b, and its direction is given by the
right hand rule.
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(10) There is a scalar triple product. The scalar triple product of vectors a, b, and c is defined as the
number a·(b×c). It can also be viewed as the determinant of a matrix whose rows are the coordinates
of a, b, and c respectively. The scalar triple product is preserved under cyclic permutations of the
input vectors and gets negated under flipping two of the input vectors. It is linear in each input
variable (i.e., distributive and pulls out scalars). The scalar triple product is zero if and only if the
three input vectors can all be made to lie in the same plane.

(11) Added for clarification: In particular, a · (a × b) = 0 and b · (a × b) = 0 for any vectors a and b in
three dimensions.

Actions ...

(1) Vector and scalar projections: Given vectors a and b, the vector projection of b onto a, denoted
proja b, is given by the vector a·b

|a|2 a. The scalar projection or component of b along a, denoted
compa b, is given by a·b

|a| . The vector projection is what we obtain by taking the vector from the
origin to the foot of the perpendicular from the head of b to the line of a. The scalar projection is
the directed length of this vector, measured positive in the direction of a.

(2) Finding the angle between vectors: This is done using the dot product. The angle between vectors
v and w is arccos((v · w)/|v||w|).

(3) Finding the area of a triangle or a parallelogram: We first find two adjacent sides as vectors both
with the same starting vertex (by taking the differences of coordinates of endpoints). For the
parallelogram, we take the length of the cross product of these two vectors. For the triangle, we take
half the length.

(4) Finding the volume of a parallelopiped: We find three sides as vectors, all with the same starting
vertex. Then we take the absolute value of the scalar triple product of these sides.

(5) Finding a vector orthogonal to two given vectors: Simply take the cross product if they are linearly
independent. Otherwise, just pick anything that dots with one of them to zero.

(6) Testing orthogonality: We check whether the dot product is zero.
(7) Testing coplanarity of points: We take one point as the basepoint, compute difference vectors to it

from the other three points. We then take the scalar triple product of these three vectors. If we get
zero, then the four points are coplanar, otherwise they are not.

7. Vector-valued functions

7.1. Vector-valued functions, limits, and continuity.

(1) Not for review discussion: A vector-valued function is a function from R, or a subset of R, to a
vector space Rn. It comprises n scalar functions, one for each of the coordinates. For instance, given
scalar functions f1, f2, . . . , fn, we can construct a vector-valued function f = 〈f1, f2, . . . , fn〉 defined
by t 7→ 〈f1(t), f2(t), . . . , fn(t)〉.

(2) Not for review discussion: A vector-valued function in n dimensions corresponds to a parametric
description of a curve in Rn whose points are just the heads of the corresponding vectors. The vector-
valued function from the previous observation has corresponding curve {(f1(t), f2(t), . . . , fn(t)) : t ∈
D} where D is the appropriate domain.

(3) To add two vector-valued functions in n dimensions, we add them coordinate-wise, where the corre-
sponding scalar functions are added pointwise as usual. This sum is also a vector-valued function in
n dimensions.

(4) We can multiply a scalar function and a vector-valued function to get a new vector-valued function.
At each point in the domain, this is just multiplication of the corresponding scalar number and the
corresponding vector.

(5) We can take the dot product of two vector-valued functions in n dimensions. The dot product is a
scalar-valued function. At each point in the domain, it is obtained by taking the dot product of the
corresponding vector values.

(6) For n = 3, we can take the cross product of two vector-valued functions and get a vector-valued
function. This cross product is taken pointwise.
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(7) To calculate the limit of a vector-valued function at a point, we calculate the limit separately for
each coordinate. We use this idea to define the limit, left hand limit, and right hand limit at any
point in the domain.

(8) Limit theorems: Limit of sum is sum of limits, constant scalars pull out of limits, limit of scalar-
vector product is product of scalar limit and vector limit, limit of dot product is dot product of
limits, limit of cross product (case n = 3) is cross product of limits.

(9) A vector-valued function is continuous at a point in its domain if each coordinate function is con-
tinuous, or equivalently, if the limit equals the value. We say it is continuous on its interval if it is
continuous at every point in the interior of the interval and has one-sided continuity at one of the
endpoints.

(10) Continuity theorems: Sum of continuous vector-valued functions is continuous, product of continuous
scalar function and continuous vector-valued function is continuous, dot product of continuous vector-
valued functions is continuous, cross product (case n = 3) of continuous vector-valued functions is
continuous.

(11) There is no n-dimensional analogue of the intermediate value theorem, multiple things fail.

Actions ...

(1) If no domain is specified, the domain of a vector-valued function is the intersection of the domains
of all the constituent scalar functions.

7.2. Top-down and bottom-up descriptions. Words ...

(1) A top-down description of a subset of Rn is in terms of a system of equations and inequality con-
straints. Each equation (equality constraint) is expected to reduce the dimension by 1 (we start
from n) whereas inequality constraints usually have no effect on the dimension. So if there are k
independent equality constraints describing a subset of Rn, we expect the subset to have dimension
n− k.

(2) A bottom-up description is a parametric description with possibly more than one parameter. The
number of parameters needed is the dimension of the subset. The parametric descriptions we have
seen so far are 1-parameter descriptions and hence they describe curves – 1-dimensional subsets.

(3) The codimension of a m-dimensional subset is n−m.
(4) When intersecting, codimensions are expected to add. If the total codimension we get after adding

is greater than the dimension of the space, the intersection is expected to be empty.
(5) In R3, curves are one-dimensional, surfaces are two-dimensional. Thus, curves are not expected to

intersect each other, but curves and surfaces are expected to intersect at finite collections of points
(in general).

Actions ...

(1) Strategy for finding intersection of subsets in Rn (specifically, curves and surfaces in R3) given with
top-down descriptions: Take all the equations together and solve simultaneously.

(2) Strategy for finding intersection of curve given parametrically and curve or surface given by top-down
description: Plug in the functions of the parameter for the coordinates in the top-down description.

(3) Strategy for finding intersection of curves given parametrically: Choose different letters for parameter
values, and then equate coordinate by coordinate. We get a bunch of equations in two variables (the
two parameter values).

(4) Strategy for finding collision of curves given parametrically: Just equate coordinates, using the same
letter for parameter values. Get a bunch of equations all in one variable.

7.3. Differentiation, tangent vectors, integration.

(1) The derivative of a n-dimensional vector-valued function is again a n-dimensional vector-valued
function. It can be defined by differentiating each coordinate with respect to the parameter, or by
using a difference quotient expression. These definitions are equivalent.

(2) This derivative operation satisfies the sum rule, pulling out constant scalars, and product rules for
scalar-vector multiplication, dot product, and cross product (case n = 3).
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(3) As a free vector, the tangent vector at t = t0 to a parametric description of a curve is just the
derivative vector for the corresponding vector-valued function. As a localized vector, it starts off at
the corresponding point in Rn.

(4) The tangent vector for a curve with parametric description depends on the choice of parameterization.
The unit tangent vector does not, apart from the issue of direction (forward or backward). The unit
tangent vector is a unit vector (i.e., length 1 vector) in the direction of the tangent vector. It is
unique for a given curve (independent of parameterization) up to forward-backward issues.

(5) To perform definite or indefinite integration of a vector-valued function, we perform the integration
coordinate-wise.
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REVIEW SHEET FOR MIDTERM 1: ADVANCED

MATH 195, SECTION 59 (VIPUL NAIK)

To maximize efficiency, please bring a copy (print or readable electronic) of this review sheet
to the review session.

1. Formula summary

1.1. Parametric. Set x = f(t), y = g(t), parametric curve in R2.
• dy/dt = g′(t) and dx/dt = f ′(t).
• dy

dx = g′(t)
f ′(t) .

• d2y
dx2 = f ′(t)g′′(t)−g′(t)f ′′(t)

(f ′(t))3

• Arc length:
∫ √

(f ′(t))2 + (g′(t))2 dt

1.2. Polar. Set r = F (θ), polar equation of a curve.
• y = F (θ) sin θ and x = F (θ) cos θ.
• dy/dθ = F ′(θ) sin θ + F (θ) cos θ and dx/dθ = F ′(θ) cos θ − F (θ) sin θ.
• dy

dx = F ′(θ) sin θ+F (θ) cos θ
F ′(θ) cos θ−F (θ) sin θ

• Arc length:
∫ √

(F (θ))2 + (F ′(θ))2 dθ

1.3. Three-dimensional geometry.
• Distance formula between (x1, y1, z1) and (x2, y2, z2):

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

• Sphere with center having coordinates (h, k, l) and radius r is (x− h)2 + (y − k)2 + (z − l)2 = r2.

