
FUNCTION SPACES – AND HOW THEY RELATE

VIPUL NAIK

Abstract.

1. Function spaces

1.1. Why functions? This section is more about the gameplan and general philosophy that we’ll follow.
The basic premise (which many may find disagreeable) is the following:

We are interested in the functions of certain types from certain kinds of spaces, to R or
C.

We’re not interested in a function here or a function there. We’re interested in the collection of all
functions to R or to C.

Why are we interested in these? Functions describe lots of things. For example, a function on a
“physical body” could be used to describe the temperature at every point on the body.

Functions to R or C are scalar-valued: they have their image in a field. We are often interested in
vector-valued functions, for instance, vector fields on open sets in Euclidean space. However, the theory
of vector-valued functions, in the finite-dimensional case, isn’t very different from that of scalar-valued
functions, because, after all, the vector-valued function can be described by its scalar components. This
raises a number of interesting points that we shall explore as we proceed.

Another important point is that for most practical purposes, theorems which work for functions to R
also work for functions to C. The main differences are:

(1) For functions to R we use the absolute value to define the norm, and for functions to C we use
the modulus of a complex number to define the norm.

(2) The inner product we take for real vector spaces is a symmetric bilinear positive-definite form,
whereas for complex vector spaces, we use a Hermitian inner product.

Any real function space can be embedded into the corresponding complex function space, and the
norm (and inner product, if defined) for the real case, are simply the restriction to the real case of the
norm and inner product defined for the complex case.

1.2. What space? What is the “function space”? Loosely speaking, a function space(defined) is a
subquotient of the vector space of all functions from some set X to R or C. A subquotient here means
a quotient of a subspace (or equivalently a subspace of a quotient space).

Two things are worth mentioning here:

• We go to the subspace because we don’t want to consider all functions.
• We take a quotient because we want to consider functions upto equivalence. For instance, we

may be taking equivalence with respect to a measure (this is the most common instance; in fact,
when we are dealing with a measure space, it is the only instance of concern to us).

So what we are considering are functions, but they’re not all functions, and they’re not honest specific
functions; they’re equivalence classes of functions.

1.3. Function spaces are vector spaces. A function space is, first and foremost, a vector space:

• Any scalar times a function in the space is also in the space
• A sum of two elements in the space is also in the space

This means that before we start taking out the hammer of function spaces to a particular property
of functions, we need to show the above two things. Obvious? Not always. Sometimes, showing that a
sum of two things in the space is also in the space is a pretty hard task.
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1.4. Function spaces are more. One of our typical recipes for constructing function spaces is as
follows:

(1) Start out by defining a translation-invariant and R-linear distance function on the space of all
functions, that takes values in [0,∞].

(2) Prove that this distance function satisfies the triangle inequality.
(3) Quotient out by the elements at distance 0 from 0, and get a distance function on the quotient

space.
(4) Take the connected component of the identity. This is a vector subspace, and is the set of those

elements at finite distance from 0.
Sounds familiar? This is the way we obtain the Lp-spaces. In other words, the Lp-spaces come as the

connected component of the identity in the p-distance topology. Different connected components are at
distance ∞ from each other.

This highlights something about function spaces. Many a function space can be given a metric, and
in fact this can be extended to a “metric” on the whole space; the distance between two points in the
same coset is finite while the distance between two points in different cosets is infinite. The connected
component of identity then becomes a “normed vector space”.

This is in some sense a “natural choice of metric” on the function space. Studying the function space
without this metric is like studying R as a topological space without a metric.

1.5. Algebraic structure on a function space. We know that the set of all functions from a set to a
field is not just a vector space; it’s an algebra over the field. So it’s natural to ask the question: to what
extent are the function spaces we are considering subalgebras? Most of them aren’t, though a select few
are. I’ll clarify my meaning:

• A subalgebra is just understood to be a vector subspace that is also multiplicatively closed. It
need not contain the constant function 1

• A unital subalgebra is understood to be a vector subspace containing the constant function 1
• Given a subalgebra A and a smaller subalgebra B we say B is an ideal in A if multiplying any

element of B with any element of A gives an element of B.

2. Various function spaces

2.1. On a topological space. Suppose X is a topological space. Then, we can consider the following
function spaces on X:

(1) Continuous functions: The space C(X, R) of all continuous real-valued functions (resp. the
space C(X, C) of continuous, complex-valued functions). This is a subspace of the space of all
functions. In this case, the vector space nature isn’t too hard to prove.

C(X, R) (resp. C(X, C)) is actually more than just a vector space: it’s a unital subalgebra.
(2) Compactly supported continuous functions: The space Cc(X, R) (resp. Cc(X, C)) of all

continuous, real-valued functions with compact support. This is a subspace comprising those
continuous functions that vanish outside a compact set. It is a vector space because a union of
two compact subsets if compact.

Cc(X, R) is a subalgebra but is unital if and only if the space X is compact (in which case it
equals C(X, R)). Nonetheless, it is always true that Cc(X, R) is an ideal in C(X, R).

(3) Continuous functions that taper at infinity: The space C0(X, R) (resp. C0(X, C)) of all
continuous, real-valued (resp. complex-valued) functions that go to zero outside of compact
subsets. This contains Cc(X, R), it is a vector subspace, and it is a subalgebra. It is unital iff
the space X is compact, in which case it is the whole of C(X, R). It is also always an ideal.

(4) We can take the smallest unital subalgebras generated by C0(X, R) and Cc(X, R) respectively.
The former is the algebra of all functions that “converge at ∞” and the latter is the algebra of
all functions that become constant outside a compact subset.

First question: is there a natural “norm”, such that the elements with finite norm, are precisely the
continuous functions? Not in general. The natural norm that we associate with continuous functions
when restricting to a compact subset, is the L∞-norm (the sup-norm). That’s because on a compact
space, continuous functions are bounded.

On the other hand, there are obviously bounded functions that are not continuous. So how do we
characterize continuity? The idea is to take very small open sets around a point, i.e. the formal definition
is:
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f is continuous at x if for any ε, there exists a neighbourhood U of x such that ‖f − f(x)‖∞ < ε
restricted to U .

This isn’t a single norm, though.

2.2. On a metric space. On a metric space, we can do a little better than talk of continuous functions.
We can define the notion of Holder spaces.

Definition (Holder space). For α ∈ [0, 1], the the (0, α)-Holder norm(defined) of a function f is
defined as:

sup
x,y∈X

|f(x)− f(y)|
d(x, y)α

The elements with finite norm are said to form the Holder space C0,α.

For α ∈ [0, 1], C0,α is not just a vector space, it’s also a subalgebra. If we allowed α > 1 in the above
definition, we’d still get a vector space, but it need not be a subalgebra.

The metric structure allows us to talk of the following notions:
(1) Uniformly continuous functions: We all know what uniformly continuous functions are.

The uniformly continuous functions to R, or to C, form a unital subalgebra of the space of all
continuous functions.

On a compact metric space, continuous is the same as uniformly continuous. We can of
course talk of locally uniformly continuous, but for locally compact metric spaces, any continuous
function is locally uniformly continuous.

(2) Lipschitz functions: These are functions in C0,1. The Lipschitz property is fairly strong.
Lipschitz functions form a unital subalgebra.

(3) C0,α for 0 < α < 1: This is somewhere in between uniformly continuous and Lipschitz. In other
words, the size of the algebra decreases as α increases. Uniformly continuous functions lie in all
the C0,α, and all the C0,α contain the algebra of Lipschitz functions.

(4) Locally Lipschitz functions: These are functions that are in C0,1 locally. This is an important
condition. As we shall see, for example, all C1 functions on a differential manifold are locally
Lipschitz.

2.3. On a differential manifold. This uses additional structure on X: the structure of a differential
manifold.

(1) For every positive integer r, we have the algebra Cr(X, R) or Cr(X, C): this is the space of r
times differentiable functions from X to R (or to C). This is a unital algebra, and we have a
descending chain of algebras:

C = C0 ⊃ C1 ⊃ C2 . . .

(2) C∞(X, R) (resp. C∞(X, C)) is the intersection of all these subalgebras, and is again a unital
subalgebra.

In order to put a norm and speak quantitatively, we need to fix a metric on the manifold. Differential
manifolds do not come with a natural choice of metric; however, any differential manifold can be em-
bedded inside Euclidean space, hence it can be given a metric. Regardless of what metric we give in this
way, we can talk of notions like:

• Holder spaces
• Space of locally Lipschitz functions

2.4. On a measure space. This uses the structure of a measure space on X. The function space here
is not honest specific functions; rather, it is functions upto equivalence with respect to the measure on
X.

(1) The space M is the space of all functions (finite-valued functions) upto almost everywhere equiv-
alence. By finite-valued, we mean that any representative is finite outside a set of measure zero.
M is an algebra under pointwise addition and multiplication. All the vector spaces we discuss
below, live as subspaces of M .
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(2) For any p with 1 ≤ p < ∞: The space Lp(X, R) (resp Lp(X, C)) is defined in the usual way. It
is a normed vector space, where the norm is the p-norm for p < ∞.

The Lps are not subalgebras in general (in fact, an Lp is a subalgebra for finite p iff there do
not exist subsets of arbitrarily small measure). Moreover, the Lps are unital only if X has finite
measure.

(3) For p < r, we have the following: Lp(X) ∩ Lr(X) contains Ls(X) for all s ∈ [p, r]. The
intersections Lp(X) ∩ Lr(X) are important subspaces, as we shall see in the Riesz interpolation
theorem.

We can also consider the intersection of all the Lps for 1 ≤ p < ∞. An application of Holder’s
inequality yields that this intersection is a subalgebra; however, it is not unital unless X has
finite measure.

(4) The space L∞(X) is defined as the space of all essentially bounded functions (i.e. equivalence
classes of functions with a bounded representative). L∞ is a unital subalgebra.

When the measure space is finite, this lives inside each of the Lps, and in particular in the
intersection of the Lps; in general, the inclusion doesn’t hold either way.

