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ABSTRACT

In this thesis we generalize the Lazard correspondence, introduced by Lazard in [30], to a

correspondence up to isoclinism. The original Lazard correspondence is a correspondence

between some groups and some Lie rings. The Lazard correspondence up to isoclinism is a

correspondence between some equivalence classes of groups and some equivalence classes of

Lie rings, where the equivalence relation on both sides is isoclinism. By relaxing the objects

on both sides of the correspondence to equivalence classes up to isoclinism, we are able to

generalize the domain of the correspondence somewhat. An overview of our proof strategy

is in Section 1.2, and our final results are described in Section 7.7.

A typical application of the original Lazard correspondence is the situation where, for

some prime p, the group is a finite p-group of nilpotency class at most p− 1 and the Lie ring

is a finite p-Lie ring1 of nilpotency class at most p− 1.

A typical application of the generalization we describe is the situation where the group

is a finite p-group of nilpotency class at most p and the Lie ring is a finite p-Lie ring of

nilpotency class at most p. Knowledge of either (the group or the Lie ring) determines

the other only up to isoclinism and not up to isomorphism. Therefore, this correspondence

is suited only for the study of attributes (of groups or Lie rings) that are invariant under

isoclinism.

In cases where the original Lazard correspondence applies, it refines the Lazard corre-

spondence up to isoclinism: if a group and Lie ring are in Lazard correspondence, then they

are also in Lazard correspondence up to isoclinism. The interesting case covered by our

correspondence is the case of finite p-groups of nilpotency class exactly p and finite p-Lie

rings of nilpotency class exactly p. The original Lazard correspondence no longer applies in

this situation,2 so our generalization adds value.

1. This means that the additive group of the Lie ring is a finite p-group. In other words, the Lie ring is
a Lie algebra over Z/pkZ for some positive integer k.

2. There is a subtle distinction between the global and the 3-local Lazard correspondence that we omit
for the abstract, but describe in detail later
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CHAPTER 1

INTRODUCTION, OUTLINE, AND PRELIMINARIES

Background and notation

1.0.1 Background assumed

This document assumes that the reader is comfortable with group theory at an advanced

undergraduate or beginning graduate student level. At minimum, the reader’s knowledge

should be approximately equivalent to the first six chapters of [10]. A knowledge of the

material in [43] would make the document easy reading. There will be particular emphasis

on knowledge of the structure of p-groups and nilpotent groups, including knowledge of the

interplay between the upper central series and lower central series. A review of the most

important definitions and basic results is available in the Appendix, Section A.3.1.

Rudimentary familiarity with the ideas of universal algebra and category theory will be

helpful in understanding the motivating ideas. A review of the most important ideas is

available in the Appendix, Sections A.2.1 and A.2.4.

It is assumed that the reader is familiar with the idea of Lie rings, which can be viewed

as Lie algebras over Z, the ring of integers. However, familiarity with Lie algebras over the

real numbers or complex numbers will also be sufficient. A review of some basic definitions

from the theory of Lie rings can be found in the Appendix, Section A.1.4.

1.0.2 Group and subgroup notation

Let G be a group. We will use the following notation throughout this document.

• We will use 1 to denote the trivial subgroup of G. Note that the same letter 1 will be

used to denote both the trivial group as an abstract group and the trivial subgroup in

all groups.
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• We will also use 1 to denote the identity element of G.

• When working with groups that are known to be abelian groups, we will use additive

notation: 0 to denote the trivial group and + to denote the group operation. How-

ever, we will use multiplicative notation when dealing with abelian subgroups inside a

(possibly) non-abelian group.

• H ≤ G will be understood to mean that H is a subgroup of G.

• Z(G) will refer to the center of G.

• G′ and [G,G] both refer to the derived subgroup of G.

• γc(G) refers to the cth member of the lower central series of G, given as follows:

γ1(G) = G, γ2(G) = G′, and γi+1(G) = [G, γi(G)].

• Zc(G) refers to the cth member of the upper central series of G, given as follows: Z0(G)

is the trivial subgroup, Z1(G) = Z(G), and Zi+1(G)/Zi(G) = Z(G/Zi(G)) for i ≥ 1.

• G(i) denotes the ith member of the derived series of G, given by G(0) = G, G(1) = G′,

and G(i+1) = [G(i), G(i)].

• Inn(G) is the inner automorphism group of G. It is canonically isomorphic to the

quotient group G/Z(G), and we will often abuse notation by treating Inn(G) as set-

theoretically identical with G/Z(G).

• Aut(G) is the automorphism group of G. We treat Inn(G) naturally as a subgroup of

Aut(G). In fact, Inn(G) is a normal subgroup of Aut(G).

• End(G) is the endomorphism monoid of G, i.e., the set of endomorphisms of G with

the monoid structure given by composition.
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1.0.3 Lie ring and subring notation

Let L be a Lie ring, i.e., a Lie algebra over Z, the ring of integers. We will use the following

notation throughout this document.

• We will use 0 to denote the zero subring of L. Note that 0 is used to describe both the

abstract zero Lie ring and the zero subring in every Lie ring.

• We will also use 0 to denote the zero element of L.

• M ≤ L will be understood to mean that M is a Lie subring of L. This means that it

is an additive subgroup of L and is closed under the Lie bracket.

• Z(L) denotes the center of L, i.e., the subring of L comprising those elements whose

Lie bracket with any element of L is zero.

• L′ and [L,L] both refer to the derived subring of L.

• γc(L) refers to the cth member of the lower central series of L, given as follows: γ1(L) =

L, γ2(L) = L′, and γi+1(L) = [L, γi(L)].

• Zc(L) refers to the cth member of the upper central series of L, given as follows: Z0(L)

is the trivial subring, Z1(L) = Z(L), and Zi+1(L)/Zi(L) = Z(L/Zi(L)) for i ≥ 1.

• L(i) denotes the ith member of the derived series of L, given by L(0) = L, L(1) = L′,

and L(i+1) = [L(i), L(i)].

• Inn(L) is the Lie ring of inner derivations of L. It is canonically isomorphic to the

quotient Lie ring L/Z(L), and we will often abuse notation by treating Inn(L) as

set-theoretically identical with L/Z(L).

• Der(L) is the Lie ring of all derivations of L. We treat Inn(L) naturally as a Lie subring

of Der(L). In fact, Inn(L) is an ideal in Der(L).

• Aut(L) is the automorphism group of L.
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• End(L) is the endomorphism monoid of L considered as a Lie ring. Note that this is

not necessarily closed under addition.

• EndZ(L) is the endomorphism ring of the underlying additive group of L. To avoid

confusion, we will explicitly specify that we are looking at all additive group endomor-

phisms whenever we use this notation.

1.0.4 Other conventions

We will adopt these conventions:

• As a general rule, when dealing with homomorphisms and other similar functions, we

will apply functions on the left, in keeping with the convention used in most mathe-

matics texts. Thus, f ◦ g is to be interpreted as saying that the function g is applied

first and the function f is applied later.

• For the action of a group on itself, we denote by gx the action of g by conjugation

on x as a left action, i.e., gxg−1. We denote by xg the action of g by conjugation on

x as a right action, i.e., g−1xg. When stating results whose formulation is sensitive

to whether we use the left-action convention or the right-action convention, we will

explicitly state the result using both conventions.

• If using the left-action convention, the group commutator [x, y] is defined as xyx−1y−1.

If using the right-action convention, the group commutator [x, y] is defined as x−1y−1xy.

1.1 Introduction

1.1.1 The difference in tractability between groups and abelian groups

The structure theorem for finitely generated abelian groups, which in turn leads to a classi-

fication of all finite abelian groups, shows that the structure of abelian groups is fairly easy
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to understand and control. On the other hand, the structure of groups in general is wild.

Even classifying finite groups is extremely difficult.

The difficulty is two-fold. On the one hand, the finite simple groups (which can be

thought of as the building blocks of finite groups) have required a lot of effort to classify.

While the original classification was believed to have been completed around 1980, some

holes in parts of the proof were discovered later and it is believed that these holes were

fixed only around 2004. The only finite simple abelian groups are the cyclic groups of order

p. However, there are 17 infinite families and 26 sporadic groups among the finite simple

non-abelian groups. For a quick background on the classification, see [2].

At the other extreme from finite simple groups are the finite p-groups. It is well known

that any finite group of order pn (for a prime p and natural number n) must be a nilpotent

group and therefore it has n composition factors that are all cyclic groups of order p. In

other words, there is no mystery about the building blocks of these groups. Despite this, the

multiplicity of ways of putting the building blocks together makes it very difficult to obtain

a concise description of all the groups of order pn. The general consensus among people who

have studied p-groups is that it is futile to even attempt to obtain a concise description of

all the isomorphism types of groups of order pn, and that it is likely that no such description

exists. Rather, the goal of the study of p-groups is to identify methods that enable us to

better understand the totality of p-groups, including aspects that are common to all of them

and aspects that differentiate some p-groups from others. For a description of the state of

knowledge regarding p-groups, see [32].1

This thesis is focused on one small part of the study of finite p-groups.

1.1.2 Nilpotent groups and their relation with abelian groups

A group is termed nilpotent if it has a central series of finite length. Nilpotent groups are

considerably more diverse in nature than abelian groups, and as alluded to in the preceding

1. Although the article was published in 1999, progress has been modest since then.
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section, even the finite nilpotent groups are difficult to classify.

A group is termed solvable if it has a normal series where all the quotient groups are

abelian groups. Solvable groups are considerably more diverse than nilpotent groups.

Generally, statements that are true for abelian groups fall into one of these four classes:

1. The statement does not generalize much further from abelian groups

2. The statement generalizes all the way to nilpotent groups but not much further

3. The statement generalizes all the way to solvable groups but not much further

4. The statement generalizes to all groups, or to a fairly large class of groups

It might be worthwhile to attempt to understand why the properties of being nilpotent

and being solvable differ qualitatively, and why the former is far closer to being abelian than

the latter. In an abelian group, the commutativity relation holds precisely: ab = ba for all a

and b in the group. In general, ab and ba “differ” by a commutator, i.e., ab = [a, b]ba if we

use the left action convention for commutators.

When we consider expressions in a group and try to rearrange the terms of the expression,

the process of rearrangement introduces commutators. These commutators themselves need

to be moved past existing terms, which introduces commutators between the commutators

and existing terms. In a nilpotent group, we eventually reach a stage where the iterated

commutators that we obtain are central, and therefore can be freely moved past existing

terms. In a solvable group, such a stage may never arise.

An alternative perspective is that of iterative algorithms, a common class of algorithms

found in numerical analysis and other parts of mathematics. An iterative algorithm attempts

to find a solution to a problem by guessing an initial solution and iteratively refining the

guess by identifying and correcting the error in the initial solution. There are many iterative

algorithms that are guaranteed to terminate only for nilpotent groups, and where the number

of steps in which the algorithm is guaranteed to terminate is bounded by the nilpotency
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class of the group. These algorithms work in a single step for abelian groups, because

commutativity allows for the necessary manipulations to happen immediately. For non-

abelian nilpotent groups, the algorithms work by gradually refining guesses modulo members

of a suitable central series (such as the upper central series or lower central series).

1.1.3 The Lie correspondence: general remarks

The non-abelianness of groups makes it comparatively difficult to keep track of group el-

ements and to study the groups. It would be very helpful to come up with an alternate

description of the structure of a group that replaces the (noncommutative) group multiplica-

tion with a commutative group multiplication, and stores the noncommutativity in the form

of a separate operation. A Lie ring (defined in the Appendix, Section A.1.4) is an example

of such a structure.

For readers familiar with the concept of Lie algebras over R or C, note that the definition

of Lie ring is similar, except that the underlying additive group is just an abelian group

(rather than being a R-vector space or C-vector space) and the Lie bracket is just Z-bilinear

rather than being R-bilinear or C-bilinear. In particular, any Lie algebra over R or C is a

Lie ring, but not every Lie ring is a Lie algebra over R or C, and even if it is, there may be

multiple ways of giving it such a Lie algebra structure.

The Lie correspondence is an important correspondence in the theory of real Lie groups.

For an elementary exposition of this correspondence, see [46]. We recall here some of the

key features of the correspondence.

To any finite-dimensional real Lie group, we can functorially associate a R-Lie algebra

called the Lie algebra of the Lie group. The underlying vector space of the Lie algebra is

the tangent space at the identity to the Lie group, or equivalently, the space of left-invariant

vector fields, and the Lie bracket is defined using the Lie bracket of vector fields. Note that

the Lie algebra of a Lie group depends only on the connected component of the identity.

Additionally, there exists a map, called the exponential map, from the Lie algebra to
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the Lie group. This map need not be bijective globally, but it must be bijective in a small

neighborhood of the identity. The inverse of the map, again defined in a small neighborhood

of the identity, is the logarithm map. Note that the exponential map is globally defined, but

the logarithm map is defined only locally.

The association is not quite a correspondence. The problem is that different Lie groups

could give rise to isomorphic Lie algebras. However, if we restrict attention to connected

simply connected Lie groups, then the association becomes a correspondence, and we can

construct a functor in the reverse direction. Explicitly, the Lie correspondence is the following

correspondence, functorial in both directions:

Connected simply connected finite-dimensional real Lie groups ↔ Finite-dimensional real

Lie algebras

1.1.4 The Lie algebra for the general linear group

Denote by GL(n,R) the general linear group of degree n over the field of real numbers, i.e.,

the group of all invertible n× n matrices with real entries. Denote by gl(n,R) the “general

linear Lie algebra” of degree n over R. Explicitly, gl(n,R) is the vector space of all n × n

matrices over R, and the Lie bracket is defined as [x, y] := xy − yx.

gl(n,R) is the Lie algebra of GL(n,R). The exponential and logarithm maps in this case

are the usual matrix exponential and matrix logarithm maps. The exponential map:

exp : gl(n,R) → GL(n,R)

is defined as:

x 7→
∞∑
i=0

xi

i!
= 1 + x+

x2

2!
+
x3

3!
+ . . .

The matrix exponential is defined for all matrices. However, the exponential map is

neither injective nor surjective:
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• The exponential map is not surjective for any n. For n = 1, this is because the

exponential of any real number is a positive real number. A similar observation holds

for larger n, once we observe that the image of the exponential map is insideGL+(n,R),

the subgroup of GL(n,R) comprising the matrices of positive determinant. However,

for n > 1, the exponential map is not surjective even to GL+(n,R). For instance, the

following matrix is not the exponential of any matrix with real entries:

−1 1

0 −1


• The exponential map is not injective for n > 1. For instance, for any positive integer

m, the following matrix has exponential equal to the identity matrix:

 0 1

−4m2π2 0


Nonetheless, we can find an open neighborhood U of the zero matrix in gl(n,R) and an

open neighborhood V of the identity matrix in GL(n,R) such that the exponential map is

bijective (and in fact, is a homeomorphism) from U to V .

Note that GL(n,R) is not a connected simply connected Lie group, so the above is not

an instance of the Lie correspondence.

1.1.5 The nilpotent case of the Lie correspondence

The example of gl(n,R) and GL(n,R) illustrates that the exponential map does not always

behave nicely. However, it turns out that the exponential map behaves much better when

we apply the Lie correspondence in the nilpotent case. Explicitly, the nilpotent case of the

Lie correspondence is a correspondence:

Connected simply connected finite-dimensional nilpotent real Lie groups ↔
9



Finite-dimensional nilpotent real Lie algebras

In the nilpotent case, it will turn out that the exponential map is bijective, and in fact,

it defines a homeomorphism from the Lie algebra to the Lie group. Thus, we can define its

inverse, the logarithm map, globally.

We now turn to an example.

1.1.6 The example of the unitriangular matrix group

A special case of interest for us is the correspondence between the Lie ring NT (n,R) of n×n

strictly upper triangular matrices over R and the group UT (n,R) of n× n upper triangular

matrices over R with all the diagonal entries equal to 1. This correspondence gives a bijection

between the underlying sets of NT (n,R) and UT (n,R) via the exponential map. Explicitly,

the matrix exponential defines a bijective set map:

exp : NT (n,R) → UT (n,R)

given explicitly as:

exp(x) = ex = 1 + x+
x2

2!
+ · · ·+ xn−1

(n− 1)!

Note that this coincides with the usual matrix exponential because xn = 0 and all higher

powers of x are therefore also zero. In other words, this exponential map is the restriction

to NT (n,R) of the exponential map described in the preceding section:

exp : gl(n,R) → GL(n,R)

However, unlike the case of GL(n,R), the exponential map from NT (n,R) to UT (n,R)

is bijective, and in fact, is a homeomorphism. Topologically, both NT (n,R) and UT (n,R)

are homemorphic (i.e., isomorphic in the category of topological spaces) to the vector space
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R(n
2).

The inverse set map is the matrix logarithm, now defined globally:

log : UT (n,R) → NT (n,R)

given explicitly as:

log x := (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · ·+ (−1)n(x− 1)n−1

n− 1

1.1.7 The Malcev correspondence and Lazard correspondence

The Malcev correspondence is a generalization of the nilpotent case of the Lie correspondence

that applies to algebras over the field of rational numbers. Explicitly, the correspondence is:

Rationally powered nilpotent groups ↔ Nilpotent Q-Lie algebras

We will define “rationally powered” in Section 4.1, but a quick definition for our purpose

is that every element has a unique nth root for every positive integer n. The Malcev corre-

spondence is a purely algebraic correspondence that does not deal with topological structure.

Note that any R-Lie algebra is a Q-Lie algebra as well. It turns out that for any nilpotent

R-Lie algebra, the Lie correspondence coincides with the Malcev correspondence. Thus, for

instance, under the Malcev correspondence, the group associated with NT (n,R) is UT (n,R).

The Malcev correspondence has a slight further generalization called the Lazard corre-

spondence, introduced by Lazard in [30]. The Lazard correspondence relaxes the assumption

of being “rationally powered” and replaces it with the assumption that unique division by

specific primes (namely, primes that are less than or equal to the nilpotency class) is possible.

If we use the Lazard correspondence in the direction from groups to Lie rings, then it

allows us to convert (a suitable type of) abstract nilpotent group to a nilpotent Lie ring.

The addition operation of the Lie ring captures the abelian part of the group multiplication,

whereas the Lie bracket captures the non-abelian part of the group multiplication.
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Unfortunately, the Lazard correspondence applies only to some nilpotent groups and

some nilpotent Lie rings. Specifically, for finite p-groups, it only works for finite p-groups

where any subset of size three generates a subgroup of nilpotency class at most p − 1. For

the bulk of this document, we will restrict our attention to the case of small global class, i.e.,

the subcorrespondence that applies to finite p-groups of nilpotency class at most p− 1.

This means that groups that have higher nilpotency class (a way of saying that the groups

are relatively more non-abelian) cannot be studied directly using the Lazard correspondence.

We will describe the Malcev correspondence and the Lazard correspondence in detail

in Sections 6.5, 6.6, and 6.7. For a textbook-style presentation of the correspondence, see

Khukhro’s book [29], Chapters 9 and 10.

1.1.8 Our generalization of the Lazard correspondence

The goal of this document is to describe a generalization of the Lazard correspondence

that works for all p-groups of nilpotency class at most p. In other words, it allows us to

generalize the Lazard correspondence to a slightly bigger collection of groups. The limitation

of this generalization is that the correspondence only works between equivalence classes of

groups and equivalence classes of Lie rings, with each equivalence class containing multiple

isomorphism types. The equivalence relation of interest here is the equivalence relation of

isoclinism. Informally, two groups are isoclinic if their commutator maps are equivalent, and

two Lie rings are isoclinic if their Lie bracket maps are equivalent.

1.1.9 Similarities and differences between groups and Lie rings

The theories of groups and Lie rings are structurally similar. For many concepts related to

groups, there are analogously defined concepts for Lie rings. In most cases, the analogous

definition suggests itself naturally. Often, even the proofs are similar. In some cases, proofs

are easier for Lie rings than for groups, primarily because the Lie bracket is bilinear.

There are some concepts that make sense only on the group side, and some concepts that
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make sense only on the Lie ring side. Similarly, there are some facts that are true only on

the group side, and some facts that are true only on the Lie ring side.

The closer we are to abelianness, the more structurally similar the theory for groups is

to the theory for Lie rings. In many cases, a fact is true for nilpotent Lie rings if and only

if the “analogous” fact is true for nilpotent groups. There are many facts that are true in

general for Lie rings and are not true in general for groups, but they are true for nilpotent

groups.

In addition to structural similarity, we will also see some instances of bijective corre-

spondences between certain types of groups and certain types of Lie rings (including the Lie

correspondence and the Lazard correspondence). It will turn out that analogous concepts

become bijectively correspondent under these correspondences. For instance, normal sub-

groups of groups are analogous to ideals in Lie rings. The Lazard correspondence between

groups and Lie rings establishes a bijective correspondence between (certain kinds of) normal

subgroups of the group and (certain kinds of) ideals of the Lie ring.

1.1.10 Our central tool: Schur multipliers

Our goal is to extend the domain of the Lazard correspondence by relaxing its strictness (from

a correspondence up to isomorphism to a correspondence up to isoclinism). In particular, we

are interested in extending the Lazard correspondence to nilpotency class one higher than

where it applies. Thus, the groups (respectively, Lie rings) of interest to us arise as central

extensions where the quotient group (respectively, quotient Lie ring) is in the domain of the

Lazard correspondence.

Rather than directly trying to study the groups and Lie rings, we study the theory of

central extensions for groups and Lie rings. We first develop the general theory of such

central extensions. Then, we apply that general theory to the case where the quotient group

(respectively quotient Lie ring) of the central extension lies in the domain of the Lazard

correspondence. In the edge case of interest where the group is in the domain of the Lazard
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correspondence but its central extensions are “just outside” the domain, we can obtain new

insights. For instance, if G is a p-group of nilpotency class exactly p− 1, it is a Lazard Lie

group. The central extensions with quotient group G are p-groups of nilpotency class either

p− 1 or p. The latter may lie outside the domain of the Lazard correspondence.

On both the group side and the Lie ring side, the theory of central extensions is governed

by an abelian group called the Schur multiplier. There is a rich theory behind the Schur

multiplier, and it connects with important ideas from algebraic topology and homological

algebra. We will explore the necessary facets of this theory. Eventually, we will prove (in

Theorem 7.7.3) that if a Lie ring and a group are in Lazard correspondence, then their Schur

multipliers are isomorphic. A version of the statement for finite p-groups appeared as a

conjecture in the paper [13] by Eick, Horn, and Zandi in September 2012, stated informally

after Theorem 2 of the paper.2 Once the Schur multipliers are established to be isomorphic,

it is easy to establish the Lazard correspondence up to isoclinism.

1.1.11 Globally and locally nilpotent

The numbers 2 and 3 are particularly significant in the context of the axiomatization of

groups and Lie rings, and they also play an important role in the Lazard correspondence. 2

is the maximum of the arities3 of the operations used in the definition of groups. In particular,

this means that if a function between groups restricts to a homomorphism on every subgroup

generated by at most 2 elements, then the function is globally a homomorphism.

3 is the maximum of the number of variables that appear in the identities that define

a group. In particular, this means that if an algebra has the same signature as a group

(i.e., a 0-ary operation for the identity, a unary operation for the inverse map, and a binary

2. The authors write: “Based on various example computations, see also [7], we believe that Theorems
1 and 2 also hold for finite p-groups of class p − 1. However, our proofs do not extend to this case.” The
reference [7] alluded to by the authors has not yet been published or made available online. For a more
detailed discussion, see Section 7.7.4

3. The arity of an operation is the number of inputs it takes. For instance, group multiplication has arity
2. Arity is discussed in more detail in the Appendix, Section A.2.4.
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operation for the group multiplication), and every subalgebra of the algebra generated by at

most 3 elements is a group, then the algebra is globally a group.

The same is true for Lie rings: the maximum of the arities of the operations is 2, and

the maximum of the number of terms that appear in the defining identities is 3. Thus, any

function between Lie rings that restricts to a homomorphism on subrings generated by sets

of size at most 2 is globally a homomorphism. Further, given an algebra with the same

signature as a Lie ring, such that every subalgebra generated by at most 3 elements becomes

a Lie ring with the induced operations, the algebra as a whole is a Lie ring.