1.4. Vectors.
• Vector dot product: 〈v1, v2, . . . , vn〉 · 〈w1, w2, . . . , wn〉 = v1w1 + v2w2 + · · ·+ vnwn.
• Length of vector 〈v1, v2, . . . , vn〉 is

√
v2
1 + v2

2 + · · ·+ v2
n.

• Unit vector in the direction of a vector v is v/|v|. Unit vector in opposite direction but along same
line (so parallel) is −v/|v|.

• Vector cross product: 〈a1, a2, a3〉 × 〈b1, b2, b3〉 = 〈a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1〉.
• For nonzero vectors v and w in three dimensions, we have |v × w| = |v||w| sin θ where θ is the angle

between v and w.
• Scalar triple product is a · (b× c).
• Angle between nonzero vectors v and w is arccos

(
v·w

|v||w|

)
.

• Scalar projection of b onto a is (a · b)/|a|. Note: Be careful what is being projected onto what.
• Vector projection of b onto a is ((a · b)/|a|2)a.
• Area of triangle with vertices P , Q and R is (1/2)|PQ × PR|. Need to: (i) compute difference

vectors, (ii) take cross product, (iii) compute length of the cross product, (iv) divide by 2.
• Area of parallelogram with vertices P , Q, R, S is |PQ × PR| or |PQ × PS| (same number). Steps

(i)-(iii) of above.
• Volume of parallelepiped is absolute value of scalar triple product of vectors for adjacent triple of

edges.

2. Quickly: what you should know from one-variable calculus

You need to be able to do the following from one-variable calculus and before:
(1) Finding domains of functions
(2) Basic algebraic manipulation and trigonometric identities
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(3) Graphing: Know equation of circle centered at origin, graph linear functions, sine, cosine.
(4) Differentiation and integration: Everything you saw in one-variable calculus. However, for this

midterm, you will get only simple integrations that rely on the very basic formulas and not, for
instance, those that use integration by parts.

3. Parametric stuff

Error-spotting exercises ...
(1) Consider the parametric curve given by x = sin3 t, y = t3. We want to calculate dy/dx at t = 0. We

note that dy/dt = 3t2, and at t = 0, this takes the value 0. Thus:

dy

dx
|t=0 =

dy/dt

dx/dt
|t=0 =

3t2

dx/dt
|t=0 =

0
dx/dt

= 0

(2) Consider the curve x = (cos t)2/3 and y = (sin t)2/3, t ∈ R. This curve is described by the relation
x3 + y3 = 1.

(3) Consider the curve given by x = et, y = et2 , t ∈ R. Then, the graph of this function is the part of
the parabola y = x2 for x ≥ 0.

(4) Consider the curve given parametrically by x = cos(t2), y = sin(t2). To calculate the length of the
arc of this curve from t = 0 to t = 5, we calculate:∫ 5

0

√
(cos(t2))2 + (sin(t2))2 dt =

∫ 5

0

√
cos2(t2) + sin2(t2) dt =

∫ 5

0

dt = 5

4. Polar coordinates

Error-spotting exercises ...
(1) Consider the parametric description x = cos2 θ, y = sin2 θ. To convert to a polar description, we

set x = r cos θ, y = r sin θ, so we get r cos θ = cos2 θ and r sin θ = sin2 θ. Simplifying, we get either
r = cos θ = sin θ or r = cos θ, sin θ = 0, or r = sin θ, cos θ = 0.

5. Three-dimensional geometry

Error-spotting exercises ...
(1) Suppose A and B are points in R3. Suppose λ is a fixed positive real number. Then, the set of

points C such that |AC|/|BC| = λ is a plane whose intersection with the line segment AB divides
it into the ratio λ : 1. The case λ = 1 is a case in point: in this case, the plane is the perpendicular
bisector of AB.

6. Introduction to vectors and relation with geometry

6.1. n-dimensional generality. Error-spotting exercises ...
(1) The product of the vectors 〈1, 2, 3〉 and 〈3, 4, 5〉 is the vector 〈3, 8, 15〉.
(2) If a is a scalar and v = 〈v1, v2, . . . , vn〉 is a vector, the length of av = 〈av1, av2, . . . , avn〉 is a times

the length of v.
(3) The dot product of the three vectors 〈1, 2, 3〉, 〈4, 5, 6〉, and 〈7, 8, 9〉 is 〈28, 80, 162〉.

6.2. Three-dimensional geometry. Error-spotting exercises ...
(1) The cross product of the vectors 〈2, 3, 0〉 and 〈4, 5, 0〉 is 〈(2)(5)−(4)(3), (3)(0)−(0)(5), (0)(4)−(0)(2)〉

which simplifies to 〈−2, 0, 0〉.
(2) We can compute the angle between vectors v and w by using the formula arcsin(|v × w|/(|v||w|)).
(3) Because the dot product of two vectors a and b is symmetric in a and b, the scalar projection of a

on b is the same as the scalar projection of b on a.
(4) To check whether three points are coplanar, we take the scalar triple product of the vectors giving

their coordinates and check if the scalar triple product is zero.
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7. Vector-valued functions

7.1. Vector-valued functions, limits, and continuity. Error-spotting exercises ...
(1) Consider the vector-valued function 〈1/t, 1/(t−1), 1/(t+1)〉. The domain is all real numbers, because

at every real number, at least one of the coordinates is defined.
(2) Consider the vector-valued functions 〈t, 1, t〉 and 〈t,−2t2, t〉. The dot product of these vector-valued

functions is identically the 0 function. Thus, the corresponding parametric curves for these functions
are orthogonal curves, i.e., they intersect at right angles.

7.2. Top-down and bottom-up descriptions. Error-spotting exercises ...
(1) If S1 and S2 are two surfaces in R3 given as the solutions to F1(x, y, z) = 0 and F2(x, y, z) = 0

respectively, then S1 ∩ S2 is given by the equation F1(x, y, z) + F2(x, y, z) = 0 and S1 ∪ S2 is given
by the equation F1(x, y, z)F2(x, y, z) = 0.

(2) The intersection of finitely many two-dimensional subsets of R3 is generically expected to be one-
dimensional. For instance, the intersection of two planes (each two-dimensional) is expected to be a
line (one-dimensional).

(3) Surfaces in R3 have dimension 2 and codimension 1. So, the intersection of two surfaces should have
codimension 1 + 1 = 2 and dimension 3 − 2 = 1, hence should be a curve. This means that the
intersection of any surface with itself should be a curve. In other words, every surface should be a
curve.

(4) The intersection of the surfaces x2 + y2 + z2 = 1 and x4 + y4 + z4 = 1/2 is the surface (x2 + y2 +
z2 − 1)(x4 + y4 + z4 − (1/2)) = 0.

(5) x2 + y2 = 1 defines a circle in the xy-plane in R3 centered at the origin and with radius 1. Hence,
the solution set in R3 to (x2 + y2 − 1)(y2 + z2 − 1)(z2 + x2 − 1) = 0 is the union of the three circles
in the xy-plane, yz-plane, and xz-plane, with center at the origin and radius 1.

7.3. Differentiation, tangent vectors, integration. Error-spotting exercises ...
(1) The indefinite integral of the vector-valued function t 7→ 〈2t, 3t2, 4t3〉 is t 7→ 〈t2 + C, t3 + C, t4 + C〉.
(2) Suppose f and g are vector-valued functions. Then:∫

(f(t) · g(t)) dt = f(t) ·
(∫

g(t) dt

)
+

(∫
f(t) dt

)
· g(t)

3



REVIEW SHEET FOR MIDTERM 2: BASIC

MATH 195, SECTION 59 (VIPUL NAIK)

To maximize efficiency, please bring a copy (print or readable electronic) of this review sheet
to the review session.

The document does not include material that was part of the midterm 1 syllabus. Very little of that material
will appear directly in midterm 2; however, you should have reasonable familiarity with the material.