(5) We also have notions of weak Lp. Weak L1 is the space of those functions that satisfy a Markov-
like condition. One can similarly define weak Lp for finite p.

Some points need to be noted. The space L∞ doesn’t require us to have a measure space; all we need
is the notion of a subset of measure zero and a notion of what it means for a function to be measurable.
Hence L∞ makes sense, for instance, on any differential manifold. But the other Lp-spaces require a
precise notion of measure, particularly in the non-compact case.

2.5. Visualizing the Lps. The Lp-spaces have myriad relationshisp that can sometimes be confusing
to remember. There is, however, a physical picture that can help one understand the relation between
the Lps. The picure encodes the full Venn diagram, and is also useful to visualize later results like the
Riesz- Thorin interpolation.

Prescription for drawing the picture:
• Make a square in the Euclidean plane with vertices (0, 1), (1, 0), (0,−1), (−1, 0). In other words,

the square is the solution to |x|+ |y| = 1.
• For any Lp, think of the Lp-space as the rectangle whose vertices are given by (±1/p,±1− 1/p).

Observe that all the Lp-spaces live inside the square, that no Lp-space is contianed in the other. The
space L∞ is the vertical line and the space L1 is the horizontal line. The space L2 is a square, which
indicates self-duality. The spaces Lp and Lq are congruent rectangles: we can get one from the other
geometrically by reflecting in the line y = x, which indicate that they are dual. Finally, the intersection
of Lp and Lr is contained in all the Ls for p ≤ s ≤ r, a fact again reflected in the Venn diagram.

The key idea in this diagram is to scale the interval [1,∞] according to the reciprocals.

2.6. Sometimes these things can be put together. The spaces on which we are considering functions
are usually everything: they’re topological, they’re smooth, and they have measures. Thus we can
consider all the above function spaces. We want to relate these function spaces.

First, note that there’s a fundamental way in which the continuous/smooth ones differ from the mea-
sure theory ones; the former are honest specific functions, and the latter are functions upto equivalence.

Second, note that it’s hard to say anything without having some way in which the measure respects
the topology or the differential structure. So let’s describe the relevant compatibility assumptions:

• For topological spaces with a measure, we usually require the measure to be a Borel measure:
it should be defined on all the Borel subsets. We also often require the measure to be inner
regular. This means that the measure of any open subset is obtained by taking the supremum
of the measures of compact subsets contained inside it.

• For smooth manifolds with a measure, we require that the measure should be Borel, and that
it should be compatible with the smooth structure, i.e. have the same notion of measure zero
subsets.

2.7. Domains in Euclidean space. The standard (and most frequent) example to bear in mind is Rn,
or a domain Ω (i.e. a connected open subset) in Rn. Note that domains in Rn have some more function
spaces associated to them:

(1) Polynomial functions: A polynomial function on a domain is the restriction to the domain of
a polynomial function on Rn. Since a domain has infinitely many points, different polynomials
on Rn give different functions on the domain.
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(2) Trigonometric polynomial functions: These are functions that are restrictions of trigono-
metric polynomials in scalar multiples of the coordinates. Note that under a linear change of
variables, a trigonometric polynomial is still a trigonometric polynomial, because of the rules for
sine and cosine of a sum.

(3) Schwarz functions: S (X, R) (resp. S (X, C)) is a subspace of C∞ comprising those functions
f that are Schwarz(defined): for any polynomial p, and any iterated partial derivative g of f ,
gp ∈ C0 (i.e. it goes to zero outside compact subsets).

In particular, f itself is in C0. Thus S (X) is a subalgebra but is not unital; in fact, it is an
ideal in C∞(X).

We can relate the existing function spaces for domains:

(1) No two continuous functions are equivalent: If f and g are two continuous functions on Ω, and
f = g almost everywhere, then f = g. This is because the value of a continuous function is
determined by knowing the values of the function at any sequence of points sufficiently close to
it.

Thus, for any subspace of the space of continuous functions, quotienting out by the equivalence
relation of “upto measure zero” doesn’t have any effect.

(2) We can introduce some new spaces called Lp
loc: A function f is in Lp

loc if for every open subset U
contained in Ω such that U is relatively compact (i.e. the closure of U is compact), the restriction
of f to U is in Lp(U).

It is easy to see that Lp
loc contains Ls

loc for p ≤ s. The largest space among these, is the space
L1

loc, and the smallest is the space L∞loc of locally bounded functions.
Continuous functions are in L∞loc, and hence in all the Lp

loc, but are not necessarily in L∞. In
fact, a continuous function need not be in Lp for any p.

(3) The intersection of the space of continuous functions with L∞ is the space of bounded continuous
functions, denoted B or BC. The intersection with L1 is the space of integrable continuous
functions.

(4) Living somewhere inside the space of bounded continuous functions is the space of continuous
functions that converge at infinity. This, as we may recall, is the unitization of the space C0 of
functions that approach 0 at ∞.

(5) The Schwarz functions live inside the intersection of all the Lps. Moreover, it is also true that if
f is a Schwarz function, and g is in Lp for some p, then fg is in Lr for all r ≥ p.

2.8. A little more on Holder spaces. For convenience, we here develop the theory of Holder spaces
only on domains in Rn. The idea is to combine the notion of differentiation, with the notion of a Holder
space C0,α.

Recall that, a little while ago, we had observed that there’s no easy choice of norm under which the
only elements of finite norm are the continuous function. However, the L∞ norm is a good one because,
locally at least, continuous functions are bounded. We now try to define some more norms which are to
Cr, what the L∞-norm is to continuous functions.

On a domain, the idea is to add up the L∞-norm of the function, and all its mixed partials of order
up to r. If the sum is finite, we say we’re in the Holder space Cr,0. We can now add a term that plays
a role analogous to the role of the supremum in the Holder space, to make sense of the spaces Cr,α.

Some points to note: First, all the spaces here are subalgebras. Second, once we’ve got these spaces,
we can de-localize them to get notions of “locally” Holder functions. The de-localization process is
necessary, to, for instance...

What happens if we’re working with differential manifolds instead of domains? The Holder norms
don’t make sense, but the notion of being locally Holder is still robust.

3. A crash course in normed vector spaces

3.1. Normed vector spaces and Banach spaces. The normed vector space idea is a way to forget
that the function spaces we are dealing with actually arise as functions, and just treat them as elements
of a vector space with a norm that gives the correct topology and the appropriate notions of closeness.

Here we give some definitions:
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Definition. (1) A topological vector space(defined) is a vector space with a topology such that
the addition and scalar multiplication operations are continuous with respect to the relevant
product topologies.

(2) A normed vector space(defined) is a vector space equipped with a norm function, that commutes
with scalar multiplication, which is zero only at zero, and which satisfies the triangle inequality.
The induced metric associates to a pair of points the norm of their difference vector.

(3) A Banach space(defined) is a normed vector space that is complete with respect to the induced
metric.

(4) An inner product space(defined) is a vector space along with an inner product. If we’re on a real
vector space, the inner product needs to be symmetric, bilinear and positive-definite. If we’re on
a complex vector space, the inner product needs to satisfy the conditions of a Hermitian inner
product.

(5) A Hilbert space(defined) is an inner product space that is complete with respect to the metric
induced by the inner product space.

There are analogous notions for algebras:

Definition. (1) A topological algebra(defined) is a R-algebra or C-algebra where the addition,
multiplication, and scalar multiplication are all jointly continuous operations.

(2) A normed algebra(defined) is a topological algebra with a norm that is sub-multiplicative, i.e.
in addition to the conditions for a normed vector space, the norm ‖·‖ must satisfy:

‖xy‖ ≤ ‖x‖ ‖y‖
(3) A Banach algebra(defined) is a normed algebra that is complete with respect to the induced

norm.

The “algebra” structure and the “inner product” structure are similar: an algebra structure is a R-
bilinear map from the algebra to itself, an inner product is a R-bilinear map to the base field. They both
give additional leverage to whatever we are studying.

The importance of completeness is that it allows us to say that Cauchy sequences are convergent, and
we can find a point to which they converge within the space. However, completeness is not as powerful as
might be suggested at first glance. The key limitation is that it doesn’t guarantee convergence in all the
possible ways we could imagine. For instance, if we’re looking at C[0, 1] in the uniform norm, then we
can take functions in it that converge pointwise to the indicator function of a point, but do not converge
uniformly.

How do the function spaces we’ve seen so far fit into these models?
(1) All the Lp spaces are Banach spaces. L2 is a Hilbert space, and L∞ is a Banach algebra.
(2) The space C0 of continuous functions that go to 0 at ∞, is a Banach subalgebra of the algebra

of all bounded functions. When the space also has a measure, it’s a Banach subalgebra of the
Banach algebra L∞.

(3) The various Crs are algebras; they aren’t normed, but we can find subalgebras inside them that
are Banach. How? Take the subalgebra Cr,0 of things with finite Cr-norm. This is a Banach
algebra.

(4) The Schwarz space forms an algebra, and a very interesting one at that. It can be viewed as a
dense subalgebra in practically all the Lps for p < ∞, and is also a dense subalgebra of C0.

3.2. Some other ideas and conditions. The dual space(defined) to a normed vector space is the space
of bounded linear functionals on it. For any normed vector space, the dual space is a Banach space, and
the main thing we’re using here is that the target space of a linear functional, which is C, is a Banach
space.1

The dual space is only a vector space, it isn’t an algebra. However, we can construct from it an algebra,
by taking the algebra generated by this vector space. In other words, we can consider the algebra of

1The correct generalization is that linear operators from a normed vector space to a Banach space form a Banach space.
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bounded polynomial functionals on a normed vector space. These are functionals that can be expressed
as sums of products of bounded linear functionals. Any guesses as to why it’s a Banach algebra?

Given any normed vector space, there is an injective norm-preserving embedding of the normed vector
space in its double dual.

Definition. (1) A reflexive space(defined) is a normed vector space such that the natural map
into its double dual is an isomorphism. In other words, any bounded linear functional on the
dual space comes from the normed vector space itself.