The formulas used in the Lazard correspondence describe the group operations in terms

of the Lie ring operations, and conversely describe the Lie ring operations in terms of the

group operations. The formulas themselves refer to a maximum of two elements at a time.

However, the verification that these formulas work (i.e., that starting from a Lie ring, we

end up with a group, or that starting from a group, we end up with a Lie ring) relies on

looking at three elements at a time. For instance, to verify that a formula describing group

operations in terms of Lie ring operations does indeed define a group structure, we need

to verify the associativity identity for three arbitrary elements. Similarly, to verify that a

formula describing Lie ring operations in terms of group operations does indeed define a Lie

ring structure, we need to verify the associativity of addition, bilinearity, and Jacobi identity

for the Lie ring operations. Each of these identities requires considering three arbitrary

elements at a time.

Thus, the conditions that we work out on groups (respectively, Lie rings) pertaining to

the Lazard correspondence are 3-local conditions: they are conditions on what subgroups

(respectively, Lie subrings) generated by subsets of size at most three look like.

1.1.12 The structure of this document

The document is quite long despite the fact that the eventual proofs are relatively short and

simple. The reason is that the existing literature we draw upon is fragmented. We draw on
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literature with these five broad themes:

• Isoclinism and homoclinism.

• Schur multiplier and the relation with group extension theory.

• Exterior square and its generalizations.

• The Lazard correspondence.

• The behavior of groups and Lie rings where we can divide by specific primes.

Each of these themes has a well-developed body of literature. However, the connections

between these ideas are not emphasized in the literature, and it often requires a careful

reading to glean them. Thus, it would not be sufficient to simply cite the relevant literature.

We use the next few sections to develop all the necessary background material in preparation

for our results.

Our presentation will follow these features:

• For the foundational sections, we will systematically alternate sections between groups

and Lie rings. A section about groups will develop a concept or construct in the

context of groups. The next section about Lie rings will develop the analogous concept

or construct in the context of Lie rings. To the extent possible, we will follow parallel

modes of presentation in the two sections. Differences between the sections will be

noted at the beginnings of the relevant sections.

• For the foundational sections, we will often begin by discussing a concept in the context

of groups or Lie rings in the abstract, and then discuss an analogous concept in the

context of extensions of groups or Lie rings. This will be done somewhat in reverse in

the later sections, where we sometimes prove a result in the context of extensions (of

groups or Lie rings) and then apply that to prove the result in the context of groups

or Lie rings. This will be our modus operandi for the crucial proofs.
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• Our key results involve generalizing certain correspondences (the Baer correspondence

and Lazard correspondence) to a larger domain, but with a coarser equivalence relation

(of isoclinism). For each correspondence that we generalize, we first explicitly describe

the known correspondence and its key attributes (in one or more sections), and then

describe our generalization.

1.1.13 For a quick reading

For readers who wish to understand the main results without delving into background con-

cepts in unnecessary depth, the following reading sequence will work:

1. Chapter 1 (Introduction, outline, and preliminaries):

• Section 1.2 contains the outline of our main proof techniques. It is worth reading

in its entirety.

• Section 1.3 (The abelian Lie correspondence): The contents of this section are

straightforward, but it is worth reading because the methods used in this section

form a template for later, more complicated, correspondences.

2. Chapter 2 (Isoclinism and homoclinism: basic theory):

• Section 2.1 (Isoclinism and homoclinism of groups): It suffices to read Sections

2.1.1 – 2.1.4, and the statements of the theorems in Section 2.1.6. Readers already

familiar with the definitions can skip this section and return if needed.

• Section 2.2 (Isoclinism and homoclinism of Lie rings): It suffices to read Section

2.2.1. Readers already familiar with the definitions can skip this section and

return if needed. Readers who thoroughly understand the general analogy between

groups and Lie rings can extrapolate the definitions and results of this section from

the preceding one, and hence may skip this section.

3. Chapter 3 (Extension theory):
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• Section 3.1 (Short exact sequences of groups): Readers already familiar with the

basics of short exact sequences and central extensions can read Sections 3.1.5 and

3.1.6.

• Section 3.2 (Short exact sequences and central extensions of Lie rings): Readers

who understood the preceding section (Section 3.1), and understand how the

analogy between groups and Lie rings works, can skip this section.

• Section 3.3 (Explicit description of second cohomology group): This section can

be skipped without loss of continuity. The material in this section helps with

understanding Section 5.4.9. However, the latter can also be skipped without loss

of continuity.

• Section 3.4 (Exterior square, Schur multiplier, and homoclinism): This section is

important to understand because it lays the foundation for later material, and

the presentation is non-standard. Readers may skip proofs, many of which are

tedious, and focus on the statements of the results.

• Section 3.5 (Exterior square, Schur multiplier, and homoclinism for Lie rings):

Apart from Section 3.5.2, this section is mostly analogous to the preceding section.

Hence, the rest of the section can be skipped.

• Section 3.6: This section is important to understand because it lays the foundation

for later material, and the presentation is non-standard. Readers may skip proofs,

many of which are tedious, and focus on the statements of the results.

• Section 3.7: This section may be skipped by readers who have a thorough un-

derstanding of the preceding section and understand how the analogy between

groups and Lie rings works.

• Sections 3.8 and 3.9 (Exterior and tensor products for groups and Lie rings respec-

tively): These sections can be skipped without loss of continuity, and interested

readers can refer back to the explicit descriptions as needed later.
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• Sections 3.10 and 3.11: These are worth skimming for their main results.

4. Chapter 4 (Powering over sets of primes):

• Section 4.1 (Groups powered over sets of primes): Readers would benefit by read-

ing the part of Section 4.1 up to and including Section 4.1.5 in order to familiarize

themselves with the definitions. Some of the results presented in the rest of the

section are useful, but they can be revisited as necessary.

• Section 4.2 (Lie rings powered over sets of primes): It suffices to read Section

4.2.1.

• Section 4.3 (Free powered groups and powering functors): The results in Sections

4.3.5 and 4.3.8 are the most important. The rest of the section may be skimmed.

• Section 4.4 (Free powered Lie rings and powering functors): The results here are

analogous to the preceding section, though the proofs are more straightforward.

The section can be skipped and returned to as needed.

5. Chapter 5 (Baer correspondence):

• Sections 5.1 and 5.2 (Baer correspondence): It suffices to read Sections 5.1.1-5.1.3

and Section 5.2.4. However, readers may benefit from skimming both sections in

their entirety in order to get a better sense.

• Section 5.3 may be skipped without loss of continuity.

• Section 5.4 (Baer correspondence up to isoclinism): Reading the whole section is

strongly recommended, but readers may skip Section 5.4.9 without loss of conti-

nuity.

• Section 5.5 contains interesting examples worth reading but may be skipped with-

out loss of continuity.

6. Chapter 6 (The Malcev and Lazard correspondences):
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• Sections 6.1 and 6.2 (adjoint groups, exponential and logarithm maps, and free

nilpotent groups): These sections may be skimmed without reading the proofs.

They provide technical background for Section 6.3.

• Section 6.3 (Baker-Campbell-Hausdorff formula): This section should be read in

its entirety. Readers may benefit from concentrating on the statements of the

theorems and skimming the proofs.

• Section 6.4: This section is partly analogous to Section 6.3, so aside from the

introduction, it may be skimmed.

• Sections 6.5, 6.6, and 6.7 (Malcev correspondence, global Lazard correspondence,

and Lazard correspondence): These sections are worth reading, though people

familiar with the correspondences may skim them.

7. Chapter 7 (Generalizing the Lazard correspondence to a correspondence up to isoclin-

ism):

• Section 7.1 (Group commutator and Lie bracket in terms of each other) is impor-

tant.

• Section 7.2 may be skimmed.

• The theorems in Section 7.3 are important as stepping stones for the main results.

However, the proofs are unilluminative and may be skipped.

• The results in Sections 7.4 and 7.5 are important, but the proofs may again be

skipped.

• Sections 7.6 and 7.7 are extremely important and should be read carefully, though

the proofs may be skimmed.

8. Chapter 8 (Applications and possible extensions): Sections 8.1 and 8.2 may be of

interest to readers who want to understand potential applications.
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9. Readers may refer to the sections in the Appendix based on their level of interest.

Sections A.1, A.2, and A.3 cover technical background at the advanced undergraduate

or beginning graduate level that is useful for understanding the main results of the

thesis. Section A.5 covers a general theory that is helpful for understanding potential

generalizations of the results presented here.

1.2 Outline of our main results

This section provides an overview of our main results and the strategy we will use to prove

these results. Some of the technical details in this section may be accessible only to peo-

ple with a strong background in group theory and some prior familiarity with the Lazard

correspondence. However, all readers should be able to understand the ideas at a broad

level.

1.2.1 The Lazard correspondence: a rapid review

The Lazard correspondence is a correspondence between certain kinds of groups and certain

kinds of Lie rings. The groups, called Lazard Lie groups, satisfy a condition relating the

set of primes over which they are powered and the nilpotency class of subgroups generated

by subsets of size at most three. The Lie rings, called Lazard Lie rings, satisfy a similar

condition relating the set of primes over which they are powered and the nilpotency class of

Lie subrings generated by subsets of size at most three. The precise definition of the Lazard

correspondence is in Section 6.7. A somewhat easier case of the correspondence, called the

global Lazard correspondence, is described in Section 6.6. The global Lazard correspondence

imposes a restriction on the nilpotency class of the whole group and of the whole Lie ring.

It is more narrow than the Lazard correspondence but easier to deal with.

For a Lie ring L, the corresponding group, exp(L), has the same underlying set as L, and

the group operations are defined in terms of the Lie ring operations based on fixed formulas.
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Explicitly, the group multiplication is defined in terms of the Lie ring operations using the

Baker-Campbell-Hausdorff formula. The Baker-Campbell-Hausdorff formula is described in

detail in Section 6.3. Technically, the formula is different for different values of the (3-

local) nilpotency class, but we can use a single infinite series whose truncations give all the

formulas.

For a group G, the corresponding Lie ring, denoted log(G), has the same underlying

set as G, and the Lie ring operations are defined in terms of the group operations based on

fixed formulas called the inverse Baker-Campbell-Hausdorff formulas (one formula describing

the Lie ring addition and another formula describing the Lie bracket in terms of the group

operations). The inverse Baker-Campbell-Hausdorff formulas are described in Section 6.4.

exp and log define functors between appropriately defined subcategories of the category

of groups and the category of Lie rings, and the functors are two-sided inverses of each other.

Thus, they establish an isomorphism of categories over the category of sets4 between the

relevant subcategories of the category of groups and the category of Lie rings.

1.2.2 Isoclinism: a rapid review

An isoclinism of groups is a pair of group isomorphisms, one between their inner automor-

phism groups and the other between their derived subgroups, that are compatible with the

commutator map. Intuitively, we can think of an isoclinism of groups as an equivalence be-

tween the commutator structures of the two groups. We will define and discuss isoclinisms

in Section 2.1.

There is a similar notion of isoclinism of Lie rings (that uses the inner derivation Lie

ring, the derived subring, and the Lie bracket) that we will define and discuss in Section

2.2. Intuitively, we can think of an isoclinism of Lie rings as an equivalence between the Lie

bracket structures of the Lie rings.

We can use isoclinism of groups to define an equivalence relation on the collection of

4. This means an isomorphism of categories that preserves the underlying set
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groups. Analogously, we can use isoclinism of Lie rings to define an equivalence relation on

the collection of Lie rings.

1.2.3 The Lazard correspondence up to isoclinism

The Lazard correspondence up to isoclinism combines the idea of the Lazard correspondence

and the idea of isoclinism. For a Lie ring L and a group G, a Lazard correspondence up to

isoclinism includes two pieces of data satisfying a compatibility condition:

• A Lazard correspondence up to isomorphism between Inn(L) and Inn(G). This can

be viewed as an isomorphism of groups between exp(Inn(L)) and Inn(G) or as an

isomorphism of Lie rings between Inn(L) and log(Inn(G)).

• A Lazard correspondence up to isomorphism between L′ and G′. This can be viewed

as an isomorphism of groups between exp(L′) and G′ or as an isomorphism of Lie rings

between L′ and log(G′).

The compatibility condition is tricky to specify. Naively, we might expect that the com-

patibility condition would say that the isomorphism converts the Lie bracket map Inn(L)×

Inn(L) → L′ to the commutator map Inn(G)× Inn(G) → G′. The problem with this naive

specification is that even with the ordinary Lazard correspondence, the Lie bracket of the Lie

ring does not coincide with the commutator of the group. They do coincide when the class

is at most two, and we discuss this special case, the Baer correspondence up to isoclinism,

in Section 5.4.

To handle higher class, we need to first derive a formula valid for the usual Lazard cor-

respondence that expresses the Lie bracket in terms of the commutator, and in the reverse

direction, we need to derive a formula valid for the usual Lazard correspondence that ex-

presses the commutator in terms of the Lie bracket. The compatibility condition we impose

will make use of these formulas. The formulas themselves are described in Section 7.1. The

compatibility condition based on these formulas is described in detail in Section 7.7.
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1.2.4 The existence question

Defining the Lazard correspondence up to isoclinism is relatively easy. The harder part is

establishing sufficient conditions for the existence of objects on the other side, i.e., estab-

lishing sufficient conditions for the existence of groups that are in Lazard correspondence up

to isoclinism with a given Lie ring, and establishing sufficient conditions for the existence of

Lie rings that are in Lazard correspondence up to isoclinism with a given group.

The results that we would like to aim for are:

• For a Lie ring L, if both Inn(L) and L′ are Lazard Lie rings, then we can find a group

G such that L is in Lazard correspondence up to isoclinism with G.

• For a group G, if both Inn(G) and G′ are Lazard Lie groups, then we can find a Lie

ring L such that L is in Lazard correspondence up to isoclinism with G.

Unfortunately, the proofs of these statements at a general level require more machinery

than we can manage in this thesis. We therefore restrict our proofs here to the case of the

global Lazard correspondence. The precise statements of the results we will prove are in

Section 7.7. Essentially, we restrict attention to groups that satisfy global assumptions on

the set of primes over which they powered, and for which the inner automorphism group and

derived subgroup are both in the domain of the global Lazard correspondence.

The strategy that we use to demonstrate these facts is somewhat roundabout. Instead

of trying to answer the question directly, we try to answer the question in the more general

context of central extensions of groups and Lie rings. We will then apply the results that we

obtain to the central extensions with short exact sequences:

0 → Z(G) → G→ G/Z(G) → 1

and

0 → Z(L) → L→ L/Z(L) → 0
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We outline below the argument in the direction from Lie rings to groups.

We begin by viewing L as an extension with central subring Z(L) and quotient ring

L/Z(L) ∼= Inn(L). We obtain the corresponding Lie bracket map Inn(L) × Inn(L) → L′.

We then obtain a desired commutator map exp(Inn(L))× exp(Inn(L)) → exp(L′) by using

the formula describing the commutator map in terms of the Lie bracket map. Finally, we

demonstrate the existence of a group G that realizes this commutator map.

1.2.5 The realization of isoclinism types

We will show that equivalence classes of groups up to isoclinism can be described by storing

the commutator structure in an abstract fashion, without reference to an actual group in

that equivalence class.

This will be useful to the final step of our proof of existence established above: instead of

directly trying to construct the groups in the equivalence class up to isoclinism, we construct

the commutator structure. In the notation above, we construct the desired commutator map

exp(Inn(L))× exp(Inn(L)) → exp(L′).

Below, we provide a few more details about how we store the commutator structure

abstractly. This discussion may be accessible only to people familiar either with group

cohomology or with some other type of cohomology theory that is structurally similar. Note

also that the group G that we use here is not the same as the group G used in Section 1.2.4.

In fact, to apply what we discuss below to Section 1.2.4, we would need to set the group A

below to exp(Z(L)) and set the group G below to exp(L/Z(L)).

Technical details: In Sections 3.4 and 3.6, we will show that we can classify central

extensions up to isoclinism using a homomorphism from the Schur multiplier. Explicitly,

when considering central extensions with central subgroup A and quotient group G, we

can determine the type of the extension up to isoclinism by considering the induced map

M(G) → A where M(G) is the Schur multiplier of G. We will relate this to the universal

coefficient theorem short exact sequence described in Section 3.6.4.
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0 → Ext1Z(Gab, A) → H2(G;A) → Hom(M(G), A) → 0

The key aspect of the above short exact sequence that is relevant for the existence question

is the surjectivity of the map:

H2(G;A) → Hom(M(G), A)

Thus, the homomorphism from M(G) to A describes the equivalence class of extensions

up to isoclinism, and every homomorphism from M(G) to A describes some eqiuvalence class

of extensions.

For results in the opposite direction, we develop a similar theory for Lie rings.

1.2.6 Powering assumptions

One complication that arises in the discussion of the Lazard correspondence and its gener-

alizations is that the formulas involved require taking pth roots for some primes p. Thus, in

order to make sense of these expressions, we need to develop a basic theory of groups and

Lie rings where these operations make sense. We develop that basic theory in Sections 4.1

and 4.3 (for groups) and in Sections 4.2 and 4.4 (for Lie rings).

1.2.7 Global Lazard correspondence preserves Schur multipliers

To complete the proof, we need to demonstrate that the global Lazard correspondence be-

haves well with respect to the structures that we use to classify extensions up to isoclinism.

Explicitly, we need to show that if L = log(G) and G = exp(L), then the Schur multipliers

M(L) and M(G) are canonically isomorphic, and also that the exterior squares L ∧ L and

G∧G are in Lazard correspondence. We will demonstrate these facts in Sections 7.4 and 7.7

(specifically, in Theorem 7.7.3). A version of the statement for finite p-groups appeared as a

conjecture in the paper [13] by Eick, Horn, and Zandi in September 2012, stated informally
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after Theorem 2 of the paper. Some technical details of our proof idea follow.

Technical details: The key idea behind our proof is to express our group as a quotient

group of a free powered nilpotent group of class one more. Using a nilpotency class of one

more allows us to use a variant of the Hopf formula to calculate the Schur multiplier, as

described in 3.6.10 and 7.4.2. We can perform a similar construction on the Lie ring side.

We now show that the groups used to compute the Schur multiplier of the group are in

Lazard correspondence with the Lie rings used to compute the Schur multiplier of the Lie

ring. The reason this is nontrivial is that the free nilpotent group and free nilpotent Lie

ring of class one more need not themselves be in Lazard correspondence. We need to show

that despite this, the groups that we eventually use in the formula for computing the Schur

multiplier are in Lazard correspondence.

1.3 The abelian Lie correspondence

This section describes an obvious and straightforward correspondence: the correspondence

between abelian groups and abelian Lie rings. An abelian Lie ring is a Lie ring that has

trivial Lie bracket. Basic definitions related to Lie rings can be found in the Appendix,

Section A.1.4.

All assertions made here are trivial to prove. The purpose of this section is to set up a

basic prototype for the Lazard correspondence.

1.3.1 Abelian groups correspond to abelian Lie rings

We establish the abelian Lie correspondence:

Abelian groups ↔ Abelian Lie rings

The correspondence works as follows.

• From groups to Lie rings: Given an abelian group G, the corresponding abelian Lie
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ring logG is defined as the Lie ring whose underlying additive group coincides with G,

and where the Lie bracket is trivial.

• From Lie rings to groups: Given an abelian Lie ring L, the corresponding abelian group

expL is defined as the underlying additive group of L.

Note that the symbols exp and log here are being used as abstract symbols. They do

not describe exponential and logarithm maps in the conventional sense of the term. The

relationship with the usual notions of exponential and logarithm will become clearer in

subsequent sections leading up to the definition of the Lazard correspondence.

1.3.2 Preservation of homomorphisms: viewing exp and log as functors

The following observations follow immediately from the definitions:

• log defines a functor from abelian groups to abelian Lie rings: Suppose G1 and G2 are

abelian groups and ϕ : G1 → G2 is a group homomorphism. Then, there exists a unique

Lie ring homomorphism log(ϕ) : log(G1) → log(G2) that has the same underlying set

map as ϕ.

• exp defines a functor from abelian Lie rings to abelian groups: Suppose L1 and L2

are abelian Lie rings and ϕ : L1 → L2 is a Lie ring homomorphism. Then, there

exists a unique group homomorphism exp(ϕ) : exp(L1) → exp(L2) that has the same

underlying set map as ϕ.

• The log and exp functors are two-sided inverses of each other: This assertion has four

parts:

– For every abelian group G, G = exp(log(G)).

– For every abelian Lie ring L, L = log(exp(L)).

– For every group homomorphism ϕ : G1 → G2 of abelian groups, exp(log(ϕ)) = ϕ.
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– For every Lie ring homomorphism ϕ : L1 → L2 of abelian Lie rings, log(exp(ϕ)) =

ϕ.

The upshot of these is that the category of abelian groups and the category of abelian Lie

rings are isomorphic categories, with the log and exp functors providing the isomorphisms.

1.3.3 Isomorphism over Set

Consider the following two categories:

• The category of abelian groups, with the forgetful functor to the category of sets that

sends each abelian group to its underlying set.

• The category of abelian Lie rings, with the forgetful functor to the category of sets

that sends each abelian Lie ring to its underlying set.

The correspondence we established above (in Sections 1.3.1 and 1.3.2) establishes an

isomorphism of categories over Set between the two categories. There are two parts to this

statement:

• The correspondence establishes an isomorphism between the category of abelian groups

and the category of abelian Lie rings: The functor in the direction from groups to Lie

rings is the log functor. The functor in the direction from Lie rings to groups is the

exp functor. The details are in the preceding section (Section 1.3.2).

• This isomorphism has the property that applying it and then applying the forgetful

functor to the category of sets gives the same result as directly applying the forgetful

functor to the category of sets. This is a category-theoretic way of saying that the

abelian group and abelian Lie ring have the same underlying set, and that the set

maps that are group homomorphisms are precisely the same as the set maps that are

Lie ring homomorphisms.
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1.3.4 Equality of endomorphism monoids and of automorphism groups

Suppose L is an abelian Lie ring and G = exp(L), so that L = log(G). The functors exp and

log are isomorphisms of categories, hence they induce isomorphisms between the endomor-

phism monoids. Further, since these isomorphisms of categories preserve the underlying set,

the isomorphism between the endomorphism monoids sends each Lie ring endomorphism to

a corresponding group endomorphism that is the same as a set map. Explicitly, the map

exp : End(L) → End(G) is an isomorphism. Further, for ϕ ∈ End(L), the corresponding

map exp(ϕ) ∈ End(G) coincides with ϕ as a set map. The isomorphism induced by exp be-

tween the endomorphism monoids End(L) and End(G) restricts to an isomorphism between

the automorphism groups Aut(L) and Aut(G).

1.3.5 The correspondence up to isomorphism

We have so far considered the correspondence at the level of individual groups and Lie rings:

Abelian groups ↔ Abelian Lie rings

The correspondence defines an isomorphism of categories, and thus it descends to a

correspondence between equivalence classes up to isomorphism on both sides, giving a cor-

respondence:

Isomorphism classes of abelian groups ↔ Isomorphism classes of abelian Lie rings

Suppose L is an abelian Lie ring and G is an abelian group. Specifying an abelian

Lie correspondence up to isomorphism between L and G amounts to specifying one of the

following two equivalent pieces of data:

• An isomorphism of groups from expL to G.

• An isomorphism of Lie rings from logG to L.

A common convention used to provide this data is to provide one of these:

30



• A set map exp : L→ G that, viewed as a set map from exp(L) to G, becomes a group

isomorphism.

• A set map log : G → L that, viewed as a set map from log(G) to L, becomes a Lie

ring isomorphism.

In other words, we can specify the data in the form of one of these set maps:

exp : L→ G, log : G→ L

The set maps log and exp are two-sided inverses of each other.

It will turn out, later, that actual exponential and logarithm maps, with the usual power

series expansions, occurring inside an associative ring, provide examples of an abelian Lie

correspondence up to isomorphism.

In cases where we want to emphasize that we are talking of the abelian Lie correspondence

and not the abelian Lie correspondence up to isomorphism, we will talk of the strict abelian

Lie correspondence. In this section, our focus will be on the strict abelian Lie correspondence

because that provides for an easier way to formulate our statements.