We will not be going over this sheet, but rather, we’ll be going over the advanced review sheet in the
session. Please review this sheet on your own time.

1. Formula summary

1.1. Formula formulas.
(1) Unit vectors parallel to a nonzero vector v are v/|v| and −v/|v|.
(2) Coordinates of the unit vector are the direction cosines. If v/|v| = 〈`,m, n〉, these are the direction

cosines. If α, β, γ ∈ [0, π] are such that cos α = `, cos β = m, cos γ = n, then α, β, γ are the direction
angles.

(3) Parametric equation of line in R3: r = r0 + tv, r0 is the radial vector for a point in the line, v is the
difference vector between two points in the line. In scalar terms, x = x0 + ta, y = y0 + tb, z = z0 + tc,
where r = 〈x, y, z〉, r0 = 〈x0, y0, z0〉, and v = 〈a, b, c〉. (See also two-point form parametric equation).

(4) Symmetric equation of line in R3 not parallel to any coordinate plane (i.e., abc 6= 0 case):

x− x0

a
=

y − y0

b
=

z − z0

c
with same notation as for parametric equation. (See also cases of parallel to coordinate plane).

(5) Equation of plane: vector equation n · r = n · r0 where n is a nonzero normal vector, r0 is a fixed
point in the plane. If n = 〈a, b, c〉, r0 = 〈x0, y0, z0〉, and r = 〈x, y, z〉, we get:

ax + by + cz = ax0 + by0 + cz0

(6) For a function z = f(x, y), the tangent plane to the graph of this function (a surface in R3) at the
point (x0, y0, f(x0, y0)) such that f is differentiable at the point (x0, y0) is the plane:

z − f(x0, y0) = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)
The corresponding linear function we get is:

L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)
This provides a linear approximation to the function near the point where we are computing the

tangent plane.

1.2. Artistic formulas.
(1) Partial differentiation, multiplicatively separable – differentiate each piece in the corresponding vari-

able the corresponding number of times.
(2) Partial differentiation, additively separable – pure partials, just care about function of that variable,

mixed partials are zero.
(3) Integration along rectangular region, multiplicatively separable – product of integrals for function of

each variable.
(4) Integration along non-rectangular region, multiplicatively separable – outer variable function can be

pulled to outer integral.
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2. Equations of lines and planes

2.1. Direction cosines.
(1) For a nonzero vector v, there are two unit vectors parallel to v, namely v/|v| and −v/|v|.
(2) The direction cosines of v are the coordinates of v/|v|. if v/|v| = 〈`,m, n〉, then the direction cosines

are `, m, and n. We have the relation `2 + m2 + n2 = 1. Further, if α, β, and γ are the angles made
by v with the positive x, y, and z axes, then ` = cos α, m = cos β, and n = cos γ.

2.2. Lines. Words ...
(1) A line in R3 has dimension 1 and codimension 2. A parametric description of a line thus requires 1

parameter. A top-down equational description requires two equations.
(2) Given a point with radial vector r0 and a direction vector v along a line, the parametric description

of the line is given by r(t) = r0 + tv. If r0 = 〈x0, y0, z0〉 and v = 〈a, b, c〉, this is more explicitly
described as x = x0 + ta, y = y0 + tb, z = z0 + tc.

(3) Given two points with radial vectors r0 and r1, we obtain a vector equation for the line as r(t) =
tr1 + (1− t)r0. If we restrict t to the interval [0, 1], then we get the line segment joining the points
with these radial vectors.

(4) If the line is not parallel to any of the coordinate planes, this parametric description can be converted
to symmetric equations by eliminating the parameter t. With the above notation, we get:

x− x0

a
=

y − y0

b
=

z − z0

c
This is actually two equations rolled into one.

(5) If c = 0 and ab 6= 0, the line is parallel to the xy-plane, and we get the equations:

x− x0

a
=

y − y0

b
, z = z0

Similarly for the other cases where precisely one coordinate is zero.
(6) If a = b = 0 and c 6= 0, the line is parallel to the z-axis, and we get the equations:

x = x0, y = y0

Actions ...
(1) To intersect two lines both given parametrically: Choose different letters for parameters, equate

coordinates, solve 3 equations in 2 variables. Note: Expected dimension of solution space is 2− 3 =
−1.

(2) To intersect a line given parametrically and a line given by equations: Plug in the coordinates as
functions of parameters into both equations, solve. Solve 2 equations in 1 variable. Note: Expected
dimension of solution space is 1− 2 = −1.

(3) To intersect two lines given by equations: Combine equations, solve 4 equations in 3 variables. Note:
Expected dimension of solution space is 3− 4 = −1.

2.3. Planes. Words ...
(1) Vector equation of a plane (for the radial vector) is n · (r − r0) = 0 where n is a normal vector

to the plane and r0 is the radial vector of any fixed point in the plane. This can be rewritten as
n · r = n · r0. Using n = 〈a, b, c〉, r = 〈x, y, z〉, and r0 = 〈x0, y0, z0〉, we get the corresponding scalar
equation ax+ by + cz = ax0 + by0 + cz0. Set d = −(ax0 + by0 + cz0) and we get ax+ by + cz + d = 0.

(2) The “direction” or “parallel family” of a plane is determined by its normal vector. The angle between
planes is the angle between their normal vectors. Two planes are parallel if their normal vecors are
parallel. And so on.

Actions ...
(1) Given three non-collinear points, we find the equation of the unique plane containing them as follows:

first we find a normal vector by taking the cross product of two of the difference vectors. Then we
use any of the three points to calculate the dot product with the normal vector in the above vector
equation or the corresponding scalar equation.
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Note that if the points are collinear, there is no unique plane through them – any plane containing
their line is a plane containing them.

(2) We can compute the angle of intersection of two planes by computing the angle of intersection of
their normal vectors.

(3) The line of intersection of two planes that are not parallel can be computed by simply taking the
equations for both planes. This, however, is not a standard form for a line in R3. To find a standard
form, either find two points by inspection and join them, or find one point by inspection and another
point by taking the cross product of the normal vectors to the plane.

(4) To intersect a plane and a line, plug in parametric expressions for the coordinates arising from the
line into the equation of the plane. We get one equation in the one parameter variable. In general,
this is expected to have a unique solution for the parameter. Plug in the value of the parameter into
the parametric expressions for the line and get the coordinates of the point of intersection.

(5) For a point with coordinates (x1, y1, z1) and a plane ax + by + cz + d = 0, the distance of the point
from the plane is given by |ax1 + by1 + cz1 + d|/

√
a2 + b2 + c2.

3. Functions of several variables

3.1. Introduction. Words ...
(1) A function of n variables is a function on a subset of Rn. We can think of it in three ways: as a

function with n real inputs, as a function with input a point in (a subset of) Rn, and as a function
with n-dimensional vector inputs. We often write the inputs with numerical subscripts, so a function
f of n inputs is written as f(x1, x2, . . . , xn).

(2) In the case n = 2, we often write the inputs as x, y so we write f(x, y). This may be concretely
described as an expression in terms of x and y.

(3) The graph of a function f(x, y) of the two variables x and y is the surface z = f(x, y). The xy-plane
plays the role of the independent variable plane and the z-axis is the dependent variable axis. Any
such graph satisfies the “vertical” line test where vertical means parallel to the z-axis.

(4) The level curves of a function f(x, y) are curves satisfying f(x, y) = z0 for some fixed z0. These are
curves in the xy-plane.

(5) The level surfaces of a function f(x, y, z) of three variables are the surfaces satisfying f(x, y, z) = c
for some fixed c.

(6) Domain convention: If nothing else is specified, the domain of a function in n variables given by an
expression is defined as the largest subset of Rn on which that expression makes sense.

(7) We can also define vector-valued functions of many variables, e.g., a function from a subset of Rm

to a subset of Rn.
(8) We can do various pointwise combination operations on functions of many variables, similar to what

we do for functions of one variable (both the scalar and vector cases).
(9) To compose functions, we need that the number of outputs of the inner/right function equals the

number of inputs of the outer/left function.
Actions ...
(1) To find the domain, we first apply the usual conditions on denominators, things under square roots,

and inputs to logarithms and inverse trigonometric functions. For functions of two variables, each
such condition usually gives a region of R2 bounded by a line or curve.