Since any dual space is complete, a reflexive space must be complete. The converse is not
necessarily true. Thus, reflexivity is completeness in a strong sense.

(2) Given a normed vector space X, we can define on it a topology of weak convergence. A sequence
of elements xn ∈ X converge to a point x ∈ X if for any bounded linear functional l on X, l(xn)
approaches the point l(x). In other words, as far as bounded linear functionals can see, xn → x.

(3) A normed vector space is termed strictly convex(defined) if any convex linear combination of
points on the unit sphere, lies strictly in the interior of the unit ball. A somewhat more com-
plicated version of this is the notion of a uniformly convex space(defined), where we demand a
minimum amount of roundness i.e. we show that the norm of a convex combination is bounded
away from 1 in a strong sense. Uniform convexity is sufficient to guarantee reflexivity.

(4) A normed vector space is termed weakly complete(defined) if whenever xn is a weakly Cauchy
sequence, xn is weakly convergent. We say that xn is weakly Cauchy if it is true that for any
bounded linear functional l, the sequence of values l(xn) is convergent.

So how does this throw new light on the spaces we’ve been considering so far?

(1) For 1 < p < ∞, the spaces Lp are uniformly convex, hence reflexive. The dual to Lp is Lq where
p and q are Holder conjugates.

(2) For p = 1, Lp is complete, but not reflexive. It is also not strictly convex. A simple picture of
this is L1 of a two-element set, which is the set|x| + |y| = 1 in R2. This “sphere” is far from
round.

(3) For p = ∞, Lp is complete, but not uniformly convex, in fact not even strictly convex. To see
this, again take L∞ of a two-element set. The sphere is the square max{|x| , |y|} = 1: far from
round.

(4) The space C0 is not reflexive (hence it’s not uniformly convex). That’s because it’s dual is L1,
and the dual of L1 is L∞, which is significantly bigger than C0.

4. Linear operators

4.1. What are linear operators? We are interested in linear operators from one function space to
another. There are, broadly speaking, three possibilities:

• The two function spaces are the same
• The two function spaces are on the same domain, but are different
• The two function spaces are on different domains

In addition to linear operators from one function space to another, we also consider bilinear operators.
These are maps from a product of two function spaces to a third function space, that are linear in each.
We’ll study operators of the various kinds, as we proceed.

4.2. Algebra of linear operators. The linear operators from a function space F , to itself, form an
algebra. Here addition is pointwise and multiplication is by composition. This algebra is in general
noncommutative, and is an infinite-dimensional analogue of the algebra of matrices in n variables.

We’ll be studying things in two fundamentally different ways here:

• An abstract study of what we can say about the algebra of linear operators on a normed vector
space, a Banach space, an inner product space, or a Hilbert space

• A concrete look at the situations where operators arise, when we are working with function
spaces.
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4.3. The Banach algebra of bounded linear operators. Suppose X is a Banach space. We can
define the following Banach algebra:

• The elements are bounded linear operators from X to X
• The addition of elements is pointwise, as is scalar multiplication
• The norm is the operator norm
• The multiplication of elements is by composition

This is a noncommutative, but unital. Is it complete? (I don’t see any reason why it shouldn’t be).
Since it is a Banach algebra, we can now forget about how it arose (as operators from a function space

to itself) and study the theory of Banach algebras. For what we’re going to say in the coming sections,
it does make a significant difference whether we’re working with real or complex base field. We’ll stick
to the complex situation, because the field of complex numbers is algebraically closed.

4.4. A bit of pause. We’ve done three successive levels of generalization:
• We started out with some space on which we were interested in functions. We decided to look

at the function space instead.
• Then, we took the function space, and decided to forget that it actually comes as functions. So

we think of the function space simply as a normed vector space, or normed algebra, or Banach
algebra, or whatever.

• Then, we studied bounded linear operators from the Banach space to itself. This gave a Banach
algebra. Now, we’re tempted to forget that the Banach algebra actually arose as an operator
algebra, and simply study it as an algebra.

4.5. Notions of spectrum for the Banach algebra. Suppose A is a unital Banach algebra over C.
We define:

Definition (Spectrum). The spectrum(defined) of an element a ∈ A is the set of λ ∈ C such that
a− λ is not invertible.

What can we say about why an element isn’t invertible? There could be a lot of reasons: perhaps it
just happened not to be invertible. However, let’s try to look at it positively. What are the equations it
can solve, that’d make it non-invertible? In other words, how can I exhibit something to convince you
that a− λ is not invertible?

The trick is to show that a−λ is a zero divisor. In other words, we find a b 6= 0 such that b(a−λ) = 0
(making a− λ a right zero divisor) or we find a c 6= 0 such that (a− λ)c = 0 (making a− λ a left zero
divisor). This isn’t the entire spectrum, but it’s a fair chunk of it.

What does this translate to, if we now think of A as bounded linear operators from a function space
F to itself?

• The condition of being a left zero divisor is equivalent to saying that a−λ isn’t an injective map.
That’s because a− λ is zero on the image of c, and c 6= 0 tells us that the image of c is nonzero.
This is equivalent to saying that λ is an eigenvalue for a (for the reverse direction of implication,
we use Hahn-Banach). The set of such λ is said to form the point spectrum(defined) of a.

• The condition of being a right zero divisor is equivalent to saying that the range of a− λ is not
dense. One direction of implication is tautological, while the other is an application of Hahn-
Banach. The set of such λ, minus those which already lie in the point spectrum ,forms the
residual spectrum(defined) of a.

4.6. Dual spaces and adjoint operators. Given a Banach space F , we have a dual space F ′. We
now have two Banach algebras: the bounded linear operators from F to itself, and the bounded linear
operators from F ′ to itself. So we have two noncommutative rings floating around. What is the relation
between these rings?

There is a natural injective anti-homomorphism (injectivity follows from Hahn-Banach):

AF → AF ′

This sends an element of AF to the adjoint element in AF ′ (defined in the only way that makes sense).
The map is an anti-homomorphism because the order of multiplication gets reversed. Thus, the left zero
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divisors in AF become right zero divisors in AF ′ and the right zero divisors in AF ′ becomes left zero
divisors in AF . Simple! Back in the language of normed vector spaces:

For a ∈ AF , the point spectrum of a is contained in the union of the point spectrum and
residual spectrum of its adjoint, and the residual spectrum of a is contained in the point
spectrum of its adjoint.

When F is a reflexive space, the adjoint map is an anti-isomorphism, so in that case, the left zero
divisors become right zero divisors and the right zero divisors become left zero divisors.

4.7. We’ll see more. A little later, we shall see that there are some theorems about the spectrum
of an element in a Banach space. We’ll see that the spectrum may be a single point, or it may have
uncountable many points, but it’s always contained in a disc in the complex plane. We’ll also see that
the radius of this disc can be computed by looking at norms of powers of the element.

5. Some examples of operators

5.1. Multiplication operators. Multiplication operators are operators between function spaces on the
same domain. To start with, if F denotes the space of all finite-valued functions on a set X, we have a
bilinear map:

F × F → F

that sends a pair of functions to their pointwise product. Given a fixed f ∈ F , we are interested in
questions like: what is the image of a particular subspace of F under multiplication by f?

Let’s review some important definitions in terms of the language of multiplication operator:
• A subspace A of F is a subalgebra if the multiplication operator restricts to an operator A×A →

A.
• A subspace B of a subspace A is termed an ideal in A if the multiplication operator restricts to

an operator B ×A → B.
Here, now, are some basic facts about multiplication operators:
(1) Holder’s inequality yields that for a, b ∈ [0, 1], the multiplication operator restricts to a map:

L1/a × L1/b → L1/(a+b)

In particular, we have a multiplication operator from L∞ × Lp to Lp, and a multiplication
operator from Lp × Lq to L1 (where p and q are Holder conjugates).

(2) Common sense tells us that functions with compact support form an ideal inside the space of all
functions (Because 0 multiplied with anything nonzero is still zero). Thus, continuous functions
with compact support form an ideal in the space of all continuous functions.

5.2. Differential operators. Differential operators really make sense, not on any old function space,
but on an algebra .So one can make sense of a differential operator on L∞, but not on L1.

Given a R-algebra A, and an A-module B, a map d : A → B is termed a derivation(defined) if it
satisfies the following:

• d is R-linear:
• d satisfies the Leibniz rule:

d(ab) = a(db) + (da)b
This is a fairly abstract definition, but it turns out that for a differential manifold M , the derivations

from C∞(M) to C∞(M) are in precise correspondence with smooth vector fields on M . Moreover, the
derivations from Cr(M) to Cr−1(M) are in precise correspondence with Cr vector fields on M .

We can now define a differential operator:

Definition (Differential operator). The algebra of differential operators(defined) on a R-algebra A
is a subalgebra of the algebra of all linear operators from A to A, generated by left multiplication maps
(g 7→ fg) and the derivations. The algebra of differential operators comes with a natural filtration: the
rth filtered component is differential operators of order ≤ r. These are differential operators that can be
expressed as sums of composites of derivations and multiplications, where each summand has at most r
derivations.
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How nice are differential operators?
What we’d ideally like to say is that differential operators are bounded in some sense of the word, but

this unfortunately isn’t true unless we choose our topologies carefully. The topology that we need to
choose is the one that we saw for domains in Rn: add up the Lp norms for all the mixed partials.

This is an attractive definition, and with this definition, we can in fact see that any differential operator
is bounded with respect to this norm. Essentially, this is because when we differentiate in a direction, we
are taking a fixed linear combination of the partials, and since the norms of the partials are incorporated
in the norm of the function, we’re doing fine.

However, if we just naively tried to relate the Lp-norm of a function with its derivatives, we’d end up
in a severe mess.

So some points about differential operators:
• Differential operators make use of the algebra structure (i.e. the multiplication structure) in the

function space.
• Differential operators make use of the smooth structure on the manifold.
• For differential operators to be bounded linear operators, we need to put norms on the function

spaces that take into account the Lp-norms of the partial derivatives.

