
CO-INCIDENCE PROBLEMS AND METHODS

VIPUL NAIK

Abstract. Proving concurrence of lines, collinearity of points and concyclicity of points
are important class of problems in elementary geometry. In this article, we use an
abstraction from higher geometry to unify these classes of problems. We build upon the
abstraction to develop strategies suitable for solving problems of collinearity, concurrence
and concyclicity. The article is suited for high school students interested in Olympiad
math. The first section is meant as a warmup for junior students before plunging into
the main problem.

1. Prebeginnings

1.1. Have we seen concurrence? Three or more lines are concurrent if they pass
through a common point. Where do we see results saying that . . . are concurrent?

After having got over the basic definitions in geometry, one of the first substantial
results we come across is that the medians of a triangle concur. A median is a line
segment that joins a vertex of the triangle with the midpoint of the opposite side. The
point of concurrence is called the centroid.

The beauty doesn’t stop there. There are many such triples of lines related to the
triangle which concur. Let us recall the names of the points of concurrence and the
proofs of concurrence of the following :

(1) The altitudes – perpendicular dropped from a vertex to an opposite side.
(2) The perpendicular bisectors – perpendicular to a side, passing through its

midpoint.
(3) The internal angle bisectors – line bisecting the internal angle at a vertex.

This article develops tools that help us examine the problem of concurrence in its
generality. In subsection 4.4 we shall find that many of these triangle center problems
can be solved by just one of the methods used to handle concurrence problems.

1.2. Have we seen collinearity? Concurrence means that more than 2 lines have a
common point, and collinearity means that more than 2 points are on a common line.
Considering that we have so many nice examples of concurrence of lines in triangle
geometry it is natural to look for similar examples involving collinearity.

Indeed, there are many exciting results and theorems on collinearity, some of which we
shall see in this article.

In this article, we will address the question – how do we go about showing concurrence?
And collinearity? And how are the two problems related?

1.3. Have we seen concyclicity? Four or more points are said to be concyclic pro-
vided that there is a circle passing through all of them. Problems of concyclic points
arise as soon as we commence a serious study of the circle. We typically examine them
with angle chasing tools – showing that the opposite angles are supplementary or that
the angles subtended by two points at the other two are equal.
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1.4. What we will do here. We will knit together all the problem classes described
above (collinearity, concurrence and concyclicity) and evolve a unified theme to handle
them. And thus, evolve strategies to help us discover as well as prove new and exciting
results in geometry.

To do this, at times a little standing back and a little abstraction will be needed. When
new terms are introduced it is to make life simpler, and understand the essence of what
we are doing. This helps us to get a grip on the fundamental problem, define it more
accurately, and solve specific problems better.

In case of new terms whose explanation in the text seems inadequate, refer to the
definitions given at the end.

2. The core problem

2.1. A little motivation. Three fundamental problem classes in geometry are :

(1) Given more than 2 points, are they collinear?
(2) Given more than 2 lines, are they concurrent?
(3) Given more than 3 points, are they concyclic?

The problem classes have uncannily similar statements. The best way of capturing
that similarity is to introduce an abstract concept of geometry. This concept is used in
higher math contexts, but is equally useful here.

2.2. Geometries, varieties, types and incidence. Problems of collinearity and con-
currence tackle relationships between points and lines. Problems of concyclicity tackle
relationships between points and circles.

Suppose we are interested only in points and lines in the Euclidean plane. Given a
point and a line, there are two possibilities – the point is incident on the line (that is,
lies on the line) or the point is not incident on the line. Incidence is thus a relation (in
the mathematical sense) between points and lines.

This inspired mathematicians to define geometry in terms of relations between geo-
metric entities, which they termed varieties. The setup is as follows :1

• A variety is any geometric entity being studied.
In our case (only points and lines), every point is a variety, and every line is a

variety.
• A type function gives the type of a variety.

In our case (only points and lines), there are two types – points and lines. The
type function is a map to the set { Point,Line } which takes every point to Point
and every line to Line.

• An incidence relation which is reflexive and symmetric, such that two varieties
of the same types can be incident iff2 they are identical.

In our case (only points and lines), a point and a line are incident iff the point
lies on the line. Each point is incident on itself, each line is incident on itself.
No two distinct points and incident on each other, and no two distinct lines are
incident on each other.

1 This way of defining or describing a geometry extends in many directions. It can be extended
to higher dimensional affine spaces, where we consider all the linear varieties. It can be extended to
spaces over arbitrary fields. When the set of varieties is finite, then the above becomes a study of finite
geometries, and this is an area of active research, mixing combinatorial, geometric and algebraic flavors.
It is of importance in understanding finite simple groups, among other things.

2iff is standard notation for if and only if
2



2.3. Formulation of the problem. We now need to describe the notions of collinearity,
concurrence and concyclicity using the above view of a geometry. Collinearity and con-
currence are directly related to the incidence geometry of only points and lines, described
above. To understand how, we observe that :

(1) A line is completely determined by any two points incident on it. Conversely,
given any two points there is a unique line incident on both of them.

(2) A point is completely determined by any two lines incident on it. The converse
breaks down because of parallel lines, but is almost true – given any two lines
that are not parallel, there is a unique point incident on both of them.3

We can now see the common pattern. To simplify discussions within the article, we
define the concept of incidence number (my own terminology). The incidence number
of one type on the other is the number of varieties of the first type needed to uniquely
define a variety of the second type incident on all of them. The two statements given
above now translate to :

(1) The incidence number of points on lines is 2 – in standard math, a line is com-
pletely determined by 2 points incident on it, and no fewer.

(2) The incidence number of lines on points is 2, barring the case of parallel lines –
in standard math, a point is completely determine by any 2 lines incident on it,
and no fewer.

We look back at the first two problem classes :

(1) Given more than 2 points, are they collinear?
(2) Given more than 2 lines, are they concurrent?

We now write out the core problem in its abstract form :

Core Problem 1. If we are given more varieties of a type than its incidence number on
another type, determine whether or not there is a variety of the other type simultaneously
incident ( or co-incident) on all of them?

Thus, collinearity and concurrence are special cases of Core Problem 1. We shall use the
term co-incidence problems (my own terminology) for problems that arise as instances
of Core Problem 1. In the next subsection we explore whether this core problem covers
the third problem class mentioned at the outset – concyclicity.

2.4. Points and circles. We work in the Euclidean plane with points and circles as the
only types. The incidence relationship is defined as it was for points and lines : a point
and a circle are incident iff the point lies on the circle. By the definition of a geometry,
two points are incident iff they are the same, and two circles are incident iff they are the
same.

We assume for this purpose that a circle has nonzero radius, and lines are treated as
circles. The incidence number of points on circles is three, that is, given any three points,
there is a unique circle through them.

However, there is no clear cut concept of the incidence number of circles on points.
Given any two circles, they may intersect in two points, one point or zero points, so it is
not possible to unambiguously define a unique point of intersection.4

3 If we move to the projective plane RP 2 instead of the affine plane, then the duality of points and
lines becomes proper, in the sense that any two lines meet at a point.

4 In the complex plane, two circles (not both of which are lines) always meet in two points, counting
multiplicities. In the complex projective plane two circles (neither of which are lines) will meet at four
points – two of them being points at infinity. More generally, in the complex projective plane, the number
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Thus, the core problem discussed above cannot handle notions of common intersection
points of circles or more general curves. Nonetheless, these notions are important. We
shall observe two things :

• The problem of determining whether a collection of circles (or other curves) has
common points does not strictly lie within the domain of Core Problem 1. How-
ever, many of the heuristics and strategies developed for Core Problem 1 continue
to be applicable for such problems.

• There are core problem formulations (Core Problems 2 and 3) that are fundamen-
tally better suited to model problems not well covered by Core Problem 1.

