
TOURING PROBLEMS – A MATHEMATICAL APPROACH

VIPUL NAIK

Abstract. The article surveys “touring”, a problem of “fun” math, and employs serious
techniques to attack it. The text is suitable for high school students interested in Olympiad
mathematics, as well as undergraduate students studying combinatorics and discrete math-
ematics. It can be used to introduce the concept of a graph. A sequel to this article, on a
similar analysis for “tiling” problems, shall also appear soon.

1. Prebeginnings

1.1. The knight’s tour. Chess pieces, with their variously defined moves, are a rich source
of puzzles in recreational mathematics. Chess puzzles include the following types :

• Nonattacking pieces puzzle : Given a piece with some moves defined, place as
many copies of this piece as possible so that no two can kill each other. The proto-
typical example of this is the eight queens problem – placing eight queens on the
chessboard so that no two can kill each other.

• Board domination puzzle : Given a piece with some moves defined, place as few
copies of the piece as possible so that every square is either covered by some copy or
is under direct attack by a copy of the piece.

• Touring puzzle : Given a piece with some moves defined, construct a tour of the
entire chessboard with that piece. The only nontrivial case of this for a standard
chess piece is the knight’s tour.

Each of these problems revolves around a piece, with certain moves defined for that piece.
Instead of standard chess pieces, we may sometimes be interested in defining chess pieces
with somewhat different moves. Such pieces are termed fairy chess pieces .

In this article, we focus on the problem of the knight’s tour, and its formulation in a
manner that helps us consider general variations – such as replacing the knight by some
fairy chess piece, or changing the shape and size of the board. Interestingly, we will find that
the formalism that we develop on the way is useful even for understanding the other classes
of chess puzzles.

1.2. Tour finding, maze hunting and sudoku solving. When a rat wants to find its
way through a maze, it must, at every stage, make some choices as to which path to take
(whenever there is more than one choice). If the rat makes the wrong choice, it will soon
reach a dead end, and will go back to the last choice it made, and try the other one. When
it finally reaches the starting point with no more paths to try out, it throws up its paws and
concludes that there is “no way”.

We do something similar while solving sudoku puzzles. By and large, our attempt is to
use scanning techniques to locate positions that can be filled up. That is, we scan the rows
and columns for entries we are sure of, using the fact that every row, every column and
every 3× 3 cell has all the numbers from 1 to 9. For eliminating positions for numbers and

1

numbers for positions, we use techniques of contingency spotting – that is, contingencies
that force numbers to be within certain squares, and cross hatching – that combine multiple
contingencies to draw conclusions. Repeated application of these helps us fill in positions we
are sure of.

However, there may be situations where we are not able to be sure of anything further to
fill in. In such cases, we do a what if – we try out filling a number in some place and see if
it works out.

If this what if does not lead to a solution, then we will soon come up with a contradiction
and shall be forced to remove all the entries filled in after the last what if. We can then try
one of the other possibilities at that stage.

In much the same way, when trying to construct a knight’s tour of the chessboard, we are,
at every stage, confronted with some options and pick one option over the others. However,
the option that we pick might lead to a dead end, in which case we need to backtrack and
choose some other option.

In our attempts to construct knight’s tours of the chessboard, we shall study more formally
these kinds of strategies, under the title depth first search. As we can already see from
the above three examples, we need to improve on the depth first search by minimizing
backtracking because that indicates time wasted without any reward. We will come up
with techniques for doing this in the knight’s tour situation that help us construct the tour.

1.3. Travelling salesmen. The travelling salesman problem is an important problem
both in theoretical and in practical computer science.

Problem 1 (Travelling Salesman Problem). A salesman has to visit n cities. There is a
network of roads between the cities and the shortest distance between any pair of cities is
known to the travelling salesman. How can he visit each of the cities so as to minimize
the total distance he travels? (The distance between the cities is much larger compared to
distances within each city)

In a map, the cities may be represented as vertices and the roads may be represented as
edges joining them, with each edge having a length. The length of the road may not be
exactly equal to the crow’s distance between the cities. The travelling salesman’s task is
to visit each city while minimizing the total road length he travels.

This problem bears many similarities to the knight’s tour problem, in terms of both
formulation and solution strategies. The travelling salesman problem is an example of an
optimization problem and is outside the scope of this article. Nonetheless, the terminology
developed here (for the purpose of analyzing the knight’s tour) is used in analyzing problems
like this one.

2. The touring problem – general formulation

2.1. The motivating problem. The famous knight’s tour problem asks whether a
knight can tour an entire 8× 8 chessboard visiting each square exactly once. Here, a knight
can move in any of 8 ways, provided that the final destination is within the board. In
each of these ways, one coordinate of the knight’s position changes by 2 units (positively or
negatively), and the other coordinate changes by 1 unit (positively or negatively). If the two
directions are labelled up/down and left/right the eight moves are :

• Up two steps, right one step
2

• Up two steps, left one step
• Right two steps, up one step
• Right two steps, down one step
• Down two steps, left one step
• Down two steps, right one step
• Left two steps, up one step
• Left two steps, down one step.

From the above listing of moves, it is clear that the knight’s move is symmetric, in the
sense that if a knight can move from a square A to a square B in one move, it can also move
from B to A in one step.

There are many variations of this problem :

• Whether a tour is possible with a given initial position.
• Whether a tour is possible with a given initial and a given final position.
• Whether there is a closed tour or re-entrant tour , that is, a tour where the last

square is a knight’s move away from the first. If there is a closed tour beginning at
some square, there is a closed tour beginning at any square.

Essentially, the knight needs to cover as many squares of the chessboard such that after
each square, the next square it goes to is a knight’s move away. We would like a structure
that captures this relationship between squares (of being separated only by a knight’s move).
Such a structure exists in mathematics – a graph.1

The purpose of this abstraction is to help us develop more generic tools that can be applied
to variants of the knight’s tour problem. For instance, we may change the :

• Shape of the board (we might even choose not to keep it rectangular)
• Moves allowed on the piece (we might even choose them not to be symmetric)
• Conditions imposed on the tour – we might put some additional conditions or relax

some constraints.

2.2. Necessary background and problem formulation. A graph comprises a set of
vertices or nodes and a set of edges or arcs or lines, where each edge joins two nodes.
We use the following terms :

• The two nodes that an edge joins are termed its endpoints. Given two vertices, if
there is an edge joining them, they are termed adjacent.

• A vertex and an edge are incident provided that the vertex is one of the endpoints
of the edge.

Typically graphs are represented by pictures in the plane with the vertices represented as
thick dots, and the edges represented as line segments or arcs joining the endpoints. Most
graphs cannot be drawn in the plane such that no two edges cross each other, though such
a depiction would be visually ideal. 2

In our case, the vertices of the graphs are the squares of the chessboard, and there is an
edge joining two vertices (that is, the two vertices are adjacent) if they are separated by
a knight’s move. This graph completely captures the behaviour of the chessboard in the

1The term “graph” is used in a completely different sense when we talk of the graph of a relation or a
function.