5.3. Integral operators. Integral operators make use only of a measure space structure, and do not
involve any algebra structure on the function space.

Definition. Let X and Y be measure spaces. An integral operator(defined) with kernel function
K : X × Y → R is defined as the map:

f 7→ (y 7→
∫

K(x, y)f(x) dx)

Here, f is a function from X to R, and the new function we get is from Y to R.

The same kernel could be used to define an integral operator from functions on Y to functions on X.
We need to be a little careful with what we mean by an integral operator. In general, integral operators

are just formulae; it is then upto us to make sense of what they honestly mean. To illustrate matters,
let M be the space of all measurable functions, and A be a subspace of M . Let Ã be the space of honest
specific functions that becomes A when we go down to measure zero.

For any point y ∈ Y , the value: ∫
K(x, y)f(x) dx

if it exists, is independent of the choice of representative in Ã, for a function class in A. This is the
cool thing about integration: it forgets measure zero differences.

On the other hand, on the range side, there is a crucial difference. The naive, pointwise interpretation
of an integral operator being defined for a function is:

For every y ∈ Y , the integral: ∫
K(x, y)f(x) dx

makes sense and gives a finite value.
We could choose to weaken this somewhat, since we’re upto measure zero:

For almost every y ∈ Y , the integral:∫
K(x, y)f(x) dx

makes sense and gives a finite value.
These are pointwise operators in an honest pointwise sense. So if A and B are subspaces of the space

M of all measurable functions upto measure zero, and Ã and B̃ are their lifts, then a pointwise operator
from A to B almost lifts to a map from A to B̃. Thus, given an equivalence class of functions (an element
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of A) we obtain a specific pointwise defined element of B̃ (with a few points gone awry, yes, but still it’s
honestly defined almost everywhere).

This means that integral operators, when they make pointwise sense as above, transform equivalence
classes of functions to honest specific functions. Why is this remarkable? Because given an equivalence
class of functions only, it makes no sense to evaluate at a point. But given an honest specific function
(even one that’s ill-defined at a few points) one can make sense of defining it at most places.

However, it often happens that we can define integral operators from function spaces, that do not
make sense at a pointwise level.

5.4. Antiderivatives as integral operators. An integral operator can be viewed as the integral with
limits. Here are some situations:

Given a function f ∈ L1(R), we can consider the “antiderivative” of f as a map from R to R, that
happens to be 0 at 0. This is obtained by taking:

x 7→
∫ x

0

f(y) dy

This can be viewed as an integral operator, by the following method. Consider the function K(x, y)
which is 1 if 0 ≤ y ≤ x, −1 if x ≤ y ≤ 0, and 0 elsewhere. Then, the above function is:

x 7→
∫

R
K(x, y)f(y) dy

Thus, taking the antiderivative is an integral operator from L1(R) to C0(R) (actually to something
better: locally absolutely continuous functions).

Here are some other “antiderivative”-like operators that we can think of as integral operators. Suppose
f is a function defined on Ω ⊂ Rn. We want to define a new function that sends a nonnegative real R to
the integral of f in the ball of radius R about the origin.

This can be viewed as an integral operator from L1(Ω) to C(R≥0). where the kernel function K(R, x)
is 1 if x is in the ball of radius R, and 0 otherwise.

In fact, most of the integral operators that we see hide in some sense an antiderivative-like operation.
The advantage of an integral operator is that we can define K in any manner whatsoever; it need not
just takes values like 0, 1 or −1.

5.5. Convolution product. A convolution can be viewed as a special case of an integral operator, but
it differs in two ways:

• It makes sense only for locally compact topological Abelian groups (that come with a compatible
measure).

• It takes two inputs, and is bilinear.
If f, g are two functions on a locally compact topological Abelian group G, their convolution is defined

as:

(f ∗ g)(x) =
∫

G

f(y)g(x− y) dy

In other words, we are “adding up”, for all ways of writing x as a sum of two things, f of the first
thing and g of the second thing.

The convolution is commutative and associative, wherever it is defined.
Convolution is an example of a bi-integral operator: if we fix either function, we get an integral

operator. For instance, if we fix g, we get an integral operator with kernel K(x, y) = g(x− y), whereas
if we fix f , we get an integral operator with kernel K(x, y) = f(x− y) (the roles of x and y are reversed
from the previous section). Thus, the same concerns that apply to integral operators apply here: we
have the question of when the convolution makes pointwise sense, and when it makes sense even though
it doesn’t make pointwise sense.

6. A couple of general concerns

Before proceeding further, let’s mention a few general concerns we have about operators. As we saw
in the above examples, we don’t usually define an operator by writing some gigantic infinite-dimensional
matrix. Rather, we write some formula, and then argue that the formula makes sense as an operator
between the required spaces.
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As we already saw, there are two kinds of things we could do: have operators from a function space
to itself, and have operators from one function space to another. The former comes with a nice algebra
structure. The latter is also common.

A central question we shall repeatedly consider is:
Let X, Y be measure spaces, and M,N be respectively the spaces of all measurable
functions on X and on Y (upto equivalence). Suppose, further, that we have a formula
that ostensibly takes a function on X and outputs a function on Y . How do we find out
a function space F on X, and a function space G on Y , such that the formula defines a
bounded linear operator from F to G (the bounded is with respect to whatever natural
norm we are considering).

This is a vaguely worded question, but we attempt a partial answer in the next subsection.

6.1. A quick look at the Lps. We begin with a simple lemma.

Lemma 1. Suppose A and B are normed vector spaces. Suppose C is a dense subspace of A and
B is complete. Then, any bounded linear operator from C to B, extends to a bounded linear operator
from A to B

Proof. Any point in A is the limit of a sequence of points in B. The sequence is Cauchy, and since the
operator is bounded, its image is a Cauchy sequence. Hence, the image of the sequence is a convergent
sequence in B (since B is complete). Moreover, the limit is independent of the particular sequence we
chose, so we can set this to be the image of A. �

This suggests the following idea. Consider the space:⋂
1≤p<∞

Lp

We had observed earlier that this is a subalgebra, often without unit. Further, for a domain (in
particular for Rn), the Schwarz space is contained inside this, and is in fact dense in each of the Lps.

Theorem 1 (Defining for Schwarz suffices). If F is a linear operator from the Schwarz space to itself,
and ‖F‖p,r < ∞, then F extends uniquely to a bounded linear operator from Lp to Lr, with the same
norm. Here ‖F‖p,r denotes the operator norm with the Schwarz space on the left given the Lp-norm and
the Schwarz space on the right given the Lr-norm.

Moreover, if the original map was an isometry, so is the unique extension.

6.2. Riesz-Thorin interpolation. We first state an extremely powerful result, called the Riesz-Thorin
interpolation theorem. We then look at a special case of this, called Schur’s lemma, that can also be
proved by a direct and clever argument.

Before beginning, recall the following fact:
If p ≤ s ≤ P , then Ls(X) ⊃ Lp(X) ∩ LP (X) and the latter is dense in the former.

The fact that the latter is dense in the former is attested to by the fact that the Schwarz functions,
that are dense in all the Lps for finite p, live inside the latter.

Now suppose F is an integral operator that we’ve somehow managed to define from Lp to Lr and
from LP to LR, both the norms are bounded, and the definition agrees on the intersection. Then for any
s ∈ [p, P ], and for u ∈ [r, R] we want to know whether we get a map from Ls to Lu. In other words, we
want to investigate what we can say about the boundedness of the map restricted to the intersection:

Lp ∩ LP → Lr ∩ LR

If such a map has bounded (s, u)-norm, then by the density argument, it extends uniquely to a map
from Ls to Lu.

The Riesz-Thorin interpolation theorem is a wonderful theorem that gives us sufficient conditions for
this. The idea behind the theorem is simple: invert the exponents, and thus go from [1,∞] to [0, 1].
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There, take a convex linear combination of p and P , and take the same convex linear combination of r
and R. Then you’re guaranteed bounded operator norm.

Theorem 2 (Riesz-Thorin interpolation theorem). Suppose F defines a bounded linear operator from
Lp to Lr, and from LP to LR, such that the operators agree on the interaction. If 1/s = t/p+(1−t)/P and
1/u = t/r+(1−t)/R, then F has finite (s, u)-norm, hence defines a bounded linear operator from Ls to Lu.
Moreover, the bound on the operator norm (s, u) is given by operator norm from p to rtoperator norm from P to R1−t.

We’ll not sketch a proof here.

7. More on integral operators

7.1. Composing integral operators. Is a composite of integral operators integral? The answer is yes,
if we do a formal computation with Fubini’s theorem. Suppose X, Y and Z are measure spaces. Suppose
K : X × Y → R is one kernel and L : Y × Z → R is another kernel. Let’s try to compose the integral
operators:

z 7→
∫

Y

L(y, z)
∫

X

K(x, y)f(x) dx dy

A rearrangement by Fubini shows that this is an integral operator whose kernel is:

(x, z) 7→
∫

Y

K(x, y)L(y, z) dy

Thus, at least at a formal level, a composite of integral operators is an integral operator.
Let’s look at this in the special case of the antiderivative. Suppose our measure space is [0,∞] with

Lebesgue measure, and we define the operator:

x 7→
∫ x

0

f(t) dt

The kernel of this operator is the map K(t, x) = 1 if 0 ≤ t ≤ x and 0 otherwise.
So what happens when we compose this operator with itself? A little thought reveals that the new

kernel is:

K(t, x) = (x− t)+

i.e. the positive part of the difference between x and t.
Thus, iterated integration within limits can be viewed as a single integral operators.
This tells us that if X is a measure space and A is a function space on X, we may be interested in

the algebra of all integral operators from A to A. What can we say about these integral operators? Can
we determine the pairs (p, r) such that the operator norm, viewed from Lp to Lr, is finite?

7.2. Operators that are well-defined pointwise. An integral operator can be thought of as a com-
posite of two things: a multiplication operator, and the integration functional. Let’s consider a situation
where we’re looking at an integral operator from a function space on X to a function space on Y , with
kernel K(x, y). If f is the input function, we want to ensure that for every y ∈ Y , the map:

x 7→ K(x, y)f(x)
is in L1(X). By the preceding discussion, it suffices to say that this happens for almost every y ∈ Y .