1.3.6 Isomorphism of categories versus equivalence of categories

When discussing what it means for two categories to be essentially the same, category

theorists typically rely on a weaker notion than isomorphism of categories. An equivalence

of categories C and D and a pair of functors F : C → D and G : D → C along with

natural isomorphism ε : F ◦ G → IdD and η : G ◦ F → IdC . Two categories C and D

are said to be equivalent if there exists an equivalence of categories between them. An

alternative characterization is that two categories C and D are equivalent if there exists a

functor F : C → D such that F is full, faithful, and essentially surjective. Here, essentially

surjective means that for every objectB ∈ D, there exists A ∈ C such that F(A) is isomorphic

to B.
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The difference between the definitions of isomorphism of categories and equivalence of

categories arises from the distinction between a functor being bijective (in the sense that

every object is in the image of the functor and has a unique pre-image under the functor)

and the functor being essentially surjective (in the sense that every object is isomorphic to

an object in the image of the functor). Equivalence of categories is a more robust and useful

notion because it is less sensitive to how strictly we define equality of objects. Thus, even

though the correspondences we define are isomorphisms of categories over the category of

sets, it will often be more helpful to think of them as equivalences of categories.

Note that any equivalence of categories establishes a bijective correspondence between

isomorphism classes of objects in the two categories (in this case, the two categories are

respectively the category of abelian groups and the category of abelian Lie rings). How-

ever, the equivalence of categories also includes additional data that allows us to identify

homomorphism sets on both sides (in this case, identify abelian group homomorphisms with

abelian Lie ring homomorphisms).

1.3.7 Subgroups, quotients, and direct products

The collection of abelian groups is a subvariety of the variety of groups (see the Appendix,

Section A.2.4 for the definition of variety). There are three parts to this assertion:

• Every subgroup of an abelian group is abelian.

• Every quotient group of an abelian group is abelian.

• A direct product of (finitely or infinitely many) abelian groups is abelian.

Similarly, the collection of abelian Lie rings is a subvariety of the variety of Lie rings.

There are three parts to this assertion:

• Every subring of an abelian Lie ring is abelian.

• Every quotient ring of an abelian Lie ring is abelian.
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• A direct product of (finitely or infinitely many) abelian Lie rings is abelian.

A natural question is whether the abelian Lie correspondence behaves nicely with respect

to taking subalgebras (subgroups and subrings respectively), quotient algebras (quotient

groups and quotient rings respectively), and direct products. The answer is yes. Specifically,

the following are true:

• Subgroups correspond to subrings: Suppose an abelian Lie ring L is in abelian Lie

correspondence with an abelian group G, i.e., L = log(G) and G = exp(L). Then, for

every subgroup H of G, log(H) is a subring of L, and the inclusion map of log(H) in L

is obtained by applying the log functor to the inclusion map of H in G. In the opposite

direction, for every subring M of L, exp(M) is a subgroup of G, and the inclusion map

of exp(M) in G is obtained by applying the exp functor to the inclusion map of M in

L. The abelian Lie correspondence thus gives rise to a correspondence:

Subgroups of G ↔ Subrings of L

• Quotient groups correspond to quotient rings: Suppose an abelian Lie ring L is in

abelian Lie correspondence with an abelian group G. Then, for every normal subgroup

H of G,5 log(G/H) is a quotient Lie ring of L, and the quotient map L→ log(G/H) is

obtained by applying the log functor to the quotient map G→ G/H. In the opposite

direction, for every ideal I of L, exp(L/I) is a quotient group of G, and the quotient

map G → exp(L/I) is obtained by applying the exp functor to the quotient map

L→ L/I. The abelian Lie correspondence thus gives rise to correspondences:

Normal subgroups of G ↔ Ideals of L

Quotient groups of G ↔ Quotient rings of L

5. Note that since G is abelian, every subgroup is normal. However, we deliberately state the result in
this fashion so that parallels with later generalizations are clearer.
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• Direct products correspond to direct products: Suppose I is an indexing set, and Gi, i ∈

I is a collection of abelian groups. For each i ∈ I, let Li = log(Gi). Then, the

external direct product
∏

i∈I Li is in abelian Lie correspondence with the external

direct product
∏

i∈I Gi. Moreover, the projection maps from the direct product to the

individual factors are in abelian Lie correspondence. Also, the inclusion maps of each

direct factor in the direct product are in abelian Lie correspondence.

1.3.8 Characteristic and fully invariant

Suppose an abelian group G is in abelian Lie correspondence with an abelian Lie ring L. In

Section 1.3.4, we saw that G and L have the same automorphism group as each other and

the same endomorphism monoid as each other (where “same” here means that the actions

agree on the underlying set). In Section 1.3.7, we saw that the abelian Lie correspondence

induces a bijective correspondence between subgroups of G and subrings of L. Combining

these ideas, we obtain two additional bijective correspondences:

Characteristic subgroups of G ↔ Characteristic subrings of L

Fully invariant subgroups of G ↔ Fully invariant subrings of L

Here, characteristic means invariant under all automorphisms and fully invariant means

invariant under all endomorphisms.

1.3.9 How the template will be reused

The steps that we have outlined above will be used to construct and study a number of

similar correspondences. The steps will be as follows:

• We will describe a way of writing group operations in terms of Lie ring operations and

a way of describing Lie ring operations in terms of group operations, such that the

formulas used satisfy the axioms for groups and Lie rings by definition, and such that

the formulas are inverses of each other.
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• We will then use this to construct a correspondence that defines an isomorphism over

the category of sets between a full subcategory of the category of groups and a full

subcategory of the category of Lie rings. We will use log to denote the functor from

the group side to the Lie ring side, and exp to denote the functor from the Lie ring

side to the group side.

• We will deduce that if a group and Lie ring are in correspondence, then their endomor-

phism monoids are naturally isomorphic, and their automorphism groups are naturally

isomorphic.

• The correspondence can be weakened to a correspondence between isomorphism classes

in the full subcategories.

• An instance of the correspondence up to isomorphism between a group G and a Lie ring

L can be described by specifying the isomorphism from log(G) to L or by specifying

the isomorphism from exp(L) to G. We will describe the correspondence in terms of

the set map log : G→ L or, equivalently, the set map exp : L→ G.

• Of the results in Section 1.3.7, the results for the direct product generalizes for each

correspondence (note that this does not follow category-theoretically, but rather, it

follows from the nature of the correspondence). The results for the correspondence

between subgroups and subrings and the correspondence between quotient groups and

quoitent rings generalize but only after we impose restrictions on the types of sub-

groups, subrings, quotient groups, and quotient rings under consideration.

For brevity, we will not repeat these steps in every instance. Rather, our focus will be on

the first step: establishing that the formulas used make sense, satisfy the axioms, and are

inverses of each other.
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CHAPTER 2

ISOCLINISM AND HOMOCLINISM: BASIC THEORY

2.1 Isoclinism and homoclinism for groups

The goal of this section is to establish the basic theory of isoclinism and homoclinism for

groups. Informally, a homoclinism of groups is a homomorphism between the commutator

structures of the groups. Informally, two groups are isoclinic if their commutator maps are

equivalent. Isoclinism defines an equivalence relation on the collection of groups. Under this

equivalence relation, all abelian groups are equivalent to the trivial group.

The original results that we present later (Section 5.4 and 7.7) describe bijective cor-

respondences between certain equivalence classes of groups and certain equivalence classes

of Lie rings. The equivalence classes of groups are based on the equivalence relation of

isoclinism.

Readers already familiar with the definitions of isoclinism and homoclinism may skip this

section and return to it later if needed. Readers who want the bare minimum necessary for

later sections can read Sections 2.1.1-2.1.4, and the statements of the theorems in Section

2.1.6. The proofs of the theorems in Section 2.1.6 can be skipped.

2.1.1 Isoclinism of groups: definition

The concept of isoclinism as introduced here was first defined in 1937 by Philip Hall in [23].

It was used by Philip Hall as an aid to the classification of finite groups of small prime power

order. Hall’s work was later extended by Marshall Hall and Senior, who published detailed

information on the groups of order 2n, n ≤ 6 in [22]. The basic definition and most of the

elementary facts stated here about isoclinism can be found on Page 93 of Suzuki’s group

theory text [45].

For any group G, denote by Inn(G) the inner automorphism group of G, denote by G′

the derived subgroup of G, and denote by Z(G) the center of G (this and related notation
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used in this document are described in Section 1.0.2). Note that Inn(G) ∼= G/Z(G).

For any group G, the commutator map in G descends to a map of sets:

ωG : Inn(G)× Inn(G) → G′

This map is well-defined because the commutator of two elements depends only on their

cosets modulo the center. Note that this map is only a set map at this stage, not a homo-

morphism. Later, in Section 3.4.1, we will introduce the concept of the exterior square of a

group, and we will be able to interpret ωG as a homomorphism in that context.

Suppose now that G1 and G2 are groups. The commutator maps in the groups define

the following respective maps:

ωG1
: Inn(G1)× Inn(G1) → G′1

ωG2
: Inn(G2)× Inn(G2) → G′2

An isoclinism from G1 to G2 is a pair of isomorphisms (ζ, ϕ) where ζ is an isomorphism

from Inn(G1) to Inn(G2) and ϕ is an isomorphism from G′1 to G′2, satisfying the condition

that:

ϕ ◦ ωG1
= ωG2

◦ (ζ × ζ) (2.1)

More explicitly, for any x, y ∈ Inn(G1), we require that:

ϕ(ωG1
(x, y)) = ωG2

(ζ(x), ζ(y)) (2.2)

In other words, taking the commutator and then applying the isomorphism of derived

subgroups is equivalent to applying the isomorphism between inner automorphism groups

and then taking the commutator.
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Pictorially, this can be represented as saying that the following diagram commutes:

Inn(G1)× Inn(G1)
ζ×ζ→ Inn(G2)× Inn(G2)

↓ωG1 ↓ωG2

G′1
ϕ→ G′2

Note that both the inner automorphism group and the derived subgroup are quantitative

measurements of the “non-abelianness” of the group. The notion of isoclinism can thus

properly be thought of as saying “equivalent modulo the subvariety of abelian groups.” In

particular, a group is abelian if and only if it is isoclinic to the trivial group.

There is a precise way of formulating this using the more general notion of isologism,

which we describe in the Appendix, Section A.5.

2.1.2 Homoclinism of groups

The notion of homoclinism of groups relates to isoclinism of groups in the same way as

homomorphism of groups relates to isomorphism of groups. We have not been able to confirm

the first use of the term, but a somewhat more general definition called n-homoclinism

appears in [24]. We have chosen this presentation, despite its being non-standard, because

it is a convenient framework for understanding later results. Although the presentation is

non-standard, none of the results in this or the next few sections are substantively different

from results available in the literature.

Suppose G1 and G2 are groups. A homoclinism of groups from G1 to G2 is a pair of

homomorphisms (ζ, ϕ) where ζ is a homomorphism from Inn(G1) to Inn(G2) and ϕ is a

homomorphism from G′1 to G′2, satisfying Equation 2.1 (that can alternatively be stated as

2.2).

Pictorially, this can be represented as saying that the following diagram commutes:
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Inn(G1)× Inn(G1)
ζ×ζ→ Inn(G2)× Inn(G2)

↓ωG1 ↓ωG2

G′1
ϕ→ G′2

Note that this is the same as the diagram for isoclinisms. The only difference is that the

horizontal maps are no longer required to be bijective.

2.1.3 Composition of homoclinisms

Suppose G1, G2, and G3 are groups. Suppose (ζ12, ϕ12) is a homoclinism from G1 to G2

and (ζ23, ϕ23) is a homoclinism from G2 to G3. We then define the composite of these

homoclinisms to be the following homoclinism from G1 to G3:

(ζ23, ϕ23) ◦ (ζ12, ϕ12) = (ζ23 ◦ ζ12, ϕ23 ◦ ϕ12)

To see that this composite is indeed a homoclinism, we need to check that both the

component maps are homomorphisms, and that the corresponding diagram commutes. The

component maps are homomorphisms because a composite of homomorphisms is a homo-

morphism. The fact that the diagram commutes can be seen from the full diagram below.

The left square commutes because (ζ12, ϕ12) is a homoclinism. The right square commutes

because (ζ23, ϕ23) is a homoclinism. Thus, the overall diagram commutes.

Inn(G1)× Inn(G1)
ζ12×ζ12→ Inn(G2)× Inn(G2)

ζ23×ζ23→ Inn(G3)× Inn(G3)

↓ωG1 ↓ωG2 ↓ωG3

G′1
ϕ12→ G′2

ϕ23→ G′3

2.1.4 Category of groups with homoclinisms

We define a category that will be useful to work with.
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Definition (Category of groups with homoclinisms). The category of groups with homo-

clinisms is defined as the following category:

• The objects of the category are groups.

• The morphisms of the category are homoclinisms.

• Composition of morphisms is composition of homoclinisms.

• The identity morphism is the identity homoclinism: it is the identity map on both the

inner automorphism group and the derived subgroup.

In the category of groups with homoclinisms, the isomorphisms (i.e., the invertible mor-

phisms) are precisely the isoclinisms.

2.1.5 Homomorphisms and homoclinisms

Suppose G1 and G2 are groups and θ : G1 → G2 is a homomorphism of groups. If θ satisfies

the property that θ(Z(G1)) ≤ Z(G2), then θ induces a homoclinism of groups. Explicitly

the homoclinism induced by θ is defined as (ζ, ϕ) where ζ and ϕ are as defined below.

• Since θ(Z(G1)) ≤ Z(G2), θ descends to a homomorphism fromG1/Z(G1) ∼= Inn(G1) to

G2/Z(G2) ∼= Inn(G2). Denote by ζ the induced homomorphism Inn(G1) → Inn(G2).

• The restriction of θ to G′1 maps inside G′2. Denote by ϕ the induced map G′1 → G′2.

It is easy to verify that (ζ, ϕ) defines a homoclinism.

Note that the condition θ(Z(G1)) ≤ Z(G2) is necessary in order to be able to construct

ζ.

The following are true:

• Every surjective homomorphism θ : G1 → G2 satisfies the condition that θ(Z(G1)) ≤

Z(G2). Thus, every surjective homomorphism induces a homoclinism.
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• The inclusion of a subgroup H in a group G satisfies the condition if and only if

Z(H) ≤ Z(G), or equivalently, Z(H) = H ∩ Z(G). Thus, these are the subgroups

whose inclusions induce homoclinisms.

2.1.6 Miscellaneous results on homoclinisms and words

Lemma 2.1.1. Suppose (ζ, ϕ) is a homoclinism of groupsG1 andG2, where ζ : Inn(G1) →

Inn(G2) and ϕ : G′1 → G′2 are the component homomorphisms. Denote by θ1 : G′1 →

Inn(G1) the composite of the inclusion ofG′1 inG1 and the projection fromG1 toG1/Z(G1) =

Inn(G1). Similarly define θ2 : G′2 → Inn(G2). Then, we have:

ζ ◦ θ1 = θ2 ◦ ϕ

or equivalently, for any w ∈ G′1:

ζ(θ1(w)) = θ2(ϕ(w))

Proof. To show the equality of the two expressions, it suffices to show equality on a generating

set for G′1. By definition, the set of commutators of elements in G1 is a generating set for

G′1. Thus, it suffices to show that:

ζ(θ1([u, v])) = θ2(ϕ([u, v])) ∀ u, v ∈ G1

This is equivalent to showing that:

ζ(θ1(ωG1
(x, y))) = θ2(ϕ(ωG1

(x, y))) ∀ x, y ∈ Inn(G1)

Let us examine the left and right sides separately.

The left side: The expression θ1(ωG1
(x, y)) first computes the commutator of lifts of

x and y in G1, then projects to G1/Z(G1). This is equivalent to directly computing the
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commutator in G1/Z(G1), so θ1(ωG1
(x, y)) = [x, y]. Thus, the left side becomes ζ([x, y]).

The right side: By the definition of homoclinism, ϕ(ωG1
(x, y)) = ωG2

(ζ(x), ζ(y)). The

right side now becomes θ2(ωG2
(ζ(x), ζ(y))). In other words, we are taking the lifts of ζ(x)

and ζ(y) in G2, then computing the commutator, then projecting to G2/Z(G2). This is

equivalent to directly computing the commutator in G2/Z(G2), so the right side simplifies

to [ζ(x), ζ(y)]. Since ζ is a homomorphism, this is equal to ζ([x, y]), and hence agrees with

the left side.

We state two important theorems. Both theorems reference the concept of a word map.

The concept is defined and some of the properties of word maps are described in the Ap-

pendix, Section A.5.1 and the subsequent sections. However, we do not use any nontrivial

facts about word maps, so it is not necessary to read that section to understand the theorems

that follow.

Theorem 2.1.2. Suppose w(g1, g2, . . . , gn) is a word in n letters with the property that

w evaluates to the identity element in any abelian group. This is equivalent to saying that

w, viewed as an element of the free group on g1, g2, . . . , gn, is in the derived subgroup. Then,

for any group G, the word map w : Gn → G obtained by evaluating w descends to a map:

χw,G : (Inn(G))n → G′

Any word w that is an iterated commutator (with any bracketing) satisfies this condition.

Proof. Denote by ν : G→ Inn(G) the quotient map.

w can be written in the form (note that the product is in general noncommutative):

w(g1, g2, . . . , gn) =
m∏

i=1
[ui(g1, g2, . . . , gn), vi(g1, g2, . . . , gn)]

where ui, vi, 1 ≤ i ≤ m are words. Suppose yi ∈ G are elements for which ν(yi) = xi.
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Then:

w(y1, y2, . . . , yn) :=
m∏

i=1
[ui(y1, y2, . . . , yn), vi(y1, y2, . . . , yn)]

We have that:

ν(ui(y1, y2, . . . , yn)) = ui(x1, x2, . . . , xn), ν(vi(y1, y2, . . . , yn)) = vi(x1, x2, . . . , xn)

Thus, we obtain that:

[ui(y1, y2, . . . , yn), vi(y1, y2, . . . , yn)] = ωG(ui(x1, x2, . . . , xn), vi(x1, x2, . . . , xn))

In particular, the expression [ui(y1, y2, . . . , yn), vi(y1, y2, . . . , yn)] depends only on x1, x2,

. . . , xn and not on the choice of lifts yi. Thus, the product w(y1, y2, . . . , yn) also depends

only on the values of xi, and we obtain the function:

χw,G(x1, x2, . . . , xn) =
m∏

i=1
ωG(ui(x1, x2, . . . , xn), vi(x1, x2, . . . , xn))

Theorem 2.1.3. Suppose (ζ, ϕ) is a homoclinism of groups G1 and G2, where ζ :

Inn(G1) → Inn(G2) and ϕ : G′1 → G′2 are the component homomorphisms. Then for

any word w(g1, g2, . . . , gn) that is trivial in every abelian group (as described above), we

have:

χw,G2
(ζ(x1), ζ(x2), . . . , ζ(xn)) = ϕ(χw,G1

(x1, x2, . . . , xn))
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for all x1, x2, . . . , xn ∈ Inn(G).

Any word w that is an iterated commutator (with any order of bracketing) satisfies this

condition, and the theorem applies to such word maps.

Proof. Denote by ν1 : G1 → Inn(G1) and ν2 : G2 → Inn(G2) the canonical quotient maps.

We use the same notation and steps in the proof of the preceding theorem, replacing G

by G1. We obtain:

w(g1, g2, . . . , gn) =
m∏

i=1
[ui(g1, g2, . . . , gn), vi(g1, g2, . . . , gn)]

where ui, vi, 1 ≤ i ≤ m are words. Suppose yi ∈ G1 are elements for which ν1(yi) = xi.

As demonstrated in the proof of the preceding theorem:

χw,G1
(x1, x2, . . . , xn) =

m∏
i=1

ωG1
(ui(x1, x2, . . . , xn), vi(x1, x2, . . . , xn)) (†)

Suppose zi ∈ G2 are elements for which ν2(zi) = ζ(xi). Similar reasoning to the above

yields that:

χw,G2(ζ(x1), ζ(x2), . . . , ζ(xn)) =
m∏

i=1

ωG2(ui(ζ(x1), ζ(x2), . . . , ζ(xn)), vi(ζ(x1), ζ(x2), . . . , ζ(xn)))

(††)

Apply ϕ to both sides of (†), use the defining property of homoclinisms, and compare with

(††) to obtain the result.

2.1.7 Isoclinic groups: how similar are they?

We say that groups G1 and G2 are isoclinic groups if there exists an isoclinism from G1 to

G2. The relation of being isoclinic is an equivalence relation. Briefly:

• The relation of being isoclinic is reflexive because we can choose both the isomorphisms
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to be the respective identity maps. Explicitly, for any group G, (idInn(G), idG′) defines

an isoclinism from G to itself.

• The relation of being isoclinic is symmetric because we can take the inverse isomor-

phisms to both the isomorphisms. Explicitly, if (ζ, ϕ) describes the isoclinism from G1

to G2, then (ζ−1, ϕ−1) describes the isoclinism from G2 to G1.

• The relation of being isoclinic is transitive because we can compose both kinds of

isomorphisms separately. Explicitly, if (ζ12, ϕ12) describes the isoclinism from G1 to

G2 and (ζ23, ϕ23) describes the isomorphism from G2 to G3, then (ζ23 ◦ ζ12, ϕ23 ◦ϕ12)

describes the isoclinism from G1 to G3.

Here is an alternative way of seeing that being isoclinic is an equivalence relation: iso-

clinisms are precisely the isomorphisms in the category of groups with homoclinisms, and

being isomorphic in any category is an equivalence relation.

We first list some very obvious similarities between isoclinic groups.

• They have isomorphic derived subgroups: This is direct from the definition, which

includes an isomorphism between the derived subgroups.

• They have isomorphic inner automorphism groups: This is direct from the definition,

which includes an isomorphism between the inner automorphism groups.

• They have precisely the same non-abelian composition factors (if the composition fac-

tors do exist): Since the center is abelian, all the non-abelian composition factors occur

inside the inner automorphism group for both, which we know to be isomorphic.

• If one is nilpotent, so is the other, and they have the same nilpotency class (with the

exception of class zero getting conflated with class one): The nilpotency class is one

more than the nilpotency class of the inner automorphism group.
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• If one is solvable, so is the other, and they have the same derived length (with the

exception of length zero getting conflated with length one): The derived length is one

more than the derived length of the derived subgroup.

We move to the first straightforward but somewhat non-obvious fact: isoclinic finite

groups have the same proportions of conjugacy class sizes. The statement of the theorem is

below. The proof can be found in the Appendix, Section B.3.

Theorem 2.1.4. Suppose G1 and G2 are isoclinic finite groups. Suppose c is a positive

integer. Let m1 be the number of conjugacy classes in G1 of size c (so that the total number

of elements in such conjugacy classes is m1c). Let m2 be the number of conjugacy classes in

G2 of size c (so that the total number of elements in such conjugacy classes is m2c). Then,

m1 is nonzero if and only if m2 is nonzero, and if so, m1/m2 = |G1|/|G2|.

In particular, if G1 and G2 additionally have the same order, then they have precisely

the same multiset of conjugacy class sizes.

The next theorem is a similar result for the degrees of irreducible representations. The

proof of this is also in the Appendix, Section B.3.

Theorem 2.1.5. Suppose G1 and G2 are isoclinic finite groups. Suppose d is a positive

integer. Let m1 denote the number of equivalence classes of irreducible representations of G1

over C that have degree d. Let m2 denote the number of equivalence classes of irreducible

representations of G2 over C that have degree d. Then, m1 is nonzero if and only if m2 is

nonzero, and if so, m1/m2 = |G1|/|G2|.

In particular, if G1 and G2 additionally have the same order, then they have precisely

the same multiset of degrees of irreducible representations.

Theorem 2.1.6. 1. Suppose G1 and G2 are isoclinic finite groups. Then, the ratio
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of the number of conjugacy classes in G1 to the number of conjugacy classes in G2 is

|G1|/|G2|. In particular, if G1 and G2 also have the same order, they have the same

number of conjugacy classes.

2. Suppose G1 and G2 are isoclinic finite groups. Then, the centers of their respective

group algebras over C are both algebras that are direct products of copies of C. The

ratio of the number of copies used for G1 and for G2 is |G1|/|G2|. In particular, if

G1 and G2 also have the same order, then the centers of their group algebras are

isomorphic.