2Graphs which can be drawn without edges crossing each other are termed planar graphs. A graph is
planar if and only if it does not contain a K5 or a K3,3

3

context of the knight’s move. Thus, any problem pertaining to the knight’s move should be
expressible as a problem in terms of properties of this graph. For convenience, we shall call
this graph the knight’s move graph.3

We can define the graph in this manner because the knight’s move is symmetric – if the
knight can move from a vertex (square on the chessboard) A to a vertex (square on the
chessboard) B in one move, it can also move from B to A in one move. Cases where the
moves are not symmetric require us to use the concept of directed graphs, where each edge
has a definite direction. We will not be discussing them in this article.

A tour, or more technically, a Hamiltonian path of a general graph is a sequence of
its vertices such that every vertex occurs exactly once, and vertices occurring adjacent to
each other in the sequence are adjacent in the graph. The sequence describes the order in
which the vertices are covered by the Hamiltonian path. The knight’s tour that we had
encountered earlier on is simply a Hamiltonian path in the knight’s move graph.

The tour is termed a closed tour or re-entrant tour iff4 the first and last members of
the sequence are adjacent in the graph. Thus, every cyclic permutation of a closed tour is
a closed tour. Technically a closed tour is termed a Hamiltonian cycle or Hamiltonian
circuit. The closed knight’s tour that we had encountered earlier on is simply a Hamiltonian
cycle in the knight’s move graph.

This suggests that we concentrate on the following general problem :

Core Problem 1. Given a graph, determine all the Hamiltonian paths, and Hamiltonian
cycles in the graph.

As we shall see, this core problem formulation is very ambitious. Later in this article (in
section 2.4), we shall water it down.

2.3. Construction of the knight’s move graph. Here, we try to get a hands on feel for
how graphs look like.

The squares on the chessboard can be given coordinates in a natural way. For an m× n
board, label the columns (vertical lines) 1, 2 . . . n from left to right. That is, the left most
column is labelled 1, the next is labelled 2 and so on.

Similarly label the rows 1, 2 . . . m from bottom upwards. That is, the lowest row is labelled
1, the row above that is labelled 2, and so on.

Every square is identified with an ordered pair, the first entry giving the column number,
and the second entry giving the row number. Thus, the left most bottom square is labelled
(1, 1) and the right most bottom square is labelled (n, 1). The right most top square is
labelled (n,m) and the left most top square is labelled (1, m).

Let us now construct the knight’s move graph for the 3× 3 board. The vertices are :

(1, 3) (2, 3) (3, 3)

(1, 2) (2, 2) (3, 2)

(1, 1) (2, 1) (3, 1)

The edges are as follows :

3In some places, it is referred to as the knight’s tour graph.
4iff means if and only if

4

• Between (1, 1) and (3, 2).
• Between (3, 2) and (1, 3).
• Between (1, 3) and (2, 1).
• Between (2, 1) and (3, 3).
• Between (3, 3) and (1, 2).
• Between (1, 2) and (3, 1).
• Between (3, 1) and (2, 3).
• Between (2, 3) and (1, 1).

We observe that :

• The vertex (2, 2) has no edges incident on it.
• Every other vertex has precisely two edges incident on it.

In fact, we can redraw the graph as a cyclic graph by making the vertices (1, 1), (3, 2),
(1, 3), (2, 1), (3, 3), (1, 2), (3, 1) and (2, 3) the vertices of an octagon in that order, and our
edges as simply the sides of that octagon. The graph is termed cyclic because the whole
graph is a Hamiltonian cycle – by just starting at any vertex and moving along the graph
we get a Hamiltonian cycle.

Thus we observe that, although a tour of the entire 3 × 3 board is not possible, a closed
tour of the board obtained by removing the middle square is possible.

We note that redrawing the graph in a cyclic fashion made it conceptually clearer compared
to just joining the vertices in the actual chessboard (which would give a star like shape).
However, as graphs, they are the same. The graph structure is not sensitive to how we draw
it on paper. It only encodes certain information – namely information as to what are the
vertices and what are the endpoints of each edge. All knowledge about the graph should be
dependent only on this data.

Concept Testers

(1) A graph is called a planar graph if it can be drawn in the plane with the vertices
as points and the edges as arcs, with no two edges intersecting except at a vertex. Is
the knight’s move graph for the 3× 3 graph planar?

(2) Construct the knight’s move graph for the 4×4 chessboard, and show that it is planar
(by giving a planar drawing).

(3) Construct the bishop’s move graph for the 3× 3 chessboard. Show that it is planar.
How many triangles does it contain?

(4) A graph is said to be connected if given any two vertices, there is a way of going
from one to the other, via edges. Which of the above three graphs is connected?

2.4. The existential paradigm of reasoning. Combinatorics as it is done in high school
is typically enumerative in nature. It is concerned with questions such as – what is the size
of a certain set? In many situations, such as the touring problems of this article, questions
such as : “how many tours are possible?” are notoriously difficult to solve. Moreover, in
most such cases, knowing the number of tours is not of much use.

Rather, a more basic question occupies our attention : is there any tour? The paradigm
of combinatorics that handles questions of existence is termed existential combinatorics
as opposed to enumerative combinatorics.

5

Sometimes, we are also interested in finding the tour rather than showing that it exists.
The two problems are not the same because there are non-constructive methods of proving
existence.

At times, we are interested in finding all tours even if we are unable to provide any
expression for the number of tours. The paradigm of combinatorics that deals with such
issues is termed constructive combinatorics.

The core problem formulation that we shall restrict ourselves to for the bulk of this article
is :

Core Problem 2. Given a graph, determine whether or not a Hamiltonian path (Hamil-
tonian cycle) exists. If a Hamiltonian path (Hamiltonian cycle) exists, exhibit any one such
Hamiltonian path (Hamiltonian cycle).

A graph that possesses a Hamiltonian cycle (also called a Hamiltonian circuit) is termed
a Hamiltonian graph. Thus, one aspect of Core Problem 2 is to determine whether or not
a given graph is Hamiltonian.

In particular, we shall not try to tackle the problem of constructing all Hamiltonian paths
(Hamiltonian cycles), or giving the number of Hamiltonian paths (Hamiltonian cycles).

2.5. Affirmative versus negative. We shall see repeatedly that the techniques employed
to show that a Hamiltonian path (tour) or Hamiltonian cycle (closed tour) does exist are
widely different from those employed to show that a tour does not exist.

Key Point 1. Proving an affirmative result on existence typically requires either constructive
or quasi-enumerative techniques. Proving a negative result requires methods of contradiction.
The techniques used for the two kinds of proofs are so different that before starting out, it is
necessary to correctly guess which alternative is true.

For instance, if we guess that a tour does not exist and try to prove it for a long time,
but fail, then that seems to be good evidence that a tour probably does exist. On the other
hand, we can only show that the tour does exist by switching to the methods for establishing
existence.

Moreover, there is often a gap between the techniques for proving negative results and the
techniques for proving positive results – there will always be some cases that do not yield
to either class of techniques. Ingenuity in constructing new techniques is then the only way
out! No wonder existential combinatorics is a tough subject!

3. Methods for showing non-existence

3.1. Why non-existence first? We first concentrate on methods used to show that a
Hamiltonian path of a graph does not exist. For many graphs, the existence of a Hamiltonian
path can be eliminated by simple application of these methods. This saves us the futile labour
of trying to come up with a tour (viz Hamiltonian path) when we can easily show that there
is none.