This brings us back to the multiplication operators situation, that we saw a little while ago: it’s clear
that if f ∈ Lp, then for almost every y, x 7→ K(x, y) is in Lq where q is the conjugate exponent to p.

Once we’ve ensured that the definition is valid pointwise, the next step is to ensure that the function
we get at the end of it is again nice in some sense. Let’s work out some examples to illustrate this.

Suppose we want to know when the integral operator by K lives in Op1,1: in other words, when does
it give a well-defined bounded linear operator from L1 to L1. The first step of the reasoning shows that
for almost every y, K(x, y) ∈ L∞(X). For the next step, we need to ensure that:∫ ∣∣∣∣∫ K(x, y)f(x) dx

∣∣∣∣ dy < ∞
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A simplification and Fubini exchange shows that we need to ensure:

sup
x∈X

∫
Y

K(x, y) dy < ∞

And that the value on the left side is precisely the norm as an operator from L1 to L1.
By a similar procedure, we can try determining the conditions under which we get an operator from

L1 to L∞. In the case, the answer is simpler: we just get K ∈ L∞(X × Y ). For L∞ to L1, we get, by a
Fubini argument, that K ∈ L1(X × Y ), and for L∞ → L∞, we get the condition:

sup
y∈Y

∫
X

K(x, y) dy < ∞

with the expression on the left side being the L∞-norm (this is all part of a general phenomenon on
adjoint operators that we shall see later).

It turns out that Riesz-Thorin interpolation, and the Schwarz route, that we mentioned in the last
section, allows us to get around the problem of pointwise ill-definedness.

7.3. Some non-pointwise definitions. We now use the results of the previous section to give examples
of situations where certain operators cannot be viewed as pointwise operators from Lp to Lr, but the
Schwarz route allows us to view them in this way.

The primary example is the Fourier transform:

Definition (Fourier transform). The Fourier transform(defined) of a function f on Rn is defined as
the integral operator with kernel:

K(x, y) = exp (−ix · y)

It is an integral operator from function spaces on Rn to function spaces on Rn. The image of f under
the Fourier transform is denoted by f̂ .

The kernel of the Fourier transform is symmetric.
The kernel is in L∞(Rn × Rn) (in fact, it has constant norm 1), which means that this has a good

pointwise definition for f ∈ L1. But there’s no guarantee of a good pointwise definition for f ∈ L2, or in
any other Lp for that matter. We thus go the Schwarz route. Let f ∈ S (Rn). We show the following:

• f maps the Schwarz space via a linear isomorphism to the Schwarz space.
• The map is a L2-isometry, upto a normalization factor of 2π.

We can thus extend f uniquely to an isometry from L2 to L2. So the Fourier transform is an isometry
from L2 to L2, and its behaviour on L1 ∩ L2 is exactly the way we expected.

The Fourier transform, however, is dishonest and does not make pointwise sense, because for a par-
ticular f ∈ L2, the formula may not make pointwise sense for any x.

We shall see that something similar happens for the Hilbert transform, that we’ll encounter a little
later in the text.

7.4. Riesz-Thorin to the Fourier transform. We’ve seen that the Fourier transform is an isometry
from L2 to L2 (We did this by showing that it’s an isometry from the Schwarz space to itself, and then
extending). Let’s observe one more basic fact: the Fourier transform is a bounded linear operator from
L1 to L∞. This follows from a general fact about integral operators: if the kernel is in L∞(X × Y ), we
get a bounded linear operator from L1(X) to L∞(Y ).

We can now apply the Riesz-Thorin interpolation theorem, interpolating on the domain side between
1 and 2, and on the range side between ∞ and 2. When going to multiplicative inverses, we are trying
to interpolate on the domain side between 1 and 1/2 and on the right side between 0 and 1/2. A little
thought yields that we have a bounded linear operator from Lp to Lq where 1 ≤ p ≤ 2 and q is the
conjugate exponent to p.

A little word here. The only p for which we have a map that is genuine and pointwise is p = 1. In all
other cases, we have a bounded linear operator on the Schwarz space in an honest pointwise sense, and
we extend it to an operator on the whole of Lp.
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The precise inequality here is termed Plancherel’s inequality(defined), and the formulation of the
inequality uses a more precise version of Riesz-Thorin which we haven’t covered here.

7.5. Typical application of Riesz-Thorin. Riesz-Thorin interpolation is extremely useful, and we
shall see it turn up repeatedly in the coming sections.

The typical strategy will be:
• Prove boundedness for certain special pairs (p, r). For this, use basic results like Holder’s in-

equality, or facts about L1 and L∞ or just a quick Fubini argument.
• Use Riesz-Thorin to fill in the gaps.

7.6. Riesz-Thorin for bilinear operators. For bilinear operators, Riesz-Thorin can be applied using
the fix-one-at-a-time idea. We shall see this in the next section, where we discuss convolutions.

8. More on convolutions

8.1. The basic result. For G a locally compact topological Abelian group, we had defined the convo-
lution of two functions f, g on G as:

(f ∗ g)(x) =
∫

G

f(x− y)g(y) dy

This is bilinear, and the first, probably surprising observation is that it is well-defined from L1 × L1

to L1. This is by no means obvious, because a product of L1 functions is not necessarily L1. However,
the map actually makes sense pointwise almost everywhere, which means that although fg has no reason
to be in L1, it is true that for almost every x, the map:

y 7→ f(x− y)g(y)

is in L1(G). In fact, we’re saying something more: we’re saying that the output function is again in
L1(G). The only way I know of proving this is Fubini’s theorem.

A quick note regarding Fubini’s theorem may be worthwhile. The Fubini idea of interchanging two
integrals is very useful, but it can also be abused a lot

8.2. Riesz-Thorin to complete the convolution picture. Common sense tells us that the convolu-
tion is well-defined from L1 × L∞ to L∞. So, it’s well-defined as a map L1 × L1 → L1 and as a map
L1 × L∞ → L∞.

Now fix f ∈ L1, and consider map g 7→ f ∗ g. This is well-defined L1 → L1 and L∞ → L∞, and
bounded in both cases by ‖f‖1. Riesz-Thorin tells us that it is well-defined and bounded by ‖f‖ as a
map Lp → Lp for every p. Thus, we get that if f ∈ L1 and g ∈ Lp, then:

‖f ∗ g‖p ≤ ‖f‖1 ‖g‖p

Now, fix g ∈ Lp. We use the fact that

9. Functoriality, products and other concerns

9.1. Maps between underlying spaces. We constructed function spaces by taking some set, or space,
with additional structure, and looking at functions satisfying a certain property with respect to that
additional structure. So one question is: do maps between the underlying spaces give maps between the
function spaces? The obvious way of trying to get a map, of course, is composing, and that would be
“contravariant” in nature.

Let’s quickly review our various function spaces, and how the maps work out:
(1) Topological spaces: If X and Y are topological spaces, and f : X → Y is continuous, compos-

ing with f defines a map from C(Y ) to C(X). Moreover, if f is a proper map (inverse images of
compact sets are compact) then Cc(Y ) gets mapped to Cc(X), C0(Y ) gets mapped to C0(X),
and so on.

(2) Measure spaces: Suppose X and Y are measure spaces, and a map f : X → Y has the
property that the inverse image of any measurable subset is measurable, and the inverse image
of any measure zero subset has measure zero. Then, we get an induced map from M(Y ) to
M(X), where these denote the spaces of measurable functions upto measure zero equivalence.
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There are two very special cases of this: an open subset in a topological space, mapping by
inclusion, with respect to a regular measure (for instance, domains in Rn), and a product space
projecting onto one of the factors.

(3) Differential manifolds: If X and Y are differential manifolds, and f : X → Y is a smooth
map, then f induces a map from C∞(Y ) to C∞(X) by pre-composition (and in fact it does
something similar on every Cr). For it to preserve finiteness of norm, f should be a proper map.

9.2. Product spaces: separate and joint properties. Category-theoretically, the product of two
objects is defined as something terminal with regard to maps to the object. In most of the cases we’re
interested in, the product of two spaces is just the Cartesian product, endowed with additional structure
in the correct way. We now analyze how a function space corresponding to a product of two spaces, is
related to the function spaces corresponding to the factors.

The general situation is like this. Given X and Y , and function spaces F (X) and F (Y ), we have
natural maps:

X × Y → X, X × Y → Y

This yields, by contravariance, maps of the form:

F (X) → F (X × Y ), F (Y ) → F (X × Y )

We could do many things with these two maps. For instance, we could define a linear map:

F (X)× F (Y ) → F (X × Y )

which takes a function of X, a function of Y , and then just adds them. We could also define a bilinear
map:

F (X)× F (Y ) → F (X × Y )

which takes a function of X, a function of Y , and multiplies them. Combining both these ideas, we
see that given functions on X and functions on Y , we can take sums of products of these. A function
that’s a product of a function of X and a function of Y is termed multiplicatively separable(defined),
and we basically get the vector space spanned by multiplicatively separable functions.

Now the things we need to check are that in particular cases, we do still remain inside F when we
multiply. For algebras of functions, this is clear, but it is also true in cases where the functions do not
form an algebra; for instance, the function spaces Lp.

The second thing we study is the following non-unique and non-natural choices of maps. For fixed
y ∈ Y , we get a map X → X×Y by x 7→ (x, y). This should induce a backward map F (X×Y ) → F (X).
By doing this for every y, we get a bunch of such maps, and similarly we can do this for every x ∈ X.

Now, we can ask the question: if a function on X × Y satisfies the property that its restriction to
every X-fiber is in F (X) and its restriction to every Y -fiber is in F (Y ), is the function in F (X × Y )?

Not necessarily, as we shall see. There are functions that are fiber-wise continuous, but not continuous
on the whole. The problem really lies in the ability to relate what is happening on different fibers. It’s
the fact that a network of vertical and horizontal roads cannot capture all possible directions of approach.