(2) After getting a bunch of conditions that need to be satisfied, we try to find the common solution set
for all of these. This involves intersecting the regions in R2 obtained previously.

3.2. Limits and continuity. Words ...
(1) Conceptual definition of limit limx→c f(x) = L: For any neighborhood of L, however small, there

exists a neighborhood of c such that for all x 6= c in that neighborhood of c, f(x) is in the original
neighborhood of L.

(2) Other conceptual definition of limit limx→c f(x) = L: For any open ball centered at L, however
small, there exists an open ball centered at c such that for all x 6= c in that open ball, f(x) lies in
the original open ball centered at L.
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(3) ε − δ definition of limit limx→c f(x) = L: For any ε > 0, there exists δ > 0 such that for all
x = 〈x1, x2, . . . , xn〉 satisfying 0 < |x− c| < δ, we have |f(x)−L| < ε. The definition is the same for
vector inputs and vector outputs, but we interpret subtraction as vector subtraction and we interpret
| · | as length/norm of a vector rather than absolute value if dealing with vectors instead of scalars.

(4) On the range/image side, it is possible to break down continuity into continuity of each component,
i.e., a vector-valued function is continuous if each component scalar function is continuous. This
cannot be done on the domain side.

(5) We can use the above definition of limit to define a notion of continuity. The usual limit theorems
and continuity theorems apply.

(6) The above definition of continuity, when applied to functions of many variables, is termed joint
continuity. For a jointly continuous function, the restriction to any continuous curve is continuous
with respect to the parameterization.

(7) We can define a function of many variables to be a continuous in a particular variable if it is
continuous in that variable when we fix the values of all other variables. A function continuous in
each of its variables is termed separately continuous. Any jointly continuous function is separately
continuous, but the converse is not necessarily true.

(8) Geometrically, separate continuity means continuity along directions parallel to the coordinate axes.
(9) For homogeneous functions, we can talk of the order of a zero at the origin by converting to ra-

dial/polar coordinates and then seeing the order of the zero in terms of r.
Actions ...
(1) Polynomials and sin and cos are continuous, and things obtained by composing/combining these are

continuous. Rational functions are continuous wherever the denominator does not blow up. The
usual plug in to find the limit rule, as well as the usual list of indeterminate forms, applies.

(2) Unlike the case of functions of one variable, the strategy of canceling common factors is not sufficient
to calculate all limits for rational functions. When this fails, and we need to compute a limit at the
origin, try doing a polar coordinates substitution, i.e., x = r cos θ, y = r sin θ, r > 0. Now try to find
the limit as r → 0. If you get an answer independent of θ in a strong sense, then that’s the limit.
This method works best for homogeneous functions.

(3) For limit computations, we can use the usual chaining and stripping techniques developed for func-
tions of one variable.

3.3. Partial derivatives. Words ...
(1) The partial derivative of a function of many variables with respect to any one variable is the de-

rivative with respect to that variable, keeping others constant. It can be written as a limit of a
difference quotient, using variable letter subscript (such as fx(x, y)), numerical subscript based on
input position (such as f2(x1, x2, x3)), Leibniz notation (such as ∂/∂x).

(2) In the separate continuity-joint continuity paradigm, partial derivatives correspond to the “separate”
side. The corresponding “joint” side notion requires linear algebra and we will therefore defer it.

(3) The expression for the partial derivative of a function of many variables with respect to any one
of them involves all the variables, not just the one being differentiated against (the exception is
additively separable functions). In particular, the value of the partial derivative (as a number)
depends on the values of all the inputs.

(4) The procedure for partial derivatives differs from the procedure used for implicit differentiation: in
partial derivatives, we assume that the other variable is independent and constant, while in implicit
differentiation, we treat the other variable as an unknown (implicit) function of the variable.

(5) We can combine partial derivatives and implicit differentiation, for instance, G(x, y, z) = 0 may
be a description of z as an implicit function of x and y, and we can compute ∂z/∂x by implicit
differentiation, differentiate G, treat z as an implicit function of x and treat y as a constant.

(6) By iterating partial differentiation, we can define higher order partial derivatives. For instance fxx

is the derivative of fx with respect to x. For a function of two variables x and y, we have four second
order partials: fxx, fyy, fxy and fyx.

(7) Clairaut’s theorem states that if f is defined in an open disk surrounding a point, and both mixed
partials fxy and fyx are jointly continuous in the open disk, then fxy = fyx at the point.
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(8) We can take higher order partial derivatives. By iterated application of Clairaut’s theorem, we can
conclude that under suitable continuity assumptions, the mixed partials having the same number of
differentiations with respect to each variable are equal in value.

(9) We can consider a partial differential equation for functions of many variables. This is an equation
involving the function and its partial derivatives (first or higher order) all at one point. A solution
is a function of many variables that, when plugged in, satisfies the partial differential equation.

(10) Unlike the case of ordinary differential equations, the solution spaces to partial differential equations
are huge, usually infinite-dimensional, and there is often no neat description of the general solution.

Pictures ...
(1) The partial derivatives can be interpreted as slopes of tangent lines to graphs of functions of the one

variable being differentiated with respect to, once we fix the value of the other variable.
Actions ...
(1) To compute the first partials, differentiate with respect to the relevant variable, treating other

variables as constants.
(2) Implicit differentiation for first partial of implicit function of two variables, e.g., z as a function of x

and y given via G(x, y, z) = 0.
(3) In cases where differentiation formulas do not apply directly, use the limit of difference quotient idea.
(4) To calculate partial derivative at a point, it may be helpful to first fix the values of the other

coordinates and then differentiate the function of one variable rather than trying to compute the
general expression for the derivative using partial differentiation and then plugging in values. On
the other hand, it might not.

(5) Two cases of particular note for computing partial derivatives are the cases of additively and multi-
plicatively separable functions.

(6) To find whether a function satisfies a partial differential equation, plug it in and check. Don’t try to
find a general solution to the partial differential equation.

Econ-speak ...
(1) Partial derivatives = marginal analysis. Positive = increasing, negative = decreasing
(2) Second partial derivatives = nature of returns to scale. Positive = increasing returns (concave up),

zero = constant returns (linear), negative = decreasing returns (concave down)
(3) Mixed partial derivatives = interaction analysis; positive mixed partial derivative means comple-

mentary, negative mixed partial derivative means substitution
(4) The signs of the first partials are invariant under monotone transformations, not true for signs of

second partials, pure or mixed.
(5) Examples of quantity demanded, production functions.
(6) Cobb-Douglas production functions (see section of lecture notes and corresponding discussion in the

book)

3.4. Tangent planes and linear approximations. Words ...
(1) For a d-dimensional subset of Rn, it (occasionally) makes sense to talk of the tangent space and the

normal space at a point. The tangent space is a linear/affine d-dimensional space and the normal
space is a linear/affine (n − d)-dimensional space. Both pass through the point and are mutually
orthogonal.

(2) For a function z = f(x, y), the tangent plane to the graph of this function (a surface in R3) at the
point (x0, y0, f(x0, y0)) such that f is differentiable at the point (x0, y0) is the plane:

z − f(x0, y0) = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

The corresponding linear function we get is:

L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

This provides a linear approximation to the function near the point where we are computing the
tangent plane.
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(3) It may be the case that a function f of two variables is not differentiable at a point in its domain but
the partial derivatives exist. In this case, although the above formula makes sense as a formula, the
plane it gives is not the tangent plane – in fact, no tangent plane exists. Similarly, no linearization
exists, and the linear function given by the above formula is not a close approximation to the function
near the point.

3.5. Chain rule. Words ...
(1) The general formulation of chain rule: consider a function with m inputs and n outputs, and another

function with n inputs and p outputs. Composing these, we get a function with m inputs and p
outputs. The m original inputs are termed independent variables, the n in-between things are termed
intermediate variables, and the p final outputs are termed dependent variables.