The next section (Section 3) discusses the problem of points co-incident on a variety.
This lies strictly within the scope of Core Problem 1 and includes collinearity as well as
concyclicity. The section after that (Section 4) discusses the problem of varieties meeting
at a point. The problem of concurrence of lines falls within this. This also tackles the
more general notion of common intersection points of circles (and more general curves).

2.5. Lines and circles. (This can be skipped!) Every curve can be treated as the locus
of a point. Smooth curves can also be treated as envelopes of lines. An envelope of a
collection of lines is the curve whose tangents (refer the definitions at the end) are those
lines. For instance, in physics, the electric field lines are the envelopes of the electric field
vectors at all points.

We had called a point incident on a curve if it was on the curve. A line is thought of as
being incident if it touches the curve. Using tangency as the incidence relation, we can
define a geometry with the two types – lines and circles.5

Tangency can be treated as the notion of incidence even between the varieties of an
arbitrary collection of types, because the notion of tangency makes sense for any two
arbitrary curves.

3. Points co-incident on a variety

3.1. Some initial observations. We begin by studying the problem of whether a given
set of points is co-incident on some variety of the given type. Here are some examples,
of which the first two have already been mentioned as problem classes :

• Lines where the incidence number is 2, and the notion of being commonly incident
is termed being collinear.

• Circles where the incidence number is 3 and the notion of being commonly inci-
dent is termed being concyclic.

• Conic sections6 where the incidence number is 5. The question in this case
becomes – given 6 points in the Euclidean plane, is there a conic section incident
on all of them?

Observation 1 (Stating the obvious). Let E and F be two sets of varieties of type φ,
such that all members of E are incident on a variety of type τ , and all members of F
are also incident on a variety of type τ . If |E ∩ F | is at least as great as the incidence

of points where a curve of degree m intersects a curve of degree n is mn, counting multiplicities. This is
the famous Bezout’s Theorem.

5In the point-circle geometry, lines were allowed to be circles, but points were not. In the line-circle
geometry, points are allowed to be circles, but lines are not

6Justification of the number 5 can be given as follows – the equation of a general conic has 5 freely
varying parameters, and hence 5 points on the conic will give 5 equations that will then determine the
conic
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number of φ on τ , then the two varieties coincide, so E ∪F has all its members incident
on a variety of type τ .

This observation is crucial in guiding our thinking and strategies. We shall come
across it repeatedly while solving problems and developing tools for solving co-incidence
problems. For this section, φ will usually be the variety of points.

3.2. Finding the variety.

Heuristic 1 (Finding the variety). To prove that there is a variety incident on all of
a given collection of points, we try to find a variety and then show that every point (in
the collection) is incident on it. Finding the variety (line, circle or conic section) often
amounts to expressing it as a locus of some condition satisfied by all the points.

We look at an illustration of this method in a problem of proving eight points to be
concyclic. We find the circle in question and then show that each of the points lies on
this circle. For definitions of tangents refer the glossary.

Problem 1 (Concyclicity of eight points). Consider two circles with non-overlapping
interiors. Take the four points of intersection between the direct and indirect common
tangents to these two circles, and the four points of contact for tangents from the center
of each circle to the other one. Then show that these eight points are concyclic.

Proof. If O1 and O2 are the centers of the two circles, we can show that all the points
subtend an angle of π/2 at O1O2. The corresponding locus is the circle with diameter
O1O2. Hence we conclude that all the eight points are concyclic. �

3.3. Methods of elimination and angle chasing. Suppose we have to show that there
exists a line through three given points. The statement of existence of the line can often be
converted to a statement that purely describes the relationship between the points. This
relationship could be described in geometric terms, or by means of coordinate geometry
or complex numbers. We shall restrict to the geometric interpretation for this article.

In geometric terms: The angle made at a point between the line segments joining
it to the other two points is 0 or π. If the three points are A, B and C, then
∠BAC = 0 or π. It is π when A is between B and C and 0 otherwise.

In complex number terms: (We won’t use it in the article!)If z1, z2 and z3 are
the affixes of the three points, then z3−z1

z2−z1
is real. Interpreted in terms of arguments

this gives the previous description.
In coordinate geometry terms: (We won’t use it in the article!)Let (x1, y1), (x2, y2)

and (x3, y3) be the coordinates of the three points. Then the slope of the line join-
ing (x1, y1) and (x2, y2) is the same as the slope of the line joining (x1, y1) and
(x3, y3). Equivalently

y2 − y1

x2 − x1

=
y3 − y1

x3 − x1

In case x1 = x2 (so the slope is not defined) the condition is that x1 = x3 as
well. Another way of putting this is that the determinant of a certain matrix is 0.

To prove that more than 3 points are concyclic, we have similar conditions :

In geometric terms: Let A, B, C, D be the four points. If A and B are on the
same side of the line CD then they must subtend equal angles at CD (that is,
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∠CAD = ∠CBD). If A and B are on opposite sides of CD then they must
subtend supplementary angles at CD (that is ∠CAD + ∠CBD = π) 7

In complex number terms: (We won’t use it in the article!)Let z1, z2, z3 and z4

be the four points. If any three of them are collinear, the fourth also must lie on
the same line. Otherwise arg z1−z4

z1−z3
= arg z2−z3

z2−z4
.

In co-ordinate geometry terms: (We won’t use it in the article!)The geometric
condition is translated to a relation among slopes.

Key Point 1. The existence of an element satisfying certain properties is converted to
the problem of verifying some relation between the entities and quantities known to us.

We may already have com across some examples of this in algebra. For instance the
statement of existence of a root in R8 for a quadratic equation with coefficients in R
can be converted to a statement that the discriminant of the quadratic equation is
nonnegative. Similarly, the existence of a solution to a system of two linear equations
can be converted to a system of conditions involving determinants.9

Once the problem has been reduced to establishing some relation between the knowns,
then we can resort to elementary diagram chasing. In particular when the relations
involve sums and differences of angles (as is true for the methods described above), we
use the term angle chasing. Some results on collinearity and concyclicity proved via
angle chasing :

(1) Simson’s Line Theorem states that the projections10 from a point on the cir-
cumcircle of a triangle to its sides are collinear. The line is termed the Simson’s
Line or the Simson-Wallace Line. The converse is also true and can be proved
from the theorem.

(2) Miquel’s Theorem11 states that if ABCD is cyclic and P , Q, R and S are
points such that A, B, P, Q are concyclic, B, C, Q, R are concyclic, C, D,R, S are
concyclic, and D, A, S, P are concyclic, then P, Q, R, S are also concyclic.

3.4. Ratio methods and other criteria. The above methods for elimination (both
in the case of collinearity and concyclicity) involved a direct interpretation in terms of
angles. There are cases where collinearity of points obtained by some procedure can be
translated to conditions involving other parts of the diagram in an unexpected way. Here
we discuss some powerful results that help us convert a problem of collinearity into a
problem of determining relations between known quantities :

(1) Menelaus’ Theorem : Given a triangle 4ABC, and points D, E, F on sides
BC, CA and AB respectively, the product of the signed ratios12 BD/DC,
CE/EA and AF/FB is −1 iff the points D, E and F are collinear.

7These multiple cases often arise when using synthetic or visual tools. Sensed angles can be used to
club the two cases

8R denotes the set of reals
9In model theory, the procedure of removing the ∃ and ∀ quantifiers from statements is termed quan-

tifier elimination, and there are some theories that admit quantifier elimination for every statement!
In fact the theory of real closed fields, for which R is the prototypical example, admits quantifier
elimination, as was seen in the example of existence of roots for a quadratic equation.

10projection of a point on a line or plane is the foot of the perpendicular from the point to the line or
plane

11There are many other results discovered by and named after Miquel, so this theorem may not be
the same as a Miquel’s theorem stated elsewhere

12A signed ratio is a ratio of signed lengths on the same line, the sign being given to a length based
on an arbitrary choice of direction. The sign of the ratio is independent of the choice of direction
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(2) Desargues’ Theorem states that if 4ABC and 4A′B′C ′ are two triangles then
AA′, BB′ and CC ′ concur iff AB ∩A′B′, BC ∩B′C ′ and CA∩C ′A′ are collinear.
If either of the equivalent conditions hold, the two triangles are said to be in
perspective or perspective triangles.