Proof. These follow quite directly from either of the preceding theorems. More specifically,

the proof for part (1) can be deduced from either Theorem 2.1.4 or Theorem 2.1.5. Note

that we can use the latter because the number of conjugacy classes equals the number of

irreducible representations.

For (2), note that the center of the group algebra is a direct product of as many copies

of C as the number of conjugacy classes. We can use the conjugacy class element sums as

a basis. Alternatively, we can use the centers of the irreducible constituents in a direct sum

decomposition into two-sided ideals as a basis. Thus, (2) follows directly from (1).

2.1.8 Isoclinism defines a correspondence between some subgroups

Suppose G1 and G2 are isoclinic groups with an isoclinism (ζ, ϕ) : G1 → G2 where ζ :

Inn(G1) → Inn(G2) and ϕ : G′1 → G′2 are the component isomorphisms. Then, ζ gives a

correspondence:

Subgroups of G1 that contain Z(G1) ↔ Subgroups of G2 that contain Z(G2)

This correspondence does not preserve the isomorphism type of the subgroup, but it pre-

serves some related structure. Explicitly, the following hold whenever a subgroup H1 of G1

containing Z(G1) corresponds with a subgroup H2 of G2 containing Z(G2):
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• H1/Z(G1) is isomorphic to H2/Z(G2).

• H1 and H2 are isoclinic.

• H1 is normal in G1 if and only if H2 is normal in G2, and if so, then G1/H1 is

isomorphic to G2/H2.

We have a similar correspondence given by ϕ:

Subgroups of G1 that are contained in G′1 ↔ Subgroups of G2 that are contained in G′2

This correspondence preserves a number of structural features. Explicitly, the following

hold if a subgroup H1 of G′1 is in correspondence with a subgroup H2 of G′2:

• H1 is isomorphic to H2

• H1 is normal in G′1 if and only if H2 is normal in G′2, and if so, then G′1/H1 is

isomorphic to G′2/H2.

• H1 is normal in G1 if and only if H2 is normal in G2, and if so, then G1/H1 is isoclinic

to G2/H2.

The two correspondences discussed above may partially overlap, and they agree with

each other wherever they overlap. Explicitly, if H1 is a subgroup of G1 that satisfies both

the conditions (it contains Z(G1) and is contained in G′1), then the subgroup H2 obtained

by both correspondences is identical.

2.1.9 Characteristic subgroups, quotient groups, and subquotients

determined by the group up to isoclinism

The vast majority of characteristic subgroups that we see defined (particularly for p-groups)

are either contained in the derived subgroup or contain the center. The exceptions are those
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such as the socle and Frattini subgroup, which are smaller than the center and larger than

the derived subgroup respectively.

Based on the correspondences discussed in the preceding section, we can deduce the

following regarding important subgroups, quotients, and subquotients of a group G that are

determined up to isomorphism by knowing G up to isoclinism:

• All lower central series member subgroups γc(G), c ≥ 2. Note that γ1(G) = G needs

to be excluded. Further, the isomorphism types of successive quotients between lower

central series members of the form γi(G)/γj(G) with j ≥ i ≥ 2 are also determined by

the knowledge of G up to isoclinism. Note that the quotient groups G/γc(G) are in

general determined only up to isoclinism and not up to isomorphism.

• All derived series member subgroups G(i), i ≥ 1. Note that we need to exclude

G(0) = G. Further, the isomorphism types of quotients between derived series members

of the form G(i)/G(j) with j ≥ i ≥ 1 are also determined by the knowledge of G up to

isoclinism. Note that the quotient groups G/G(i) are determined only up to isoclinism

and not up to isomorphism.

• Quotients G/Zc(G) for all upper central series member subgroups Zc(G), c ≥ 1. We

need to exclude c = 0 which would give G/Z0(G) = G. Further, the isomorphism

types of subquotients of the form Zi(G)/Zj(G) where i ≥ j ≥ 1 are also determined

up to isomorphism by the knowledge of G up to isoclinism. Note that the subgroups

Zi(G) themselves are determined only up to isoclinism and not up to isomorphism.

2.1.10 Correspondence between abelian subgroups

Suppose G1 and G2 are isoclinic groups. The following are true:

• The isoclinism establishes a correspondence between abelian subgroups of G1 contain-

ing Z(G1) and abelian subgroups of G2 containing Z(G2). Note that the abelian
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subgroups that are in correspondence are not necessarily isomorphic to each other. In

fact, unless Z(G1) and Z(G2) have the same order, the abelian subgroups in corre-

spondence need not even have the same order as each other.

• The isoclinism establishes a correspondence between the abelian subgroups of G1 that

are self-centralizing and the abelian subgroups of G2 that are self-centralizing. A self-

centralizing abelian subgroup is an abelian subgroup that equals its own centralizer, or

equivalently, it is a subgroup that is maximal among abelian subgroups of the group.

• In the case that G1 and G2 are both finite, the isoclinism establishes a correspon-

dence between abelian subgroups of maximum order in G1 and abelian subgroups of

maximum order in G2.

• Each of the correspondences above preserves normality.

• If G1 and G2 are both finite, then each of the correspondences above preserves the

index of the subgroups.

In particular, this means that isoclinic finite p-groups of the same order have the same

value for the maximum order of abelian subgroup, the same value for the maximum order

of abelian normal subgroup, and the same values for the orders of self-centralizing abelian

normal subgroups.

2.1.11 Constructing isoclinic groups

Here are some ways of constructing groups isoclinic to a given group:

• Take a direct product with an abelian group.

• Find a subgroup whose product with the center is the whole group. In symbols, if

H is a subgroup of G and HZ(G) = G (where Z(G) denotes the center of G), then

H is isoclinic to G. Note that for finite groups, this is the only way to find isoclinic
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subgroups to the whole group: a subgroup is isoclinic to the whole group if and only

if its product with the center of the whole group is the whole group.

2.1.12 Hall’s purpose in introducing isoclinism

Although this is not directly relevant, it might be helpful for historical motivation to under-

stand why Philip Hall introduced the concept of isoclinism. At the time that Hall wrote his

paper [23], very few systematic lists of finite p-groups of small order were available. Existing

classifications tended to be ad hoc and use a bunch of invariants. In hindsight, many of these

invariants were invariants up to isoclinism. As we saw in the preceding section, this is true

for information about conjugacy classes and irreducible representations, and many impor-

tant attributes related to characteristic subgroups and their quotient groups. However, since

they were purely numerical invariants rather than invariants capturing structural informa-

tion, they were too weak to meaningfully distinguish groups once the orders got large. Below

are some invariants that are “good enough” to uniquely determine groups up to isoclinism

for small orders, but fail at larger orders. The second column gives the smallest n for which

there exist groups of order 2n that have the same value of the invariant but are not isoclinic

to each other.

Table 2.1: The smallest n for which a given isoclinism-invariant fails to classify groups of
order 2n up to isoclinism
Isoclinism-invariant (fixed order) Smallest n where it fails to classify
Derived length 4
Nilpotency class 5
Conjugacy class sizes 5
Degrees of irreducible representations 5
Inner automorphism group 6
Derived subgroup 5
Inner automorphism group, derived subgroup 6

As the orders get bigger, numerical invariants becomes progressively more inadequate in
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describing the structure. They are also not helpful to computing the algebraic structure of

the group.

As indicated in the table above, even knowledge of the inner automorphism group and the

derived subgroup up to isomorphism does not determine the group uniquely up to isoclinism,

with the smallest counterexamples occurring for order 26. The commutator map is crucial

to describing the group structure up to isoclinism.

Hall sought to introduce a systematic procedure that could be used to generate all the

p-groups of a particular order based on smaller groups, and group them together in ways

that made it easy to compute and remember important invariants (such as their nilpotency

class, number of conjugacy classes, etc.)

The use of isoclinism allows for a recursive procedure to go from order pn−1 to pn. In

broad strokes, the idea is as follows:

• Assume we have classified all the groups of order up to pn−1, and we need to classify

groups of order pn.

• First, we need to identify the equivalence classes up to isoclinism for groups of order

pn. This involves identifying candidate pairs of inner automorphism group and derived

subgroup with a candidate for the commutator map. Note that the concept of “can-

didate for the commutator map” is somewhat problematic without reference to the

ambient group, but we will see later that it can be made precise using the concept of

exterior squares. Hall did not have this formalism at his disposal, but used a similar

idea in a more ad hoc fashion in his classification efforts.

• For each such equivalence class up to isoclinism, identify all the groups of order pn up

to isomorphism in that equivalence class up to isoclinism.

Our purpose differs somewhat from Hall’s, but is broadly in the same spirit. Instead of

classifying groups, we are interested in identifying some regular aspects of their behavior.
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For a detailed classification that builds on Hall’s ideas, see [22], which classifies groups

of order 2n for n ≤ 6. The classification of groups of order 2n for n ≥ 7 was done using

somewhat different methods. Specifically, the focus shifted from using isoclinism (which is

based on the central series) to using the exponent-p central series, and computing immediate

descendants based on the exponent-p central series. This is more amenable to computation

because we are working with central extensions where the base group is elementary abelian.

Algorithms in this genre are termed nilpotent quotient algorithms. See [27] (classification for

order 27 = 128), [39] (classification for order 28 = 256), and [14] (general description of the

classification strategy) for more details.

2.1.13 Stem groups for a given equivalence class under isoclinism

Every equivalence class of groups under isoclinism contains one or more stem groups. A

group G is a stem group if Z(G) ≤ G′. All stem groups for a given equivalence class under

isoclinism have the same order, and the order of any isoclinic group is a multiple of this

order.

Hall stated this fact, with a sketch of a proof, in his 1937 paper introducing isoclinism.

We will provide a proof of the statement in Section 3.6.7 using modern language.

Here are some examples of stem groups:

• For the class of abelian groups, the unique stem group is the trivial group.

• For groups of class two with inner automorphism group a Klein four-group and derived

subgroup of order two, there are two possibilities for the stem group: the dihedral

group of order eight and the quaternion group of order eight.

Unlike what one might naively expect, it is not true that all groups in the equivalence

class under isoclinism contain a stem group as a subquotient. For instance, the group

M16 = M4(2) given as 〈a, x | a8 = x2 = 1, xax = a5〉 is a non-abelian group of order 16.1

1. The group has ID (16,6) in the SmallGroups library available for GAP and Magma.
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This group is isoclinic to the dihedral group of order eight and the quaternion group of order

eight, which are the only stem groups in that equivalence class up to isoclinism. However,

M16 does not have any subgroup, quotient, or subquotient isomorphic to either of these

groups. In fact, every proper subquotient of M16 is abelian.

2.1.14 Some low order classification information

In this section, we provide a quick summary of the classification of groups of order 2n and

groups of order pn (for odd p) for small n, based on isoclinism. A detailed exposition can be

found in [22] and also in some online sources included in the appendix. is also possible to

explore these groups using a computational algebra package such as GAP or Magma. More

information about exploring group information in GAP is available in the appendix.

The most salient information is provided below.

For groups of order 2n: Note that the last column is the number of equivalence classes

up to isoclinism of the preceding column. It can be computed by subtracting from the value

of the preceding column the value in the row above for the preceding column.

Table 2.2: Number of equivalence classes up to isoclinism for groups of order 2n

n 2n Number of groups Number up to isoclinism “New” equivalence classes
0 1 1 1 1
1 2 1 1 0
2 4 2 1 0
3 8 5 2 1
4 16 14 3 1
5 32 51 8 5
6 64 267 27 19
7 128 2328 115 88

For groups of order pn, p ≥ 3: The details depend on p, but the classification up to

p4 is independent of p, so we construct the table for n up to 4:
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Table 2.3: Number of equivalence classes up to isoclinism for groups of order pn

n pn Number of groups Number up to isoclinism “New” equivalence classes
0 1 1 1 1
1 2 1 1 0
2 4 2 1 0
3 8 5 2 1
4 16 15 3 1

2.2 Isoclinism and homoclinism for Lie rings

The goal of this section is to establish the basic theory of isoclinism and homoclinism for Lie

rings. The theory is analogous to the theory for groups developed in the preceding section

(Section 2.1.

Informally, a homoclinism of Lie rings is a homomorphism between the Lie bracket struc-

tures of the Lie rings. Informally, two Lie rings are isoclinic if their Lie bracket maps are

equivalent. Isoclinism defines an equivalence relation on the collection of Lie rings. Under

this equivalence relation, all abelian Lie rings are equivalent to the trivial group.

The original results that we present later (Section 5.4 and 7.7) describe bijective cor-

respondences between certain equivalence classes of groups and certain equivalence classes

of Lie rings. The equivalence classes of Lie rings are based on the equivalence relation of

isoclinism of Lie rings.

2.2.1 Definitions of homoclinism and isoclinism

The notion of isoclinism of Lie algebras seems to have been introduced by Moneyhun in

[38]. We introduce a corresponding notion of homoclinism to parallel the notion for groups.

The historical origin of the notion of homoclinism for Lie rings is unclear, but it appears for

instance in the paper [40] published in 2011.

For simplicity, we restrict attention to the case of Lie rings, which are Lie algebras over

the ring of integers. All our definitions and theorems here have very natural analogues

in Lie algebras over other commutative unital rings. Note that if two Lie algebras over a
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commutative unital ring are isoclinic as Lie algebras over that ring, they are also isoclinic

as Lie rings. In the Appendix, Section A.1.4, we describe the theory of Lie algebras over

arbitrary commutative unital rings, and how the general theory of Lie algebras relates to the

theory of Lie rings.

For a Lie ring L, denote by Inn(L) the inner derivation Lie ring of L, denote by L′ the

derived subring of L, and denote by Z(L) the center of L. Inn(L) is canonically isomorphic

to the quotient ring L/Z(L). (For other notation related to Lie rings that we use in this

document, see Section 1.0.3).

The Lie bracket map in L descends to a map:

ωL : Inn(L)× Inn(L) → L′

Note that ωL is Z-bilinear, but the additional structure on it (that is forced from its

arising as a Lie bracket) is hard to describe explicitly. In Section 3.5.1, we will describe a

structure called the exterior square of a Lie ring and reframe the condition on ωL as being

a bilinear map that induces a homomorphism from the exterior square. This situation is

similar to the situation for groups we discussed earlier, but somewhat easier to describe

because of the underlying additive group structure.

Suppose L1 and L2 are Lie rings. The Lie brackets of L1 and L2 respectively induce

Z-bilinear maps:

ωL1
: Inn(L1)× Inn(L1) → L′1

ωL2
: Inn(L2)× Inn(L2) → L′2

A homoclinism from L1 to L2 is a pair of homomorphisms (ζ, ϕ) where ζ is a homomor-

phism from Inn(L1) to Inn(L2) and ϕ is an homomorphism from L′1 to L′2, satisfying the

condition that:
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ϕ ◦ ωL1
= ωL2

◦ (ζ × ζ)

More explicitly, for any x, y ∈ Inn(L1), we require that:

ϕ(ωL1
(x, y)) = ωL2

(ζ(x), ζ(y))

Pictorially, the following diagram commutes:

Inn(L1)× Inn(L1)
ζ×ζ→ Inn(L2)× Inn(L2)

↓ωL1 ↓ωL2

L′1
ϕ→ L′2

The homoclinism (ζ, ϕ) from L1 to L2 is termed an isoclinism if both ζ and ϕ are

isomorphisms of Lie rings.

We compose homoclinisms of Lie rings by separately composing the homomorphisms on

the inner derivation Lie rings and on the derived subrings. Explicitly, suppose (ζ12, ϕ12) is

a homoclinism from L1 to L2 and suppose (ζ23, ϕ23) is a homoclinism from L2 to L3. Then,

the composite (ζ23, ϕ23)◦ (ζ12, ϕ12) is (ζ23 ◦ζ12, ϕ23 ◦ϕ12). The proof that this works follows

from the commutativity of this diagram.

Inn(L1)× Inn(L1)
ζ12×ζ12→ Inn(L2)× Inn(L2)

ζ23×ζ23→ Inn(L3)× Inn(L3)

↓ωG1 ↓ωG2 ↓ωG3

L′1
ϕ12→ L′2

ϕ23→ L′3

As was the case with groups, we can define a category where the morphisms are homo-

clinisms.

Definition (Category of Lie rings with homoclinisms). The category of Lie rings with
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homoclinisms is defined as the following category:

• The objects of the category are Lie rings.

• The morphisms of the category are homoclinisms of Lie rings.

• Composition of morphisms is composition of homoclinisms.

• The identity morphism is the identity homoclinism: it is the identity map both on the

inner derivation Lie ring and on the derived subring.

In the category of Lie rings with homoclinisms, the isomorphisms (i.e., the invertible

morphisms) are precisely the isoclinisms.

2.2.2 Homomorphisms and homoclinisms

Suppose L1 and L2 are Lie rings and θ : L1 → L2 is a homomorphism of Lie rings. If θ

satisfies the property that θ(Z(L1)) ≤ Z(L2), then θ induces a homoclinism of Lie rings.

Explicitly the homoclinism induced by θ is defined as (ζ, ϕ) where ζ and ϕ are as defined

below.

• Since θ(Z(L1)) ≤ Z(L2), θ descends to a homomorphism from L1/Z(L1) ∼= Inn(L1) to

L2/Z(L2) ∼= Inn(L2). Denote by ζ the induced homomorphism Inn(L1) → Inn(L2).

• The restriction of θ to L′1 maps inside L′2. Denote by ϕ the induced map L′1 → L′2.

It is easy to verify that (ζ, ϕ) defines a homoclinism.

Note that the condition θ(Z(L1)) ≤ Z(L2) is necessary in order to be able to construct

ζ.

The following are true:

• Every surjective homomorphism θ : L1 → L2 satisfies the condition that θ(Z(L1)) ≤

Z(L2). Thus, every surjective homomorphism induces a homoclinism.
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• The inclusion of a Lie subring M in a Lie ring L satisfies the condition if and only

if Z(M) ≤ Z(L), or equivalently, Z(M) = M ∩ Z(L). Thus, these are the subrings

whose inclusions induce homoclinisms.

2.2.3 Miscellaneous results on homoclinisms and words

Lemma 2.2.1. Suppose (ζ, ϕ) is a homoclinism of Lie rings L1 and L2, where ζ :

Inn(L1) → Inn(L2) and ϕ : L′1 → L′2 are the component homomorphisms. Denote by

θ1 : L′1 → Inn(L1) the composite of the inclusion of L′1 in L1 and the projection from L1 to

L1/Z(L1) = Inn(L1). Similarly define θ2 : L′2 → Inn(L2). Then, we have:

ζ ◦ θ1 = θ2 ◦ ϕ

or equivalently, for any w ∈ L′1:

ζ(θ1(w)) = θ2(ϕ(w))

Proof. To show the equality of the two expressions, it suffices to show equality on a generating

set for L′1. By definition, the set of Lie brackets of elements in L1 is a generating set for L′1.

Thus, it suffices to show that:

ζ(θ1([u, v])) = θ2(ϕ([u, v])) ∀ u, v ∈ L1

This is equivalent to showing that:

ζ(θ1(ωL1
(x, y))) = θ2(ϕ(ωL1

(x, y))) ∀ x, y ∈ Inn(L1)

Let us examine the left and right sides separately.

The left side: The expression θ1(ωL1
(x, y)) first computes the Lie bracket of lifts of x

and y in L1, then projects to L1/Z(L1). This is equivalent to directly computing the Lie
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bracket in L1/Z(L1), so θ1(ωL1
(x, y)) = [x, y]. Thus, the left side becomes ζ([x, y]).

The right side: By the definition of homoclinism, ϕ(ωL1
(x, y)) = ωL2

(ζ(x), ζ(y)). The

right side now becomes θ2(ωL2
(ζ(x), ζ(y))). In other words, we are taking the lifts of ζ(x)

and ζ(y) in L2, then computing the Lie bracket, then projecting to L2/Z(L2). This is

equivalent to directly computing the Lie bracket in L2/Z(L2), so the right side simplifies to

[ζ(x), ζ(y)]. Since ζ is a homomorphism, this is equal to ζ([x, y]), and hence agrees with the

left side.

We state two important theorems.

Theorem 2.2.2. Suppose w(g1, g2, . . . , gn) is a word in n letters with the property that

w evaluates to the zero element in any abelian Lie ring. This is equivalent to saying that w,

viewed as an element of the free Lie ring on g1, g2, . . . , gn, is in the derived subring. Then,

for any Lie ring L, the word map w : Ln → L obtained by evaluating w descends to a map:

χw,L : (Inn(L))n → L′

Any word w that is an iterated Lie bracket (with any bracketing) satisfies this condition.

Proof. Denote by ν : L→ Inn(L) the quotient map.

w can be written in the form:

w(g1, g2, . . . , gn) =
m∑

i=1
[ui(g1, g2, . . . , gn), vi(g1, g2, . . . , gn)]

where ui, vi, 1 ≤ i ≤ m are words. Suppose yi ∈ L are elements for which ν(yi) = xi.

Then:

w(y1, y2, . . . , yn) =
m∑

i=1
[ui(y1, y2, . . . , yn), vi(y1, y2, . . . , yn)]
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We have that:

ν(ui(y1, y2, . . . , yn)) = ui(x1, x2, . . . , xn), ν(vi(y1, y2, . . . , yn)) = vi(x1, x2, . . . , xn)

Thus, we obtain that:

[ui(y1, y2, . . . , yn), vi(y1, y2, . . . , yn)] = ωL(ui(x1, x2, . . . , xn), vi(x1, x2, . . . , xn))

In particular, the expression [ui(y1, y2, . . . , yn), vi(y1, y2, . . . , yn)] depends only on x1, x2,

. . . , xn and not on the choice of lifts yi. Thus, the sum w(y1, y2, . . . , yn) also depends only

on the values of xi, and we obtain the function:

χw,L(x1, x2, . . . , xn) =
m∑

i=1
ωL(ui(x1, x2, . . . , xn), vi(x1, x2, . . . , xn))

Theorem 2.2.3. Suppose (ζ, ϕ) is a homoclinism of Lie rings L1 and L2, where ζ :

Inn(L1) → Inn(L2) and ϕ : L′1 → L′2 are the component homomorphisms. Then for any

word w(g1, g2, . . . , gn) that is trivial in every abelian Lie ring (as described above), we have:

χw,L2
(ζ(x1), ζ(x2), . . . , ζ(xn)) = ϕ(χw,L1

(x1, x2, . . . , xn))

for all x1, x2, . . . , xn ∈ Inn(L).

Any word w that is an iterated Lie bracket (with any order of bracketing) satisfies this

condition, and the theorem applies to such word maps.

Proof. Denote by ν1 : L1 → Inn(L1) and ν2 : L2 → Inn(L2) the canonical quotient maps.
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We use the same notation and steps in the proof of the preceding theorem, replacing L

by L1. We obtain:

w(g1, g2, . . . , gn) :=
m∑

i=1
[ui(g1, g2, . . . , gn), vi(g1, g2, . . . , gn)]

where ui, vi, 1 ≤ i ≤ m are words. Suppose yi ∈ L1 are elements for which ν1(yi) = xi.

As demonstrated in the proof of the preceding theorem:

χw,L1
(x1, x2, . . . , xn) =

m∑
i=1

ωL1
(ui(x1, x2, . . . , xn), vi(x1, x2, . . . , xn)) (†)

Suppose zi ∈ L2 are elements for which ν2(zi) = ζ(xi). Similar reasoning to the above

yields that:

χw,L2(ζ(x1), ζ(x2), . . . , ζ(xn)) =
m∑

i=1

ωL2(ui(ζ(x1), ζ(x2), . . . , ζ(xn)), vi(ζ(x1), ζ(x2), . . . , ζ(xn)))

(††)

Apply ϕ to both sides of (†), use the defining property of homoclinisms, and compare

with (††) to obtain the result.

2.2.4 Isoclinic Lie rings: how similar are they?

We say that L1 and L2 are isoclinic Lie rings if there is an isoclinism of Lie rings from L1

to L2. The relation of being isoclinic is an equivalence relation. Briefly:

• The relation of being isoclinic is reflexive because we can choose both the isomorphisms

to be the identity maps. Explicitly, for any Lie ring L, (idInn(L), idL′) defines an

isoclinism from L to itself.

• The relation of being isoclinic is symmetric because we can take the inverse isomor-

phisms to both the isomorphisms. Explicitly, if (ζ, ϕ) describes the isoclinism from L1
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to L2, then (ζ−1, ϕ−1) describes the isoclinism from L2 to L1.