For a given triple of independent variable t, intermediate variable x, and dependent variable u,
the partial derivative of u with respect to t via x is defined as:

∂u

∂x

∂x

∂t
The chain rule says that the partial derivative of u with respect to t is the sum, over all intermediate

variables, over the partial derivatives via each intermediate variable.
(2) The 1 → 2 → 1 and 2 → 2 → 1 versions (see the lecture notes or the book).
(3) There is also a tree interpretation of this, where we make pathways based on the directions/paths of

dependence. This is discussed in the book, not the lecture notes.
(4) The product rule for scalar functions can be proved using the chain rule. Other variants of the

product rule can be proved using generalized formulations of the chain rule, which are beyond our
current scope.

(5) Implicit differentiation can be understood in terms of the chain rule and partial derivatives.

4. Double and iterated integrals

Words ...
(1) The double integral of a function f of two variables, over a domain D in R2, is denoted

∫ ∫
D

f(x, y) dA
and measures an infinite analogue of the sum of f -values at all points in D.

(2) Fubini’s theorem for rectangles states that if F is a function of two variables on a rectangle R =
[a, b]× [p, q], such that F is continuous except possibly at the union of finitely many smooth curves,
then the integral equals either of these iterated integrals:∫ ∫

R

F (x, y) dA =
∫ b

a

∫ q

p

F (x, y) dy dx =
∫ q

p

∫ b

a

F (x, y) dx dy

(3) For a function f defined on a closed connected bounded domain D with a smooth boundary, we can
make sense of

∫ ∫
D

f(x, y) dA as being
∫ ∫

R
F (x, y) dA where R is a rectangular region containing D

and F is a function that equals f on D and is 0 on the rest of R.
(4) Suppose D is a Type I region, i.e., its intersection with every vertical line is either empty or a point

or a line segment. Then, we can describe D as a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x), where g1 and g2 are
continuous functions. The integral

∫ ∫
D

f(x, y) dA becomes:∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx

(5) Suppose D is a Type II region, i.e., its intersection with every horizontal line is either empty or a
point or a line segment. Then, we can describe D as p ≤ y ≤ q, g1(y) ≤ x ≤ g2(y), where g1 and g2

are continuous functions. The integral
∫ ∫

D
f(x, y) dA becomes:∫ q

p

∫ g2(y)

g1(y)

f(x, y) dx dy

(6) The double integral of f + g over D is the sum of the double integral of f over D and the double
integral of g over D. Similarly, scalars can be pulled out of double integrals.
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(7) The integral of the function 1 over a domain is the area of the domain.
(8) If f(x, y) ≥ 0 on a domain D, the integral of f over D is also ≥ 0.
(9) If f(x, y) ≥ g(x, y) on a domain D, the integral of f over D is ≥ the integral of g over D.

(10) If m ≤ f(x, y) ≤ M over a domain D, then
∫ ∫

D
f(x, y) dA is betweem mA and MA where A is the

area of D.
(11) If f(x, y) is odd in x and the domain of integration is symmetric about the y-axis, the integral is

zero. If f(x, y) is odd in y and the domain is symmetric about the x-axis, the integral is zero.
Actions ...
(1) To compute a double integral, compute it as an iterated integral. For a rectangle, we can choose

either order of integration, as long as the integration is feasible. For other types of regions, we need
to first determine whether the region is Type I or Type II, and break it up into pieces of those types.

(2) For a multiplicatively separable function over a rectangular region (or for a sum of such multiplica-
tively separable functions), things are particularly easy.

(3) Sometimes, an integral cannot be computed using a particular order of integration – we might get
stuck on the inner or the outer stage. However, it may be computable using the other order of
integration.

(4) We can often use symmetry-based techniques to argue that certain parts of the integrand integrate
to zero.

(5) Even in cases where the integral cannot be computed, we can bound it between limits using maximum
or minimum values of function and/or using bigger or smaller regions on which the integral can be
computed.
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REVIEW SHEET FOR MIDTERM 2: ADVANCED

MATH 195, SECTION 59 (VIPUL NAIK)

To maximize efficiency, please bring a copy (print or readable electronic) of this review sheet
to the review session.

The document does not include material that was part of the midterm 1 syllabus. Very little of that material
will appear directly in midterm 2; however, you should have reasonable familiarity with the material.

1. Formula summary

1.1. Formula formulas.

(1) Unit vectors parallel to a nonzero vector v are v/|v| and −v/|v|.
(2) Coordinates of the unit vector are the direction cosines. If v/|v| = 〈`,m, n〉, these are the direction

cosines. If α, β, γ ∈ [0, π] are such that cos α = `, cos β = m, cos γ = n, then α, β, γ are the direction
angles.

(3) Parametric equation of line in R3: r = r0 + tv, r0 is the radial vector for a point in the line, v is the
difference vector between two points in the line. In scalar terms, x = x0 + ta, y = y0 + tb, z = z0 + tc,
where r = 〈x, y, z〉, r0 = 〈x0, y0, z0〉, and v = 〈a, b, c〉. (See also two-point form parametric equation).

(4) Symmetric equation of line in R3 not parallel to any coordinate plane (i.e., abc 6= 0 case):

x− x0

a
=

y − y0

b
=

z − z0

c

with same notation as for parametric equation. (See also cases of parallel to coordinate plane).
(5) Equation of plane: vector equation n · r = n · r0 where n is a nonzero normal vector, r0 is a fixed

point in the plane. If n = 〈a, b, c〉, r0 = 〈x0, y0, z0〉, and r = 〈x, y, z〉, we get:

ax + by + cz = ax0 + by0 + cz0

(6) For a function z = f(x, y), the tangent plane to the graph of this function (a surface in R3) at the
point (x0, y0, f(x0, y0)) such that f is differentiable at the point (x0, y0) is the plane:

z − f(x0, y0) = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

The corresponding linear function we get is:

L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

This provides a linear approximation to the function near the point where we are computing the
tangent plane.

1.2. Artistic formulas.

(1) Partial differentiation, multiplicatively separable – differentiate each piece in the corresponding vari-
able the corresponding number of times.

(2) Partial differentiation, additively separable – pure partials, just care about function of that variable,
mixed partials are zero.

(3) Integration along rectangular region, multiplicatively separable – product of integrals for function of
each variable.

(4) Integration along non-rectangular region, multiplicatively separable – outer variable function can be
pulled to outer integral.
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2. Equations of lines and planes

2.1. Direction cosines. Error-spotting exercises ...
(1) If α, β, γ are the direction angles of the vector 〈a, b, c〉 then the direction angles of the vector 〈−a, b, c〉

are −α, β, γ.

2.2. Lines. Error-spotting exercises ...
(1) Counting issues: They say that to describe a line in R3, we need 3− 1 = 2 equations in a top down

description. However, the symmetric equation of a line:

x− x0

a
=

y − y0

b
=

z − z0

c
is a single equation that describes the line.

(2) Unparalleled lines: By definition, if two lines do not intersect, they are parallel. Thus, the x-axis is
parallel to the line x = 1 + u, y = 2 + u, z = 3 + u.

(3) And and/or or: Consider the planes x + y + z = 0 and 2x + 3y + 4z = 0. Their intersection is a line
given by the equation (x + y + z)(2x + 3y + 4z) = 0.

2.3. Planes. No error-spotting exercises.

3. Functions of several variables

3.1. Introduction. Error-spotting exercises ...
(1) One-point curves: Consider the function f(x, y) := (x − 1)2 + (y + 1)2 − 3. The level “curve” for

the value −3 is the single point (1,−1). This is a point, not a curve at all. So, the claim that level
curves are one-dimensional is wrong, and the term “curve” itself is a misnomer.

(2) Count issues again: Consider the function f(x, y) := x2 − y2. The level “curve” for the value 1 is a
union of two curves, one on the positive x-axis side and the other on the negative x-axis side. The
level curve thus isn’t a curve at all, it is a union of multiple curves.

(3) A new unparalleled level: Consider the function f(x, y, z) := ax + by + cz of three variables. The
level curves of this function are the lines parallel to the vector 〈a, b, c〉.

3.2. Limits and continuity. Error-spotting exercises ...
(1) Zero ain’t infinity: Consider the limit lim(x,y)→(0,0)(x4 + y4)/(x2 + y2)2. We see that the numerator

and denominator are both homogeneous polynomials of degree four, and so the limit of the quotient
is the quotient of the leading coefficients, which are both 1. So the limit of the quotient is 1. We
can verify this by noting that the limit for approach along the x-axis as well as the y-axis are both
equal to 1.