A function whose restriction to each fiber is in the function space for that fiber, is sometimes said to
separately be that sort of function.

9.3. Products in each of the cases. Let’s now review the various kinds of function spaces and see
what can be said about products in each of these:

(1) Topological space: For a product of topological spaces, we do have natural embeddings
C(X) → C(X × Y ) and C(Y ) → C(X × Y ), and this gives a notion of a multiplicatively
separable function on X ×Y . By certain facts like Weierstrass approximation, we can show that
for spaces like Rn, the span of multiplicatively separable functions is the whole space.

On a converse note, it is not true that any function that is separately continuous (i.e. contin-
uous in each fiber) is jointly continuous.

We need to be more careful when dealing with continuous functions of compact support. If
Y is not compact, the image of Cc(X) in C(X × Y ) does not land inside Cc(X × Y ). However,
a product of a function in Cc(X) and a function in Cc(Y ) does land inside Cc(X × Y ). Similar
observations hold for C0.
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(2) Measure space: For a product of measure spaces, we do have natural membeddings Lp(X) →
Lp(X × Y ) and Lp(Y ) → Lp(X × Y ). Moreover, a product of images of these, is in Lp(X × Y ).
This is a kind of application of Fubini’s theorem, if you want: the fact that when integrating a
multiplicatively separable function, we can integrate the components against each of the measure
spaces. Note that it is not true in general that a product of functions in Lp is in Lp, so we are
really using that the two functions that we have are in some sense independent.2

We can use a Weierstrass-approximation type argument again to show that the span of mul-
tiplicatively separable functions is dense.

It’s again not true that a function that is fiber-wise in Lp, must be in Lp.
(3) Domains in Euclidean space: We can here talk of the Schwarz spaces. As with Cc, it is not

true that the image of S (X) in C(X × Y ) is a Schwarz function. However, the product of an
element of S (X) and S (Y ), does land inside S (X × Y ).

Again, a converse of sorts isn’t true: a function could be separately Schwarz, and yet need not
be Schwarz.

9.4. Integrate to get functions on factor spaces. The fiber-wise concept can be used to get one,
somewhat more, useful concept. We observed that it wasn’t enough to just put a separate condition on
each fiber because that didn’t guarantee any uniformity. However, we can conceivably do this:

• Assume a certain condition on each fiber, which guarantees that some norm is finite
• Now consider the function that sends y ∈ Y to the norm at that fiber. Impose some good

conditions on this function.
This is an iterated integration idea: we impose a condition on each fiber so that we get a value by

integrating against each fiber (this is the inner integration step). Then we impose a condition on the
new function that we got. This is the outer integration step. That this iterated integration procedure
has exactly the same effect as working directly in the product space, is a Fubini-type result.

Let’s analyze the applicability of this idea to all the function spaces we’ve been considering:
(1) Measure spaces: A function is in L∞(X × Y ), iff, for almost every y, it is in L∞(X), and the

function that sends y to the L∞-norm of the corresponding function, is in L∞(Y ).
The same holds for Lp, for finite p. For finite p, it is an application of Fubini’s theorem.

(2) Schwarz space: A function in C∞(X × Y ) is in S (X × Y ) if for every fiber, it is Schwarz, and
the rate of decline on the fibers is uniform.

10. Getting bigger than function spaces

Is the space M of measurable functions, the biggest possible space? Not necessarily. We can conceive
of, and work with, bigger spaces. To understand these bigger spaces, first observe that there is the famous
inner product:

〈 f , g 〉 =
∫

fg dm

(For real-valued functions, we do not need complex conjugation).
Now, this does not define an inner product on all of M . In fact, we know that given any function in

Lp, the functions against which its inner product is finite and well-defined, and precisely the functions
in Lq where q is the conjugat exponent of Lp. The Riesz representation theorem tells us that for finite
p, Lq are precisely the linear functionals on Lp.

10.1. A Galois correspondence. A nice way of looking at dual spaces is to consider the Galois cor-
respondence picture. Let X be a measure space, and M be the space of all measurable functions on X,
upto measure zero. Define the following binary relation on M as:

f is related to g iff the inner product of f and g is well-defined and finite i.e. iff fg is in
L1(X).

This is a binary relation on the set M ; hence we can use it to define a Galois correspondence (this is in
a similar way as we define a Galois correspondence between a ring and its spectrum). The correspondence
is as follows: it sends a subset S of M to the set of all functions f ∈ M that are related to every element
of S.

2The probability-theoretic interpretation is that a random variables with finite expectation need not have finite expec-
tation; however, a product of independent random variables with finite expectation has finite expectation

17



What does this Galois correspondence do? First, observe that we might as well assume that S is a
vector space, because the elements related to S are the same as the elements related to the linear span
of S. The Galois correspondence then sends S to those elements of M that give rise to elements of S∗

(in a purely linear algebraic sense).
Some cautions and observations:

• The map we have defined (we’ll call it the dual inside M), takes a vector subspace S of M and
sends it to a vector space comprising those functions that induce elements in the algebraic dual
space to S. However, it does not include all elements of the algebraic dual of S.

• We haven’t yet put a topology on S, so we cannot talk of the notion of bounded linear functionals,
as yet.

• The abstract nonsense of Galois correspondences tells us that applying this map thrice has the
same effect as applying it once.3 Thus, there are certain subspaces with the property that they
equal their “double duals” inside M . This is not the same as saying that the vector space equals
its algebraic double dual.

• It turns out that if we look at Lp just as a vector space (without thinking of the p-norm) and
take its dual inside M , we’ll get precisely Lq, where q is the conjugate exponent to p. We can
then go backwards and see that for finite p, the “correct” topology to put on Lp, under which
we’d get all bounded linear functionals, would be the p-norm topology. For p = ∞, we see that
putting the L∞-norm ensures that the dual within M consists only of elements from L1, but
there are elements in the dual space that do not come from within M .

• This also indicates that there is something “natural” about the topologies on most of the sub-
spaces of M that we are considering. In other words, starting with a subspace S, we first find its
dual inside M , and then topologize it so that its dual inside M are precisely the bounded linear
functionals on it inside M .

10.2. Going beyond functions. We’ve now set up a sufficiently huge language to see one natural way
of generalizing functions. Namely, instead of trying to take duals inside M , we try to take the whole
dual space, as bounded linear functionals under the relevant topology. Unfortunately, there is no single
space in which we can study everything.

Some of the examples of this are:

• The space of all possible finite real/complex measures: The elements of this space are
finite real/complex measures, and we add the measures in the obvious way. Where does the
space of real/complex measures live? For one, any such measure defines a linear functional on
the space of bounded functions. We need to be careful here: we’re talking of functions that are
honestly bounded, rather than equivalence classes of bounded functions (because that’d be with
respect to another measure).

In particular, the space of all possible finite real/complex measures lives inside the dual space
to BC, the space of bounded continuous functions.

• The Lebesgue-Radon-Nikodym theorem now makes more sense. It says that if (X, m) is a
measure space and µ is any complex measure on X, then µ can be broken up as the sum of
a measure that’s absolutely continuous with respect to m, and a measure that’s singular with
respect to m: in other words, the two measures are supported on disjoint sets.

The absolutely continuous part is the part that comes from within L1, and the singular part
is the part that comes from outside.

The upshot is that there are spaces bigger than function spaces: namely, spaces of measures. And
some of these are totally orthogonal to function spaces, such as the singular measures.

There are certain special kinds of singular measures that come up frequently: the discrete singular
measures. Discrete singular measures are measures that are concentrated on a discrete set. Note that
singular measures could be far from discrete: we could, for instance, take an uncountable measure zero
set, and provide a measure on it using a bijection with Euclidean space. That’d be singular but would
be orthogonal to any discrete singular measure.

Perhaps the most important discrete singular measure, from which the others are built, is the delta
measure (also called the delta distribution):

3The same logic as we use for centralizers in rings, and for the correspondence between a ring and its spectrum.
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Definition (Delta measure). The delta measure on a set X, for a point x ∈ X, is the measure that
assigns measure 1 to the singleton subset {x}, and measure zero to any subset not containing {x}.

Integrating against δx is akin to evaluating at x.

11. Differential equations

11.1. A little pause. Where have we been going? Our basic assumption is that it’s interesting to study
functions from a given set or space, to the reals or complex numbers. Starting with these vector spaces of
functions, we’ve built a theory that surrounds them: we’ve gone on to study operators between function
spaces, spectra of operators, and some particular examples. Now it’s time to justify our investment.

Why study different function spaces?
We’re looking for a certain, ever-elusive, function that satisfies some conditions. If we could make do

with a nice and good C∞-function, we shouldn’t bother with all the measure theory stuff. On the other
hand, we may not always be able to get the C∞ functions. We need to calibrate just how good or bad
our functions can get, and look in increasing levels of generality.

Why not then just look at the largest possible function spaces?
That’s bad, because then we cannot use the specific machinery that is applicable to the smaller,

nicer, more well-behaved function spaces. The Occam’s razor cuts backwards: to solve the differential
equations as simply as possible, we need to have a theory of as many different kinds of function spaces,
as we can get our hands on.

Why all this structure of norms, operators etc.? Where do they come in?
That’s what we’ll see in this section.
One thing we’ll see in the coming sections in a return to the “real”-valued functions, as opposed to

the complex-valued functions. Since the reals form a subfield of the complex numbers, “real inputs give
real outputs”, which means that if everything in the differential equation is real, one can expect to come
up with real solutions.

11.2. How do differential equations arise? Differential equations arise from instantaneous laws.
These could be physical laws, social laws; all kinds of laws. The idea is: “the way something is changing,
depends on the way it is”. For instance, a differential equation like:

dx

dt
= x

reflects the law that the rate at which x changes with respect to times, equals the value of x. The
more it is, the faster it changes.

The general setup for a partial differential equation is:

• There are some independent variables: These are the spatial or time variables in which the system
is embedded. For instance, if a particle is moving through time, the independent variable is
time. If we are tracing the temperature in the universe through space and time, the independent
variables are space and time. (the variables are assumed to be real-valued).