This helps us switch between collinearity of different sets of points.
(3) A variant of Bezout’s Theorem (This can be skipped!): A cubic is a curve in

the plane that represents the locus of a degree 3 relationship between x and y in a
Cartesian coordinate system. If two cubics intersect in nine points and we choose
three of them then those three points are collinear if and only if one of these hold
: both the cubics contain the line through those three points, or the remaining
six lie on a conic section (a curve that represents a degree 2 relationship).

This helps us switch between a collinearity problem and a problem of points
lying on a conic.

(4) Pascal’s Theorem (This can be skipped!): If A, B, C, D, E, and F are six points
then AB ∩DE, BC ∩ EF and CD ∩ FA are collinear iff A, B, C, D, E, F are
on a conic. This can be deduced from Bezout’s Theorem.

This helps us switch between a collinearity problem and a problem of points
lying on a conic.

(5) Pappus Theorem (This can be skipped!): A special case of Pascal’s Theorem
where A, C and E are given to be collinear. The theorem now becomes – AB∩DE,
BC ∩ EF and CD ∩ FA are collinear iff B, D and F are collinear.

3.5. Physical insights into problems.

Problem 2 (Monge’s Theorem). The pairwise external centers of similitude13 for three
circles (with pairwise unequal radii) are collinear.

The result follows directly from Menelaus’ Theorem, applied to the triangle with ver-
tices being the centers of the three circles.

There is also an interesting physical interpretation in three dimensions : Consider
three balls of not necessarily equal sizes resting on a table and consider a flat planar
sheet placed on top of all three. The table and the sheet are the direct common tangent
planes to the three spheres, and the line where the sheet meets the table, is precisely the
line of interest.

Concept Testers

(1) Given circles Γ1, Γ2 and Γ3 with distinct radii, let P12 be the internal center of
similitude for Γ1 and Γ2, P23 be the internal center of similitude for Γ2 and Γ3,
and P31 be the external center of similitude for Γ1 and Γ3. Prove that P12, P23

and P31 are collinear.
(2) If A,B, C and D are concyclic and E, F are points on AB and CD respectively

such that EF ‖ BC, prove that A, B, E and F are concyclic.
(3) Let 4ABC be a triangle. Let D, E and F be the points where the external angle

bisectors of angles A, B and C meet the opposite sides. Prove that D, E and F
are collinear.

13an external (internal) center of similitude is a point dividing the line joining the centers of the
circle externally (internally) in the ratio of their radii. The internal center of similitude is the point of
intersection of indirect common tangents (if they exist) and the external center of similitude is the point
of intersection of direct common tangents (if they exist). See terms and definitions at the end for details.
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4. Varieties meeting at a point

4.1. An improved formulation. We are interested in learning about the common in-
tersection points of a collection of varieties. One possibility is that all the varieties are
concurrent – that is, there is a point incident to all of them. Such a point is termed a
point of concurrence.

As discussed earlier (subsection 2.4), this notion has shortcomings. A collection of
circles may have 1 common intersection point, or 2 common intersection points. Even in
the case of lines, parallel lines have no common intersection points.

The main utility of Core Problem 1 lay in the fact that problems in the classes of
collinearity, concurrence, and concyclicity could be expressed as instances of this. In
the same way, we seek a new core problem formulation such that problems of common
intersection points of varieties become special cases of it.

Such a formulation is given below :

Core Problem 2. For a given collection of varieties, determine whether or not the
following condition holds : there is a fixed set of points S such that given any two varieties
in the collection, their set of intersection points is S.

For instance, if the varieties we are handling are lines, and two of them intersect, then
all the lines must pass through the point of intersection. On the other hand, if two of
them are parallel, then all the lines must be parallel to them.

4.2. Algebraic reformulation. (This can be skipped!) In coordinate geometry, a set of
points is treated as a locus of certain relationships expressed between the coordinates. For
instance, the unit circle centered at the origin is represented by the equation x2 + y2 = 1,
or better still, x2 + y2 − 1 = 0.

If two curves have equation F1 = 0 and F2 = 0 where F1 and F2 are both expressions
in terms of x and y, then their intersection points must satisfy both F1 = 0 and F2 = 0.
Thus, those intersection points also lie on all curves of the form G1F1 + G2F2 = 0 where
G1 and G2 could be arbitrary expressions. This collection of expressions is said to be
the ideal generated by the two given expressions. An ideal such that the nth root of any
element in it also lies in it is a radical ideal.

Not much can be said about ideals in general. However, when the expressions are
restricted to algebraic expressions or polynomial expressions then the corresponding va-
rieties are termed algebraic varieties and their structure is extremely well behaved.
Lines, circles and conic sections are all examples of algebraic varieties, but the spiral and
sine wave are not.

A powerful result in algebraic geometry, namely the Hilbert’s nullstellensatz, says
that the only algebraic varieties passing through the intersection points of certain alge-
braic varieties are in the radical ideal generated by them, when working over complex
numbers.

This suggests that a more fundamental equivalent of 2 is the following :

Core Problem 3. Given a collection of algebraic varieties, determine whether or not
the following condition holds : there is an ideal I such that I is the radical ideal generated
by any two member varieties.

The two formulations are the same when working over complex numbers. Over real
numbers, Core Problem 3 checks a stronger condition than Core Problem 2.14

14However, Core Problem 3 has the disadvantage that it makes sense only for algebraic varieties.
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A simple case when both formulations are equivalent even over the real Euclidean plane,
is that of lines. Given a collection of lines, they satisfy the condition of Core Problem 2
if and only if given any two lines, every other line in the collection can be obtained as a
linear combination of those two lines. This latter statement corresponds to the condition
of Core Problem 3.

4.3. Coaxial circles. The radical axis of two circles is a straight line giving the locus
of a point having equal powers with respect to the two circles15 There are three cases :

• The two circles touch (internally or externally) : In this case the radical axis is
the tangent through the common point.

• The two circles meet in two points : In this case the radical axis is the common
chord.

• The two circles do not intersect : In this case the radical axis intersects neither.

A collection of circles is termed coaxial provided that the radical axis of any two
member circles is the same.

When a collection of circles is coaxial, the points of intersection of any two members
must lie on all the other members. This satisfies the condition being checked in Core
Problem 2.

A coaxial system is a collection of coaxial circles that cannot be made bigger.
Coaxial systems are of three types :

• The intersection point type where every pair of circles intersects at two points.
The two intersection points thus define the radical axis.

• The limit point type where no two circles intersect.
• The tangent type where every pair of circles is tangent.16

Coaxiality is the proper notion corresponding to Core Problem 2. 17

For those who have read the previous subsection, coaxiality also corresponds to Core
Problem 3. In an early co-ordinate geometry treatment of circles, we come across families
of circles parameterized as S1 + kS2 where S1 and S2 are the equations of two circles.
This is a parameterization of the coaxial system of circles containing both S1 and S2.
The parameterization shows that every circle in the coaxial system containing two circles
is a linear combination of their equations.

The concept of coaxiality transforms a problem looking for common intersection points
to looking for a common radical axis.

Heuristic 2. To prove that a collection of circles is concurrent, it suffices to show that
they are coaxial, and that at least two of them intersect. To show that the circles are
coaxial, it suffices to show that the radical axis of any two circles has equal powers with
respect to all the circles.

4.4. Symmetric formulations. We consider the following heuristic for proving that
given any three curves C1, C2 and C3 their pairwise intersections are the same (that is,
Core Problem 2):

Heuristic 3 (Symmetric condition). Construct a symmetric condition and show that it
is equivalent to the condition of being an intersection of any two of the curves.