If none of the non-existence methods work, we can suspect that there might be a tour.
Most of the non-existence techniques make use of some kind of colouring or size arguments.

Some of these arguments can be understood even without the explicit use of graphs. However,
the graph theoretic language provides a natural direction and also a firm foundation necessary

6

for the somewhat more complicated proofs. So we’ll take a quick look at it, after discussing
an elementary colouring argument.

3.2. Some quick examples. A bishop can move along the diagonals, that is, it can make
any of these as moves :

• p steps up and p steps right
• p steps up and p steps left
• p steps down and p steps left
• p steps down and p steps right

Thus, analogous to the knight’s move graph, we can define the bishop’s move graph of
the chessboard. In this graph, two vertices are adjacent if and only if they lie on a common
diagonal.

We now show that a bishop’s tour of the chessboard is not possible.
The chessboard, as it comes to us, already has a colouring with the two colours White

and Black. The corner left square is coloured black. Two squares that share an edge are
given opposite colours.

As per this colouring, each time a piece moves one step up, or down, or left, or right, the
colour of its square changes. This indicates that if a piece takes an even number of steps
between its initial and final square, it lands on a square with the same colour.

A bishop always takes an equal number of steps along the vertical and horizontal directions,
and hence, the colour of its initial and final squares is always the same. Another way of saying
this is that all the squares on a diagonal have the same colour. Since each bishop’s move joins
two vertices with the same colour, it is clear that a bishop can never, through a sequence of
moves, land on a square with a different colour.

This indicates that the bishop’s move graph is not connected, because there is no path
from a white square to a black square. Clearly, a graph that is not connected cannot have a
Hamiltonian path, and hence we conclude that a bishop’s tour of a chessboard is not possible.

The argument we have just given is an example of a colouring argument. A colouring
is, roughly, a partition of the set of vertices into equivalence classes, that bears some relation
with the graph structure. To properly understand how to construct colourings and how to
exploit them in proofs, we develop a little more graph theoretic notation.

3.3. A little more terminology. Before plunging into the main techniques, we must fa-
miliarize ourselves with some terms.

A simple graph is a graph as described earlier, where given any two vertices, there is at
most one edge joining them, and no edge has the same endpoints.

In graphs which are not simple, we may have :

• Loops – edges where both the endpoints are the same vertex
• Parallel edges – multiple edges with the same pair of endpoints

3.4. Graph homomorphisms – and a metamathematical issue. The contents of this
section are a little more abstract and it can be skipped at a first reading without much loss
of value. Its primary purpose is to help put colouring arguments in a proper graph theoretic
perspective.

For existence, there is, by and large, only the direct way – actually construct. For non-
existence, on the other hand, there are plenty of diverse tools. Why so?

7

The basic reason for this can be traced to a very general construction – that of the
homomorphism 5. A homomorphism may be thought of as a map between two objects of
a certain type (or more technically category) that preserves relationships of some sort, but
not all. We now come up with a notion of homomorphism for graphs that is suitable for our
purposes.

Let G and H be two finite graphs, with loops allowed, but no directions and no parallel
edges. Then we define a graph homomorphism from G to H as a map from the vertex
set of G to the vertex set of H such that if two vertices are adjacent in G then their
images are adjacent in H. So, the property of adjacency is not lost on performing a graph
homomorphism. However, the fact that the images of two vertices are adjacent cannot be
used to conclude that the two vertices themselves are adjacent.

Though the map preserves some structure, it is accompanied by loss of information. Here,
the images of vertices v and w not being adjacent in H means that v and w are not adjacent
in G. However, if the images are adjacent, then we cannot conclude anything about v and
w.

In the above definition of a graph homomorphism, there may be vertices of H that never
arise as images of vertices of G. It is also possible that there are edges of H that never
arise as images of edges in G. These vertices and edges can be removed while still keeping
the map a homomorphism. The modified graph H ′ whose vertices are precisely the images
of vertices of G and whose edges are only the edges that join vertices which are images of
adjacent vertices of G, is termed the image graph.

Many proofs of the impossibility of tours are based on the following heuristic :

Heuristic 1 (The Homomorphism Approach). We construct a homomorphism from the
given graph to some other graph, and look at the image graph under this homomorphism.
We now use the image graph to demonstrate that if we take the image of a tour on this graph,
we get a contradiction.

3.5. Some standard colouring arguments. In the problem of the bishop’s tour discussed
earlier, our strategy had been to colour the squares white and black, in the fashion usually
found on the chessboard – squares adjacent on the chessboard are given opposite colours.
This colouring strategy is an elementary example of a graph homomorphism, as is explained
below.

We define a map from the vertices (in this case, squares of the chessboard) to a two element
set : { White, Black }. All the vertices coloured white map to White and all the black
vertices map to Black. In the case of the chessboard, we chose the standard colouring of
the chessboard.

We next make this map a graph homomorphism. For every pair of vertices adjacent in
the original graph, we need to make sure that the images are adjacent in the two element
graph { White, Black }.

In the case of a bishop, we had observed that a bishop’s move either joins two white
vertices or two black vertices. Thus, in the image graph on the two vertices White and
Black, the only edges are the loops – the loop joining White to itself, and the loop joining
Black to itself. The crucial fact that we used for this was that every move of a bishop is
accomplished by an even number of steps.

5The idea of a homomorphism is a general notion of category theory and is most commonly encountered
in the study of algebraic and geometric structures, and the ideas here are valid in all those contexts

8

In the case of a knight, all the moves involve two steps in one direction and one step in a
perpendicular direction. As a result, the total number of steps involved in a knight’s move
is odd. Thus, the initial and final position of the knight will always have different colours.

So, in the image graph, there will only be an edge joining the vertices White and Black.
There cannot be any loop joining White with White or Black with Black because there
are no knight’s move taking white squares to white squares or black squares to black squares.

Suppose now that there were a knight’s tour of the chessboard. The tour, as described
earlier, is a sequence of vertices of the graph that covers every vertex exactly once, and where
adjacent vertices in the sequence are adjacent in the graph. Then, the image of this sequence
as per the graph homomorphism would alternate between the vertices White and Black.

This has the following implications for a knight’s tour of a board:

• There cannot be a closed tour (viz Hamiltonian cycle) unless the number of white
vertices equals the number of black vertices.

In the 8 × 8 chessboard, this condition is satisfied, so we cannot rule out the
possibility of a closed tour. On the other hand, any chessboard with an odd number
of vertices clearly cannot have a closed tour by the knight.

• If the difference between the number of white and the number of black vertices (for
a board of any shape) exceeds 1 then there is no tour.

• if the number of white vertices is 1 more than the number of black vertices, then any
tour must begin at a white vertex and end at a white vertex. (Analogously if the
number of black vertices exceeds the number of white vertices).

A graph with a homomorphism to a two vertex set so that the image of every edge is an
edge connecting the two distinct vertices, is termed a bipartite graph. In other words, a
graph whose vertex set can be partitioned into two subsets such that there is no edge joining
two vertices in the same subset, is termed bipartite. All the above observations hold for all
bipartite graphs, replacing white and black with whatever names we give to the equivalence
classes.