• The relation of being isoclinic is transitive because we can compose both kinds of

isomorphisms separately. Explicitly, if (ζ12, ϕ12) describes the isoclinism from L1 to

L2 and (ζ23, ϕ23) describes the isomorphism from L2 to L3, then (ζ23 ◦ ζ12, ϕ23 ◦ ϕ12)

describes the isoclinism from L1 to L3.

Here is an alternative way of seeing that being isoclinic is an equivalence relation: iso-

clinisms are precisely the isomorphisms in the category of Lie rings with homoclinisms, and

being isomorphic in any category is an equivalence relation.

We first list some very obvious similarities between isoclinic Lie rings.

• They have isomorphic derived subrings: This is direct from the definition, which in-

cludes an isomorphism of the derived subrings.

• They have isomorphic inner derivation Lie rings: This is direct from the definition,

which includes an isomorphism between the inner derivation Lie rings.

• They have precisely the same non-abelian composition factors (if the composition fac-

tors do exist): Since the center is abelian, all the non-abelian composition factors occur

inside the inner derivation Lie ring for both, which we know to be isomorphic.

• If one is nilpotent, so is the other, and they have the same nilpotency class (with the

exception of class zero getting conflated with class one): The nilpotency class is one

more than the nilpotency class of the inner derivation Lie ring.

• If one is solvable, so is the other, and they have the same derived length (with the

exception of length zero getting conflated with length one): The derived length is one

more than the derived length of the derived subring.

Note that conjugacy class sizes and degrees of irreducible representations do not make

direct sense for Lie rings. But there are important analogues of these statements that apply
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in a number of cases. In Section 8.2.6, we discuss the Kirillov orbit method, which relates

the irreducible representations of a group with its Lazard Lie ring.

2.2.5 Isoclinism defines a correspondence between some subrings

Suppose L1 and L2 are isoclinic Lie rings with an isoclinism (ζ, ϕ) : L1 → L2 where ζ :

Inn(L1) → Inn(L2) and ϕ : L′1 → L′2 are the component isomorphisms. Then, ζ gives a

correspondence:

Lie subrings of L1 that contain Z(L1) ↔ Lie subrings of L2 that contain Z(L2)

This correspondence does not preserve the isomorphism type of the subring, but it pre-

serves some related structure. Explicitly, the following hold whenever a subring M1 of L1

corresponds with a subring M2 of L2:

• M1/Z(L1) is isomorphic to M2/Z(L2).

• M1 and M2 are isoclinic.

• M1 is an ideal in L1 if and only if M2 is an ideal in L2, and if so, then L1/M1 is

isomorphic to L2/M2.

We have a similar correspondence given by ϕ:

Lie subrings of L1 that are contained in L′1 ↔ Lie subrings of L2 that are contained in

L′2

This correspondence preserves a number of structural features. Explicitly, the following

hold whenever a subring M1 of L1 is in correspondence with a subring M2 of L2:

• M1 is isomorphic to M2

• M1 is an ideal in L′1 if and only if M2 is an ideal in L′2, and if so, then L′1/M1 is

isomorphic to L′2/M2.

• M1 is an ideal in L1 if and only if M2 is an ideal in L2, and if so, then L1/M1 is

isoclinic to L2/M2.

64



The two correspondences discussed above overlap somewhat, and they agree with each

other wherever they overlap. Explicitly, if M1 is a subring of L1 that contains Z(L1) and is

contained in L′1, then the M2 obtained by both correspondences is identical.

2.2.6 Characteristic subrings, quotient rings, and subquotients determined

by the Lie ring up to isoclinism

We can deduce the following regarding important characteristic subrings, quotients, and

subquotients of a Lie ring L that are determined up to isomorphism by knowing L up to

isoclinism:

• All lower central series member subrings γc(L), c ≥ 2. Note that γ1(L) = L needs

to be excluded. Further, the isomorphism types of successive quotients between lower

central series members of the form γi(L)/γj(L) with j ≥ i ≥ 2 are also determined

by the knowledge of L up to isoclinism. Note that the quotient rings L/γc(L) are in

general determined only up to isoclinism and not up to isomorphism.

• All derived series member subrings L(i), i ≥ 1. Note that we need to exclude L(0) = L.

Further, the isomorphism types of quotients between derived series members of the form

L(i)/L(j) with j ≥ i ≥ 1 are also determined by the knowledge of L up to isoclinism.

Note that the quotient Lie rings L/L(i) are determined only up to isoclinism and not

up to isomorphism.

• Quotients L/Zc(L) for all upper central series member subrings Zc(L), c ≥ 1. We

need to exclude c = 0 which would give L/Z0(L) = L. Further, the isomorphism types

of subquotients of the form Zi(L)/Zj(L) where i ≥ j ≥ 1 are also determined up to

isomorphism by the knowledge of L up to isoclinism. Note that the subrings Zi(L)

themselves are determined only up to isoclinism and not up to isomorphism.
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2.2.7 Correspondence between abelian subrings

Suppose L1 and L2 are isoclinic Lie rings. The following are true:

• The isoclinism establishes a correspondence between abelian subrings of L1 containing

Z(L1) and abelian subrings of L2 containing Z(L2). Note that the abelian subrings

that are in correspondence are not necessarily isomorphic to each other. In fact, unless

Z(L1) and Z(L2) have the same order, the abelian subrings in correspondence need

not even have the same order as each other.

• The isoclinism establishes a correspondence between the abelian subrings of L1 that

are self-centralizing and the abelian subrings of L2 that are self-centralizing. A self-

centralizing abelian subring is an abelian subring that equals its own centralizer, or

equivalently, it is maximal among abelian subrings of the Lie ring.

• In the case that L1 and L2 are both finite, the isoclinism establishes a correspondence

between abelian subrings of maximum order in L1 and abelian subrings of maximum

order in L2.

If L1 and L2 are both finite, then each of the correspondences above preserves the index

of the subrings. In particular, this means that isoclinic finite Lie rings of the same order have

the same value for the maximum order of abelian subring, the same value for the maximum

order of abelian ideal, and the same value for the orders of self-centralizing abelian subrings.

2.2.8 Constructing isoclinic Lie rings

Here are some ways of constructing Lie rings isoclinic to a given Lie ring:

• Take a direct product with an abelian Lie ring.

• Find a Lie subring whose sum with the center is the whole Lie ring. In symbols, if M

is a subring of L and M + Z(L) = L (where Z(L) denotes the center of L), then M
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is isoclinic to L. Note that for finite Lie rings, this is the only way to find isoclinic

subrings to the whole Lie ring: a subring is isoclinic to the whole Lie ring if and only

if its sum with the center of the whole ring is the whole ring.
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CHAPTER 3

EXTENSION THEORY

3.1 Short exact sequences and central group extensions

Central extensions are fundamental to how we think about nilpotent groups: nilpotent groups

can be thought of as groups that can be obtained by iteratively taking central extensions,

starting with an abelian group. The notion of central extension is also closely related to

the notion of isoclinism, although we will defer the explicit connection for later. Central

extensions are instrumental to formulating and proving the generalizations that we develop

in Sections 5.4 and 7.7.

In this section, we develop the rudimentary vocabulary of central extensions.

3.1.1 Definition of short exact sequence and group extension

A short exact sequence of groups is an exact sequence of groups with homomorphisms as

follows:

1 → A→ E → G→ 1

In words, the homomorphism from A to E is injective, the homomorphism from E to G

is surjective, and the image of A in E equals the kernel of the homomorphism from E to G.

The standard abuse of notation identifies A with its image in E (so A is viewed as a normal

subgroup of E) and G with the quotient group E/A.

We may also frame this as follows: E is a group extension with normal subgroup A and

quotient group G.

A morphism of short exact sequences from a short exact sequence:

1 → A1 → E1 → G1 → 1
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to another short exact sequence:

1 → A2 → E2 → G2 → 1

is defined as a triple of homomorphisms A1 → A2, E1 → E2, G1 → G2, such that the

following diagram commutes:

1 → A1 → E1 → G1 → 1

↓ ↓ ↓ ↓ ↓

1 → A2 → E2 → G2 → 1

Note that the arrows at the extremes do not convey useful information, so the above is

equivalent to asserting that the following diagram commutes:

1 → A1 → E1 → G1 → 1

↓ ↓ ↓

1 → A2 → E2 → G2 → 1

We can compose two morphisms of short exact sequences in the obvious way. In the

diagram below, this corresponds to composing the vertical morphisms:

1 → A1 → E1 → G1 → 1

↓ ↓ ↓

1 → A2 → E2 → G2 → 1

↓ ↓ ↓

1 → A3 → E3 → G3 → 1

We can thus define a category of short exact sequences. An isomorphism of short exact

sequences is defined as an isomorphism in this category. Explicitly, it is defined as a morphism

of short exact sequences where all the component homomorphisms are isomorphisms.
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3.1.2 Group extensions with fixed base and quotient; congruence and

pseudo-congruence

We often study group extensions of the form:

1 → A→ E → G→ 1

where A and G are both fixed in advance and different possibilities for E are considered.

Two group extensions:

1 → A→ E1 → G→ 1

and

1 → A→ E2 → G→ 1

are said to be congruent if there is an isomorphism ϕ : E1 → E2 such that the triple

comprising the identity map A → A, the map ϕ : E1 → E2, and the identity map G → G

give an isomorphism of short exact sequences. In other words, we can get an isomorphism

from E1 to E2 that induces the identity maps both on the subgroup A and the quotient

group G.

Congruence defines an equivalence relation on the set of all group extensions with normal

subgroup A and quotient group G. The equivalence classes for this equivalence relation are

termed congruence classes.

Two group extensions:

1 → A→ E1 → G→ 1

and
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1 → A→ E2 → G→ 1

are said to be pseudo-congruent if there is an isomorphism between the short exact

sequences. The isomorphism need not induce the identity map on A and need not induce

the identity map on G.

Pseudo-congruence defines an equivalence relation on the set of all group extensions with

normal subgroup A and quotient group G. The equivalence classes for this equivalence

relation are termed pseudo-congruence classes.

Pseudo-congruence is a coarser equivalence relation than congruence because it allows

for “re-labeling” on both the subgroup side and the quotient group side.

3.1.3 Abelian normal subgroups

In the case that A is an abelian group, the short exact sequence:

1 → A→ E → G→ 1

may also be written as

0 → A→ E → G→ 1

This is because when working with abelian groups, we denote the trivial group by 0

instead of 1.

3.1.4 Central extensions and stem extensions

In this document, we use the term central subgroup for a subgroup that is contained inside

the center.

A central extension refers to a group extension where the subgroup is central. Explicitly,
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consider a short exact sequence of the following form, where A is abelian:

0 → A→ E → G→ 1

We say that E is a central extension with central subgroup A and quotient group G if

the image of A in E is a central subgroup of E. If we engage in the usual abuse of notation

that conflates A with its image in E, we could shorten this to saying that A is a central

subgroup of E.

We will often say “E is a central extension of G” as shorthand for “there exists an abelian

group A such that E is a central extension with central subgroup A and quotient group G.”

A stem extension is a central extension where the central subgroup is also contained in

the derived subgroup of the extension group. Explicitly, consider a short exact sequence of

the following form, where A is abelian:

0 → A→ E → G→ 1

We say that E is a stem extension with central subgroup A and quotient group G if the

image of A in E is contained in E′ ∩ Z(E).

3.1.5 The use of cohomology groups to classify central extensions

Suppose A is an abelian group and G is a group. The group H2(G;A) (also denoted

H2(G,A)), called the second cohomology group for trivial group action of G on A, is a group

whose elements correspond to the congruence classes of central extensions with central sub-

group A and quotient group G. Here, by “congruence class” we mean equivalence class

under the equivalence relation of being congruent group extensions. The group structure on

H2(G;A) is not prima facie obvious. We will describe it in detail in Section 3.3.

Further, there is a natural action of Aut(G) × Aut(A) on H2(G;A) and the orbits of

H2(G;A) under this natural action correspond precisely to the pseudo-congruence classes of
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central extensions with central subgroup A and quotient group G.

Note that there is a more general definition of the second cohomology group that works

for non-central extensions where the action of the quotient group G on the abelian normal

subgroup A is specified. Throughout this document, however, when referring to the second

cohomology group, we mean the second cohomology group for trivial group action.

Basic background about the second cohomology group can be found in [3], [28], [10], or

in any standard reference on group cohomology.

3.1.6 Homomorphism of central extensions

In the discussion so far, we have fixed both the normal subgroup A and the quotient group

G and considered possibilities for the group extension. We now consider the case where the

quotient group G is fixed. We are interested in all central extensions with quotient group G.

The theory undergirding these should be hidden within the group structure of G. Our goal

is to make that theory more explicit. Unfortunately, this is a long task, and we therefore

only include a first step here. We will pick up from where we leave here in Section 3.4.1.

We begin by defining the concept of homomorphism of central extensions. Consider two

central extensions, both of which have G as the quotient group:

0 → A1 → E1 → G→ 1

and

0 → A2 → E2 → G→ 1

A homomorphism of central extensions from the first central extension to the second is a

pair of homomorphisms A1 → A2, E1 → E2, that, together with the identity map G → G,

give a homomorphism of short exact sequences.

We can consider the category of central extensions of G:
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• The objects of this category are the central extensions with quotient group G.

• The morphisms of this category are homomorphisms of central extensions of G, as

defined above.

• Composition of morphisms is defined as the usual composition of homomorphisms of

short exact sequences.

An object in the category of central extensions can be completely described up to isomor-

phism in this category simply by specifying its right map. Explicitly, consider two central

extensions:

0 → A1 → E
ν→ G→ 1

and

0 → A2 → E
ν→ G→ 1

where the map ν is the same in both cases. In that case, the central extensions are

isomorphic in the category. Explicitly, this is because if we consider the partial commutative

diagram:

0 → A1 → E
ν→ G → 1

↓id ↓id

0 → A2 → E
ν→ G → 1

there is a unique choice of isomorphism A1 → A2 so that the diagram as a whole com-

mutes:

0 → A1 → E
ν→ G → 1

↓ ↓id ↓id

0 → A2 → E
ν→ G → 1
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Further, specifying a homomorphism from one object:

0 → A1 → E1
ν1→ G→ 1

to another:

0 → A2 → E2
ν2→ G→ 1

is equivalent to simply specifying the homomorphism E1 → E2, because the homomor-

phism A1 → A2 is uniquely determined by it. Explicitly, this is because in the commutative

diagram:

0 → A1 → E1
ν1→ G → 1

↓θ ↓id

0 → A2 → E2
ν2→ G → 1

there is a unique morphism A1 → A2 that completes the commutative diagram.

Further, the set of permissible homomorphisms E1 → E2 is precisely the set of homo-

morphisms θ : E1 → E2 such that ν2 ◦ θ = ν1.

The category of central extensions of G thus has the following alternative description.

Note that strictly speaking, this is a different category, but the preceding remarks establish

that there is a canonical equivalence of categories between the categories.

• The objects of the category are “central extensions” of G in the sense of being pairs

(E, ν) where ν : E → G is a surjective group homomorphism and the kernel of ν is

central in G.

• Given two objects (E1, ν1) and (E2, ν2) in the category, a morphism between them is

a homomorphism θ : E1 → E2 such that ν2 ◦ θ = ν1.

The equivalence of categories is given by the obvious forgetful functor from the short

exact sequence category to this new category, that sends a short exact sequence 0 → A →
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E
ν→ G → 1 to the quotient map E

ν→ G. The functor is clearly essentially surjective (in

fact, it is surjective on objects). The preceding remarks establish that the functor is full and

faithful, and therefore an equivalence of categories. From this point onward, we we talk of

the “category of central extensions of G” we will refer to the latter category.

We might hope that this category has an initial object, which could then serve as the

“source” classifying central extensions of G. However, such an initial object does not always

exist. We will show in Section 3.4.7 that there do exist objects in this category that admit

homomorphisms to every other object in the category. These are not in general initial objects

because the homomorphisms admitted are not unique.

3.2 Short exact sequences and central extensions of Lie rings

In this section, we develop the theory of short exact sequences of Lie rings parallel to the

development in the preceding section (Section 3.1) of the theory for groups. The sections

are almost completely analogous and readers who have thoroughly understood the preceding

section can safely skip this section. The reasons behind developing the theory are also

analogous to those offered for groups.

The underlying theory for the cohomology group is different in substantive ways for

groups and Lie rings. However, these differences do not show up at the level of abstraction

at which we are dealing with groups and Lie rings in this and the preceding section.

3.2.1 Definition of short exact sequence and Lie ring extension

A short exact sequence of Lie rings is an exact sequence of Lie rings with homomorphisms

as follows:

0 → A→ N → L→ 0

In words, the homomorphism from A to N is injective, the homomorphism from N to L
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is surjective, and the image of A in N equals the kernel of the homomorphism from N to L.

The standard abuse of notation identifies A with its image in N (so A is viewed as an ideal

of N) and L with the quotient Lie ring N/A.

We may also frame this as follows: N is a Lie ring extension with (base) ideal A and

quotient Lie ring L.

A morphism of short exact sequences from a short exact sequence:

0 → A1 → N1 → L1 → 0

to another short exact sequence:

0 → A2 → N2 → L2 → 0

is defined as a triple of homomorphisms A1 → A2, N1 → N2, L1 → L2, such that the

following diagram commutes:

0 → A1 → N1 → L1 → 0

↓ ↓ ↓ ↓

0 → A2 → N2 → L2 → 0

Note that the arrows at the extremes do not convey useful information, so this is equiv-

alent to saying that the following diagram commutes:

0 → A1 → N1 → L1 → 0

↓ ↓ ↓

0 → A2 → N2 → L2 → 0

We can compose two morphisms of short exact sequences in the obvious way. In the

diagram below, this corresponds to composing the vertical morphisms:
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0 → A1 → N1 → L1 → 0

↓ ↓ ↓

0 → A2 → N2 → L2 → 0

↓ ↓ ↓

0 → A3 → N3 → L3 → 0

We can thus define a category of short exact sequences. An isomorphism of short exact

sequences is defined as an isomorphism in this category. Explicitly, it is defined as a morphism

of short exact sequences where all the component homomorphisms are isomorphisms.

3.2.2 Lie ring extensions with fixed base and quotient; congruence and

pseudo-congruence

We often study Lie ring extensions of the form:

0 → A→ N → L→ 0

where A and L are both fixed in advance and different possibilities for N are considered.

Two Lie ring extensions:

0 → A→ N1 → L→ 0

and

0 → A→ N2 → L→ 0

are said to be congruent if there is an isomorphism ϕ : N1 → N2 such that the triple

comprising the identity map A → A, the map ϕ : E1 → E2, and the identity map L → L

give an isomorphism of short exact sequences. In other words, we can get an isomorphism
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from N1 to N2 that induces the identity maps both on the ideal A and the quotient Lie ring

L.

Congruence defines an equivalence relation on the set of all Lie ring extensions with ideal

A and quotient Lie ring L. The equivalence classes for this equivalence relation are termed

congruence classes.

Two Lie ring extensions:

0 → A→ N1 → L→ 0

and

0 → A→ N2 → L→ 0

are said to be pseudo-congruent if there is an isomorphism between the short exact

sequences. The isomorphism need not induce the identity map on A and need not induce

the identity map on L.

Pseudo-congruence defines an equivalence relation on the set of all Lie ring extensions

with ideal A and quotient Lie ring L. The equivalence classes for this equivalence relation

are termed pseudo-congruence classes.

Pseudo-congruence is a coarser equivalence relation than congruence because it allows

for “re-labeling” on both the ideal side and the quotient Lie ring side.

3.2.3 Central extensions and stem extensions

A central extension refers to a Lie ring extension where the ideal is central. Explicitly,

consider a short exact sequence of the following form, where A is an abelian Lie ring:

0 → A→ N → L→ 0

We say that N is a central extension with central subring A and quotient Lie ring L if
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the image of A in N is a central subring of N . If we engage in the usual abuse of notation

that conflates A with its image in N , we could shorten this to saying that A is a central

subring (or equivalently, central ideal) of N .

We will often say “N is a central extension of L” as shorthand for “there exists an abelian

Lie ring A such that N is a central extension with central subring A and quotient Lie ring

L.”

A stem extension is a central extension where the central subring is also contained in the

derived subring of the extension Lie ring. Explicitly, consider a short exact sequence of the

following form, where A is abelian:

0 → A→ N → L→ 0

We say that N is a stem extension with central subring A and quotient Lie ring L if the

image of A in N is contained in N ′ ∩ Z(N).

3.2.4 The use of cohomology groups to classify central extensions

Suppose A is an abelian Lie ring and L is a Lie ring. The group H2
Lie(L;A), called the second

cohomology group for trivial Lie ring action of L on A, is a group whose elements correspond

to the congruence classes of central extensions with central subring A and quotient Lie ring

L. Here, by “congruence class” we mean equivalence class under the equivalence relation of

being congruent Lie ring extensions. The group structure on H2
Lie(L;A) is not prima facie

obvious. For a detailed discussion of the group structure, please refer to Weibel’s book [47].

H2
Lie(L;A) is simply denoted H2(L;A) in cases where there is no potential for ambiguity

with the cohomology group describing group extensions.

Further, there is a natural action of Aut(L) × Aut(A) on H2(L;A) and the orbits of

H2
Lie(L;A) under this natural action correspond precisely to the pseudo-congruence classes

of central extensions with central subring A and quotient Lie ring L.
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Note that there is some potential for abuse of notation here, namely, we often view A

both as an abelian group and as an abelian Lie ring. From a pedantic perspective, it would

be preferable to use the exp and log functors to transition between the abelian group and

abelian Lie ring via the abelian Lie correspondence, as described in Section 1.3. However,

doing so would complicate our notation considerably, so we avoid it in this section. Later,

when applying the results here to the Baer correspondence up to isoclinism as described in

Section 5.4, we will be more careful.

3.2.5 Homomorphism of central extensions

In the discussion so far, we have fixed both the central subring A and the quotient Lie ring

L and considered possibilities for the extension Lie ring. We now consider the case where

the quotient Lie ring L is fixed. We are interested in all central extensions with quotient Lie

ring L. The theory undergirding these should be hidden within the internal structure of L

as a Lie ring. Our goal is to make that theory more explicit.

We begin by defining the concept of homomorphism of central extensions. Consider two

central extensions, both of which have L as the quotient Lie ring:

0 → A1 → N1 → L→ 0

and

0 → A2 → N2 → L→ 0

A homomorphism of central extensions from the first central extension to the second is a

pair of homomorphisms A1 → A2, N1 → N2, that, together with the identity map L → L,

give a homomorphism of short exact sequences.

We can consider the category of central extensions of L:

• The objects of this category are the central extensions with quotient Lie ring L.
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• The morphisms of this category are homomorphisms of central extensions of L, as

defined above.

• Composition of morphisms is defined as the usual composition of homomorphisms of

short exact sequences.

An object in the category of central extensions can be completely described up to isomor-

phism in this category simply by specifying its right map. Explicitly, consider two central

extensions:

0 → A1 → N
ν→ L→ 0

and

0 → A2 → N
ν→ L→ 0

where the map ν is the same in both cases. In that case, the central extensions are

isomorphic in the category. Explicitly, this is because if we consider the partial commutative

diagram:

0 → A1 → N
ν→ L → 0

↓id ↓id

0 → A2 → N
ν→ L → 0

there is a unique choice of isomorphism A1 → A2 so that the diagram as a whole com-

mutes:

0 → A1 → N
ν→ L → 0

↓ ↓id ↓id

0 → A2 → N
ν→ L → 0

Further, specifying a homomorphism from one object:
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0 → A1 → N1
ν1→ L→ 0

to another:

0 → A2 → N2
ν2→ L→ 0

is equivalent to simply specifying the homomorphism N1 → N2, because the homomor-

phism A1 → A2 is uniquely determined by it. Explicitly, this is because in the commutative

diagram:

0 → A1 → N1
ν1→ L → 0

↓θ ↓id

0 → A2 → N2
ν2→ L → 0

there is a unique morphism A1 → A2 that completes the commutative diagram.

Further, the set of permissible homomorphisms N1 → N2 is precisely the set of homo-

morphisms θ : N1 → N2 such that ν2 ◦ θ = ν1.