(2) Curvophobia or straightonormativity: To verify that the limit of a function at the origin equals a
particular value, we need to compute the limit along the x-axis, along the y-axis, and along the line
y = mx for m fixed but arbitrary. If all the three answers are a constant independent of m, then
that is the limit.

3.3. Partial derivatives. Error-spotting exercises ...
(1) Once it’s fixed, it stays fixed: Here is a simple logical explanation as to why, for any function f of

two variables x and y, the second-order mixed partial derivative fxy must be zero. Recall that fx is
the first-order partial derivative of x holding y constant. In other words, we fix the value of y and
are allowed to vary only x, and measure the rate of change of f subject to that restriciton.

The second-order mixed partial derivative fxy = (fx)y is obtained by taking the first-order partial
fx and figuring out how it changes with respect to y holding x constant. But note from the preceding
paragraph that y needs to be held constant in order to make sense of fx. Thus, for computing fxy,
both x and y need to be held constant. Since both coordinates are being held constant, there is no
scope for f to change, hence fxy is zero.

(2) Mixed up partials: To differentiate a multiplicatively separable function, we differentiate the function
of x with respect to x the required number of times and the function of y with respect to y the required
number of times, and then multiply. Thus, if f(x, y) := sin(x2 sin y), we get fxy(x, y) = cos(2x cos y).
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(3) Slaving for joy: My happiness is proportional to the logarithm of my income; every time my income
doubles, my happiness goes up 0.3 units. I have observed that my income obeys increasing returns
to effort, and empirically I find that my total income is proportional to the (4/3)th power of the
number of hours I work. Therefore, my happiness also obeys increasing returns to effort.

(4) Futility personified: Consider a production function f(L,K) = (min{L,K})2. We know that if
L > K, then fL(L,K) = 0. This means that reducing the value of L has no impact on the output.
But if that’s true, then L can be reduced to 0, and output would be unaffected. Similarly, K can be
reduced to zero, and output would be unaffected. But that’s nonsense.

(5) Mixed up partials – something doesn’t add up: Suppose F (x, y) := f(x) + g(y). Then Fxy(x, y) =
f ′(x) + g′(y).

(6) Mixed up partials – shut up and multiply: Suppose F (x, y) := f(x)g(y). We know that the mixed
partial Fxy(x, y) = f ′(x)g′(y). But this is in contradiction with the product rule, which states
that the derivative of the product is not the product of the derivatives. Shouldn’t the answer be
f ′(x)g(y) + f(x)g′(y)?

(7) Quid est quod custodire cupis constans: Let f be a function of two variables. Define g(x, y) :=
f(x, x + y). Then, clearly, g(2, 3) = f(2, 5). Hence also, we have g1(2, 3) = f1(2, 5) (where the
subscript 1 denotes partial differentiation with respect to the first input keeping the second input
constant).

(8) Value depends only on the variable you differentiate with respect to: A manager wants to figure
out the marginal product of labor. He has an expression for the production function in terms of
labor and capital. In order to calculate the marginal product of labor, he simply needs to know the
current labor expenditure to plug into the formula. Information on the current capital expenditures
is redundant.

3.4. Tangent planes and linear approximations. Error-spotting exercises...
(1) The rational elite and the irrational hoi polloi are on different planes: Consider the function:

f(x, y) :=
{

1, x rational or y rational
0, x and y both irrational

Suppose x0, y0 are rational numbers, so (x0, y0) is a point both of whose coordinates are rational.
Then, we have f(x0, y0) = 1 and fx(x0, y0) = fy(x0, y0) = 0. Thus, we get that the tangent plane to
the graph of f through the point (x0, y0, f(x0, y0)) is:

z = 1 + 0(x− x0) + 0(x− x0)
So we get that the equation is:

z = 1
(2) So near, yet so far, or, missing the forest for the trees, or, going off on tangents: The tangent line to

(0, 0) for the curve y = sinx in the xy-plane is the y = x line. This is therefore the best straight line
approximation to the curve. Thus, for instance, a reasonable approximation for sin(1000) is 1000.

3.5. Chain rule. Error-spotting exercises ...
(1) x, tx, it’s all the same: Suppose f(x, y) is a function of two variables. Then, we have:

fx(tx, ty) =
∂

∂x
[f(tx, ty)]

Note: The underlying issue here affected some people’s attempts at advanced HW 6 question 5.
(2) Functions are born free, yet everywhere they are in chains: Suppose f and g are functions of one

variable. Then, we know that:

(f ◦ g)′(t) = f ′(g(t))g′(t)
by the chain rule. Differentiating both sides with respect to t again, and using the product rule,

we get:
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(f ◦ g)′′(t) =
d

dt
[f ′(g(t))g′(t) + f ′(g(t))g′′(t)] = f ′′(g(t))g′(t) + f ′(g(t))g′′(t)

(3) On the other hand: Suppose z = f(x, y) where x = g(t) and y = h(t). Then, we have:

∂fx

∂t
=

∂fx

∂x

∂x

∂t

4. Double and iterated integrals

Error-spotting exercises ...
(1) Fundamental theorem of miscalculus: Suppose we are integrating a continuous function g(x, y) of

two variables over a rectangular region [a, b] × [p, q]. Then, if Gxy = g, the value of the integral is
G(b, q)−G(a, p). This is just like the fundamental theorem of calculus.

(2) Separation of abscissa and ordinate: Suppose F (x, y) := f(x)g(y). We want to integrate F on the
region 0 ≤ x ≤ 5, 0 ≤ y ≤ x2. Since F is multiplicatively separable, we don’t need to compute this
as an iterated integral, and instead, we can compute it as a product:(∫ 5

0

f(x) dx

)(∫ x2

0

g(y) dy

)
(3) Dissolving the bonds of addition: Suppose F (x, y) := f(x) + g(y), and we need to integrate F on

[a, b]× [p, q]. The integral is: ∫ b

a

f(x) dx +
∫ q

p

g(y) dy

(4) Argument from personal incredulity: The double integral for a function F on a domain D exists only
if D is a Type I or Type II region.

(5) Another argument from personal incredulity: e−x2
is not an integrable function of one variable, i.e.,

it does not have an antiderivative.
(6) Straightonormativity yet again: If F (x, y) = f(x)g(y) and we have antiderivatives available for f and

g, we can use these to successfully integrate F over any closed bounded convex region.
(7) O mirror to my soul, don’t be orthogonal!: If f is a function and D is a closed convex region centered

at the origin symmetric about the x-axis, such that f is odd in x for each fixed value of y, then the
integral of f over D is zero.

(8) Positivity bias yet again, or tunnel vision: The integral:∫ 3

2

dx

x2 + y

gives us: [
1
√

y
arctan

(
x
√

y

)]x=3

x=2

This simplifies to:

1
√

y

[
arctan

(
3
√

y

)
− arctan

(
2
√

y

)]
(9) Consider the following integral on the region D = [0, a]×[0, a] for the function f(x, y) := g[(max{x, y})2].

We get: ∫ ∫
D

f(x, y) dA = max{
∫ a

0

g(x2) dx,

∫ a

0

g(y2) dy}

Since both integrals are the same, this becomes:
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∫ ∫
D

f(x, y) dA =
∫ a

0

g(x2) dx

If G is an antiderivative for g, this becomes:

[G(x2)]a0
This simplifies to G(a2)−G(0).
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REVIEW SHEET FOR FINAL: BASIC

MATH 195, SECTION 59 (VIPUL NAIK)

The document does not include material that was part of the midterm 1 and midterm 2 review sessions.
Please also bring copies of these review sheets to the review session on Monday.

You are expected to review this on your own time. We will concentrate on the advanced review sheet
during problem session.

1. Directional derivatives and gradient vectors

Words ...
(1) The directional derivative of a scalar function f of two variables along a unit vector u = ai + bj at a

point (x0, y0) is defined as the following limit of difference quotient, if the limit exists:

lim
h→0

f(x0 + ah, y0 + bh) − f(x0, y0)
h

(2) The directional derivative of a differentiable scalar function f of two variables along a unit vector
u = ai + bj at a point (x0, y0) is Du(f) = afx(x0, y0) + bfy(x0, y0).

