TAKE HOME CLASS QUIZ: TURN IN NOVEMBER 30: INTEGRATION

MATH 152, SECTION 55 (VIPUL NAIK)

Your name (print clearly in capital letters):

THIS IS A TAKE HOME QUIZ.

FEEL FREE TO DISCUSS ALL QUESTIONS, BUT ATTEMPT THEM YOURSELF FIRST
(1) What is the limit $\lim_{x\to\infty} \left[\left(\int_0^x \sin^2\theta d\theta \right) / x \right]$? Last year: 13/16 correct (A) 1/2 (B) 1 (C) $1/\pi$ (D) $2/\pi$ (E) $1/(2\pi)$
Your answer:
(2) Consider the substitution $u = -1/x$ for the integral $\int \frac{dx}{x^2+1}$. What is the new integral ? Last year: 8/16 correct
$(A) \int \frac{du}{dt}$
(B) $\int \frac{du}{u^2+1}$ (C) $\int \frac{udu}{u^2+1}$ (D) $\int \frac{u^2du}{u^2+1}$ (E) $\int \frac{u^2du}{(u^2+1)^2}$
Your answer:
(3) Hard: What is the value of $c \in (0, \infty)$ such that $\int_0^c \frac{dx}{x^2 + 1} = \lim_{a \to \infty} \int_c^a \frac{dx}{x^2 + 1}$? Last year: 8/16 correct (A) $\frac{1}{\sqrt{3}}$ (B) $\frac{1}{\sqrt{2}}$ (C) 1 (D) $\sqrt{2}$ (E) $\sqrt{3}$
(4) Suppose f is a continuous nonconstant even function on \mathbb{R} . Which of the following is true ? Last year: $4/16$ correct

(A) Every antiderivative of f is an even function.

(C) Every antiderivative of f is an odd function.

(B) f has exactly one antiderivative that is an even function.

	(D) f has exactly one antiderivative that is an odd function. (E) None of the antiderivatives of f is either an even or an odd function.
	Your answer:
(5)	Suppose f is a continuous nonconstant odd function on \mathbb{R} . Which of the following is true ? Last year: $13/16$ correct (A) Every antiderivative of f is an even function. (B) f has exactly one antiderivative that is an even function. (C) Every antiderivative of f is an odd function. (D) f has exactly one antiderivative that is an odd function. (E) None of the antiderivatives of f is either an even or an odd function. Your answer:
(6)	 Suppose f is a continuous nonconstant periodic function on R with period h. Which of the following is true? Last year: 5/16 correct (A) Every antiderivative of f is a periodic function with period h, regardless of the choice of f. (B) For some choices of f, every antiderivative of f is a periodic function; for all others, f has no periodic antiderivative. (C) f has exactly one periodic antiderivative for every choice of f. (D) For some choices of f, f has exactly one periodic antiderivative; for all others, f has no periodic antiderivative. (E) Regardless of the choice of f, no antiderivative of f can be periodic. Your answer:
(7)	Consider a continuous increasing function f defined on the nonnegative real numbers. Define $m_f(a)$, for $a>0$, as the unique value $c\in[0,a]$ such that $f(c)$ is the mean value of f on the interval $[0,a]$. If $f(x):=x^n$, n an integer greater than 1, what kind of function is m_f (your answer should be valid for all n)? Last year: $1/16$ correct (A) $m_f(a)$ is a constant λ dependent on n but independent of a . (B) It is a function of the form $m_f(a)=\lambda a$, where λ is a constant depending on n . (C) It is a function of the form $m_f(a)=\lambda a^{n-1}$, where λ is a constant depending on n . (E) It is a function of the form $m_f(a)=\lambda a^{n+1}$, where λ is a constant depending on n .