The category of central extensions of L thus has the following alternative description.

Note that strictly speaking, this is a different category, but the preceding remarks establish

that there is a canonical equivalence of categories between the categories:

• The objects of the category are “central extensions” of L in the sense of being pairs

(N, ν) where ν : N → L is a surjective Lie ring homomorphism and the kernel of ν is

central in L.

• Given two objects (N1, ν1) and (N2, ν2) in the category, a morphism between them is

a homomorphism θ : N1 → N2 such that ν2 ◦ θ = ν1.

The equivalence of categories is given by the obvious forgetful functor from the short

exact sequence category to this new category, that sends a short exact sequence 0 → A →
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N
ν→ L → 0 to the quotient map N

ν→ L. The functor is clearly essentially surjective (in

fact, it is surjective on objects). The preceding remarks establish that the functor is full and

faithful, and therefore an equivalence of categories. From this point onward, we we talk of

the “category of central extensions of L” we will refer to the latter category.

We might hope that this category has an initial object, which could then serve as the

“source” classifying central extensions of L. However, such an initial object does not always

exist. We will show in Section 3.5.9, there do exist objects in this category that admit

homomorphisms to every other object in the category. These are not in general initial

objects because the homomorphisms admitted are not unique.

3.3 Explicit description of second cohomology group using the

bar resolution

In Section 3.1.5, we stated that the second cohomology group for trivial group action

H2(G;A) is a group whose elements correspond with congruence classes of central exten-

sions with central subgroup A and quotient group G. However, we did not specify the group

structure at the time. In this section, we explicitly construct H2(G;A) as a group.

Interested readers can learn more from [3], [28], [10], or any standard reference on group

cohomology.

3.3.1 Explicit description of second cohomology group using cocycles and

coboundaries

Suppose G is a group and A is an abelian group. A 2-cochain for trivial group action of G

on A is defined as a set map f : G×G→ A. With pointwise addition of functions, the set

of 2-cochains acquires an abelian group structure. We denote this group as C2(G;A).

A 2-cochain f : G × G → A is termed a 2-cocycle for trivial group action if it satisfies

the following condition:
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f(g1, g2) + f(g1g2, g3) = f(g1, g2g3) + f(g2g3) ∀ g1, g2, g3 ∈ G

The 2-cocycles form a subgroup of C2(G;A). This subgroup is denoted Z2(G;A).

A 2-cochain f : G × G → A is termed a 2-coboundary for trivial group action if there

exists a set map ϕ : G→ A such that:

f(g1, g2) = ϕ(g1) + ϕ(g2)− ϕ(g1g2) ∀ g1, g2 ∈ G

Every 2-coboundary is a 2-cocycle, and the 2-coboundaries form a subgroup of the group

of 2-cocycles. We denote this subgroup as B2(G;A). The group H2(G;A), called the

second cohomology group for trivial group action of G on A, is defined as the quotient group

Z2(G;A)/B2(G;A) (note that both are subgroups of the abelian group C2(G;A), hence

B2(G;A) is normal in Z2(G;A)). The elements of H2(G;A), i.e., the cosets of B2(G;A) in

Z2(G;A), are termed cohomology classes. Given two elements of Z2(G;A) that are in the

same cohomology class, we will say that they are cohomologous to each other.

We will reconcile this definition with the earlier definition from Section 3.1.5 in Section

3.3.3.

3.3.2 Functoriality and automorphism group action

Each of C2, Z2, B2, and H2, viewed in terms of G and A, is contravariant in the first

argument G and covariant in the second argument A. Explicitly:

• If θ : G1 → G2 is a homomorphism, then θ induces a homomorphism C2(G2;A) →

C2(G1;A) by composition: given a map f : G2 × G2 → A that is an element of

C2(G2;A), its image in C2(G1;A) is the map (x, y) 7→ f(θ(x), θ(y)). This homo-

morphism restricts to homomorphisms Z2(G2;A) → Z2(G1;A) and B2(G2;A) →

B2(G1;A). Thus, it also induces a homomorphism H2(G2;A) → H2(G1;A). All

these induced homomorphisms define contravariant functors.
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• If α : A1 → A2 is a homomorphism, then α induces a homomorphism C2(G;A1) →

C2(G;A2) by composition: f 7→ α ◦ f . This homomorphism restricts to homomor-

phisms Z2(G;A1) → Z2(G;A2) and B2(G;A1) → B2(G;A2). Thus, it also induces

a homomorphism H2(G;A1) → H2(G;A2). All these induced homomorphisms define

covariant functors.

Based on this functoriality, we obtain a natural action of Aut(G) × Aut(A) on each of

the groups C2(G;A), Z2(G;A), B2(G;A), and H2(G;A). We compose on both sides. Note

that, due to contravariance in the G-argument, we need to use the inverse of the element on

the Aut(G) side to keep the action a left action. Explicitly, (ϕ, α) ◦ f is defined as:

(x, y) 7→ α(f(ϕ−1(x), ϕ−1(y)))

3.3.3 Identifying cohomology classes with congruence classes of central

extensions

We will now describe a bijection:

Elements of the second cohomology group H2(G;A) ↔ Congruence classes of central

extensions with central subgroup A and quotient group G

We will describe the bijection in the reverse direction. Explicitly, given a central extension

group E, we will describe how to use E to obtain a cohomology class.

We have the short exact sequence:

0 → A
ι→ E

ν→ G→ 1

Pick any set map s : G→ E that is a one-sided inverse to the surjective homomorphism

ν : E → G (such a set map is called a section of the extension). We can think of s as

specifying the coset representatives in E for each element of G.

Now, define the following 2-cochain f : G×G→ A: for g1, g2 ∈ G, consider the element
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of E given by s(g1g2)(s(g1)s(g2))
−1. This element of E maps to the identity element of G,

hence is in the image of A. Define f(g1, g2) to be its inverse image under ι in A.

Explicitly:

s(g1g2) = ι(f(g1, g2))s(g1)s(g2) ∀ g1, g2 ∈ G

We can think of f as measuring the extent to which s fails to be a homomorphism. Since

ν ◦ s is the identity map, s is a homomorphism modulo A. The “error term” for s therefore

lies in A, and this is how we get a 2-cochain f : G×G→ A.

We can now verify the following:

• The function f constructed for any section s : G → E is a 2-cocycle, i.e., an element

of Z2(G;A). This follows from associativity of group multiplication. Explicitly, if

we expand s(g1g2g3) using the two different ways of associating the expression, and

compare, we get the result. Note that we need to use the centrality of ι(A) in E to

commute elements.

• The set of all possible functions f that we can get by choosing different sections s :

G→ E for a single extension E correspond to a single cohomology class, i.e., a single

coset of B2(G;A) in Z2(G;A), and therefore, a single element of H2(G;A).

• Two central extensions with central subgroup A and quotient group G are congruent

if and only if they give the same element of H2(G;A).

We have now completely described one direction of the correspondence. The construction

in the other direction is similar: we need to explicitly construct a group extension based on

a cohomology class. We will omit the details, but they can be found in [10] or in any of the

standard references on cohomology.

It also follows from the above that the orbits of H2(G;A) under the Aut(G) × Aut(A)

action correspond with the pseudo-congruence classes of extensions.
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3.3.4 Short exact sequence of coboundaries, cocycles, and cohomology

classes

We have a natural short exact sequence:

0 → B2(G;A) → Z2(G;A) → H2(G;A) → 0

This short exact sequence does not always split. For instance, consider the case where

G = Z/2Z and A = Z. In this case, C2(G;A) is, as an abelian group, isomorphic to A|G|×|G|,

which is Z4. In particular, it is a finitely generated free abelian group. Thus, both B2(G;A)

and Z2(G;A), which are subgroups of C2(G;A), are also free abelian groups. However,

H2(G;A) ∼= Z/2Z, which is not a free abelian group. If the short exact sequence did split,

then H2(G;A) would have been free abelian. Therefore, the short exact sequence does not

split.

In Section 5.4.9, we will see that in the special case that G and A are both 2-powered

abelian groups, this short exact sequence splits canonically.

3.4 Exterior square, Schur multiplier, and homoclinism

In Sections 3.1 and 3.2, we introduced, for groups and for Lie rings, the notion of central

extension. In this section, our goal is to understand, for a group G, the category of central

extensions of G (introduced in Section 3.2.5) in terms of the isomorphism type of G.

We will attack this question by looking at one key attribute of the extension: how the

commutator map behaves. Roughly speaking, the behavior of the commutator map classifies

the central extension up to isoclinism, and if we want to study the collection of central

extensions focusing only on this attribute, we consider the category of central extensions

with homoclinisms, a variant of the category of central extensions with homomorphisms.

We will establish key features of this category, including the fact that there is at most one

morphism between any two objects, and the existence of initial objects. There are two
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structures in particular that store a lot of the information related to the central extensions

of G. These are the exterior square G ∧ G (which serves as a source object for the derived

subgroups in all central extensions) and the Schur multiplier M(G) (which is the kernel of

the canonical map G ∧G→ [G,G]).

We tangentially mention in this section the well-known fact that the Schur multiplier

M(G) has an alternative description as the second homology group H2(G; Z). We do not

provide a proof here, since developing the underlying machinery of homology would take

us too far afield. However, the techniques used to establish this are closely related to the

explicit description of the second cohomology group in Section 3.3. For reference, see the

exact sequence appearing as (2.8) in Loday and Brown’s 1987 paper [8].

3.4.1 Exterior square

The exterior square of a group was originally considered (though not with that name) in the

paper [36] by Clair Miller in 1952. It was later defined as a special case of a more general

concept called the exterior product of groups in [8]. More information about the exterior

square and related constructions can be found in [35] and [15].

The definition that we provide here for the exterior square is the “abstract” definition.

We will provide a concrete definition (based on generators and relations) in Section 3.8.4.

The equivalence of the two approaches is discussed in Miller’s original paper, and we include

some further discussion of the equivalence in Section 3.8.5. As we demonstrate in this section,

however, the initial theory is best established using the abstract definition.

Suppose G is a group. The exterior square of G, denoted by G∧G, is defined as follows.

Let F be the free group on the set G×G.

For any central extension:

0 → A→ E → G→ 1
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there is a set map:

ωE,G : G×G→ [E,E]

given by:

ωE,G(x, y) = [x̃, ỹ]

where x̃ denotes any element of E that maps to x and ỹ denotes any element of E that

maps to y. Note that the map is well defined (i.e., it does not depend on the choice of the

lifts x̃ and ỹ) because the extension is a central extension.

Note that the set map ωE,G described here differs from ωE in the following important

respect: ωE,G is a map from G×G, whereas ωE is a map from E/Z(E)×E/Z(E). However,

it is obvious that ωE,G factors through ωE .

F is the free group on G×G, so ωE,G gives rise to a group homomorphism:

ω̂E,G : F → [E,E]

Note also that this homomorphism is surjective, because by definition, [E,E] is the

subgroup of E generated by the image of the set map ωE,G.

Define R as the intersection of the kernels of all such homomorphisms ω̂E,G where E

varies over all central extension groups with quotient group G. Note that even though the

collection of all such homomorphisms is too large to be a set, the collection of possible kernels

is a set, so the intersection is well defined. In other words, R is the set of all products of

formal pairs of elements and their inverses such that the corresponding commutator words

become trivial in every central extension of G. We define the exterior square G ∧ G as the

quotient group F/R. The image of (x, y) in the group is denoted x ∧ y.

It is clear from the definition that, for any central extension E with short exact sequence:
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0 → A→ E → G→ 1

there exists a unique natural homomorphism ΩE,G from G ∧ G to [E,E] satisfying the

condition that for any x, y ∈ G we have:

ΩE,G(x ∧ y) = [x̃, ỹ]

where x̃ and ỹ are elements of E that map to x and y respectively. Note also that ΩE,G

is surjective.

As a special case of the above, there is a natural homomorphism:

G ∧G→ [G,G]

given on a generating set by:

x ∧ y 7→ [x, y]

The kernel of this homomorphism is called the Schur multiplier of G and is denoted

M(G). We can easily deduce that M(G) is a central subgroup of G ∧ G. We thus have a

short exact sequence:

0 →M(G) → G ∧G→ [G,G] → 1

There are numerous other definitions of the Schur multiplier. The most common textbook

definition is that M(G) = H2(G; Z), i.e., it is the second homology group for trivial group

action with coefficients in the integers. [28] has a detailed description of techniques to

compute the Schur multiplier for finite groups. [8] and [35] provide background on why the

two definitions of Schur multiplier agree. In particular, see the exact sequence appearing as

(2.8) in Loday and Brown’s 1987 paper [8].
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3.4.2 The existence of a single central extension that realizes the exterior

square

Consider a group G. A natural question is whether there exists a central extension group E

with quotient group G with the property that the natural homomorphism:

ΩE,G : G ∧G→ [E,E]

is an isomorphism.

The answer to this question is yes. We provide one construction below. We will provide

another construction in Section 3.4.7.

Recall the earlier description of G ∧G as a quotient F/R. The normal subgroup R was

defined as the intersection of all possible normal subgroups arising as kernels of the natural

homomorphisms F → [E,E] for a central extension group E. For each possible normal

subgroup Ni, i ∈ I of F that arises this way, let Ei denote a corresponding central extension

of G.

Define E0 to be the pullback (also called the fiber product or the subdirect product)

corresponding to all the quotient maps Ei → G. We can verify that the natural mapping:

F → [E0, E0]

has kernel precisely R, and hence, the mapping:

G ∧G→ [E0, E0]

is an isomorphism.
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3.4.3 Homoclinism of central extensions

Suppose G is a group. We define a certain category for which we are interested in computing

the initial object. We will call this category the category of central extensions of G with

homoclinisms. Explicitly, the objects of the category are short exact sequences of the form:

0 → A→ E → G→ 1

where the image of A is central in E.

The morphisms in the category, which we call homoclinisms of central extensions, are

defined as follows. For two objects:

0 → A1 → E1 → G→ 1

and

0 → A2 → E2 → G→ 1

a morphism from the first to the second is a group homomorphism ϕ : E′1 → E′2 between

the derived subgroups E′1 = [E1, E1] and E′2 = [E2, E2] such that the following holds.

Let ω1 : G × G → E′1 denote the map arising from the commutator map in E1 and let

ω2 : G×G→ E′2 denote the corresponding map in E2. We require that ϕ ◦ ω1 = ω2 as set

maps.

The above condition can be reframed in terms of group homomorphisms if we use the

exterior square: let Ω1 : G∧G→ E′1, Ω2 : G∧G→ E′2 denote the natural homomorphisms

described in Section 3.4.1. The condition we need is that ϕ ◦ Ω1 = Ω2.
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3.4.4 Relation between the category of central extensions and the category

of central extensions with homoclinisms

Any homomorphism of central extensions induces a homoclinism of central extensions. Ex-

plicitly, consider two central extensions:

0 → A1 → E1
ν1→ G→ 1

and

0 → A2 → E2
ν2→ G→ 1

As discussed in Section 3.1.6, the central extensions are completely described by the pairs

(E1, ν1) and (E2, ν2) respectively. A homomorphism of central extensions can be specified

as a homomorphism θ : E1 → E2 satisfying the condition that ν2 ◦ θ = ν1.

Any such homomorphism of central extensions induces a homoclinism of central exten-

sions. Explicitly, for a homomorphism θ : E1 → E2 satisfying ν2 ◦ θ = ν1, define ϕ as

the homomorphism E′1 → E′2 obtained by restricting θ to E′1. We claim that ϕ defines a

homoclinism of the central extensions. We now prove that this construction works.

Lemma 3.4.1. Suppose (E1, ν1) and (E2, ν2) are central extensions of a group G, and

θ : E1 → E2 is a homomorphism of central extensions, i.e., ν2 ◦ θ = ν1. Denote by ω1 :

G × G → E′1 and ω2 : G × G → E′2 the maps induced by the commutator maps in E1 and

E2 respectively. Let ϕ : E′1 → E′2 be the homomorphism obtained by restricting θ to the

derived subgroup E′1. Then, ϕ is a homoclinism of central extensions, i.e., ϕ ◦ ω1 = ω2.

Proof. Let u, v be arbitrary elements of G (possibly equal, possibly distinct). Our goal is to

show that:
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ϕ(ω1(u, v)) = ω2(u, v)

Let x, y ∈ E1 be elements such that ν1(x) = u and ν1(y) = v. Then, by definition,

ω1(u, v) = [x, y]. Simplify the left side:

ϕ(ω1(u, v)) = ϕ([x, y]) = θ([x, y]) = [θ(x), θ(y)] = ω2(ν2(θ(x)), ν2(θ(y)))

Now, use that ν2 ◦ θ = ν1 and simplify further to:

ω2(ν1(x), ν1(y)) = ω2(u, v)

which is the right side.

3.4.5 Uniqueness of homoclinism if it exists

We will show that if a homoclinism exists between two central extensions, it must be unique.

Lemma 3.4.2. Consider two short exact sequences that give central extensions of a

group G:

0 → A1 → E1 → G→ 1

0 → A2 → E2 → G→ 1

Denote by ω1 : G×G→ E′1 and ω2 : G×G→ E′2 the commutator maps.

Suppose there exists homoclinisms ϕ, θ from the first central extension to the second.

Explicitly, ϕ : E′1 → E′2 and θ : E′1 → E′2 are homomorphisms such that ϕ ◦ ω1 = ω2 and

θ ◦ ω1 = ω2. Then, ϕ = θ.
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Proof. Denote by ν1 the quotient map E1 → G and by ν2 the quotient map E2 → G.

It will suffice to show that ϕ and θ agree with each other on the set of all commutators,

which is a generating set for E′1. Consider a commutator [x, y] with x, y ∈ E1. Let u = ν1(x)

and v = ν1(y).

By definition, [x, y] = ω1(u, v). Thus, ϕ([x, y]) = ϕ(ω1(u, v)) = ω2(u, v). Similarly,

θ([x, y]) = θ(ω1(u, v)) = ω2(u, v). We thus obtain that ϕ([x, y]) = θ([x, y]), completing the

proof.

Thus, if a homoclinism exists, it is unique. However, a homoclinism need not exist.

The obstruction occurs if there are relations within the derived subgroup E′1 such that the

corresponding relations are not valid in the derived subgroup E′2.

3.4.6 Existence and description of initial objects in the category of central

extensions up to homoclinisms

In category theory, an object X in a category C is termed an initial object if for every object

Y ∈ C, there is a unique morphism from X to Y , sometimes called the initial morphism. It

can easily be seen using “abstract nonsense”1 that if X1 and X2 are both initial objects in

a category C, then there exists a unique isomorphism between X1 and X2. In other words,

the initial object in a category is uniquely determined up to (unique) isomorphism.

We are interested in identifying the initial objects in the category of extensions of G with

homoclinisms discussed in Section 3.4.3.

Lemma 3.4.3 (Existence and description of initial objects). For a group G, consider

the category of central extensions of G with homoclinisms. The following are true for this

category.

1. “Abstract nonsense” is a non-derogatory term used to refer to proof methods that rely on formalistic
ideas, typically from category theory, rather than on the specifics of the structures being studied. Statements
proved using abstrcat nonsense are often very general.
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1. There exists a central extension E0 of G for which the natural homomorphism Ω0 :

G ∧G→ E′0 is an isomorphism.

2. Any central extension E0 of G for which the natural homomorphism Ω0 : G∧G→ E′0

is an isomorphism is an initial object of the category.

3. If a central extension E1 of G is an initial object of the category, the corresponding

homomorphism Ω1 : G ∧G→ E′1 is an isomorphism.

4. Combining all the above: the category of central extensions of G with homoclinisms

admits initial objects, and a central extension E → G is an initial object for the

category if and only if the commutator map homomorphism ΩE,G : G∧G→ [E,E] is

an isomorphism.

Proof. • Proof of (1): In Section 3.4.2, we constructed a central extension group E0 for

which the natural map Ω0 : G ∧G→ E′0 is an isomorphism.

• Proof of (2): Suppose E0 is a central extension for which the commutator map Ω0 :

G ∧ G → E′0 is an isomorphism. For any central extension E2, there is a natural

homomorphism Ω2 : G∧G→ E′2. Composing this with the inverse of Ω0, we obtain a

homomorphism ϕ : E′0 → E′2 that defines a homoclinism of the extensions. Moreover,

by Lemma 3.4.2, this is the unique homoclinism of the extensions.

• Proof of (3): We already know of the existence of a central extension E0 for which

Ω0 : G∧G→ E′0 is an isomorphism by (1). We also know that it is an initial object by

(2). By the uniqueness of initial objects up to isomorphism, E0 and E1 are isomorphic

in the category of central extensions of G with homoclinisms. Thus, there exists an

isomorphism ϕ1 : E′0 → E′1 such that ϕ1 ◦ Ω0 = Ω1. Since both ϕ1 and Ω0 are

isomorphisms, Ω1 is also an isomorphism.

• Proof of (4): This follows by combining (1), (2), and (3).
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3.4.7 An alternate construction of the initial object

Here is an alternative way of constructing a central extension E1 for which the natural map:

Ω1 : G ∧G→ E1

is an isomorphism.

Write G as the quotient of a free group F by a normal subgroup R of F . Let ν : F → G

denote the quotient map. The kernel of ν is R.

The group E1 that we are interested in is F/[F,R]. This group E1 is a central extension

of G in a natural fashion. Denote by ν the corresponding quotient map E1 → G. Con-

sider the commutator map ω1 : G × G → E1 and denote by Ω1 the corresponding group

homomorphism:

Ω1 : G ∧G→ [E1, E1]

Consider any extension:

0 → A→ E2
µ→ G→ 1

with the natural commutator map ω2 : G×G→ E2 and the corresponding commutator

map homomorphism:

Ω2 : G ∧G→ [E2, E2]

Our goal is to show that there there exists a unique homomorphism ϕ : [E1, E1] →

[E2, E2] such that ϕ ◦ ω1 = ω2, or equivalently, ϕ ◦ Ω1 = Ω2.

The map ν : F → G lifts to a map ψ : F → E2 because F is a free group (note that the
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lift is not necessarily unique). Explicitly, this means that µ ◦ ψ = ν.

We know that ν(R) is trivial, so µ(ψ(R)) is trivial. Thus, ψ(R) lands inside the kernel

of µ, which is the image of A in E2. Thus, ψ(R) is a central subgroup of E2. Therefore,

ψ([F,R]) = [ψ(F ), ψ(R)] is trivial.

Thus, ψ descends to a homomorphism θ : E1 → E2, where E1 = F/[F,R] as defined

above, with the property that µ ◦ θ = ν. The condition µ ◦ θ = ν can be interpreted as

saying that θ is a homomorphism from the central extensions (E1, ν) to the central extension

(E2, µ). Denote by ϕ : E′1 → E′2 the restriction of θ to E′1. Thus, by Lemma 3.4.1, ϕ defines

a homoclinism of the central extensions. Lemma 3.4.2 now establishes that the homoclinism

is unique. Finally, Lemma 3.4.3 establishes from this that (E1, ν) defines an initial object in

the category of central extensions of G with homoclinisms.

Clarification regarding uniqueness: In the discussion above, the lift ψ : F → E2 of

ν : F → G is not unique, because it involves picking arbitrary coset representatives of G in

E2 for the freely generating set of F . The homomorphism θ : E1 → E2 also need not be

unique. However, the map ϕ : E′1 → E′2, obtained by restricting θ to E′1, is unique.

Canonical choice of E1

The description of E1 above is unique once we fix the description of G of the form F/R

where F is a free group. Specifying a description of this form is equivalent to specifying a

generating set for G, and thus, the description relies on a choice of generating set for G.

It is possible to make a canonical choice of E1 by making a canonical choice of generating

set for G, namely, the entire underlying set of G. In this case, the free group F is the

free group on the underlying set of G, and the normal subgroup R is generated by the

multiplication table of G, viewed as relations within F (explicitly, for any product relation

of the form gh = k in G, we introduce the relation ghk−1 in F ).