(3) The gradient vector for a differentiable scalar function f of two variables at a point (x0, y0) is
∇f(x0, y0) = fx(x0, y0)i + fy(x0, y0)j.

(4) The directional derivative of f is the dot product of the gradient vector of ∇f and the unit vector
u.

(5) Suppose ∇f is nonzero. Then, if u makes an angle θ with ∇f , then Du(f) is |∇f | cos θ. The
directional derivative is maximum in the direction of the gradient vector, zero in directions orthogonal
to the gradient vector, and minimum in the direction opposite to the gradient vector.

(6) The level curves are orthogonal to the gradient vector.
(7) Similar formulas for gradient vector and directional derivative work in three dimensions.
(8) The level surfaces are orthogonal to the gradient vector for a function of three variables.
(9) For a surface given by F (x, y, z) = 0, if (x0, y0, z0) is a point on the surface, and Fx(x0, y0, z0),

Fy(x0, y0, z0), and Fz(x0, y0, z0) all exist and are nonzero, then the normal line is given by:

x − x0

Fx(x0, y0, z0)
=

y − y0

Fy(x0, y0, z0)
=

z − z0

Fz(x0, y0, z0)
The tangent plane is given by:

Fx(x0, y0, z0)(x − x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0

2. Max-min values

Words ...
(1) For a directional local minimum, the directional derivative (in the outward direction from the point)

is greater than or equal to zero. For a directional local maximum, the directional derivative (in the
outward direction from the point) is less than or equal to zero.

Note that even for strict directional local maximum or minimum, the possibility of the directional
derivative being zero cannot be ruled out.

(2) If a point is a point of directional local minimum from two opposite directions (i.e., it is a local
minimum along a line through the point, from both directions on the line) then the directional
derivative along the line, if it exists, must equal zero.
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(3) If a function of two variables is differentiable at a point of local minimum or local maximum, then
the directional derivative of the function is zero at the point in every direction. Equivalently, the
gradient vector of the function at the point is the zero vector. Equivalently, both the first partial
derivatives at the point are zero.

Points where the gradient vector is zero are termed critical points.
(4) If the directional derivatives along some directions are positive and the directional derivatives along

other directions are negative, the point is likely to be a saddle point. A saddle point is a point for
which the tangent plane to the surface that’s the graph of the function slides through the graph, i.e.,
it is not completely on one side.

(5) For a function f of two variables with continuous second partials, and a critical point (a, b) in the
domain (so fx(a, b) = fy(a, b) = 0) we compute the Hessian determinant:

D(a, b) = fxx(a, b)fyy(a, b) − [fxy(a, b)]2

If D(a, b) > 0 and fxx(a, b) > 0, the function has a local minimum at the point (a, b). If D(a, b) > 0
and fxx(a, b) < 0, the function has a local maximum at the point (a, b). If D(a, b) < 0, we get a
saddle point at the point. If D(a, b) = 0, the situation is inconclusive, i.e., the test is indecisive.

(6) For a closed bounded subset of Rn (and specifically R2) any continuous function with domain that
subset attains its absolute maximum and minimum values. These values are attained either at
interior points (in which case they are local extreme values and must be attained at critical points)
or at boundary points.

(7) Relation with level curves: Typically, local extreme values correspond to isolated single point level
curves. However, this is not always the case, and there are some counterexamples. To be more
precise, any isolated or strict local extreme value corresponds to a (locally) single point level curve.

Actions ...

(1) Strategy for finding local extreme values: First, find all the critical points by solving fx(a, b) = 0
and fy(a, b) = 0 as a pair of simultaneous equations. Next, use the second derivative test for each
critical point, and if feasible, try to figure out if this is a point of local maximum, or local minimum,
or a saddle point.

(2) To find absolute extreme values of a function on a closed bounded subset of R2, first find critical
points, then find critical points for a parameterization of the boundary, and then compute values
at all of these and see which is largest and smallest. If the list of critical points is finite, and we
need to find absolute maximum and minimum, it is not necessary to do the second derivative test to
figure out which points give local maximum, local minimum, or neither, we just need to evaluate at
all points and find the maximum/minimum.

(3) When the domain of the function is bounded but not closed, we must consider the possibility of
extreme values occurring as we approach boundary points not in the domain. If the domain is not
bounded, we must consider directions of approach to infinity.

3. Lagrange multipliers

Words ...

(1) Two of the reasons why the derivative of a function may be zero: the function is constant around
the point, or the function has a local extreme value at the point.

Version for many variables: two of the reasons why the gradient vector of a function of many
variables may be zero: the function is constant around the point, or the function has a local extreme
value at the point.

Version for function restricted to a subset smooth around a point: two of the reasons why the
gradient vector may be orthogonal to the subset at the point: the function is constant on the subset
around the point, or the function has a local extreme value (relative to the subset) at the point.

(2) For a function f defined on a subset smooth around a point (i.e., with a well defined tangent and
normal space), if f has a local extreme value at the point when restricted to the subset, then ∇f
lives in the normal direction to the subset (this includes the possibility of it being zero).
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(3) For a codimension one subset of Rn defined by a condition g(x1, x2, . . . , xn) = k, if a point (a1, a2, . . . , an)
gives a local extreme value for a function f of n variables, and if ∇g is well defined and nonzero
at the point, then there exists a real number λ such that ∇f(a1, a2, . . . , an) = λ∇g(a1, a2, . . . , an).
Note that λ may be zero.

(4) Suppose a codimension r subset of Rn is given by r independent constraints g1(x1, x2, . . . , xn) = k1,
g2(x1, x2, . . . , xn) = k2, and so on till gr(x1, x2, . . . , xn) = kr. Suppose ∇gi are nonzero for all i at a
point (a1, a2, . . . , an) of local extreme value for a function f relative to this subset. Suppose further
that all the ∇gi are linearly independent. Then ∇f(a1, a2, . . . , an) is a linear combination of the
vectors ∇g1(a1, a2, . . . , an), ∇g2(a1, a2, . . . , an), . . . , ∇gr(a1, a2, . . . , an). In other words, there exist
real numbers λ1, λ2, . . . , λr such that:

∇f(a1, a2, . . . , an) = λ1∇g1(a1, a2, . . . , an) + λ2∇g2(a1, a2, . . . , an) + · · · + λr∇gr(a1, a2, . . . , an)

(5) The Lagrange condition may be violated at points of local extremum where ∇g is zero, or more
generally, where the ∇gi fail to be linearly independent. This may occur either because the tangent
and normal space are not well defined or because the functions fail to capture it well.

Actions ...
(1) Suppose we want to maximize and minimize f on the set g(x1, x2, . . . , xn) = k. Assume ∇g(x1, x2, . . . , xn)

is defined everywhere on the set and never zero. Suppose ∇f is also defined. Then, all local maxima
and local minima are attained at points where ∇f = λ∇g for some real number λ. To find these,
we solve the system of n + 1 equations in the n + 1 variables x1, x2, . . . , xn, namely the n scalar
equations from the Lagrange condition and the equation g(x1, x2, . . . , xn) = k.

To find the actual extreme values, once we’ve collected all candidate points from the above proce-
dure, we evaluate the function at all these and find the largest and smallest value to find the absolute
maximum and minimum.

(2) If there are points in the domain where ∇g takes the value 0, these may also be candidates for
local extreme values, and the function should additionally be evaluated at these as well to find the
absolute maximum and minimum.

(3) A similar procedure works for a subset given by r constraints. In this case, we have the equation:

∇f(a1, a2, . . . , an) = λ1∇g1(a1, a2, . . . , an) + λ2∇g2(a1, a2, . . . , an) + · · · + λr∇gr(a1, a2, . . . , an)

as well as the r equations g1(x1, x2, . . . , xn) = k1, g2(x1, x2, . . . , xn) = k2, and so on. In total, we
have n + r equations in n + r variables: the x1, x2, . . . , xn and the λ1, λ2, . . . , λr.

4. Max-min values: examples

(1) Additively separable, critical points: For an additively separable function F (x, y) := f(x) + g(y), the
critical points of F are the points whose x-coordinate gives a critical point for f and y-coordinate
gives a critical point for g.

(2) Additively separable, local extreme values: The local maxima occur at points whose x-coordinate
gives a local maximum for f and y-coordinates gives a local maximum for g. Similarly for local
minima. If one coordinate gives a local maximum and the other coordinate gives a local minimum,
we get a saddle point.