The chromatic number of a graph is the minimum integer n such that there exists a
graph homomorphism to a graph on n vertices, so that the image of every edge connects
two distinct vertices. That is, the vertices can be partitioned into n parts such that no two
vertices in the same part are adjacent. Such a homomorphism is termed a colouring in
ordinary parlance. The only graphs with chromatic number 1 are the empty graphs or
graphs with empty edge set. A bipartite nonempty graph has chromatic number 2.

For finite simple graphs, the chromatic number is bounded above by the number of vertices
in the graph. If n is the chromatic number the graph is termed an n partite graph.

The following general ideas hold for graph homomorphisms :-

• Given any graph homomorphism, if the image is not connected the original graph is
also not connected. Thus, a tour is not possible.

This rules out, for instance, a bishop’s tour of the chessboard – a map to the two
element set { White, Black } gives an image graph where White and Black are
not connected. (because it’s not possible to go from a white square to a black square
via a bishop’s move).

• Given a graph homomorphism where the image is a cyclic graph, a closed tour of the
original graph is possible only if all the equivalence classes have equal cardinalities.
The closed tour observation for a bipartite graph is a special case of this.

9

• In the above case, a (not necessarily closed) tour is possible only if the cycle can be
divided into two arcs such that the cardinalities of the equivalence class corresponding
to one arc is one more than the cardinalities of the equivalence classes corresponding
to the other arc. The observation for a bipartite graph, that the cardinalities of the
two classes of vertices must differ by at most 1, is a special case of this.

This shall become clearer with some examples.

In the next section we look at the chessboard-style graphs and analyze what sort of colour-
ing arguments are feasible for them.

3.6. Chessboard style graphs. A chessboard can be thought of as a special case of a finite
subset of the lattice of points with integer coordinates in the plane. In fact, the way we had
coordinatized the chessboard in section 2.3 is a special case of this.

In general, we are interested in the following setup :

• The vertex set is a finite subset of the lattice of points with integer coordinates in
the plane. It is termed the board.

• There is a finite set of vectors corresponding to the moves, such that two vertices
are adjacent iff their difference is a vector corresponding to the move. That is, each
move is of the type – “increase the x coordinate by p and the y coordinate by q”.
For convenience, the vectors are themselves designated as the moves, so the move
will simply be called (p, q). We assume symmetry of the moves, so the negative of a
move is also a move. Thus, if (p, q) is a move, so is (−p.− q).

Then colourings may be divided into two classes :-

(1) Colourings that can be extended to colourings of the whole plane – with the property
that given any translate of the board, the corresponding colouring on the translate
is the same (possibly with the equivalence classes permuted).

(2) Other colourings – typically those that are dependent on the shape of the board and
exploit its special features.

3.6.1. Colourings of the first type. This subsection concentrates on the first type of colouring.
Here, we assume the vertices to be given x and y coordinates, the x coordinate indicating
the row number, and the y coordinate indicating the column number. (refer section 2.3).

A simple colouring rule is given as follows :

χ(x, y) ≡ (x + y) mod n

That is, χ(x, y) is the equivalence class of x + y modulo an integer n. Two vertices are
given the same colour iff they leave the same remainder modulo n. Moving n steps to the
right gives a vertex of the same colour, and moving n steps up gives a vertex of the same
colour. Moving one step down and one step right gives a vertex of the same colour.

The entire lattice is partitioned into n equivalence classes, viz colours. If the board is
now translated by a certain amount horizontally or vertically, the number of vertices of each
colour will change, but this is only up to a permutation of the equivalence classes.

Any move (p, q) takes the equivalence class r (modulo n) to the equivalence class r + t
(modulo n) where t is the equivalence class of p + q modulo n. Thus each move permutes
the equivalence classes in the lattice plane.

However, each move may permute the equivalence classes in a different manner. It would
be preferable if all the moves induced the same permutation on the equivalence classes.

10

Let us see what happens in the case of the knight’s tour. We colour as above with n = 2,
to get the usual chessboard colouring, with the remainder 0 indicating the colour Black
and the remainder 1 indicating the equivalence class White.

The vectors corresponding to the eight knight’s moves are :

• (2, 1) : The sum is 3, which is 1 modulo 2
• (1, 2) : The sum is 3, which is 1 modulo 2
• (2,−1) : The sum is 1, which is 1 modulo 2
• (1,−2) : The sum is −1, which is 1 modulo 2
• (−1, 2) : The sum is 1, which is 1 modulo 2
• (−1,−2) : The sum is −3, which is 1 modulo 2
• (−2, 1) : The sum is −1, which is 1 modulo 2
• (−2,−1) : The sum is −3, which is 1 modulo 2

All the remainders are 1 modulo 2, which is just a reformulation of our earlier observation
– a knight’s move always changes the colour of the square.

We would like something similar whenever we define moves of a piece. That is, we would
like to choose a colouring with n such that all the moves have the same effect modulo n.
The issue is explored in more detail in the coming Concept Testers.

What happens once we choose n? Then the image graph becomes a union of disjoint cycles.
That is, the equivalence classes of lattice points modulo n are partitioned into disjoint cycles.

Analogous to a colouring based on the sum of coordinates, we can have a colouring based
on the difference of coordinates (not the absolute difference, but the signed difference).

More generally it is possible to have a colouring based on the equivalence class of ax + by
modulo n, under the proviso that a, b, and n are pairwise relatively prime.

Concept Testers

(1) Consider an a× b board, with the colouring defined by

(x, y) 7→ (x + y) mod n

Prove that there are an equal number of squares of every colour if and only if n|a
or n|b. 6 Under what conditions can the colours can be partitioned into two classes,
with all colours in one class having one more square than all colours in the other
class?

(2) Suppose we consider a piece such that for every move (u, v) of it,

|u + v| = k

Using the colouring of the previous problem, determine some necessary conditions
for a and b for which the piece can tour an a× b board.

(3) What happens if we consider the colouring

(x, y) 7→ (px + qy) mod n)

where p and q are both relatively prime to n?
(4) The taxicab distance between two points on the board, with coordinates (x1, y1)

and (x2, y2) is given by :

|x2 − x1|+ |y2 − y1|
6n|a means that n is a factor of a, and is spoken as “n divides a”.

11

A k leaper is a piece that can move, from a given square, to all squares with a
taxicab distance of k from that given square.

Prove that the biggest n modulo which all moves by a k leaper have the same
effect for the (x + y) colouring is 2. Thus, show that for a k leaper to be able to
tour a board, it is necessary that k be odd. What happens if we choose a (px + qy)
colouring?

We shall later try to look for sufficient conditions.
(5) The Euclidean distance or crow’s distance between two points on the board,

with coordinates (x1, y1) and (x2, y2) is given by :√
(x2 − x1)2 + (y2 − y1)2

A Euclidean k leaper is a piece that can move, from a given square, to any
square whose Euclidean distance from that square is k. For instance, a knight is a
Euclidean

√
5 leaper.

Prove that a necessary condition for a Euclidean k leaper to be able to tour a board
is that k2 be 4w + 1 where w is a nonnegative integer.

3.6.2. Colourings and partitionings of the second type – based on the board shape. This is
best illustrated by a classical problem :7

Problem 2. Prove that there is no closed knight’s tour of a board of dimensions 4× n.

The colouring of the lattice plane, by the coordinate sum method, turns out to be the
usual chessboard colouring. This is not sufficient in itself to derive a contradiction as the
number of squares of both colours are equal.