There is an alternative description of the group E1 that demonstrates its canonical nature:

99



E1 is the freest possible group admitting G as a quotient by a central subgroup.2

3.4.8 Functoriality of exterior square and Schur multiplier

The exterior square and Schur multiplier are both functorial. Explicitly, for any homomor-

phism ϕ : G → H of groups, there are homomorphisms ϕ ∧ ϕ : G ∧ G → H ∧ H and

M(ϕ) : M(G) → M(H) and the associations are functorial. This means that for homo-

morphisms ϕ : G → H and θ : H → K, (θ ◦ ϕ) ∧ (θ ◦ ϕ) = (θ ∧ θ) ◦ (ϕ ∧ ϕ) and also

M(θ ◦ ϕ) = M(θ) ◦M(ϕ).

The proofs of both assertions are straightforward, but we are not including them here

because we do not use the functoriality of the Schur multiplier. See a more detailed discussion

of functoriality in the Appendix, Section A.2.1.

3.4.9 Homoclinisms and words for central extensions

We state and prove some results that are similar in spirit to the results in Section 2.1.6.

Lemma 3.4.4. Suppose G is a group and w(g1, g2, . . . , gn) is a word in n letters with

the property that w evaluates to the identity element in every abelian group. The following

are true.

1. For every central extension E of G, w can be used to define a set map χw,E : Gn →

[E,E].

2. For any homoclinism between central extensions E1 and E2, with the central extension

specified via a homomorphism ϕ : [E1, E1] → [E2, E2], we have that:

ϕ ◦ χw,E1
= χw,E2

2. This might tempt one to think that (E1, ν) is an initial object in the category of central extensions
of G with homomorphisms, but the non-uniqueness of homomorphisms involved, along with some other
considerations, makes this false.
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Proof. Proof of (1): This is similar to the proof of Theorem 2.1.2. Alternatively, we can

deduce it from the result of Theorem 2.1.2 by noting that the map factors as follows:

Gn → (E/Z(E))n → [E,E]

Proof of (2): This is similar to the proof of Theorem 2.1.3. Alternatively, we can deduce

it from the result of Theorem 2.1.3 by factoring through E/Z(E).

We can now prove the theorem.

Theorem 3.4.5. Suppose G is a group and w(g1, g2, . . . , gn) is a word in n letters with

the property that w evaluates to the identity element in every abelian group. Then, there

exists a set map Xw : Gn → G∧G with the property that for any central extension E of G,

ΩE,G ◦Xw = χw,E .

Proof. Apply Part (1) of Lemma 3.4.4 to the case where the extension E0 is an initial object

in the category of central extensions of G, so that the map ΩE0,G : G ∧ G → [E0, E0] is

an isomorphism. Define Xw = Ω−1
E0,G

◦ χw,E0
. For any central extension E of G, there is

a homoclinism from the extension E0 to the extension E defined via the homomorphism

ϕ : [E0, E0] → [E,E]. By Part (2) of Lemma 3.4.4, we have:

ϕ ◦ χw,E0
= χw,E

We can rewrite χw,E0
as ΩE,G ◦Xw, and obtain:

ϕ ◦ (ΩE,G ◦Xw) = χw,E

Using associativity of composition, we obtain:
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(ϕ ◦ ΩE,G) ◦Xw = χw,E

Ω itself commutes with homoclinisms, so we obtain:

ΩE0,G ◦Xw = χw,E

3.5 Exterior square, Schur multiplier, and homoclinism for Lie

rings

A large part of this section repeats for Lie rings what the previous section did for groups.

The main exception is the content in Sections 3.5.2 and Section 3.5.3. The material presented

in Section 3.5.2 has no natural group analogue, while the results Section 3.5.3 have group

analogues that are harder to prove, and are deferred to Sections 3.6.11 and 5.4.3.

For background on the homology and cohomology theory of Lie rings, see Weibel’s ho-

mological algebra textbook [47].

3.5.1 Exterior square

The concept of exterior square of a Lie ring appears to have first been explicitly discussed

in the literature in the paper [16] by Graham Ellis.

The definition that we provide here for the exterior square is the “abstract” definition.

We will provide a concrete definition (based on generators and relations) in Section 3.9.3.

The equivalence of the two approaches follows from the work in [16]. Background theory on

the homology of Lie rings is discussed in [13] and the references therein.

Suppose L is a Lie ring. The exterior square of L, denoted by L∧L, is defined as follows.

Let F be the free Lie ring on the set L× L.
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For any central extension:

0 → A→ N → L→ 0

there is a set map (in fact, a Z-bilinear map):

ωN,L : L× L→ [N,N ]

given by:

ωN,L(x, y) = [x̃, ỹ]

where x̃ denotes any element of N that maps to x and ỹ denotes any element of N that

maps to y. Note that the map is well defined (i.e., it does not depend on the choice of the

lifts x̃ and ỹ) because the extension is a central extension.

F is the free Lie ring on L× L, so ωN,L gives rise to a Lie ring homomorphism:

ω̂N,L : F → [N,N ]

Note also that this homomorphism is surjective, because by definition, [N,N ] is the

subring of N generated by the image of the set map ωN,L.

Define R as the intersection of the kernels of all such homomorphisms ω̂N,L where N

varies over all central extension Lie rings with quotient ring L. Note that even though

the collection of all such homomorphisms is too large to be a set, the collection of possible

kernels is a set, so the intersection is well defined. In other words, R is the set of all Z-linear

combinations of formal pairs such that the corresponding sums of Lie brackets would become

trivial in every central extension of L. We define the exterior square L ∧ L as the quotient

Lie ring F/R. The image of (x, y) in the Lie ring is denoted x ∧ y.

It is clear from the definition that, for any central extension N with short exact sequence:
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0 → A→ N → L→ 0

there exists a unique natural homomorphism ΩN from L ∧ L to [N,N ] satisfying the

condition that for any x, y ∈ L we have:

ΩN (x ∧ y) = [x̃, ỹ]

where x̃ and ỹ are elements of N that map to x and y respectively. Note also that ΩN

is surjective.

As a special case of the above, there is a natural homomorphism:

L ∧ L→ [L,L]

given on a generating set by:

x ∧ y 7→ [x, y]

The kernel of this homomorphism is called the Schur multiplier of L and is denoted M(L).

We can easily deduce that M(L) is a central subring of L ∧ L. We thus have a short exact

sequence:

0 →M(L) → L ∧ L→ [L,L] → 0

3.5.2 Free Lie ring on an abelian group

Suppose G is an abelian group. The free Lie ring on G is defined as the initial object in the

category of Lie rings L with group homomorphisms from G to them.

Lemma 3.5.1. The free Lie ring on G exists and is a N-graded Lie ring where the degree
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1 homogeneous component is isomorphic to G.

Proof. The free Lie ring on G is the quotient of the free ring on G by the ideal generated by

all the Lie identities. The free ring on G is given as the infinite direct sum:

∞⊕
i=1

i⊗
G

The ideal that we need to factor out by is a homogeneous ideal because all the Lie

identities are homogeneous identities. Thus, the free Lie ring is naturally a N-graded Lie

ring.

Denote by L the free Lie ring on G. Then, for any positive integer c, we can define the

free class c Lie ring on G as the quotient ring L/γc+1(L). Note that this is also a N-graded

Lie ring, but it is zero except in the first c homogeneous components. In particular, this is

a quotient of:

c⊕
i=1

i⊗
G

Lemma 3.5.2. Suppose G is an abelian group. The degree 2 homogeneous component

of the free Lie ring on G is isomorphic to the ring G ∧Z G. Equivalently, the free class two

Lie ring on G has additive group G⊕ (G ∧Z G) with Lie bracket:

[(x, u), (y, v)] = [0, x ∧Z y]

Proof. Note that of the Lie ring identities, the Jacobi identity becomes redundant because

of the class two condition. The only condition on the Lie bracket is that it is alternating.

Taking the quotient of G⊕ (G⊗G) by this relation gives G⊕ (G ∧Z G).
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3.5.3 Relation between exterior square of a Lie ring and exterior square in

the abelian group sense

Recall that the additive group of L has an exterior square as an abelian group. Denote this

as L ∧Z L.

We have a canonical abelian group homomorphism:

L ∧Z L→ L ∧ L

The homomorphism is constructed as follows. For every central extension N of L, the

map ΩN : L× L→ [N,N ] is Z-bilinear because the Lie bracket map itself is Z-bilinear.

Thus, the natural map L × L → L ∧ L given by (x, y) 7→ x ∧ y is Z-bilinear. Hence, it

induces an abelian group homomorphism L ∧Z L → L ∧ L. This is the homomorphism we

seek.

The canonical homomorphism L ∧Z L→ L ∧ L is surjective: It is obvious that L ∧ L is

generated as a Lie ring by the image of L∧ZL. The main thing to verify is that, in fact, the

image of L ∧Z L is closed under the Lie bracket. The following identity demonstrates this:

[(m1 ∧ n1), (m2 ∧ n2)] = −[n1,m1] ∧ [m2, n2]

We now turn to a proof of an important result. Note that this is subsumed by the explicit

presentation of the exterior square in Section 3.9.3, but we give an explicit proof here for

convenience.

Lemma 3.5.3. Suppose L is an abelian Lie ring. Then, the canonical surjective homo-

morphism L ∧Z L→ L ∧ L is an isomorphism. This

Proof. We have already established surjectivity, so to demonstrate injectivity, it suffices to

construct a central extension N of L for which the composite map L ∧Z L → [N,N ] is an
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isomorphism. Taking N to be the free class two Lie ring on the additive group of L works,

based on the discussion in Section 3.5.2.

3.5.4 The existence of a single central extension that realizes the exterior

square

Consider a Lie ring L. A natural question is whether there exists a central extension Lie

ring N with quotient Lie ring L with the property that the natural homomorphism:

ΩN : L ∧ L→ [N,N ]

is an isomorphism.

The answer to this question is yes. We provide one construction below. We will provide

another construction in Section 3.5.9.

Recall the earlier description of L ∧ L as a quotient F/R. The ideal R was defined

as the intersection of all possible ideals arising as kernels of the natural homomorphisms

F → [N,N ] for a central extension Lie ring N . For each possible ideal Ji, i ∈ I of F that

arises this way, let Ni denote a corresponding central extension of L.

Define N0 to be the pullback (also called the fiber product or the subdirect product)

corresponding to all the quotient maps Ni → L. We can verify that the natural mapping:

F → [N0, N0]

has kernel precisely R, and hence, the mapping:

L ∧ L→ [N0, N0]

is an isomorphism.
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3.5.5 Homoclinism of central extensions

Suppose L is a Lie ring. We define a certain category for which we are interested in computing

the initial object. We will call this category the category of central extensions of L with

homoclinisms. Explicitly, the objects of the category are short exact sequences of the form:

0 → A→ N → L→ 0

where the image of A is central in N .

The morphisms in the category, which we call homoclinisms of central extensions, are

defined as follows. For two objects:

0 → A1 → N1 → L→ 0

and

0 → A2 → N2 → L→ 0

a morphism from the first to the second is a Lie ring homomorphism ϕ : N ′
1 → N ′

2 such

that the following holds. Let ω1 : L× L→ N ′
1 denote the map arising from the Lie bracket

map in N1 and let ω2 : L× L→ N ′
2 denote the corresponding map in N2. We require that

ϕ ◦ ω1 = ω2 as set maps.

The above condition can be reframed in terms of Lie ring homomorphisms if we use the

exterior square: let Ω1 : L ∧ L→ N ′
1, Ω2 : L ∧ L→ N ′

2 denote the natural homomorphisms

described in Section 3.5.1. The condition we need is that ϕ ◦ Ω1 = Ω2.
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3.5.6 Relation between the category of central extensions and the category

of central extensions with homoclinisms

Any homomorphism of central extensions induces a homoclinism of central extensions. Ex-

plicitly, consider two central extensions:

0 → A1 → N1
ν1→ L→ 0

and

0 → A2 → N2
ν2→ L→ 0

As discussed in Section 3.2.5, the central extensions are completely described by the pairs

(N1, ν1) and (N2, ν2) respectively. A homomorphism of central extensions can be specified

as a homomorphism θ : N1 → N2 satisfying the condition that ν2 ◦ θ = ν1.

Any such homomorphism of central extensions induces a homoclinism of central exten-

sions. Explicitly, for a homomorphism θ : N1 → N2 satisfying ν2 ◦ θ = ν1, define ϕ as

the homomorphism N ′
1 → N ′

2 obtained by restricting θ to N ′
1. We claim that ϕ defines a

homoclinism of the central extensions. We now prove that this construction works.

Lemma 3.5.4. Suppose (N1, ν1) and (N2, ν2) are central extensions of a Lie ring L,

and θ : N1 → N2 is a homomorphism of central extensions, i.e., ν2 ◦ θ = ν1. Denote by

ω1 : L × L → N ′
1 and ω2 : L × L → N ′

2 the maps induced by the commutator maps in N1

and N2 respectively. Let ϕ : N ′
1 → N ′

2 be the homomorphism obtained by restricting θ to

the derived subring N ′
1. Then, ϕ is a homoclinism of central extensions, i.e., ϕ ◦ ω1 = ω2.

Proof. Let u, v be arbitrary elements of L (possibly equal, possibly distinct). Our goal is to

show that:
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ϕ(ω1(u, v)) = ω2(u, v)

Let x, y ∈ N1 be elements such that ν1(x) = u and ν2(y) = v. Then, by definition,

ω1(u, v) = [x, y]. Simplify the left side:

ϕ(ω1(u, v)) = ϕ([x, y]) = θ([x, y]) = [θ(x), θ(y)] = ω2(ν2(θ(x)), ν2(θ(y)))

Now, use that ν2 ◦ θ = ν1 and simplify further to:

ω2(ν1(x), ν1(y)) = ω2(u, v)

which is the right side.

3.5.7 Uniqueness of homoclinism if it exists

We will show that if a homoclinism exists between two central extensions, it must be unique.

Lemma 3.5.5. Consider two short exact sequences that give central extensions of a Lie

ring L:

0 → A1 → N1 → L→ 0

0 → A2 → N2 → L→ 0

Denote by ω1 : L× L→ N ′
1 and ω2 : L× L→ N ′

2 the Lie bracket maps.

Suppose there exists homoclinisms ϕ, θ from the first central extension to the second.

Explicitly, ϕ : N ′
1 → N ′

2 and θ : N ′
1 → N ′

2 are homomorphisms such that ϕ ◦ ω1 = ω2 and

θ ◦ ω1 = ω2. Then, ϕ = θ.
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Proof. Denote by ν1 the quotient map N1 → L and by ν2 the quotient map N2 → L.

It will suffice to show that ϕ and θ agree with each other on the set of all Lie brackets,

which is a generating set for N ′
1. Consider a Lie bracket [x, y] with x, y ∈ N1. Let u = ν1(x)

and v = ν1(y).

By definition, [x, y] = ω1(u, v). Thus, ϕ([x, y]) = ϕ(ω1(u, v)) = ω2(u, v). Similarly,

θ([x, y]) = θ(ω1(u, v)) = ω2(u, v). We thus obtain that ϕ([x, y]) = θ([x, y]), completing the

proof.

Thus, if a homoclinism exists, it is unique. However, a homoclinism need not exist.

The obstruction occurs if there are relations within the derived subring N ′
1 such that the

corresponding relations are not valid in the derived subring N ′
2.

3.5.8 Existence and description of initial objects in the category of central

extensions up to homoclinisms

We are interested in identifying the initial objects in the category of extensions of L with

homoclinisms discussed in Section 3.5.5.

Lemma 3.5.6 (Existence and description of initial objects). For a Lie ring L, consider

the category of central extensions of L with homoclinisms. The following are true for this

category.

1. There exists a central extension N0 of L for which the natural homomorphism Ω0 :

L ∧ L→ N ′
0 is an isomorphism.

2. Any central extension N0 of L for which the natural homomorphism Ω0 : L∧L→ N ′
0

is an isomorphism is an initial object of the category.

3. If a central extension N1 of L is an initial object of the category, the corresponding

homomorphism Ω1 : L ∧ L→ N ′
1 is an isomorphism.
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4. Combining all the above: the category of central extensions of L with homoclinisms

admits initial objects, and a central extension N → L is an initial object for the

category if and only if the Lie bracket map homomorphism ΩN : L∧L→ [N,N ] is an

isomorphism.

Proof. • Proof of (1): In Section 3.5.4, we constructed a central extension Lie ring N0

for which the natural map Ω0 : L ∧ L→ N ′
0 is an isomorphism.

• Proof of (2): Suppose N0 is a central extension for which the Lie bracket map Ω0 :

L ∧ L → N ′
0 is an isomorphism. For any central extension N2, there is a natural

homomorphism Ω2 : L∧L→ N ′
2. Composing this with the inverse of Ω0, we obtain a

homomorphism ϕ : N ′
0 → N ′

2 that defines a homoclinism of the extensions. Moreover,

by Lemma 3.5.5, this is the unique homoclinism of the extensions.

• Proof of (3): We already know of the existence of a central extension N0 for which

Ω0 : L∧L→ N ′
0 is an isomorphism by (1). We also know that it is an initial object by

(2). By the uniqueness of initial objects up to isomorphism, N0 and N1 are isomorphic

in the category of central extensions of L with homoclinisms. Thus, there exists an

isomorphism ϕ1 : N ′
0 → N ′

1 such that ϕ1 ◦ Ω0 = Ω1. Since both ϕ1 and Ω0 are

isomorphisms, Ω1 is also an isomorphism.

• Proof of (4): This follows by combining (1), (2), and (3).

3.5.9 An alternate construction of the initial object

Here is an alternative way of constructing a central extension N1 for which the natural map:

Ω1 : L ∧ L→ N1
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is an isomorphism.

Write L as the quotient of a free Lie ring F by an ideal R of F . Let ν : F → L denote

the quotient map. The kernel of ν is R.

The Lie ring N1 that we are interested in is F/[F,R]. This Lie ring N1 is a central

extension of L in a natural fashion. Denote by ν the corresponding quotient map N1 → L.

Consider the Lie bracket map ω1 : L×L→ N1 and denote by Ω1 the corresponding Lie ring

homomorphism:

Ω1 : L ∧ L→ [N1, N1]

Consider any extension:

0 → A→ N2
µ→ L→ 0

with the natural Lie bracket map ω2 : L × L → N2 and the corresponding Lie bracket

map homomorphism:

Ω2 : L ∧ L→ [N2, N2]

Our goal is to show that there there exists a unique homomorphism ϕ : [N1, N1] →

[N2, N2] such that ϕ ◦ ω1 = ω2, or equivalently, ϕ ◦ Ω1 = Ω2.

The map ν : F → L lifts to a map ψ : F → N2 because F is a free Lie ring (note that

the lift is not necessarily unique). Explicitly, this means that µ ◦ ψ = ν.

We know that ν(R) is trivial, so µ(ψ(R)) is trivial. Thus, ψ(R) lands inside the kernel

of µ, which is the image of A in N2. Thus, ψ(R) is a central subring of N2. Therefore,

ψ([F,R]) = [ψ(F ), ψ(R)] is trivial.

Thus, ψ descends to a homomorphism θ : N1 → N2, where N1 = F/[F,R] as defined

above, with the property that µ ◦ θ = ν. The condition µ ◦ θ = ν can be interpreted as

saying that θ is a homomorphism from the central extensions (N1, ν) to the central extension
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(N2, µ). Denote by ϕ : N ′
1 → N ′

2 the restriction of θ to N ′
1. Thus, by Lemma 3.5.4, ϕ defines

a homoclinism of the central extensions. Lemma 3.5.5 now establishes that the homoclinism

is unique. Finally, Lemma 3.5.6 establishes that (N1, ν1) defines an initial object in the

category of central extensions of L with homoclinisms.

Clarification regarding uniqueness: In the discussion above, the lift ψ : F → N2 of

ν : F → L is not unique, because it involves picking arbitrary coset representatives of L in

N2 for the freely generating set of F . The homomorphism θ : N1 → N2 also need not be

unique. However, the map ϕ : N ′
1 → N ′

2, obtained by restricting θ to N ′
1, is unique.

3.5.10 Functoriality of exterior square and Schur multiplier

The exterior square and Schur multiplier are both functorial. Explicitly, for any homomor-

phism ϕ : L → H of Lie rings, there are homomorphisms ϕ ∧ ϕ : L ∧ L → H ∧ H and

M(ϕ) : M(L) → M(H) and the associations are functorial. This means that for homo-

morphisms ϕ : L → H and θ : H → K, (θ ◦ ϕ) ∧ (θ ◦ ϕ) = (θ ∧ θ) ◦ (ϕ ∧ ϕ) and also

M(θ ◦ ϕ) = M(θ) ◦M(ϕ).

The proofs of both assertions are straightforward, but we are not including them here

because we do not use the functoriality of the Schur multiplier. See a more detailed discussion

of functoriality in the Appendix, Section A.2.1.

3.5.11 Homoclinisms and words for central extensions

We state and prove some results that are similar in spirit to the results in Section 2.2.3.

Lemma 3.5.7. Suppose L is a Lie ring and w(g1, g2, . . . , gn) is a Lie ring word in n

letters with the property that w evaluates to the zero element in every abelian Lie ring. The

following are true.

1. For every central extension N of L, w can be used to define a set map χw,N : Ln →
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[N,N ].

2. For any homoclinism between central extensions N1 and N2, with the central extension

specified via a homomorphism ϕ : [N1, N1] → [N2, N2], we have that:

ϕ ◦ χw,N1
= χw,N2

Proof. Proof of (1): This is similar to the proof of Theorem 2.2.2. Alternatively, we can

deduce it from the result of Theorem 2.2.2 by noting that the map factors as follows:

Ln → (N/Z(N))n → [N,N ]

Proof of (2): This is similar to the proof of Theorem 2.2.3. Alternatively, we can deduce

it from the result of Theorem 2.2.3 by factoring through N/Z(N).

We can now prove the theorem.

Theorem 3.5.8. Suppose L is a Lie ring and w(g1, g2, . . . , gn) is a word in n letters with

the property that w evaluates to the identity element in every abelian Lie ring. Then, there

exists a set map Xw : Ln → L ∧ L with the property that for any central extension N of L,

ΩN,L ◦Xw = χw,N .

Proof. Apply Part (1) of Lemma 3.5.7 to the case where the extension N0 is an initial object

in the category of central extensions of L, so that the map ΩN0,L : L ∧ L → [N0, N0] is

an isomorphism. Define Xw = Ω−1
N0,L

◦ χw,E0
. For any central extension N of L, there is

a homoclinism from the extension N0 to the extension N defined via the homomorphism

ϕ : [N0, N0] → [N,N ]. By Part (2) of Lemma 3.5.7, we have:

ϕ ◦ χw,N0
= χw,N
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We can rewrite χw,N0
as ΩN,L ◦Xw, and obtain:

ϕ ◦ (ΩN,L ◦Xw) = χw,N

Using associativity of composition, we obtain:

(ϕ ◦ ΩN,L) ◦Xw = χw,N

Ω itself commutes with homoclinisms, so we obtain:

ΩN0,L ◦Xw = χw,N

3.6 Exterior square, Schur multiplier, and the second

cohomology group

In Section 3.4, we studied the category of central extensions of a group G using the groups

G∧G (the exterior square of G) and M(G) (the Schur multiplier of G). Instead of studying

the original category, we considered the category of central extensions with homoclinisms as

the morphisms.

Our goal now is to consider, for any group G and abelian group A, the relation between

the group H2(G;A) (described in Section 3.1.5) and the isomorphism types of G and A.

More specifically, we will consider the equivalence relation of being isoclinic on H2(G;A).

The equivalence classes turn out to be the fibers of a surjective map from H2(G;A) that is

the right map of an important short exact sequence. We will construct the maps explicitly.

One crucial and nontrivial fact stated in this section will not be proved here, namely,

that the sequence is right exact, and more specifically, that the short exact sequence under

consideration is the same as the universal coefficient theorem short exact sequence. For a
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detailed description as well as proofs of these facts, see [6], Theorem 1.8, and in [12], Theorem

2.2.

3.6.1 Homomorphism from the Schur multiplier to the kernel of the

extension

We will now describe a very important homomorphism. For any central extension of the

form:

0 → A→ E → G→ 1

there is a natural homomorphism from the Schur multiplier of G to A, i.e., a homomor-

phism:

β : M(G) → A

We now proceed to describe this homomorphism.