15The power of a point with respect to a circle is given by d2 − r2, where d is its distance from the
center, and r is the radius.

16Suitable inversion take the intersection point type to a system of concurrent lines, the limit point
type to a system of concyclic circles, and the tangent type to a system of parallel lines. These are
degenerate cases of coaxial families.

17Remains so even on moving to C2
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We often proceed to do this by finding functions f1, f2 and f3 from the points on the
plane to R such that C1, C2 and C3 are expressed as loci as follows :

C1 ≡ (f2(P ) = f3(P )) ≡ (f2(P )− f3(P ) = 0)

C2 ≡ (f3(P ) = f1(P )) ≡ (f3(P )− f1(P ) = 0)

C3 ≡ (f1(P ) = f2(P )) ≡ (f1(P )− f2(P ) = 0)

Thus, C1 is the locus of a point at which f2 and f3 take the same value. C2 is the locus
of the point at which f3 and f1 take the same value. C3 is the locus of the point at which
f1 and f@ take the same value.

The corresponding symmetric condition becomes :

f1(P ) = f2(P ) = f3(P )

This is equivalent to any two of the three equations being true. Thus, the set of
intersection points of any two of the three curves is the set of points satisfying this
condition.

We look at some typical examples from triangle geometry :

(1) Perpendicular bisectors of sides of a triangle correspond to the fis being dis-
tances from the vertices. They concur at the circumcenter. More generally, all
perpendicular bisectors concur for any system of concyclic points.

(2) Angle bisectors of vertex angles correspond to the fis being distances from
sides. The concurrence points are the incenter and excenters. More generally
all angle bisectors concur where the lines are tangents to a circle (that is, we have
a polygon with a circle touching all its sides). Whether the angle bisector taken
is the internal or external one depends on the manner in which the circle touches
the sides.

(3) Appollonius circles of each pair of vertices passing through the third. The
functions fi are PA.BC, PB.CA, PC.AB (the . represents product of magnitudes,
not dot product). The three circles are coaxial, always have real intersection
points, and the two points of intersection, known as the isodynamic points are
inverse points of each other with respect to the circumcenter18.

(4) Altitudes where the fis are cyclic permutations of PA2+BC2. That is, the other
fis are obtained by cyclically permuting A, B, C in the expression. They concur
at the orthocenter.

(5) Medians where the fis are cyclic permutations of Ar.4PBC. They concur at
the centroid.

Observation 2. It is often useful in triangle geometry to view cyclic permutations of an
expression (or any construct) in terms of the vertices, that is, to view the expressions (or
constructs) obtained by cyclically permuting the vertices in the expression (or construct).

We can similarly prove that given three circles, the pairwise radical axes are concurrent.
The functions fi in this case are the power of the point with respect to the circles Ci.

4.5. Non-equational symmetric formulations – concurrent circles. There are
cases where we exploit the same kind of idea as above (subsection 4.4) but not in an equa-
tional sense. We discuss two problems of concurrent (not coaxial circles) – one involving
the complete quadrilateral and the other involving the complete quadrangle.

18This follows from the fact that each Appollonius circle is orthogonal to the circumcircle
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4.5.1. The complete quadrilateral. A complete quadrilateral is a collection of 4 distinct
lines, such that no two of them are parallel, and no three of them are concurrent. These
4 lines are not in any cyclic order. The lines are termed the sides of the complete
quadrilateral. A complete quadrilateral has :

•
(
4
2

)
= 6 points of intersection of the sides two at a time, known as the vertices.

•
(
4
3

)
= 4 triangles, formed by taking the sides three at a time.

• 3 diagonals, the line segments formed by joining pairs of opposite vertices, that
is, vertices that are obtained as intersections of disjoint pairs of sides.

Problem 3 (Existence of Miquel point). Prove that the circumcircles of the triangles of
a complete quadrilateral are concurrent. (The point of concurrence is termed the Miquel
point).

While drawing a diagram for this problem, it is best not to make all the four circles.
Rather, we know that if there is a common point, then that point can be determined just
by intersecting two of the circles. Thus, for the purpose of this problem, it suffices to
draw only 2 of the circles.

We first note that every vertex occurs as an intersection point of two of the circles.
Thus, if the four circles were to have a common radical axis, every vertex would lie on
it. This is not possible. Thus, this is an example where the four circles are concurrent
without being coaxial – they have only 1 common intersection point, not two.

Going by the idea used above, viz Heuristic 3, we need to prove that an intersection of
two of the circumcircles must lie on the other two circumcircles as well. The difference
here : one of the intersection points is a vertex, and this will not lie on the other two
circumcircles. It is the other intersection point (that is not a vertex) that lies on all four
circumcircles.

Proof. Let l1, l2, l3 and l4 be the four lines of the complete quadrilateral. Consider the
circumcircles of the triangles formed by (l1, l2,l3) and by (l1,l2,l4). These two circles meet
at the intersection point of l1 and l2. A simple verification shows that if the two circles
are tangent at this point, then l3 ‖ l4 which is not allowed. Thus, the two circumcircles
must intersect in another point. Let this be P .

Now we try to apply Heuristic 3, by finding some symmetric condition whose locus
is the circumcircle. This symmetric condition has to be a property of that point with
respect to the lines, because a complete quadrilateral is a set of 4 lines. The Simson’s
Line Theorem and its converse give us that a point is on the circumcircle of the triangle
formed by three lines iff its projections on the three lines are collinear.

The projections of P on l1, l2 and l3 are collinear. Similarly, the projections of P on
l1, l2 and l4 are collinear. These two collections of collinear points have two points in
common. Thus, as per Observation 1 (taking φ as points and τ as lines), the projections
of P on all sides of the complete quadrilateral are collinear. This in turn gives that P
lies on the other two circumcircles as well.

�

We glean some things from the above proof:

• The symmetric condition of Heuristic 3 was not an equality (as in subsection 4.4)
but rather a collinearity. Establishing the condition in turn required the use of
the principles of collinearity in the form of Observation 1.

• The proof show that the intersection of two circumcircles which is not a vertex
lies on the other two circumcircles. The intersection which is a vertex is l1 ∩ l2,
and its projections on the sides l1 and l2 coincide with itself. Thus, we do not
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have enough numbers to be able to apply Observation 1. Thus the symmetric
condition being actually used is : the projections on the sides are distinct and
collinear.

4.5.2. The complete quadrangle. A complete quadrangle is a collection of 4 distinct
points, such that no three of them are collinear. These points are not in any cyclic order.
The points are termed the vertices of the complete quadrangle. We have :

•
(
4
2

)
= 6 lines formed by the points two at a time, known as the sides.

•
(
4
3

)
= 4 triangles, formed by taking the points three at a time.

Problem 4 (Concurrence of nine point circles). Prove that the nine point circles of the
triangles of a complete quadrangle are concurrent.

There is an elementary proof of this by angle chasing (by methods we shall see in the
next subsection). Here, we outline a proof based on a symmetric condition, that links
this up with conic sections.

Proof. (This can be skipped!)The nine point circle of an orthic system is the locus of the
center of a rectangular hyperbola passing through the four points of the orthic system
(if a rectangular hyperbola passes through three points of an orthic system, it must pass
through the fourth).

As in the example involving complete quadrilaterals, the nine point circles of two of the
triangles intersect in one midpoint, and another unknown point. That unknown point
is the center of a (unique) rectangular hyperbola passing through the vertices of one
triangle, and is also the center of a (unique) rectangular hyperbola passing through the
vertices of the other triangle.

We now use the fact that a rectangular hyperbola is completely determined by its center
and any two points on it that are not opposite to each other. Thus, the incidence number
of points on rectangular hyperbolas with a fixed center is 2, subject to the condition that
the two points are not opposite.