A little experimentation with trying to look at a board of size 4 × 4 or so, tells us that
the problem is the lack of elbow space of the knight. The move is too big for the board, or
looked at another way, the board is too narrow for the move.

This can best be captured by the following observation : the board has 4 rows and n
columns. Suppose that the top and bottom rows are termed extreme rows, and the others
are termed middle rows. Then every move from an extreme row goes to a middle row.

For a closed tour to exist, it becomes necessary that every move from a middle row go to
an extreme row (because the total number of vertices in the middle rows equals that in the
extreme rows). But where does that leave us?

Now comes the crucial idea : to combine the two colourings. That is, we consider assigning
4 colours : the white extreme row vertices, the black extreme row vertices, the white middle
row vertices, the black middle row vertices.

Then as every black extreme row vertex goes only to a white middle row vertex, and the
white middle row vertex must again go to a black extreme row vertex, it is not possible to
have a tour from the black extreme row vertex to the white extreme row vertex. Similarly
it is not possible to go from a white extreme row vertex to a black extreme row vertex. So
the tour is not possible.

Here we have used two relatively subtle techniques:

7I first learnt of this problem during the IMO training camp, in a class by S.S. Sane. Later, I also read
about it in Problem Solving Strategies by Arthur Engel, in his chapter on Colouring Proofs.

12

• Two colourings have been combined to give a single colouring. These type of combi-
nations are typically termed direct products or Cartesian products. The final number
of distinct colourings is the product of the number for each colouring. In some cases,
it may happen that certain colour combinations do not exist.

• While every move from an extreme row vertex goes to a middle row vertex, there is
per se no need for a move from a middle row vertex to go to an extreme row vertex.
However, as the number of extreme row and middle row vertices are equal, each move
must alternate between the colours for a tour to be possible.

Concept Testers

(1) Suppose we are to give an (not closed) tour of a 4×n board. Prove that such a tour
must begin and end at a square in the corner rows, and that it goes from a square in
a middle row to a square in a middle row exactly once. Find a tour of a 4× 3 board.
(There are 8 such tours).

(2) Prove that for n = 1, 2, 4 there is no knight’s tour of a 4× n board. (For n = 4 the
earlier knight’s move graph of a 4×4 board drawn in section 2.3 might prove useful).

(3) We have seen that it is not possible for a knight to tour a 4× n chessboard. Can we
say something similar about a Euclidean

√
13 leaper?

More generally, what are the boards that a Euclidean
√

n leaper cannot tour if n
can be written uniquely as a sum of squares of an odd integer and an even integer that
are relatively prime? Apply size arguments analogous to those used for the knight.

4. Constructing a tour

4.1. The naive algorithm. We now discuss methods to construct a tour with a given initial
point. A tour may be treated as a sequence of moves. The naive algorithm or brute force
algorithm for determining whether or not a tour exists, is based on a notion of blocking
vertices that have already been visited. The unblocked vertices are also called free vertices.
A procedural listing of the algorithm is described below :

ALGORITHM : Tour determination for board
(1) Initialize all vertices as free.
(2) Start from the initial point, and block it.
(3) List all the adjacent vertices, that are currently free.
(4) If the list is nonempty, move to any of the vertices. Block this vertex. Then repeat

the previous step with that as the initial vertex.
(5) If the list is empty, and all the vertices have been visited, then we have a tour.
(6) If the list is empty, but all vertices have not been visited, free the current vertex and

move to the previous one (now we try for a tour only from the remaining moves in
the list).

This search for a tour is an instance of Depth First Search or D.F.S.. A D.F.S. is a
search method on a rooted tree where each possibility is explored to its full depth, before
exploring the next. For instance, here, we try each possible path for touring to its full depth
and turn back only when forced to.

4.2. Understanding and improving the D.F.S.. In a D.F.S. there is a distinct possibility
of going down a dead end or blind alley – that is, it may well happen that we choose a
move that does not give rise to any correct tour. Then as soon as the list of free adjacent

13

vertices becomes empty, we retreat, and try the other possible moves. This retreating is,
somewhat naturally, termed backtracking.

The more the backtracking, in general, the more the time taken to find a tour. Thus,
the key idea to determining a tour most quickly is to minimize backtracking. The standard
approach of doing so is to impose an order of preference on the moves, that is, to decide
on what order we try to perform the moves in. Deciding this order of preference must be
a very quick operation, hopefully a function of the total number of moves possible, rather
than of the size of the board, or the length of the tour so far. A D.F.S. that makes us of
some order of preference is often termed a best first search – a D.F.S. where the best is
given the first chance.

This order of preference is typically generated by trying to optimize using some local
heuristic. Algorithms that use a local heuristic to make the decision at each stage form a
class known as greedy algorithms . A greedy algorithm can be thought of as being truly
successful, if it requires no backtracking.

Thus, in the problem of the Hamiltonian path (Core Problem 2) the greedy algorithm
shall be considered successful provided that :

• In case a Hamiltonian path exists, the greedy algorithm gives one such Hamiltonian
path, without hitting any dead ends.

• In case a Hamiltonian path does not exist, the greedy algorithm gives a dead end.

4.3. Giving a greedy algorithm. The question we need to ponder is : what is the best
local heuristic for a successful tour? How should we decide how to make the next move?

We introduce the concept of degree of a vertex in a graph, as the number of vertices to
which it is adjacent. If a vertex has zero degree, it is not adjacent to any other vertex, and
hence cannot be contained in any Hamiltonian path.

The degree of a vertex essentially contains information about how it can be placed in
paths. Vertices with a low degree are in some sense more critical as there are fewer ways of
including them in paths. Vertices with a higher degree are less critical as there are plenty of
ways of including them in paths.

A little thought reveals that :

• Every vertex except the initial and final vertex must have degree at least 2.
• If v is a vertex of degree 1 other than the initial vertex, and w is its neighbour, then

not only must v be the last vertex, w must be the second last vertex.
• Further, if v is a vertex of degree 2 with neighbours u and w, then either v is the last

vertex and one of u and w is the second last vertex, or else v must be between u and
w. This means that as soon as u is visited, v must be the next vertex, and w must
be the vertex after that.

Generalizing we can say : if there is a neighbour of very low degree, visit that when the
chance comes. The degree here should not be construed as simply the degree in the initial
graph, rather it must be viewed as the number of adjacent vertices that are still free. This
tells us that the following simple rule can be used to assign the order of preference :

Heuristic 2 (Warnsdorff’s rule). A vertex of lower (free) degree (which is more critical) is
given preference over a vertex of higher (free) degree. Vertices of equal degree can be given
any order of preference.

14

This is termed the Warnsdorff rule. Surprisingly, the rule always gives a tour (though
not necessarily a re-entrant one) for an 8× 8 chessboard.

An extensive literature is available on the knight’s tour, and there has also been inves-
tigation on the theoretical justification of Warnsdorff’s rule and the graphs to which it is
applicable. Details are to be found in the appendix.

While Warnsdorff’ rule does guarantee a tour from any starting point, it does not guarantee
a re-entrant tour from every starting point (though it may sometimes gives a re-entrant
tour). In fact, the heuristic is not naturally suited for giving re-entrant tours. Historically,
the existence of a re-entrant knight’s tour was established by Vandermonde by actually
constructing the tour. Vandermonde used powerful notions of symmetry, some of which we
discuss in section 4.4.