• There are some dependent variables: These are variables that depend, in some sense, on the
independent variables. (the variables are again assumed to be real-valued)

• There is a system of differential equations: Each equation in this system relates the indepen-
dent variables, dependent variables, and partial derivatives of the dependent variables in the
independent variables.

Formally, there is a “configuration space” for the independent variables (the set of all possible value
combinations), and a configuration space for the dependent variables, and there’s a map from the former
to the latter. What the differential equation does is pose constraints on how this map must behave.

11.3. Order, degree and linearity. Differential equations could look real funny. They could involve
partial derivatives, mixed partials, they could involve functions like sin and cos applied to the derivatives,
they could involve just about anything. Where, then, does all the beautiful theory that we’ve constructed
for normed vector spaces, fit in?

It fits in because the differential equations that we’ll be considering, for the initial part, have a very
special structure. Here are some definitions:
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Definition. (1) A (nonlinear) differential operator of order ≤ r is a map from the space of Cr

functions to the space of C0 functions, that involves a Cr function of the variable, the value of
the function at the point, and all its mixed partials of order upto r.

(2) A (nonlinear) differential equation of order ≤ r is an equation of the form F (f) ≡ 0 where F is
a nonlinear differential operator of order ≤ r, and f is the function for which we need to solve.

(3) A polynomial differential operator(defined) of order ≤ r is a (nonlinear) differential operator
that is a polynomial function of the variable, the value of the function at the point, and all the
mixed partials. Similarly we have the notion of a linear differential operator(defined): this
coincides with the notion of differential operator we saw earlier.

(4) A differential operator is said to have degree(defined) d if it is expressed as a degree d homogeneous
polynomial of the mixed partials of order exactly r, plus a differential operator of order ≤ r− 1.
In the situation where there is exactly one dependent variable and exactly one independent
variable, this is the same as saying that the dth power of the rth derivative is expressed in terms
of all the derivatives of lower order.

Note that linear differential operators are always first-degree, so in fact studying first-degree differ-
ential operators is a bit more general than studying linear differential operators. Indeed, a number of
instantaneous laws are, by nature, first-degree. These laws somehow describe the highest derivative, in
terms of the lowest derivative. For instance:

• A law may describe the rate at which water flows through a pipe, as a function of a number of
degree zero quantities.

• A law may describe the rate at which a particle accelerates, in terms of its speed, its position,
and other factors. Here, it’s a first-degree second-order differential equation, because the second
derivative with respect to time is described using the derivatives of lower orders.

11.4. Linear differential operators. The study of linear differential operators differs fundamentally
from the study of nonlinear ones. For linear differential operators, we can apply the entire theory of
Banach algebras between function spaces. The kernel and image of linear differential operators are both
vector subspaces. If L is a linear differential operator, then the solution set to Lf = g can be obtained
by finding a particular solution and then finding all solutions to Lf = 0 (the kernel of the differential
operator) and adding up.

Thus, if L is a linear differential operator, the question of whether Lf = g has a solution breaks down
into two parts:

• Finding the kernel of the map
• Finding the image of the map. More specifically, knowing whether g is the image of something,

and if so, what the inverse image looks like

12. More function spaces:Sobolev et al.

12.1. Bigger function spaces, more solutions. This is based on the central theme: can we make
sense of differentiation for more functions than we’re willing to admit? The idea behind doing this is
to provide an alternative definition of derivative, with the property that for C1 functions, this coincides
exactly with the usual notion of derivative.

One such criterion is measure-theoretic. It goes back to Stokes’ theorem, which states that if you
integrate the gradient of a function over a domain, it is equivalent to integrating the function over the
boundary of the domain. More generally, one could weight both integrals by a test function. We can
combine this with the product rule:

Let Ω be a domain in Rn and u ∈ C2
c (Ω). Then, for any function f ∈ C2(Ω), we have that:∫

Ω

(∇f · ∇u + u∆f) dm =
∫

Ω

∇(u∇f) dm = 0

The last follows because we can take the boundary of the support of Ω. The integral of u∇f on the
boundary equals the integral of its derivative inside, so we get zero.

In other words, if 〈 f , g 〉 denotes the integral of the product fg over Ω, we get:

(1) 〈 ∇f , ∇u 〉 = −〈 u , ∆f 〉
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A similar reasoning shows that:

(2) 〈 ∆u , f 〉 = −〈 ∇f , ∇u 〉

Combining, we get:

(3) 〈 u , ∆f 〉 = 〈 ∆u , f 〉

All these equalities hold, at least a priori, only under the assumption that u is continuous with
compact support.

Now, this suggests two alternative definitions of a twice-differentiable function:

(1) The definition compatible with equation 2, states that there is a vector-valued function α, such
that for any u ∈ C2

c (Ω):

〈 ∆u , f 〉 = −〈 α , ∇u 〉
(2) The definition compatible with equation 3, states there there is a function g ∈ L1

loc(Ω), such that
for any u ∈ C2

c (Ω):

〈 u , g 〉 = 〈 ∆u , f 〉
In other words, we can find a function to play the role of the Laplacian.

We can thus define various new kinds of function spaces, as those function spaces for which such
“derivatives” exist. Point (1) gives functions that are, in a weak sense, once differentiable, and point (2)
gives functions that are, in a weak sense, twice differentiable. The classes of functions here are somewhat
bigger than all the functions in C1 or C2, yet they are smaller than the class of all functions in L1

loc.
This leads to the notion of Sobolev spaces. Roughly, a Sobolev space is the space of functions which

have “derivatives” in the sense of satisfying the integral equations with respect to any test function.

12.2. Formal definitions of weak derivatives. Let Ω be a domain in Euclidean space.
For convenience, we will say that u is a test function(defined) if u ∈ C∞

c (Ω).

Definition (Weak derivative). Let α be a multi-index. Let u, v ∈ L1
loc(Ω). Then, we say that v is

the αth weak derivative(defined) of u, or in symbols:

Dα(u) = v

if for any test function ϕ, we have:∫
Ω

uDαϕ dm = (−1)|α|
∫

Ω

vϕ dm

The condition is designed to satisfy Stokes’ theorem. So if the function actually does have an αth

partial in the strong sense, that must also equal the weak derivative.
Uniqueness follows because there is no function in L1

loc whose inner product with every function in
C∞

c is 0.

12.3. Sobolev space.

Definition (Space of k-times weakly differentiable functions). A function in L1
loc is termed k-times

weakly differentiable if, for every multi-index α with |α| ≤ k, there exists an αth weak derivative of the
function.

We now define the Sobolev spaces:
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Definition (Sobolev space W k,p). The Sobolev space(defined) W k,p(Ω) is defined as the vector sub-
space of L1

loc(Ω) comprising those functions such that for each multi-index α with |α| ≤ k, the αth weak
derivative exists, and lives in Lp(Ω) (this includes the empty index, so in particular any function in W k,p

is in Lp).

Here, k is a nonnegative (possibly infinite) integer and p ∈ [1,∞]. Clearly, W k,p becomes smaller as
k becomes larger, and W 0,p = Lp.

If we fix k, then the relative inclusion relationships between the W k,ps for varying p, are similar to
the relations between the Lps. More precisely:

(1) The W k,ps are normed vector spaces, where the norm is the pth root of the sum of the integrals
of pth powers of all the mixed partials of order at most k. In symbols:

‖u‖W k,p(Ω) =

 ∑
|α|≤k

∫
Ω

|Dαu|p dm

1/p

for finite p. For p = ∞, we take the sum of the essential suprema of all the derivatives.
Note that we add the powers before taking the pth root for finite p, and for p = ∞, we add

the essential suprema, rather than taking the essential supremum of the sum.
(2) In fact, the W k,ps are Banach spaces, i.e. they are complete with the above norm.
(3) The space W k,∞ is a Banach algebra, and the space W k,2, also denoted Hk, is a Hilbert space.
(4) For s ∈ [p, r], the space W k,s contains the intersection W k,p ∩ W k,r (is this really true? I’m

guessing a Holder’s on each of the mixed partials should do it). Thus, for any fixed k, the Venn
diagram described in section 2.5 transfers to the case of the W k,ps.

(5) We also have notions of W k,p
loc . Dowe have notions of weak W k,p? No idea.

12.4. Differential operators between the Sobolev spaces. Recall that in section 5.2, we had said
that once we have an algebra of functions, we can consider the differential operators on that algebra.
The only example we had at that time was that algebra of C∞ functions.

Now, with Sobolev spaces, we have a few more choices of algebra. Namely, the space W k,∞ is a
Banach algebra for any k, and any of the weak first derivatives gives a differential operator from W k,∞

to W k−1,∞. And if we look at the space W∞,∞, then we can define differential operators of any order
on it.

This suggests another way of looking at Sobolev spaces: they are the largest spaces to which the
differential operators that we can define for Ck (or C∞) extend with range in the Lps.

So a question arises: under what conditions are the spaces of honestly differentiable functions, dense
in the Sobolev space? Under what conditions is the weak derivative just a linear algebra way of extending
the notion of derivative we already have for the Cr spaces? We define:

Definition (W k,p
0 : closure of C∞

C ). Let Ω be a domain in Rn. Then the space W k,p
0 (Ω) is defined as

the closure of C∞
c (Ω) in W k,p, with respect to the W k,p-norm. The space W k,2

0 is often written as Hk
0 .

In general, W0 6= W , which means that we cannot always approximate by compactly supported
continuous functions. Loosely speaking W0 is those elements where all the weak derivatives approach
zero on the boundary. On the other hand, any element of W can be approximated by C∞-functions.

12.5. Approximation by smooth functions. The first theorem states that if U is a bounded domain
(so it is relatively compact), then any smooth functions are dense in W k,p.