This lets us apply Observation 1 to conclude that as the rectangular hyperbolas corre-
sponding to the two triangles have two common points, they are identical and thus the
given point is the center of a rectangular hyperbola passing through all four points. �

We glean some things from the above proof :

• The symmetric condition of Heuristic 3 was not an equality (as in subsection
4.4) but rather the property of being incident on the same rectangular hyperbola.
Establishing the condition in turn required the use of Observation 1, after de-
termining the incidence number of points on rectangular hyperbolas with fixed
center.

• The proof show that the intersection of two circumcircles which is not the midpoint
lies on the other two circumcircles. The problem with the intersection which is the
midpoint is as follows : the two points common to the two rectangular hyperbolas
are opposite to each other with respect to the center.

The parallel between both examples is amazing. We can also work out a conic sections
proof of the Miquel point problem. (This can be skipped!)That proof rests on the following
:

Lemma 1. The locus of the focus of a parabola tangent to three non-concurrent lines
is the circumcircle of the triangle they form, minus the vertices of the triangle. The
parabola corresponding to each focus is unique. Moreover, the Simson’s line of the focus
with respect to the triangle is the tangent through the vertex of the parabola.
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We can use this lemma to perform reasoning identical to the above. At some point,
while applying Observation 1 we will need to determine the incidence number of lines on
parabolas with a fixed focus. Here, incidence of a line and a parabola is defined as the
line being tangent to the parabola (incidence relationships involving lines were discussed
in subsection 2.5).

What we finally get is :

Claim 1 (About the Miquel point). The Miquel point is the focus of the unique parabola
tangent to all the four lines. The projections from it to the four sides are collinear and
form a line called the pedal line, which is also the tangent through the vertex of the
parabola.

4.6. Angle totals – concurrence to collinearity. In the study of methods to prove
collinearity, we had stressed on two broad paradigms – find the line, and eliminate by
reducing the problem of existence of a line to some other relationships. The symmetric
condition technique is analogous to the find paradigm. We now discuss the eliminate
paradigm for concurrence. The first step typically reduces problems of concurrence of
lines to problems of collinearity of points, and problems of concurrence of circles to
problems of concyclicity of points.

Observation 3 (Concurrent to collinear, concyclic). The problem of concurrence of three
lines is equivalent to the problem of the intersection of two lines being collinear with points
on the third. Similarly, the problem of concurrence of circles is equivalent to the problem
of the intersection of two circles being concyclic with points on the third.

The typical angular tools used in this are :

• The total angle around a point is 2π.
• The angle made by a straight line at a point on it is π.
• The angle sum of a triangle is π, that of a quadrilateral is 2π.

The following results on concurrence of circles can be proven by angle chasing using
the above ideas :

(1) The nine point circles of a complete quadrangle concur – this fact can be proved
by angle chasing using the above notions. Showing that the pedal circles also
concur at the same point requires considerably more angle chasing.

(2) Pivot theorem stating that given a triangle ABC with points P, Q, R on BC, CA, AB
the circumcircles of QAR, RBP, PCQ concur.

(3) Triangle reflections theorem stating that if P is a point in a triangle ABC
and D, E, F are its reflections in BC, CA, AB then the circumcircles of triangles
EAF,FBD,DCE concur.

4.7. Ratio methods and other criteria for concurrence. These can be thought
of as the concurrence analogues of results in collinearity such as Menelaus’ Theorem.
Situations often arise where problems of concurrence can be reduced to computations of
ratios or to completely different problems. The commonly used methods are :

(1) Ceva’s theorem states that if D, E, F are on sides BC, CA, AB of a triangle
4ABC then AD, BE, CF concur iff the product of the signed ratios BD/DC,
CE/EA, AF/FB is unity. (A signed ratio along a line is a ratio of magnitudes,
with the prefixed sign indicating whether the measurements were in the same
direction). The three line segments AD, BE,CF are termed Cevians. Proving
this often involves showing something like BD/DC = f(B)/f(C) so that the
product cyclically becomes 1.
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(2) Trigonometric form of Ceva’s theorem gives another necessary and sufficient
criterion for the concurrence :∏

sin ∠BAD/ sin ∠DAC is unity. As before the proof often involves showing that
sin ∠BAD/ sin ∠DAC = f(C)/f(B) so that the product cyclically becomes 1.

Some results that use Ceva’s Theorem in one of its forms are :

(1) A variant of Monge’s Theorem stating that given three circles the lines joining
each center to the internal center of similitude of the other two circles concur.
This is a straightforward corollary of Ceva’s Theorem. Similarly if for two pairs
of circles we take external centers of similitude, and for the third pair we take the
internal center of similitude, the concurrence result holds.

(2) Seven circles theorem stating that if we take a circle and inscribe six circles
inside it touching it internally such that they form a chain, then the lines joining
opposite points of contact are concurrent. As an intermediate we can first show
that AB.CD.EF = BC.DE.FA if A, B, C,D, E, F are the points of contact in
cyclic order. This immediately implies the concurrence by the trigonometric form
of Ceva’s Theorem. The proof of the first part rests on some basic trigonometry,
that we do not discuss here.

Apart from the Ceva’s Theorem there are some other important results involving rel-
atively more complicated configurations :-

(1) Brianchon’s theorem stating that AD, BE, CF concur iff we can construct
a conic touching AB, BC, CD, DE, EF , FA. In particular, in the above seven
circles case a conic can indeed be inscribed in the hexagon (thus it is a bicentric
hexagon as the six points are already concyclic).

(2) Desargues’ Theorem that we had encountered earlier on.

4.8. Ceva’s theorem and triangle centers. We saw earlier in section 4.4 that the
Symmetric Condition Heuristic (heuristic 3) was used to prove a number of results related
to the concurrence of lines defined for a triangle. Ceva’s theorem in its geometric as
well as trigonometric form is also very useful for proving concurrence of lines (though
it is limited only to lines). Moreover, it can sometimes be used to prove conditional
concurrence results – results saying that if these three lines are concurrent, so are those
three. We shall discuss conditional concurrence problems at a later stage.

Three major concurrence results directly obtained from Ceva’s Theorem :

(1) The medians divide the opposite side in the ratio 1 : 1. Thus, the cyclic prod-
uct associated with Ceva’s theorem becomes 1, and hence the three medians are
concurrent.

(2) The internal angle bisectors divide the opposite side in the ratio of the sides
containing the angle. For instance, in 4ABC the bisector of ∠A divides BC in
the ratio AB/AC. Here again, the cyclic product becomes 1, hence the three
internal angle bisectors are concurrent. In the same way, we can show that two
external angle bisectors are concurrent with the third internal angle bisectors.

(3) The altitudes divide the opposite side in the ratio of the tangents of the base
angles (those who are unaware of trigonometric ratios can skip this). This product
also becomes 1 cyclically.

Concept Testers

(1) Two points P and Q on the line AB are termed harmonic conjugates with
respect to AB if AP/PB = −AQ/QB, that is, the ratio in which P divides AB
is the same as the ratio in which Q divides AB (one dividing it internally and
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the other dividing it externally). Prove that if P and Q are harmonic conjugates
with respect to AB then A and B are harmonic conjugates with respect to PQ.

(2) Let 4ABC be a triangle with P , Q and R on BC, CA and AB respectively. Sup-
pose AP , BQ and CR are concurrent. Let P ′, Q′ and R′ be harmonic conjugates
of P , Q and R with respect to the lines BC, CA and AB respectively. Prove that
:
(a) P ′, Q and R are collinear.
(b) P , Q′ and R are collinear.
(c) P , Q and R′ are collinear.
(d) P ′, Q′ and R′ are collinear.
(e) AP ′, BQ′ and CR are concurrent.
(f) AP , BQ′ and CR′ are concurrent.
(g) AP ′, BQ and CR′ are concurrent.

(3) Let 4ABC be a triangle. Let D be defined as the midpoint between the points
where the internal and external bisectors of ∠A meet BC. Analogously, define E
for ∠B and F for ∠C. Prove that D, E and F are collinear. (Hint : Either
directly use Menelaus’ Theorem or use the fact that the centers of coaxial circles
are collinear).