Warnsdorff’s rule is also not very suited to the problem of finding the longest possible path
in graphs where a Hamiltonian path may not exist. This is because, in an effort to go to
vertices of low degree, the path might reach a dead end much more quickly. This is a bit
like saying that if we want everybody to live, we must feed those who are hungriest. But if it
simply isn’t possible to save the hungriest even by trying to feed them, we might do better
to feed those who have chances of surviving.

Concept Testers

(1) What happens if we apply Warnsdorff’s rule to the 4× 4 knight’s move graph?
(2) Starting from a corner most square in the 4 × 3 knight’s move graph, can we get a

tour using Warnsdorff’s rule?
(3) Warnsdorff’s rule simply gives first preference to the adjacent vertex with lowest free

degree. Suppose that to each vertex, we associate the sum of free degrees of the
vertices adjacent to it. Does this give a good local heuristic for the chessboard?

(4) The 3 × 10 and 5 × 6 board are the smallest ones for which a closed knight’s tour
exists. Can such a tour be found by Warnsdorff’s rule?

4.4. Symmetry principles in tour construction and Vandermonde’s work. Here we
move along with Vandermonde’s train of thought for the construction of a closed knight’s
tour of the 8× 8 chessboard.

Here is his broad strategy :

ALGORITHM : Finding a closed tour

(1) List all possible squares on the board and their corresponding co-ordinates. i.e. 64
sets of co-ordinates.

(2) Choose an arbitrary starting point and remove it from the list of all possible squares.
This square becomes the beginning of path list one.

(3) Using successive rotational symmetry of π/2 about the center of the board create
three further path lists of co-ordinates that begin with each of the three rotations co-
ordinates. Then delete these sets of co-ordinates from the list of all possible squares
leaving 60 squares.

(4) From the starting point in path list one pick an arbitrary knight’s move from this
square (such that it is in the remainder of the list of all possible squares) and note
this as move 2 in path list one. Remove it from the list of all possible squares that
will now be left with 59 sets of co-ordinates.

15

(5) Repeat the three rotations for move 2 and add them to their respective path lists
remembering to delete them from the list of all possible squares leaving 56 sets of
co-ordinates.

(6) Continue with this process until all squares are used up and there will be four paths
lists each of 16 sets of co-ordinates. After Vandermonde we call them our symmetric
lists of moves.

Vandermonde noted that the end of the first symmetric list was a knight’s move away
from the end of the fourth, and the end of the second symmetric list was a knight’s move
away from the end of the third. Thus he got two symmetric sequences of length 32.

To get a closed tour of length 64 he tweaked this a little bit.

4.5. Conrad’s algorithm. While Warnsdorff’s rule works well for the chessboard, it runs
into problems for huge graphs. In particular, it runs into blind alleys (and hence requires
backtracking) for chessboards of dimension bigger than 76× 76.

The algorithm works by decomposition of the chessboard into smaller chessboards for
which previous solutions are known. Though the running time of the algorithm is linear, it
is somewhat complicated to code.

5. Variations in the basic problem

5.1. Infinite tours. The graphs arising as finite subsets of integer lattices in the plane with
some defined moves have been studied in detail. Two variations on the theme are :

(1) Move from the plane to higher dimensional lattices of integer coordinates.
(2) Allow infinite subsets of the lattice plane.

In the first case, there is no fundamental change to the theory : most of the colouring
ideas can still be applied in much the same way.

The second case makes it necessary for us to define what precisely is meant by a tour of
a (countably) infinite graph. There are two types of tours :

• Bijections between N8 and the vertices of the graph such that the images of n and
n + 1 are adjacent in the graph, where n ∈ N. This can be thought of as a tour with
a starting point.

• Bijections between Z9 and the vertices of the graph such that the images of n and
n + 1 are adjacent in the graph where n ∈ Z. This can be thought of as a tour
extending indefinitely in both directions.

The existence of a tour of the entire graph is a stronger condition than the existence of a
tour covering a subgraph containing all of an arbitrarily large finite subset. This distinction
between arbitrarily large finite and infinite, though subtle, is a crucial one, and occurs in
different guises across mathematics.

Concept Testers

(1) Prove that a 1 leaper can tour the lattice plane Z2.
(2) Consider Z as a one dimensional board, with the move set being a subset S ⊆ Z,

such that s ∈ S =⇒ −s ∈ S. Does there exist a tour if S is the :
• Set of primes and their negatives

8N is the set of natural numbers, or positive integers
9Z is the set of integers

16

• Set of squares and their negatives
(3) Solve the above problem replacing Z by N.
(4) Solve the above two problems under the further assumption that every element in S

can be used only finitely many times as a move.

5.2. Simultaneous and sequential touring. Before discussing this, we make a small
comment. Chess pieces, both standard chess pieces and fairy chess pieces, are classified
according to the way they are allowed to move. The knight falls under the class of leapers.
Leapers are pieces that move directly from the departure square to the destination square,
regardless of whether or not any other square is occupied.

The distinction between leapers and other pieces becomes important when the chessboard
has more than one piece. We are in general concerned with the sequential motion :

All the pieces on the chessboard are leapers, with some well defined (symmet-
ric) moves. At each stage, one leaper makes a move, and all the leapers must
occupy distinct squares at each stage.

The advantage of sticking to leapers in this scenario is that the sequential motion scenario
can be expressed purely in terms of the graph properties.

A somewhat more powerful scenario (that makes sense for leapers) is the simultaneous
motion scenario :

All the pieces on the chessboard are leapers, with some well defined (symmet-
ric) moves. At each stage, some of the leapers simultaneously move, and all
the leapers must occupy distinct squares at each stage. Also, no two leapers
can interchange their squares.

We now consider a classical problem :

Problem 3 (Simultaneous touring). Consider a 3× 3 board with a knight placed on each of
the squares that are the middle squares of sides (that is, neither the middle nor the corners).
There are four knights in total. We allow these knights simultaneous motion, that is, at
each stage, one or more of the knights move, with no two knights ever landing on the same
square, and no two knights interchanging their places. Is it possible that, after some moves,
the knight in the left column and right column interchange positions while the knights in the
upper row and lower row both get back to where they were?

I came across this problem in Mathematical Circles.
The answer is no.

Proof. We had seen earlier (in subsection 2.3) that the 3×3 knight’s move graph is the union
of a cycle and an isolated vertex (the middle square).

In each move, each knight either stays where it is, or moves one step clockwise or one
step anticlockwise along the cycle. However, by the conditions we have imposed, it is never
possible for one knight to overtake another. This indicates that the cyclic order of the
knights is an invariant throughout the touring process.

However, the cyclic order in the initial configuration and in the final configuration differ.
Hence, the final configuration is not attainable from the initial configuration. �

The proof technique here makes use of the Invariance Principle.

Concept Testers
17

(1) Consider a 4×4 chessboard with knights placed on (1, 2), (2, 4), (4, 3) and (3, 1). (Re-
fer the notation used in section 2.3). A permutation of these knights is a rearrange-
ment where these knights occupy the same four squares, but possibly with some
knights occupying different squares. What permutations can be achieved through
simultaneous touring? What permutations can be achieved through sequential tour-
ing?