Theorem 3 (Global approximation by smooth functions). Suppose U is a bounded domain, and u
is a function in W k,p(U) for finite p. Then, there is a sequence of elements in C∞(U) ∩ W k,p(U) that
approaches u in the W k,p-norm.
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The sequence of functions that we choose may well have elements that blow up on the boundary. the
obstacle to doing better is that the boundary may be ill-behaved. We have another theorem in this
regard:

Theorem 4 (Global approximation by functions smooth upto the boundary). Suppose U is a bounded
connected open subset of Rn, such that ∂U occurs as the image of a smooth manifold under a C1 map.
Then, any element of W k,p(U) is the limit of a convergent sequence of elements of C∞(U), in the
W k,p-norm.

By C∞(U), we mean functions that extend smoothly to the boundary. Such functions are automati-
cally in W k,p(U).

We’ll see a little more of the theory of Sobolev spaces as we move on. For now, it is time to return to
the world of differential equations.

12.6. How this affects solving equations. Solving differential equations is, roughly speaking, a re-
verse process to differentiation. What the above does is to enlarge the space is which we look for solutions.
Thus, the differential equation:

∂2x

(∂t)2
= f(t)

can now be made sense of and solved even when the right side isn’t a C0 function, because we’re now
looking for the left side is a Sobolev space rather than in the constrained space C2.

13. Heat and flow

13.1. Flow equations. The general idea behind a flow equation is the following:

• We have a huge (possibly infinite-dimensional) vector space or manifold. This is the function
space, or the space of possible configurations

• We have a vector field defined on this manifold. This describes the instantanous law.
• We need to find the integral curves of this vector field. This describes the evolution with time.

The configuration space here is usually itself a function space. The vector field is the instantaneous
law by which the function changes with time.

Let’s give an example: the famous heat equation. Consider a “body” Ω, a connected open subset
in Rn. Suppose u : Ω → R is a scalar-valued function that describes the temperature on the body. u
is an element in some (to be determined) function space on Ω. What function space depends on how
reasonable we expect things to be. For instance, if we assume that temperature variation is always
continuous, we can think of u as living inside C0(Ω). We may also insist that the temperature should be
bounded, or that it should be integrable, and so on. In other words, the reality of the physical situation
constrains us to a particular function space, say F , of possible temperature functions on Ω.

The temperature naturally evolves with time. In other words, as time passes, the temperature func-
tion changes. Moreover, the speed with which the temperature changes depends only on the current
temperature. In other words, we can construct a vector field on the infinite-dimensional space F and the
way the temperature evolves is the integral curves of the vector field.

Flow equation for a single scalar dependent variable u are thus of the form:

∂u

∂t
= Some function of u, x, and mixed partials in x

The right side is independent of time (time invariance of physical laws, or of vector fields). If we think
of it in terms of time, we get a first-order, first-degree differential equation. However, there are also
higher partials in space involved on the right side.

For the time being, we’ll consider situations where the right side is a linear differential operator in
terms of the spatial variables. Note that even nonlinear differential operators give vector fields, but with
linear differential operators, the vector fields behave in a particularly nice way: the vector field itself has
a linear dependence on the point.
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13.2. Solution operators.

Definition (Solution operator). Suppose F is a function space on a domain Ω, and L is a linear
differential operator from F to another function space (say G) on Ω. Then, the solution operator(defined)

for L, called S(L) is defined as follows: for any fixed t ∈ R, St(L) sends u to where the integral curve to
the associated vector field will be, at time t.

If a solution operator exists for all 0 ≤ t < ε, it exists for all t ∈ [0,∞). If a solution operator
exitss for all |t| < ε, it exists for all real numbers. The solution operators form a local one-parameter
semigroup(defined) of maps on the function space, and if they’re globally defined, they form a one-
parameter group.

Do solution operators exist? Are they unique? And most importantly, are solution operators nice in
some sense? Do they live inside the algebra of integral operators? What is the dependence of a solution
operator on time? Let’s consider this, and related, questions.

13.3. Fundamental solution. Suppose we have the following differential equation for a function u :
R×Rn → R where the first input is thought of as time t and the second input is thought of as space x:

∂u

∂t
= Lu

where L is a linear differential operator in the second input. A fundamental solution(defined) is a
solution Φ to this differential equation defined for t > 0 such that:

• Limit at origin: As t → 0, Φ(t, ) approaches the Dirac delta-function for 0.
• Smoothness: u ∈ C∞(R \ 0× Rn)
• Normalization: For any time t > 0,

∫ n

R Φ(x, t) dx = 1
Such a fundamental solution Φ enjoys the following properties:
(1) Suppose u0 : Rn → R is the initial value of an unknown solution u to this equation (in other

words, it is the value at time t = 0). Then, for any time t, define:

u(t, x) =
∫ n

R
Φ(t, x− y)u0(y) dy

This is a solution of the initial value problem, if u0 is a bounded continuous function.
(2) Since Φ is infinitely differentiable, the solution function we obtain this way is C∞ except possibly

at 0, in both variables.

13.4. Some interpretation of this. The existence of a fundamental solution for a differential equation
of the form ∂u/∂t = Lu shows the following:

(1) Given any initial-value problem where the initial value is a bounded continuous function, the
solution exists and is unique for positive time. Moreover, it is smooth for positive time.

(2) Let’s interpret this in terms of the infinite-dimensional spaces involved. We see that the space
BC∞ dense in BC, but more than that, we see that there is a kind of “natural” choice for a
way to approximate an element of BC by elements of BC∞: use the solution to the differential
equation.

(3) Physically, it means that if a temperature distribution on a body is bounded and continuous at
any given instant of time, then at any later instant of time, it must become smooth. This is a
kind of infinite propagation idea.

13.5. Some equations and their fundamental solutions.

14. Pseudo-differential operators and quantization

We now introduce some of the leading ideas of pseudo-differential operators. We’ll begin by looking
at a very simple setup, and gradually increase the complexity of our ideas.

For simplicity, let’s consider the simplest case: functions from R to R. We have the algebra C∞(R; R)
of all functions on R. An important subalgebra of this is the algebra of polynomial functions, which can
be described as the polynomial ring R[x].
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Now, the algebra of derivations of this polynomial ring is the Weyl algebra: it is the quotient of the
free associative algebra in two variables x and ξ, by the Weyl relation. Here, x is thought of as acting
by (left) multiplication, while ξ is thought of as acting as differentiation. Explicitly it is:

R〈x, y〉/〈〈ξx− xξ − 1〉〉
Every element of this algebra has a unique expression as a “polynomial” in ξ, with coefficents (written

on the left) coming from R[x]. However, the “coefficients” do not commute with ξ, so it matters that
we’re writing the coefficient on the left.

What happens when we consider the whole ring C∞(R; R)? The algebra of derivations is now an
algebra that looks like a polynomial in ξ but could be arbitrary C∞ functions in x. In other words, we
can get a unique “polynomial” expression in ξ with coefficients (written on the left) in C∞(R; R). In
other words, differential operators have polynomial dependence on the derivative operation, but C∞-
dependence on the variable x.4

This suggests a question: can we somehow generalize the notion of differential operators so that the
dependence both on x and on ξ is C∞? In other words, can we take C∞-functions of the operation
d/dx? This seems a somewhat strange thing to hope for, but surprisingly, it can be achieved, that too
in possibly more than one way.

14.1. The setup for pseudo-differential operators. When we say pseudo-differential operator, we’ll
mean a linear pseudo-differential operator. I don’t know if there is a suitable generalized nonlinear notion
of pseudo-differential operator.

Definition (Theory of pseudo-differential operators). Suppose Ω is a domain in Rn. Then, there is a
natural embedding of R-algebra generated by all the first partials (a polynomial algebra in n variables),
into the algebra of differential operators on Ω. A theory of pseudo-differential operators(defined) is
the following data:

(1) A bigger algebra containing the algebra of differential operators (called the algebra of linear
pseudo-differential operators)

(2) An extension of the embedding of the polynomial algebra Pol (U) in the algebra of linear differ-
ential operators, to an embedding of the algebra C∞(U) (or some large subspace thereof) in the
algebra of linear pseudo-differential operators

A priori, it is not clear whether algebras of pseudo-differential operators exist.
Let’s see what we need to do to construct a theory of pseudo-differential operators. We need to

somehow invent a machine that takes a polynomial and outputs the differential operator obtained by
thinking of the variables in the polynomial as first partials. Moreover, this machine should be sufficiently
robust to take in things more complicated than polynomials: say things in C∞(U), or C∞

c (U). The
machine is already there for us: it’s the Fourier transform.

14.2. The ordinary and Weyl transform. The ordinary transform, which achieve one family of
pseudo-differential operators, is described as follows. Consider a ∈ C∞(Rn × Rn) as the function that’s
C∞ in both x and ξ, and that we plan to turn into a differential operator. Then, the ordinary
transform(defined) by a is the following integral operator applied to the Fourier transform of the function:

(x, ξ) 7→ 1
(2π)n

eix·ξa(x, εξ)

In other words, we start with f , take its Fourier transform, then apply the above integral operator,
and the final outcome that we get is what the differential operator corresponding to a, does to f .

Let’s take some special cases, to get a feel for how this works:
(1) Where a depends only on x and not on ξ:
(2) When a depends only on ξ and not on x:
(3) Where a has polynomial dependence on ξ

4Another view of this is that the algebra of differential operators for C∞ is obtained by a noncommutative version of
“tensoring” the algebra of differential operators for the polynomial ring, with C∞(R).
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The Weyl transform is defined as follows:
Note that both the ordinary and Weyl transform behave in the same way for things that are polynomial

in ξ, and this is the prescribed way for any theory of pseudo-differential operators. The difference lies in
the way we choose to exercise noncommutativity. Roughly, the fact that x and ξ commute in the ring of
functions but not in the ring of differential operators, allows us to give myriad ways of interpreting the
function a(x, ξ) = xξ as a differential operator: we could think of it as xξ as ξx or as the average of the
two. The ordinary transform takes the first interpretation (differentiate, then multiply) and is thus not
“symmetric”. It corresponds to doing things in sequence.

14.3. Quantizing the transforms.

14.4. Determining properties of the transforms and quantizations.

15. The Hilbert transform
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