(4) Let 4ABC be a triangle. Define Γ1 to be the locus of P satisfying PB
CA

= PC
AB

, Γ2

to be the locus of P satisfying PC
AB

= PA
BC

and Γ3 to be the locus of P satisfying
PA
BC

= PB
CA

. Prove that the curves Γ1, Γ2 and Γ3 satisfy the conditions of Core
Problem 2.

(5) (This can be skipped!) In the previous problem use Ptolemy’s inequality to
establish that the curves Γi with 1 ≤ i ≤ 3 are concurrent iff 4ABC is either
acute angled or right angled.

5. Summary and general conclusions

Over the course of this article, we have examined a number of problem classes of co-
incidence problems. We gave three core problem formulations each of which had certain
advantages. We also saw how a general abstraction helps in chalking out specific strategies
for solving problems.

An addendum to this article provides some more challenging examples that require us
to knit together the various strategies for collinearity, concurrence and concyclicity. It
also contains some trickier exercises.
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Appendix A. Some illuminative and interesting examples

We now begin looking at some gems of problems that build upon the ideas developed
so far.

A.1. Gauss Bodenmiller theorem.

Problem 5 (Gauss Bodenmiller Theorem). Given a complete quadrilateral, the four
orthocenters corresponding to its triangles are collinear.

There are two proofs of this.
The first uses the theory of conic sections, and in that sense, is not strictly an Olympiad

proof. The idea is to determine the canonical line, which, in this case, is the directrix of
the unique parabola tangent to the four lines. Then, the fact that each orthocenter lies
on the directrix picks directly from the fact in conic sections that the orthocenter of the
triangle formed by any three tangents to a parabola lies on the directrix.

We shall here discuss an alternative proof, that uses methods of elementary geometry
outlined earlier in this article.

Before starting out with a geometric proof, it is advisable to make a rudimentary
diagram. As before, we will not clutter the diagram too much by drawing all the altitudes.
Rather, we will first focus on the altitudes of just one triangle. If need be, we could
construct the altitudes of another triangle. Making more than that is pointless because
the line through the orthocenters is determined completely by any two orthocenters.

Proof. To prove that the orthocenters are collinear, we must choose between finding the
line and eliminating it. The elimination approach using angular tools (subsection 3.3)
seems quite forbidding geometrically, and the configuration does not seem amenable to
any of the other elimination tools discussed in subsection 3.4. The main hope lies in
finding some description of the line and proving that all the orthocenters lie on the line.

Let us examine each triangle more closely. Each triangle contains three vertices, and
no two of them are opposite. Thus, for each diagonal, one of its endpoints is a vertex of
the triangle. This suggests that we look at some property of the orthocenters that can
be define with respect to the diagonals.

If H is the orthocenter of a 4ABC, and D, E and F are the projections of H on the
sides BC, CA, and AB, then

AH.HD = BH.HE = CH.HF

This property translates to the statement : each orthocenter has equal powers with
respect to the circles having diagonals as diameters.

Before proceeding further, we note that the four orthocenters must be distinct points.
The locus of a point having equal powers with respect to any 2 circles is a straight line

(namely, the radical axis). This is the line we had sought to find. So, the 4 orthocenters
lie on the radical axis of any 2 of the circles and are hence collinear.

Also, as 2 points completely determine a line (the incidence number of points on lines
being 2) and the four orthocenters are common to the radical axis of every pair among the
there circles with diagonals as diameters, we conclude that the three circles are coaxial.

Incidentally this also shows that the midpoints of the diagonals are collinear, because
they are centers of coaxial circles. The collinearity of midpoints of diagonals is usually
proved via Menelaus’ theorem or some similar approach. �

16



We find that even in examples where none of the approaches we have learnt so far seem
to be of direct use, and some leap of thought is required, the approaches we have learnt
still play a very important role in guiding our intuition.

A.2. A selection test problem.

Problem 6 (Indian IMO Selection Test, 1995). Let 4ABC be a triangle and let D, E be
points on AB and AC respectively, such that DE ‖ BC. Let P be a point inside 4ADE
and let F and G be the intersections of DE with the lines BP and CP respectively. Let Q
be the second intersection point of the circumcircles of the triangles 4PDG and 4PFE.
Prove that A, P, Q are collinear.

The diagram here needs to be drawn carefully, with pencil and scale, because a mistake
in drawing the diagram could make the proof much longer to come by.

Proof. The canonical line in this case is clearly the line PQ which can be interpreted as
the radical axis of the circumcircles of triangles PDG and PFE. As P and Q already lie
on this radical axis, the problem reduces to showing that A has equal powers with respect
to the two circles. This suggests that, if M be the second intersection of the circumcircle
of 4PDG with AB and N the second intersection of the circumcircle of 4PEF with
AC, then :

AM.AD = AN.AE

or, in other words, the points M , D, N and E are concyclic. This is readily verified to
being equivalent to saying that M , N , B and C are concyclic. The advantage of going
to BC from DE is that the former is, in some sense, more controllable.

Now what quadrilaterals are already known to be cyclic? M, D, G, P are concyclic and
thus M, B, C, P are concyclic (for the same reason as above). Similarly N, E, F, P are
concyclic and thus so are N, B, C, P .

Here comes the simple but crucial step : using N, B, C, P being concyclic and M, B, C, P
being concyclic to show that M, N, B, C are concyclic. The result mentioned right at the
beginning of the article (the observation 1) comes in useful here – as the two concyclic
sets have 3 points in common, in fact all the 5 points are concyclic and the problem is
solved. �

(Note : A poorly drawn diagram, in particular one where the alleged circle does not
appear to be convex, will hinder this otherwise trivial insight).

A.3. The Malfatti problem – Ajima Malfatti point. Malfatti wanted to know how
to choose three circles inside a given triangle whose total area was maximum. He pre-
sumably considered the problem solved when he discovered that it was always possible
to arrange three circles, each touching the other two, and each touching a different pair
of adjacent sides.

As it turned out this wasn’t true – a better arrangement would be to take the incircle
and choose two of the incircles of the three corner curvilinear triangles whose sizes are
more. Also when the triangle is long and thin, an arrangement of the circles in a line
might be even better. The original solution was finally proven to be never optimal.

The three circles originally considered by Malfatti and now known as Malfatti circles
have some interesting geometrical properties, one of which we shall try to prove here :

Problem 7 (The Ajima Malfatti point). The lines joining the point of contact of two
Malfatti circles to the vertex opposite the side that is their common tangent, concur at
the Ajima Malfatti point.
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Proof. A very direct approach is unlikely to succeed as the vertices of the triangle have
little direct role to play in the circles. The Desargues’ Theorem provides a way out :
Let 4ABC be the triangle and A′, B′, C ′ be the points of tangency of the circles that are
opposite A, B, C. We need to show that ABC and A′B′C ′ are in perspective. In other
words we need to determine where BC ∩ B′C ′ and similar points lie and show them to
be collinear.

As B′ and C ′ are internal centers of similitude they are collinear with the external center
of similitude of the triangles corresponding to B and C (this was one of the variants of
Monge’s Theorem). Further, as the line BC is itself a direct common tangent it also
contains the external center of similitude. Therefore the two lines meet at the external
center of similitude.

What thus remains to be seen is that the three external centers of similitude of the
circles are collinear, which boils down to an application of Monge’s Theorem. �

Appendix B. Scope for further exploration

B.1. Conditional co-incidence problems. These are problems where we need to prove
that the co-incidence of certain varieties is equivalent to the co-incidence of certain other
varieties. We have already seen many such results :

• Desargues’ Theorem states that the concurrence of three lines is equivalent to
the collinearity of three points.

• Simson’s Theorem states that the concyclicity of four points is equivalent to
the collinearity of three points.