Appendix A. General problems

A.1. Three dimensions and higher. These problems are meant to encourage further
exploration related to the text of the article covered so far. Most of them are not straight-
forward, and they are of a somewhat higher level than the Concept Testers found within
the main body of the article.

We now consider three dimensional boards, where each point is given by three coordinates.
A knight is a piece that, in one move, changes one coordinate by 2 and another by 1.

(1) Construct the knight’s move graph for a 3 × 3 × 3 board. Is a knight’s tour of this
graph (minus the middle vertex) possible?

(2) Prove that there is no closed knight’s tour of a 4×m× n board. Is there a knight’s
tour of a 4× 4× 3 board? What about a 4× 3× 3 board? A 4× 4× 4 board?

A.2. More sophisticated colourings.

(1) Prove that any colouring defined for some rectangle, upto periodic translation, can
be expressed in terms of a congruence. In particular, give a single expression for the
following colouring :
• Red if x ≡ 0 mod 2 and y ≡ 0 mod 2.
• Green if x ≡ 0 mod 2 and y ≡ 1 mod 2.
• Blue if x ≡ 1 mod 2 and y ≡ 0 mod 2.
• Yellow if x ≡ 1 mod 2 and y ≡ 1 mod 2.
Hint : Think of the binary expansion with one digit storing x modulo 2 and the

other storing y modulo 2.
(2) Generalize this to periodic patterns for any tiling.
(3) Prove that the colouring based on x2 + y2 mod 5 can be obtained as a colouring

based on linear combinations of x and y modulo 25. Can it be obtained based on
linear combinations of x and y modulo 5?

A.3. Other graphs. The famous Icosian game or Hamiltonian game asks for the deter-
mination of a Hamiltonian cycle in the graph of a dodecahedron where the vertices are given
as the vertices of the dodecahedron, and the edges are given as the edges of the dodecahedron.

Find a solution to this game.

Appendix B. Miscellanea on the knight’s tour

B.1. Some online references. Introductory reading on the knight’s tour can be obtained
at :

http://mathworld.wolfram.com/KnightsTour.html

http://en.wikipedia.org/wiki/Knight’s Tour

http://www.ktn.freeuk.com/ca.htm
18

http://www.mathpuzzles.com/leapers.htm

http://home.freeuk.net/ktn

The Wikipedia and Mathworld pages also contain extensive information on other chess
puzzles.

A site containing links to many knight’s tour pages is :

http://www.velucchi.it/mathchess/knight.htm

The algorithm developed by Conrad et al. can be found in the paper by Axel Conrad,
Tanja Hindrichs, Hussein Morsy, and Ingo Wegener titled “Solution of the knight’s Hamil-
tonian path problem on chessboard” published in Discrete Applied Mathematics, Volume
50, Number 2, year 1994.

B.2. Magic and semimagic tours. A magic square is a n × n square of cells with
numbers in each cell such that all the row sums, all the column sums and both the principal
diagonal sums are equal. A semimagic square is one where only one of the diagonal sums
fails to be equal.

We can fill entries from 1 to 64 on the chessboard based on the knight’s tour by marking
the kth square of the tour with the entry k. It thus makes sense to use properties of this way
of writing the numbers from 1 to 64, to give properties of the knight’s tour. In particular,
a magic knight’s tour is a knight’s tour such that the resulting filling of entries gives a
magic square, while a semimagic knight’s tour gives a semimagic square.

B.3. Other good tours. Some other properties that are looked for in knight’s tours include:

• The property of being uncrossed, that is, the paths of the knight should not cross
itself.

• The property of possessing axial symmetry and/or rotational symmetry.

The properties of being magical, semimagic, uncrossed and symmetric are not purely graph
theoretic as they depend on the geometry of the chessboard, which is not captured in the
knight’s move graph. Since our treatment has been largely of aspects that are captured by
the graph, we have not gone into these ideas.

Appendix C. Terms and definitions

C.1. Basic definitions of graphs.

(1) Simple Graph : A structure given by a set of vertices V , and a set of edges E
where each edge is an (unordered) pair of vertices. If |V | is finite then we say that
the graph is finite.

(2) Vertex or node or point is an element of V in the definition of graph.
(3) Edge (or arc or line): An unordered pair of vertices, as an element of E in the

definition of graph. The two vertices are endpoints of the edge. The edge is said to
be incident on the vertices and the vertices are said to be incident on the edges.
The vertices are also said to be adjacent to each other.

(4) Directed graph : A graph where the edges are ordered pairs of vertices rather than
unordered pairs.

(5) Loop : An edge whose endpoints are both the same vertex. Loops are not allowed
in simple graphs.

19

(6) Parallel edges : Multiple edges with the same endpoints. These are also not allowed
in a simple graph.

(7) Path : A sequence of vertices of the graph such that any two vertices adjacent in
the sequence are adjacent in the graph.

(8) Cycle : A path that begins and ends at the same vertex.
(9) Hamiltonian path : A path that covers every vertex exactly once.

(10) Hamiltonian cycle or Hamiltonian circuit: A cycle that covers every vertex
exactly once.

(11) Graph homomorphism : A map from the vertex set of one graph to another such
that the images of adjacent vertices in the original graph are adjacent in the other
graph.

(12) Image graph : Given a graph homomorphism, a subgraph of the graph on the right
whose vertex set and edge set are the precise images of the vertex set and edge set
of the original graph.

(13) Chromatic number: The minimum number of parts into which the vertex set of a
graph can be partitioned so that no two vertices in the same part are adjacent.

(14) Degree : The degree of a vertex in a (simple) graph is the number of vertices adjacent
to it.

C.2. Properties of simple graphs.

(1) Connected : There is a path from any vertex to any other vertex.
(2) Finite : The vertex set is finite.
(3) Cyclic : All the edges of the graph can be covered by a cycle.
(4) Acyclic : It has no cycles.
(5) Hamiltonian : It has a Hamiltonian cycle.
(6) Bipartite : The vertex set can be partitioned such that there is no edge joining two

vertices in the same part.
(7) Planar : The graph can be drawn on a plane with the vertices as points and the

edges as arcs such that no two edges intersect except at vertices.

C.3. Kinds of searches.

(1) Depth First Search or D.F.S.: A form of search where one path is explored to its
full depth before trying out alternative paths. When a dead end is encountered,
the path is retraced till the last choice point is identified, and an alternative path is
tried. D.F.S. is a tree search algorithm an example of an uninformed search.

(2) Best First Search : A variant of D.F.S., where the first path to try is determined
by the use of some heuristic, that makes it look more probable than other paths.

(3) Local heuristic : A heuristic for making a choice locally, that typically requires a
small amount of time, rather than time proportional to the whole problem size.

(4) Greedy algorithm : An algorithm that tries to determine a globally optimal
solution using local heuristics.

(5) Backtracking : The process of retracing the path after encountering a dead end in
a D.F.S..

20

Appendix D. Other chess and fairy chess puzzles

D.1. Graph theoretical formulation of the other puzzles. The other two problem
classes mentioned at the outset have the following graph theoretical formulations :

• The nonattacking pieces puzzle generalizes to the problem of finding an inde-
pendent set of maximum cardinality. An independent set of vertices in a graph is
a set of vertices such that no two are adjacent in the original graph.