(3) Additively separable, absolute extreme values: If the domain is a rectangular region, rectangular strip,
or the whole plane, then the absolute maximum occurs at the point for which each coordinate gives
the absolute maximum for that coordinate, and analogously for absolute minimum. This does not
work for non-rectangular regions in general.

(4) Multiplicatively separable, critical points: For a multiplicatively separable function F (x, y) := f(x)g(y)
with f , g, differentiable, there are four kinds of critical points (x0, y0): (1) f ′(x0) = g′(y0) = 0, (2)
f(x0) = f ′(x0) = 0, (3) g(y0) = g′(y0) = 0, (4) f(x0) = g(y0) = 0.

(5) Multiplicatively separable, local extreme values: At a critical point of Type (1), the nature of local
extreme value for F depends on the signs of f and g and on the nature of local extreme values for
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each. See the table. Critical points of Type (4) alone do not give local extreme values. The situation
with critical points of Types (2) and (3) is more ambiguous and too complicated for discussion.

(6) Multiplicatively separable, absolute extreme values: Often, these don’t exist, if one function takes
arbitrarily large magnitude values and the other one takes nonzero values (details based on sign).
If both functions are everywhere positive, and we are on a rectangular region, then the absolute
maximum/minimum for the product occur at points whose coordinates give respective absolute
maximum/minimum for f and g. (See notes)

(7) For a continuous quasiconvex function on a convex domain, the maximum must occur at one of the
extreme points, in particular on the boundary. If the function is strictly quasiconvex, the maximum
can occur only at a boundary point.

(8) For a continuous quasiconvex function on a convex domain, the minimum must occur on a convex
subset. If the function is strictly quasiconvex, it must occur at a unique point.

(9) Linear functions are quasiconvex but not strictly so. The negative of a linear function is also quasi-
convex. The maximum and minimum for linear functions on convex domains must occur at extreme
points.

(10) To find maxima/minima on the boundary, we can use the method of Lagrange multipliers.
See also: tables, discussion for linear, quadratic, and homogeneous functions (hard to summarize). Below

is a copy of the table for the multiplicatively separable case.
The setup here is that we have a function F (x, y) := f(x)g(y) and a point (x0, y0) in the domain such x0

is a critical point for f and y0 is a critical point for g. Visit the lecture notes for more detailed context.
f(x0) sign g(y0) sign f(x0) (local max/min) g(y0) (local max/min) F (x0, y0) (local max/min/saddle)
positive positive local max local max local max
positive positive local max local min saddle point
positive positive local min local max saddle point
positive positive local min local min local min
positive negative local max local max saddle point
positive negative local max local min local min
positive negative local min local max local max
positive negative local min local min saddle point
negative positive local max local max saddle point
negative positive local max local min local max
negative positive local min local max local min
negative positive local min local min saddle point
negative negative local max local max local min
negative negative local max local min saddle point
negative negative local min local max saddle point
negative negative local min local min local max
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REVIEW SHEET FOR FINAL: ADVANCED

MATH 195, SECTION 59 (VIPUL NAIK)

To maximize efficiency, please bring a copy (print or readable electronic) of this review sheet
to all review sessions.

1. Directional derivatives and gradient vectors

Error-spotting exercises ...
(1) Partials don’t tell the whole story: Consider the function f(x, y) := (xy)1/5. We note that f takes

the value 0 identically both on the x-axis and the y-axis, thus, fx(0, 0) = 0 and fy(0, 0) = 0. Hence,
the gradient of f at (0, 0) is the zero vector.

(2) Directional derivatives don’t tell the whole story either: Let

f(x, y) :=
{

0 if y ≤ 0 or y ≥ x4

1 if 0 < y < x4

We note that on any line approaching (0, 0), f becomes constant at 0 close enough to (0, 0).
Hence, the directional derivative of f in every direction is 0. Thus, the gradient vector of f is 0.

(3) Orthogonal to nothing: Consider the function f(x, y) := sin(xy) at the point (π, 1/2). At this point,
we have fx(x, y) = y cos(xy) = (1/2) cos(π/2) = 0. Thus, the gradient of f is in the y-direction, so
the tangent line to the level curve of f for this function is parallel to the x-axis.

(4) Zero gradient, level curve not smooth?: Consider the function f(x, y) := (x−y)3. At the point (1, 1),
both fx(x, y) and fy(x, y) take the value 0, so the gradient vector is 0. Thus, the level curve of f
passing through the point (1, 1) does not have a well defined normal direction at (1, 1).

(5) Misquare: The maximum magnitude of directional derivative for a function f with a nonzero gradient
at a point occurs in the direction of the gradient vector ∇f , and its value is ∇f · ∇f = |∇f |2.

(6) False addition: The directional derivative along the direction of the vector a + b is the sum of the
directional derivatives along the direction of a and the direction of b.

2. Max-min values

Error-spotting exercises ...
(1) Separate versus joint: Suppose F is a function of two variables denoted x and y, and (x0, y0) is a

point in the interior of the domain of F . If F has a local maximum at (x0, y0) with respect to both
the x- and the y-directions, then F must have a local maximum.

(2) Saddled with wrong ideas: Suppose F is a function of two variables denoted x and y, and (x0, y0) is a
point in the interior of the domain of F . If F has a saddle point at (x0, y0), then that means it must
have a local maximum from one of the x- and y-directions and a local minimum from the other.

(3) Hessian as second derivative: The second derivative test for a function f of two variables says the
following: define the Hessian determinant D(a, b) at a point as fxx(a, b)fyy(a, b) − [fxy(a, b)]2. If
D(a, b) > 0, this means that f has a local minimum at (a, b). If D(a, b) < 0, this means that f has
a local maximum at (a, b). If D(a, b) = 0, the second derivative test is inconclusive.

3. Lagrange multipliers

Error-spotting exercises ...
(1) Local maximum, minimum: To determine whether a point on a level curve of g satisfying the Lagrange

condition on f (i.e., ∇f = λ∇g) gives a local maximum or a local minimum for f , we simply need
to check whether λ > 0 or λ < 0. If λ > 0, we have a local minimum, and if λ < 0, we have a local
maximum.
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(2) Hessian confusion: Consider a function f of two variables. Let D denote the Hessian determinant.
To maximize f along the constraint curve g(x, y) = k, we first find points on the constraint curve
where ∇f = λ∇g for some suitable choice of λ, i.e., points satisfying the Lagrange condition. At
any such point, if D < 0, then we have neither a local maximum nor a local minimum with respect
to the curve. If D > 0 and fxx > 0, then we have a local minimum with respect to the curve. If
D > 0 and fxx < 0, then we have a local maximum with respect to the curve.

4. Max-min values: examples

Error-spotting exercises ...
(1) Absolute maximum folly, thinking in the box: Suppose F (x, y) := f(x) + g(y) and we want to

maximize F over the domain |x| + |y| ≤ 1. We note that in the domain |x| + |y| ≤ 1, we have the
constraints −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1. Thus, to find the absolute maximum for F , we do the
following: maximize f on the interval [−1, 1] (say at x0 with value a), maximize g on the interval
[−1, 1] (say at y0 with value b), and then take the combined point (x0, y0) and get value a + b.

(2) Critical missed types: Suppose F (x, y) := f(x)g(y). Then, (x0, y0) gives a critical point for F if and
only if x0 gives a critical point for f and y0 gives a critical point for g.

(3) Ignoring the signs of a pessimistic world: Suppose F (x, y) := f(x)g(y). If f attains a local maximum
value at x0 and g attains a local maximum value at y0, then F attains a local maximum value at
(x0, y0).

(4) Maximum, minimum: Suppose f is a continuous quasiconvex function defined on the set |x|+|y| ≤ 1.
We know by the definition of quasiconvex that f must attain both its absolute maximum and its
absolute minimum at one of its extreme points, i.e., at one of the points (1, 0), (0, 1), (−1, 0), and
(0,−1).

(5) Pointy circles: Suppose f is a strictly convex function defined on the circular disk x2 +y2 ≤ 1. Then,
f can attain its absolute maximum only at one of the four extreme points: (1, 0), (0, 1), (−1, 0), and
(0,−1).
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