• Some problems we shall see in the next section, including those on isotomic con-
jugates, and isogonal conjugates, prove results of the same form : these three lines
are concurrent iff those three lines are concurrent.

B.2. Triangle geometry. As we had observed right at the outset, triangle geometry
provides a rich collection of concurrent lines, concurrent and coaxial circles, and collinear
points. The problems in the next section shall explore some of these vistas.

Kimberling has a list of over 500 triangle centers, that can be found on the Inter-
net. For general reading on triangle geometry and other aspects of plane geometry, the
following site has plenty of information :

http://mathworld.wolfram.com/topics/TriangleProperties.html

Kimberling’s triangle centers can be seen on :

http://faculty.evansville.edu/ck6/tcenters/

B.3. Coordinate geometry and geometrical constructions. In coordinate geome-
try or for geometrical constructions we try to determine the equation of a line, or circle,
based on some conditions that it satisfies.

For instance, we may be interested in constructing (using straight edge and compass)
a circle which is tangent to two given lines and passes through a given point.

Alternatively, we may be given the equations of two tangent lines and the coordinates
of a point on the circle and we may have to determine the equation of the circle.

We make the following observations :

• The presence of two independent data uniquely specify a line, or, at any rate,
specify the line upto a finite number of possibilities. For instance, the condition
of passing through a given point and being parallel to a given line constitute two
independent data that give the line uniquely.
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• The presence of three independent data uniquely specify a circle, or, at any rate,
specify the circle upto a finite number of possibilities. For instance, the condition
of passing through three given points fixes the circle uniquely. On the other
hand, the condition of being tangent to three given (non-concurrent) lines does
not specify a circle uniquely – it gives four possible circles in general (for instance,
if no two are parallel, it gives the incircle and the three excircles).

Thus, the condition of being incident on another variety (passing through a given point,
or being tangent to a given curve) can be thought of as a single condition (coordinate
geometry wise, it gives one equation). This suggests that the incidence number is just a
measure of the number of conditions.

In coordinate geometry, another way of looking at the number of conditions is as the
number of free parameters in the general equation of a variety of that type. The general
equation of a circle has three free parameters, and the general equation of a line has two
free parameters. When we use a different general equation, the nature of the parameters,
but the number of free parameters does not change.

Appendix C. Problems

C.1. Problems based on ideas covered in the article. Unlike the concept testers,
these exercises are not made of riders that can be solved immediately based on the
material in the text. The exercises are not completely straightforward. However, most of
the ideas needed for solving these problems have already been discussed in the text.

(1) Six point trick : Let 4ABC be a triangle. Let P , Q be points on side BC, R,
S on side CA and T , U on side AB. P ,Q,R and S are concyclic, R, S, T , and U
are concyclic, and T ,U , P , and Q are concyclic. Prove that P ,Q,R,S,T ,U are all
concyclic.

(2) The contact triangle : Let 4ABC be a triangle and 4DEF be its contact
triangle (the triangle whose vertices are the points of contact of the incircle with
the sides). By convention D is the vertex on BC, E on CA and F on AB. Let
P be a point such that AP, BP,CP meet the incircle at U, V,W respectively.
Then show that DU, EV, FW are concurrent. Call the point of concurrence
Q. (Note : The trilinear coordinates of P and the new point of concurrence are
related in an interesting manner)Source : K.N.Ranganathan

(3) In the previous exercise determine :
(a) when P and Q are the same point.
(b) what triangle center Q is to 4DEF when P is the incenter of 4ABC.

(4) Let A, B, C,D be four distinct points on a line, in that order. The circles with
diameters AC and BD meet in X and Y . The line XY meets BC in Z. Let P
be a point on XY other than Z. The line CP intersects the circle with diameter
AC at C and M and the line BP intersects the circle with diameter BD at B
and N . Prove that AM, DN, XY are concurrent. (Medium!) (Note : : make
diagrams for both the inside and outside cases). Source : IMO 1995, Problem
1

(5) Among A, B, C,D no three are collinear. AB and CD meet at E, BC and DA
meet at F . Prove that either the circles with diameters AC, BD, EF pass through
a common point, or no two of them intersect. (Easy!) Source : Hungarian
Mathematical Olympiad

(6) Let α be an acute angle, and 4ABC be a triangle. Let 4A′BC, 4AB′C,
4ABC ′ be isosceles triangles erected on the sides with base angle α. Prove that
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AA′, BB′, CC ′ concur. (Note : The locus of this curve as α varies is termed
Kiepert hyperbola and includes the centroid, the orthocenter, the Napoleon
point and the Fermat point. It is the isogonal conjugate of the line joining the
isodynamic points).

(7) Let P be a point in 4ABC with corresponding Cevians AD, BE, CF . Let
Q be a point in 4DEF with corresponding Cevians DP, EQ, FR. Show that
AP, BQ, CR concur. (Medium!) Source : Challenges and Thrills of Pre
College Mathematics

(8) Given a sequence of points Pi where 1 ≤ i ≤ n and Pn+1 = P1, show that if L is a
line and ri is the signed ratio in which L divides PiPi+1 then

∏
ri = (−1)n. This

is the generalized Menelaus’ Theorem and its converse is not true. (Easy!)
(9) Let 4ABC be a triangle and A′, B′, C ′ be points on BC, CA, AB respectively.

Denote by M the point of intersection of circles ABA′ and A′B′C ′ other than A′,
and by N the point of intersection of circles ABB′ and A′B′C ′ other than B′.
Similarly one defines points P, Q,R, S respectively. Then prove that :
(a) At least one of the following is true :

(i) The triples of lines (AB, A′M, B′N), (BC, B′P, C ′Q), (CA, C ′R,A′S)
are concurrent at C ′′, A′′, B” respectively.

(ii) A′M and B′N are parallel to AB, or B′P and C ′Q are parallel to BC,
or C ′R and A′S are parallel to CA.

(b) In the first case, A′′, B′′, C ′′ are collinear. (Medium!) Source : Romanian
IMO selection test, 1985

C.2. Problems using other techniques. The problems here make use either of slight
variations in the techniques discussed in the article, or use completely new methods. In
most of them, some hint is given.

(1) Let Γ be a circle. Let A, B, C and D be points such that AB, BC, CD and DA
are all tangent to Γ. Prove that the center of Γ and the midpoints of AC and
BD are collinear. (Medium!) (Hint : Find the line by treating it as the locus of
a point such that certain triangles have equal areas). Source : I.F.Sharygin

(2) Let Γi be a system of concurrent (not coaxial) circles for 1 ≤ i ≤ 4, with P the
common point. Let Qij denote the second intersection point of Γi and Γj. Let ∆k

be the triangle formed by all the Qij where i 6= k 6= j. Then the circumcircles of
∆k are again concurrent. (Medium!) (Hint : Invert about the concurrence point)
(Source : Clifford’s Theorem).

(3) Let 4ABC be a triangle. If Γ is an ellipse touching the sides internally (that
is, an inellipse) – BC at D, CA at E and AB at F , show that AD, BE, and
CF concur. The point of concurrence is termed the Brianchon point of the
inellipse. (Medium!) (Hint : Project the triangle to one where the ellipse becomes
a circle).

(4) In the previous problem :
(a) The Euler inellipse is the inellipse with foci the orthocenter and circum-

center respectively, and with auxiliary circle the nine point circle. Prove that
its Brianchon point is the isotomic conjugate of the circumcenter.

(b) Determine the center of the inellipse with the property that its center is the
same as its Brianchon point. This is called the Steiner inellipse.

C.3. Three dimensional variants. These problems are three dimensional variants of
problem directly discussed in the text. The proof techniques used in the text are almost
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directly applicable in the three dimensional case. The visualization of these problems is
somewhat tricky and interesting.

(1) The altitudes of a tetrahedron are the perpendiculars from a vertex to the op-
posite face. An orthogonal tetrahedron is one where the altitudes concur.
Prove that a tetrahedron ABCD is orthogonal iff AB2 + CD2 = AC2 + BD2 =
AD2 + BC2.