• The board domination puzzles generalizes to the problem of finding a dominat-
ing set of minimum cardinality. A dominating set is a set such that every vertex is
adjacent to some vertex in the set.

D.2. Types of fairy chess pieces. Fairy chess is chess with some added pieces with their
own rules. Fairy chess pieces are of three types :

• Leapers that move directly from the departure square to the destination square,
regardless of what pieces are there in the intermediate square. The knight is a leaper.

• Riders are pieces that can move an arbitrary amount in a given direction, provided
there are no pieces in between. The rook, bishop and queen are examples of riders
from orthodox chess.

• Hoppers are pieces that can move only by jumping over other pieces. There are no
hoppers in ordinary chess, but the moves of hoppers can be thought of as similar to
moves in checkers. Hoppers, however, capture the piece on the square they finally
reach, not the piece they jump over (termed the hurdle).

More information on fairy chess pieces is to be found on Wikipedia at :

http://en.wikipedia.org/wiki/Fairy chess

D.3. Chess maneuvers and algorithms. Ideas used for mastery in games are often closely
related to tricky algorithmic steps in computer science. In a game like chess, for which a de-
terministic analysis is computationally infeasible, several local heuristics have been designed.

These local heuristics typically tend to focus on maximizing some quantity. An instance
of application of local heuristics was seen in the use of greedy algorithms to convert depth
first searches to best first searches. In the case of standard chess, local heuristics typically
include things like save the queen and destroy the opponent’s pieces.

The programming paradigm ideal for applying local heuristics is constraint program-
ming. This is a variation in the basic theme of logic programming and lies in the realm
of declarative programming. More on this can be read up at Wikipedia.

It would be interesting to explore, from this viewpoint, the significance of forks, pins,
skewers, exchanges, sacrifices, and other chess tactics.

Appendix E. Related topics and references

E.1. Colouring arguments and invariance principle. An excellent collection of prob-
lems on colouring arguments in touring, tiling and other related problems is the chapter
on Colouring Proofs in Problem Solving Strategies by Arthur Engel, published by
Springer International.

Another good source of interesting logical-mathematical puzzles is Mathematical Cir-
cles by Fomkin, Genkin and Itenberg, published by the American Mathematical Society
as part of the Mathematical Worlds series.

21

E.2. Graph theory. As this article illustrates, graphs have the propensity to turn up at
the most unexpected places. Their utility lies in their ability to model a large number of
situations. Consequently, the range of possibilities and properties for graphs is very huge.
Some references for graph theory are :

• An Introduction to Graph Theory by Douglas B. West
• Graph Theory by Harary
• Graph Theory by Clark and Houlton, published by World Scientific

E.3. Algorithms. In this article, we studied the blind depth first search as a naive algorithm
for finding a Hamiltonian path in a graph, and then, how the use of Warnsdorff’s rule (a
local heuristic) gave a best first search with no backtracking.

We also discussed that for problems attacked by a D.F.S., the solution is more efficient if
there is minimal backtracking.

In general, there is a wide range of algorithmic techniques used to solve problems, and,
for each technique, there are notions of how the solution can be improved. There are also
general notions of the complexity of an algorithmic solution to a problem. Some good
references on algorithms include :

• Algorithms : The Spirit of Computation by David Harel
• Introduction to Algorithms by Corman, Leiserston, and Rivest (the new edition

also has Stein as an author), published by Prentice Hall

A webpage where information on algorithms can be found is the Dictionary of Algo-
rithms and Data Structures at :

http://www.nist.gov/dads/

22

Index

algorithm, 22
brute force, 13
greedy, 14, 20
naive, 13

backtracking, 14, 20
best first search, 14, 20
bipartite graph, 9
brute force algorithm, 13

chess piece
fairy, 1
standard, 1

chess puzzle, 1
chromatic number, 9, 20
circuit

Hamiltonian, 20
closed tour, 3, 4
colouring argument, 7
connected graph, 5
constraint programming, 21
constructive combinatorics, 6
cycle, 20

Hamiltonian, 4, 20
cyclic graph, 5

dead end, 13
declarative programming, 21
degree, 14, 20
Depth First Search, 13, 20
DFS, 13, 20
distance

crow’s, 2, 12
Euclidean, 12
taxicab, 11

edge, 19
parallel, 7

enumerative combinatorics, 5
existential combinatorics, 5

fairy chess, 21

graph, 3
acyclic, 20
bipartite, 9, 20
connected, 5, 20
cyclic, 5, 20
directed, 19
finite, 20
Hamiltonian, 6, 20
planar, 5, 20
simple, 7, 19

greedy algorithm, 14, 20

Hamiltonian circuit, 4
Hamiltonian cycle, 4, 20
Hamiltonian game, 18
Hamiltonian path, 4, 20
homomorphism

of graphs, 7, 20
hopper, 21

Icosian game, 18
image graph, 20
incidence, 3
invariance principle, 17

knight’s tour problem, 2

leaper, 17, 21
local heuristic, 20
logic programming, 21
loop, 7, 19

naive algorithm, 13

parallel edges, 20
path, 20

Hamiltonian, 20
planar graph, 5

re-entrant tour, 3, 4
rider, 21

search
best first, 14, 20
depth first, 13, 20

simple graph, 7
sudoko, 1

travelling salesman problem, 2
tree search algorithm, 20

vertex, 19

Warnsdorff rule, 15
Warnsdorff’s rule, 15

23

	1. Prebeginnings
	1.1. The knight's tour
	1.2. Tour finding, maze hunting and sudoku solving
	1.3. Travelling salesmen

	2. The touring problem -- general formulation
	2.1. The motivating problem
	2.2. Necessary background and problem formulation
	2.3. Construction of the knight's move graph
	2.4. The existential paradigm of reasoning
	2.5. Affirmative versus negative

	3. Methods for showing non-existence
	3.1. Why non-existence first?
	3.2. Some quick examples
	3.3. A little more terminology
	3.4. Graph homomorphisms -- and a metamathematical issue
	3.5. Some standard colouring arguments
	3.6. Chessboard style graphs

	4. Constructing a tour
	4.1. The naive algorithm
	4.2. Understanding and improving the D.F.S.
	4.3. Giving a greedy algorithm
	4.4. Symmetry principles in tour construction and Vandermonde's work
	4.5. Conrad's algorithm

	5. Variations in the basic problem
	5.1. Infinite tours
	5.2. Simultaneous and sequential touring

	Appendix A. General problems
	A.1. Three dimensions and higher
	A.2. More sophisticated colourings
	A.3. Other graphs

	Appendix B. Miscellanea on the knight's tour
	B.1. Some online references
	B.2. Magic and semimagic tours
	B.3. Other good tours

	Appendix C. Terms and definitions
	C.1. Basic definitions of graphs
	C.2. Properties of simple graphs
	C.3. Kinds of searches

	Appendix D. Other chess and fairy chess puzzles
	D.1. Graph theoretical formulation of the other puzzles
	D.2. Types of fairy chess pieces
	D.3. Chess maneuvers and algorithms

	Appendix E. Related topics and references
	E.1. Colouring arguments and invariance principle
	E.2. Graph theory
	E.3. Algorithms

	Index