(2) Define the radical plane of two spheres as the locus of all points with equal
powers with respect to the two spheres. Show that given three spheres, the radical
planes are co-ideal, and intersect in a line. Show further that given four spheres,
the four lines obtained thus by taking three spheres at a time are concurrent.

(3) Define the Appollonius sphere of two points A and B for a ratio λ as the locus
of the point P such that AP/PB = λ. Show that given three points in space, the
Appollonius spheres of each pair containing the third point, meet in a circle.

Appendix D. Definitions

(1) Tangent to a curve at a point is a line that most closely approximates the curve
at that point. it can be visualized as the straight line path that a particle moving
very fast along that curve might take if suddenly freed. This point is termed the
point of contact of the tangent to the curve. For convex curves such as the
circle, the tangent does not intersect the curve at any other point. This, however,
is not the general definition of tangent.

(2) Common tangent to two curves is a line that is a tangent to both of them.
When both the curves lie on the same side of the line, it is said to be a direct
common tangent and when both the curves are on opposite sides of the line, it
is said to be an indirect common tangent or transverse common tangent.

(3) Center of similitude of two circles is the point that divides the line joining the
centers in the ratio of the radii.

The internal center of similitude divides the line internally in the ratio of
the radii and is always defined. If the two circles are disjoint, then it is the point of
intersection of the indirect common tangents. If the two circles touch externally,
it is the common point to them. If the two circles overlap, it lies somewhere in
the region of overlap.

The external center of similitude divides the line externally in the ratio of
the radii. It is defined when the two circles do not have equal radii. If neither
circle is completely inside the other, then it is the point of intersection of the
direct common tangents. If the two circles touch internally, then it is the common
point to them.

(4) Envelope of a collection of lines is a curve to which all the lines are tangents.
(5) Power of a point with respect to a circle is given by d2 − r2 where d is its

distance from the center and r is the radius of the circle. It equals the square of
the length of the tangent segment from the point to the circle when it lies outside
the circle, and is 0 in the circle. It also equals the signed product of its distances
from the intersection points of any secant through it, with the circle.

In coordinate geometry, the power of a point with respect to a circle is obtained
by substituting its coordinates in the equation of the circle.

(6) Radical axis of two circles is the line comprising all the points having equal
powers with respect to the two circles. If the two circles touch, it is the common
tangent through the common point. If the two circles meet at two points, it is the
common chord of the two circles. Otherwise, it intersects neither of the circles.
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(7) Coaxial circles are circles such that any two of them have the same line as their
radical axis. A coaxial system is a complete collection of coaxial circles – one to
which no other circles can be added.

(8) Appollonius circle with respect to two points A and B and corresponding to a
ratio λ is the locus of all the points P such that AP/PB = λ. The Appollonius
circle is a straight line (viz the perpendicular bisector of AB) iff λ = 1. The
Appollonius circle has as endpoints of its diameters the points that divide AB
internally and externally in the ratio λ.

(9) Isodynamic points of a triangle 4ABC are the points P satisfying PA.BC =
PB.CA = PC.AB and they can also be defined as the common points to three
Appollonius circles. They are inverse points with respect to the circumcircle.

(10) Complete quadrilateral is a collection of 4 distinct lines, no two of which are
parallel and no three of which are concurrent. There is no cyclic ordering implicit
in the four lines. Thus, a complete quadrilateral has 6 vertices obtained by taking
pairwise intersections of the sides. More on this is found in section 4.5.1.

(11) Complete quadrangle is a collection of 4 distinct points, no three of which are
collinear. There is no cyclic ordering implicit in the four points. Thus, a complete
quadrangle has 6 lines obtained by taking the vertices two at a time. More on
this is found in section 4.5.2.

(12) Parabola is the locus of a point whose distance from a fixed point, termed the
focus, equals its perpendicular distance from a fixed line, known as the directrix.
The vertex of the parabola is the midpoint between the focus and its projection
on the directrix.

Appendix E. General references

Books (containing relevant theory or Olympiad problems) :

• Challenges and Thrills of Pre College Mathematics by V. Krishnamurthy,
C.R. Pranesachar, B.J. Venkatachala and K.N. Ranganathan. The geometry sec-
tion contains extensive coverage of Ceva’s and Menelaus’ Theorem.

• Mathematical Olympiad Challenges by Titu Andreescu and Razvan Gelca,
published by Birkhauser. The geometry section has one part devoted to cyclic
quadrilaterals and another devoted to power of a point. Some of the problems
in this article first came to my attention on reading this book.

• Problems in Plane Geometry by I.F. Sharygin has problems on all aspects of
plane geometry.

• Problem Solving Strategies by Arthur Engel, published by Springer. This
does not contain any exposition on how to solve geometry problems, but has a
number of interesting problems in its plane geometry section.

• Geometry Revisited by Coxeter and Greitzer. Chapter 3 is titled “Collinearity
and Concurrence”.

• Penguin’s Dictionary of Curious and Interesting Geometry by David
Wells.

• Durrell
• Roger Johnson

Websites for reference include :

http://mathworld.wolfram.com/Geometry.html
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envelope, 4, 21
Euler inellipse, 20
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Gauss Bodenmiller Theorem, 16
geometry, 2

Hilbert’s nullstellensatz, 8

ideal, 8
incenter, 10
incidence relation, 2
isodynamic points, 10, 22
isotomic conjugate, 20

Malfatti circles, 17
median, 1

Menelaus’ Theorem, 6, 22
generalized, 20

Miquel point, 11
Miquel’s Theorem, 6
Monge’s Theorem, 7, 14, 18

opposite vertices, 11
orthocenter, 10

Pappus Theorem, 7
parabola, 22
Pascal’s Theorem, 7
perpendicular bisector, 1, 10
perspective triangles, 7
Pivot theorem, 13
power of a point, 9, 21, 22

quantifier elimination, 6

radical axis, 21
radical ideal, 8

Seven circles’ theorem, 14
side, 11, 12
signed ratio, 6
similitude

center of, 21
Simson’s Line, 6, 18
Simson’s Line Theorem, 6, 11
Simson-Wallace Line, 6
Steiner inellipse, 20

tangent, 4, 21
triangle geometry, 1
Triangle reflections theorem, 13
type function, 2

variety, 2
vertex, 11

23


	1. Prebeginnings
	1.1. Have we seen concurrence?
	1.2. Have we seen collinearity?
	1.3. Have we seen concyclicity?
	1.4. What we will do here

	2. The core problem
	2.1. A little motivation
	2.2. Geometries, varieties, types and incidence
	2.3. Formulation of the problem
	2.4. Points and circles
	2.5. Lines and circles

	3. Points co-incident on a variety
	3.1. Some initial observations
	3.2. Finding the variety
	3.3. Methods of elimination and angle chasing
	3.4. Ratio methods and other criteria
	3.5. Physical insights into problems

	4. Varieties meeting at a point
	4.1. An improved formulation
	4.2. Algebraic reformulation
	4.3. Coaxial circles
	4.4. Symmetric formulations
	4.5. Non-equational symmetric formulations -- concurrent circles
	4.6. Angle totals -- concurrence to collinearity
	4.7. Ratio methods and other criteria for concurrence
	4.8. Ceva's theorem and triangle centers

	5. Summary and general conclusions
	Appendix A. Some illuminative and interesting examples
	A.1. Gauss Bodenmiller theorem
	A.2. A selection test problem
	A.3. The Malfatti problem -- Ajima Malfatti point

	Appendix B. Scope for further exploration
	B.1. Conditional co-incidence problems
	B.2. Triangle geometry
	B.3. Coordinate geometry and geometrical constructions

	Appendix C. Problems
	C.1. Problems based on ideas covered in the article
	C.2. Problems using other techniques
	C.3. Three dimensional variants

	Appendix D. Definitions
	Appendix E. General references
	Index