As discussed in Section 3.4.1, there is a natural homomorphism:

Ω : G ∧G→ [E,E]

Compose this with the inclusion of [E,E] in E to get a map G ∧G→ E. We obtain:

0 → M(G) → G ∧G → [G,G] → 1

↓ ↓

0 → A → E → G → 1

It is immediate that this diagram commutes.

By general diagram-chasing, we can construct a unique map M(G) → A such that the

diagram continues to be commutative, and that is the homomorphism β that we want:
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0 → M(G) → G ∧G → [G,G] → 1

↓β ↓ ↓

0 → A → E → G → 1

3.6.2 Classification of extensions up to isoclinism

Given a group G and an abelian group A, we say that the central extensions E1 and E2 with

short exact sequences:

0 → A→ E1 → G→ 1

and

0 → A→ E2 → G→ 1

are isoclinic (fixing both G and A) if there exists an isomorphism of groups ϕ : E′1 → E′2

satisfying both the following conditions:

• Isoclinic as extensions of G: If Ω1 : G ∧ G → E′1 and Ω2 : G ∧ G → E′2 are the

commutator map homomorphisms, then ϕ ◦ Ω1 = Ω2.

• Suppose B is the inverse image in A of [E1, E1]. Then, B is also the inverse image

in A of [E2, E2]. Moreover, composing ϕ with the inclusion of B in [E1, E1] gives the

inclusion of B in [E2, E2].

3.6.3 Relating the classification of extensions up to isoclinism with the

homomorphism from the Schur multiplier

In Section 3.6.1, we noted that for any central extension:

0 → A→ E → G→ 1
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we have a natural homomorphism β : M(G) → A.

The homomorphism is uniquely determined by the choice of extension up to congruence,

so we get a set map:

H2(G;A) → Hom(M(G), A)

In Section 3.6.4, we will see that this set map is a group homomorphism. We alluded to

the group structure on H2(G;A) in Section 3.1.5 and described it in detail in Section 3.3.

As we will see in Section 3.6.4, this group homomorphism is surjective and is the right

map in an important short exact sequence. For now, however, we note that this group

homomorphism classifies extensions up to isoclinism. Explicitly, two extensions E1, E2 are

isoclinic in the sense of Section 3.6.2 if and only if they induce the same homomorphism

M(G) → A. We now proceed to explain why. Note that one direction, namely the direction

that isoclinic extensions define the same homomorphism from M(G) to A, is obvious from

the definition. The other direction requires some work.

Consider the two short exact sequences below:

0 → M(G) → G ∧G → [G,G] → 1

↓β ↓ ↓id

0 → A → E → G → 1

Suppose B is the subgroup of A that arises as the image of the homomorphism β :

M(G) → A and β′ : M(G) → B is the map obtained by restricting the co-domain. We then

have the following two short exact sequences, where all the downward maps are surjective:

0 → M(G) → G ∧G → [G,G] → 1

↓β′ ↓ΩE,G ↓id

0 → B → [E,E] → [G,G] → 1
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Note that the second row sequence is exact because all the downward maps are surjective.3

It is easy to see that if E1 and E2 are two central extensions of G that give the same

map β, then we can obtain an isomorphism [E1, E1] → [E2, E2] such that in the diagram

below, the composite of the downward maps in the middle column is ΩE2,G, and the lower

downward arrow in the middle column is an isomorphism.

0 → M(G) → G ∧G → [G,G] → 1

↓β′ ↓ΩE,G ↓id

0 → B → [E1, E1] → [G,G] → 1

↓id ↓ ↓id

0 → B → [E2, E2] → [G,G] → 1

3.6.4 The universal coefficient theorem short exact sequence

As before, let G be a group and let A be an abelian group. Our goal is to understand all

central extension groups E, i.e., short exact sequences of the following form where the image

of A in E is in the center of E:

0 → A→ E → G→ 1

As discussed earlier, the set of all congruence classes of extensions is classified by the

group H2(G;A) (the second cohomology group for trivial group action). We now proceed

to describe a related short exact sequence. The short exact sequence is discussed in [6],

Theorem 1.8, and in [12], Theorem 2.2. The short exact sequence is as follows:

0 → Ext1Z(Gab, A) → H2(G;A) → Hom(M(G), A) → 0 (3.1)

3. Some proof details involving diagram chasing are being omitted for brevity.
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Interpretation of the left map of the sequence

The map:

Ext1Z(Gab, A) → H2(G;A)

takes an abelian group extension with normal subgroup A and quotient group Gab, and

gives an extension with G on top of A that can loosely be described as follows: the restriction

to the derived subgroup [G,G] splits and the quotient sits as per the element of Ext1Z(Gab, A).

Explicitly, it can be thought of as a composite of two maps:

Ext1Z(Gab, A) → H2(Gab;A) → H2(G;A)

where the first map treats an abelian group extension simply as a group extension, and

the second map uses the contravariance of H2 in its first argument.

Interpretation of the right map of the sequence

The right map of the sequence:

H2(G;A) → Hom(M(G), A)

sends an extension group to the corresponding map β described in Section 3.6.1. In

Section 3.6.3, we showed that the map H2(G;A) → Hom(M(G), A) classifies extensions up

to isoclinism.

What the existence of the short exact sequence tells us

Consider again the short exact sequence:

0 → Ext1Z(Gab, A) → H2(G;A) → Hom(M(G), A) → 0
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We now consider the three aspects of exactness:

• Left exactness, i.e., the injectivity of the map Ext1Z(Gab, A) → H2(G;A). This is the

assertion that the only abelian group extension for Gab on top of A that maps to G×A

is the trivial extension. This is immediate from the definition.

• Middle exactness, i.e., the image of the map Ext1Z(Gab, A) → H2(G;A) is precisely

the same as the kernel of the map H2(G;A) → Hom(M(G), A). This is easy to see

from the definition.

• Right exactness, i.e., the surjectivity of the map H2(G;A) → Hom(M(G), A). This

says that every homomorphism from M(G) to A arises from an extension with central

subgroup A and quotient group G. In other words, the set of extension types up to

isoclinism can be identified with the group Hom(M(G), A). This is the most important

and least obvious of the three exactness statements. Many of our later constructive

results will rely crucially on right exactness.

How it is a special case of the dual universal coefficient theorem

The general version of the dual universal coefficient theorem for group cohomology is as

follows:

0 → Ext1Z(Hk−1(G; Z), A) → Hk(G;A) → Hom(Hk(G; Z), A) → 0

If we set k = 2 and use the fact that M(G) is canonically isomorphic to H2(G; Z), and

also that Gab is canonically isomorphic to H1(G; Z), we get the short exact sequence we

have been discussing.
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The splitting of the short exact sequence

The dual universal coefficient theorem for group cohomology, in addition to providing the

short exact sequence above, also states that the short exact sequence always splits, but the

splitting is not in general canonical. Explicitly, the universal coefficient theorem states that:

Hk(G;A) ∼= Ext1Z(Hk−1(G; Z), A)⊕ Hom(Hk(G; Z), A)

In the special case of interest to us, we obtain:

H2(G;A) ∼= Ext1Z(Gab, A)⊕ Hom(M(G), A)

The direct sum decomposition is not in general canonical.

In Section 5.4.5, we will identify some special circumstances where the short exact se-

quence splits canonically.

3.6.5 An alternate characterization of initial objects, and the existence of

Schur covering groups

Recall that, by Lemma 3.4.3, a central extension:

0 → A→ E → G→ 1

is an initial object in the category of central extensions of G with homoclinisms if the

natural homomorphism:

ΩE,G : G ∧G→ [E,E]

is an isomorphism. We now provide an alternative characterization.

Lemma 3.6.1. Consider a group G and a central extension:
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0 → A→ E → G→ 1

The central extension is an initial object in the category of central extensions of G with

homoclinisms if and only if the corresponding homomorphism β : M(G) → A (described in

Section 3.6.1) is injective.

Proof. Let B be the image in A of β and let β′ be the restriction of β to co-domain B, so

β′ is a surjective homomorphism from M(G) to B. Note also that β is injective if and only

if β′ is an isomorphism.

As discussed in Section 3.6.3, we have the following morphism of short exact sequences,

where all the downward maps are surjective:

0 → M(G) → G ∧G → [G,G] → 1

↓β′ ↓ΩE,G ↓id

0 → B → [E,E] → [G,G] → 1

Since the right-most downward map is the identity map, we see (from some elementary

diagram chasing) that β′ is an isomorphism if and only if ΩE,G is an isomorphism.

Recall the definition of stem extension from Section 3.1.4. We provide an alternative

characterization of such extensions:

Lemma 3.6.2. A central extension 0 → A → E → G → 1 is a stem extension if and

only if the corresponding map β : M(G) → A is surjective.

Proof. Let B be the image in A of β and let β′ be the restriction of β to co-domain B, so

β′ is a surjective homomorphism from M(G) to B. Note also that β is surjective if and only

if B = A. Note also that A ≤ Z(E) by the assumption that the extension is central, so the
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challenge is to show that A ≤ [E,E] if and only if B = A.

As described in Section 3.6.3, we have the following morphism of two short exact se-

quences, with all the downward maps surjective:

0 → M(G) → G ∧G → [G,G] → 1

↓β′ ↓ΩE,G ↓id

0 → B → [E,E] → [G,G] → 1

Explicitly, B is the kernel of the homomorphism from [E,E] to [G,G]. The homomor-

phism from [E,E] to [G,G] is obtained by restricting to [E,E] the homomorphism from E

to G.

Thus, B = A ∩ [E,E]. It follows that A ≤ [E,E] if and only if B = A, completing the

proof.

We are now prepared for a definition.

Definition (Schur covering group). We define a Schur covering group of G as a group

extension E of G with short exact sequence:

0 → A→ E → G→ 1

satisfying the condition that it is a central extension and the corresponding map β :

M(G) → A (defined in Section 3.6.1) is an isomorphism. Equivalently, the extension must

satisfy both these conditions:

• The extension is a stem extension, i.e., the image of A in E is contained in Z(E)∩[E,E].

• The natural homomorphism ΩE,G : G ∧G→ [E,E] is an isomorphism.

The equivalence of the two versions of the definition follows from the two preceding

lemmas (Lemmas 3.6.1 and 3.6.2).
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The existence of Schur covering groups is not a priori clear, but can be deduced from the

short exact sequence of the preceding section.

Theorem 3.6.3. For any group G, Schur covering groups of G exist.

Proof. For any abelian group A, we have the short exact sequence described in Section 3.6.4:

0 → Ext1Z(Gab, A) → H2(G;A) → Hom(M(G), A) → 0

Now, set A = M(G):

0 → Ext1Z(Gab,M(G)) → H2(G;M(G)) → Hom(M(G),M(G)) → 0

Consider the element IdM(G) ∈ Hom(M(G),M(G)). By surjectivity (i.e., right exact-

ness), there exists at least one element of H2(G;M(G)) that maps to this. Note that the

inverse image is in fact a coset in H2(G;M(G)) of the image of Ext1Z(Gab,M(G)). Each

element in this inverse image corresponds to a Schur covering group. If Ext1Z(Gab,M(G)) is

nontrivial, the Schur covering group need not be unique.

3.6.6 Realizability of surjective homomorphisms from the exterior square

Suppose G and D are groups and α : G ∧ G → D and δ : D → [G,G] are surjective

homomorphisms such that δ ◦α : G∧G→ [G,G] is the canonical map sending x∧y to [x, y].

We would like to know whether there is a central extension:

0 → A→ E → G→ 1

with the property that there is an isomorphism θ : E′ → D such that if we consider the

homomorphism:
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ΩE,G : G ∧G→ E′

then θ ◦ΩE,G = α. The answer to this question is yes. In fact, we can even choose E to

be a stem extension of G. We outline the construction below.

Recall that we have the following short exact sequence, describing G ∧ G as a central

extension of [G,G]:

0 →M(G) → G ∧G→ [G,G] → 1

Denote by A the image of M(G) under the set map α : G∧G→ D and by β : M(G) → A

the restricted map. We therefore have the following commutative diagram:

0 → M(G) → G ∧G → [G,G] → 1

↓β ↓α ↓id

0 → A → D
δ→ [G,G] → 1

Now, consider the short exact sequence described in Section 3.6.4:

0 → Ext1Z(Gab, A) → H2(G;A) → Hom(M(G), A) → 0

The right map is surjective, so there exists an extension group E (corresponding to an

element of H2(G,A)) such that the map β corresponding to E (as described in Sections 3.6.1

and 3.6.3) is the map β that we specified. Also, for reasons discussed in Section 3.6.3, we

can find an isomorphism θ : [E,E] → D such that θ ◦ ΩE,G = α.

3.6.7 The existence of stem groups

In Section 2.1.13, we defined a group G as a stem group if Z(G) ≤ G′. Now that we have

defined the concept of stem extension, we can provide an alternate definition of stem group:

G is a stem group if the short exact sequence:
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0 → Z(G) → G→ G/Z(G) → 1

makes G a stem extension.

We now turn to the proof of a statement made in Section 2.1.13 without proof.

Theorem 3.6.4. Suppose G is a group. Then, the following are true:

1. There exists a stem group K that is isoclinic to G.

2. In case G is finite, all stem groups isoclinic to G are finite and have the same order as

each other.

Proof. Proof of (1): Consider the short exact sequence:

0 → Z(G) → G→ G/Z(G) → 1

This short exact sequence allows us to think of G as a central extension with central

subgroup Z(G) and quotient group G/Z(G). We apply the construction in Section 3.6.1

(further discussed in Section 3.6.3) to obtain the natural map β : M(G/Z(G)) → Z(G). Let

B be the image of β. By the explicit construction, note that the image of β is actually inside

Z(G) ∩G′. Let β′ : M(G/Z(G)) → B be the map obtained by restricting the co-domain of

β to the image of β.

Consider now the short exact sequence of Section 3.6.4 for central subgroup B and quo-

tient group G/Z(G). The short exact sequence is:

0 → Ext1Z((G/Z(G))ab, B) → H2(G/Z(G);B) → Hom(M(G/Z(G)), B) → 0

In particular, the map:
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H2(G/Z(G);B) → Hom(M(G/Z(G)), B)

is surjective. This means that we can find a (possibly non-unique and non-canonical)

central extension K with short exact sequence:

0 → B → K → G/Z(G) → 1

such that the map βK corresponding to this extension (per Section 3.6.1) is the same as

β′. The following are now easy to verify:

• The image of B in K is the center of K.

• The image of B in K is contained in the derived subgroup K ′.

• G and K are isoclinic.

Proof of (2): It is easy to verify that any stem group isoclinic to G can be constructed in

the above fashion, i.e., it is a central extension group K with quotient group G/Z(G) and

central subgroup B such that the map βK : M(G/Z(G)) → B is equal to β′. In particular,

if G is finite, then both G/Z(G) and B are finite, so that K is finite. Further, the order of

K is |B||G/Z(G)|, so all stem groups isoclinic to G have the same order.

Finally, we wish to show that the order of all stem groups is less than or equal to the

order of G. For this, note that B is a subgroup of Z(G) ∩ G′, so that |B| ≤ |Z(G)|. Thus,

|K| = |B||G/Z(G)| ≤ |Z(G)||G/Z(G)| = |G|.

Note that although stem groups exist, there may be no canonical choice of stem group.

The problem is the absence of a canonical splitting of the short exact sequence, described

in Section 3.6.4. If a canonical splitting did exist, we could use that splitting to obtain a

canonical choice of extension.
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3.6.8 The Stallings exact sequence

The Stallings exact sequence was defined by Stallings in [44] and explored further by Eck-

mann, Hilton, and Stammbach in [12] for arbitrary group extensions.

Start with a short exact sequence of groups (note that A is not necessarily abelian, but

we use this notation to stay consistent with the other sections):

1 → A→ E → G→ 1

Then, the Stallings exact sequence is as follows:

M(E)
α→M(G)

β→ A/[E,A]
σ→ Eab τ→ Gab

The maps are described as follows:

• The homomorphism α : M(E) → M(G) arises from the functoriality of the Schur

multiplier, discussed in Section 3.4.8.

• The homomorphism β : M(G) → A/[E,A] arises from the corresponding map in

the central extension case (discussed below) once we replace the original short exact

sequence by the short exact sequence 1 → A/[E,A] → E/[E,A] → G→ 1.

• The homomorphism σ : A/[E,A] → Eab = E/[E,E] arises directly from the natural

inclusion A→ E under which [E,A] is mapped inside [E,E].

• The homomorphism τ : Eab → Gab arises from the quotient map E → G under which

[E,E] gets mapped inside [G,G].

In the central extension case, the Stallings exact sequence simplifies to:

M(E)
α→M(G)

β→ A
σ→ Eab τ→ Gab

The maps are described as follows:
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• The homomorphism α : M(E) → M(G) arises from the functoriality of the Schur

multiplier.

• The homomorphism β : M(G) → A is the same as that described in Section 3.6.1.

• The homomorphism σ : A→ Eab = E/[E,E] arises directly from the natural inclusion

A→ E under which [E,A] is mapped inside [E,E].

• The homomorphism τ : Eab → Gab arises from the quotient map E → G under which

[E,E] gets mapped inside [G,G].

3.6.9 Hopf’s formula: two proofs

Hopf’s formula states that if a group G can be expressed in the form F/R where F is a free

group and R is a normal subgroup of F , then:

M(G) ∼= (R ∩ [F, F ])/([F,R]) (3.2)

We provide two related proofs. The first proof relies on the observation in Section 3.4.7

that if we consider E1 = F/[F,R] as a central extension of G in a natural fashion, then

this central extension is an initial object in the category of group extensions of G with

homoclinisms. The exterior square G ∧G is therefore isomorphic to E′1 = [F, F ]/[F,R]:

G ∧G ∼= [F, F ]/[F,R] (3.3)

The Schur multiplier M(G) is isomorphic to the kernel of the natural homomorphism

E′1 → G′, which is the subgroup (R ∩ [F, F ])/[F,R] inside [F, F ]/[F,R].

Alternately, Hopf’s formula can be deduced from the Stallings exact sequence applied to

the short exact sequence:

1 → R→ F → G→ 1
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combined with the information that M(F ) is trivial. Explicitly, the Stallings exact se-

quence is:

M(F )
α→M(G)

β→ R/[F,R]
σ→ F/[F, F ]

τ→ G/[G,G]

Since M(F ) is trivial, we obtain from exactness that M(G) is isomorphic to the kernel

of the map σ. From this, we obtain Hopf’s formula.

3.6.10 Hopf’s formula: class one more version

The following is a slight variant of Hopf’s formula for nilpotent groups. Its equivalence with

the version of the preceding section (Section 3.6.9) is clear. It is computationally somewhat

more useful.

Suppose G is a nilpotent group of nilpotency class c. Suppose G can be expressed in the

form F/R where F is a free nilpotent group of class c+ 1 and R is a normal subgroup of F .

Then:

M(G) ∼= (R ∩ [F, F ])/([F,R]) (3.4)

Also:

G ∧G ∼= [F, F ]/[F,R] (3.5)

Free nilpotent groups are described later in more detail in Section 3.10.

3.6.11 Exterior square of an abelian group

Suppose G is an abelian group. Denote by G ∧Z G the exterior square of G as an abelian

group. We will show here that G ∧Z G is canonically isomorphic to G ∧G.

For any central extension:
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0 → A→ E → G→ 1

we know that E is a group of nilpotency class at most two. Further, the commutator

map:

ωE,G : G×G→ [E,E]

is Z-bilinear. This observation is specific to G being abelian (see Lemma A.3.2 in the

Appendix).

Based on this, we obtain that the map below is Z-bilinear:

G×G→ G ∧G

Thus, it induces a map:

G ∧Z G→ G ∧G

Moreover, since G ∧ G is generated by the elements x ∧ y, x, y ∈ G, the map above is

surjective.

The part that is not immediately obvious is that the map above is injective. In other

words, it is prima facie plausible that there are additional relations, beyond bilinearity, that

are always satisfied in central extensions of G. The explicit description of the exterior square

based on generators and relations in Section 3.8.4 will settle this point in a straightforward

manner: for an abelian group G, it will turn out that the above map is an isomorphism (see

Section 3.8.6 for a summary of the conclusions).

3.6.12 Relationship with K-theory

For any associative unital ring A, we can define a short exact sequence:

133



0 → K2(A) → St(A) → E(A) → 1

Here, St(A) denotes the Steinberg group of A and E(A) denotes the group of elementary

matrices over A (note that all these groups are the direct limits of the corresponding groups

for n × n matrices under the obvious inclusion mappings). It is known that K2(A) =

M(E(A)) is the Schur multiplier of E(A). It follows by unwinding the definitions that St(A)

is the exterior square of E(A). However, we have not been able to locate the statement

(namely, that St(A) is the exterior square of E(A)) anywhere explicitly in the K-theory

literature. This may well be because people who work in that area are unaware of the

terminology related to the exterior square.

For more information about the Steinberg group and K2(A), see [37].

3.7 Exterior square, Schur multiplier, and the second

cohomology group: Lie ring version

This section covers the Lie ring analogue of the material in Section 3.7. The motivation is

largely the same. The analogous material to Section 3.6.11 was already covered in Section

3.5.3, and is therefore not repeated here.

3.7.1 Homomorphism from the Schur multiplier to the kernel of the

extension

We will now describe a very important homomorphism. For any central extension of the

form:

0 → A→ N → L→ 0

there is a natural homomorphism from the Schur multiplier of L to A, i.e., a homomor-
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phism:

β : M(L) → A

We now proceed to describe this homomorphism.

As discussed in Section 3.5.1, there is a natural homomorphism:

Ω : L ∧ L→ [N,N ]

Compose this with the inclusion of [N,N ] in N to get a map L ∧ L→ N . We obtain:

0 → M(L) → L ∧ L → [L,L] → 0

↓ ↓

0 → A → N → L → 0

It is immediate that this diagram commutes.

By a special case of the snake lemma, we can construct a unique map M(L) → A such

that the diagram continues to be commutative, and that is the homomorphism β that we

want:

0 → M(L) → L ∧ L → [L,L] → 0

↓β ↓ ↓

0 → A → N → L → 0

3.7.2 Classification of extensions up to isoclinism

Given a Lie ring L and an abelian Lie ring A, we say that the central extensions N1 and N2

with short exact sequences:

0 → A→ N1 → L→ 0
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and

0 → A→ N2 → L→ 0

are isoclinic (fixing both L and A) if there exists an isomorphism of Lie rings ϕ : N ′
1 → N ′

2

satisfying both the following conditions:

• Isoclinic as extensions of L: If Ω1 : L ∧ L → N ′
1 and Ω2 : L ∧ L → N ′

2 are the Lie

bracket map homomorphisms, then ϕ ◦ Ω1 = Ω2.

• Suppose B is the inverse image in A of [N1, N1]. Then, B is also the inverse image in

A of [N2, N2]. Moreover, composing ϕ with the inclusion of B in [N1, N1] gives the

inclusion of B in [N2, N2].

3.7.3 Relating the classification of extensions up to isoclinism with the

homomorphism from the Schur multiplier

In Section 3.7.1, we noted that for any central extension:

0 → A→ N → L→ 0

we have a natural homomorphism β : M(L) → A.

The homomorphism is uniquely determined by the choice of extension up to congruence,

so we get a set map:

H2(L;A) → Hom(M(L), A)

In Section 3.7.4, we will see that this set map is a Lie ring homomorphism. We alluded

to the Lie ring structure on H2
Lie(L;A) in Section 3.2.4 and a detailed description is in the

Appendix.
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As we will see in Section 3.7.4, this Lie ring homomorphism is surjective and is the

right map in an important short exact sequence. For now, however, we note that this

Lie ring homomorphism classifies extensions up to isoclinism. Explicitly, two extensions

N1, N2 are isoclinic in the sense of the preceding section if and only if they induce the same

homomorphism M(L) → A. We now proceed to explain why.

Consider the two short exact sequences below:

0 → M(L) → L ∧ L → [L,L] → 0

↓β ↓ ↓

0 → A → N → L → 0

Suppose B is the subring of A that arises as the image of the homomorphism β : M(L) →

A and β′ : M(L) → B is the map obtained by restricting the co-domain. We then have the

following two short exact sequences, where all the downward maps are surjective:

0 → M(L) → L ∧ L → [L,L] → 0

↓β′ ↓ΩN,L ↓id

0 → B → [N,N ] → [L,L] → 0

Note that the second row sequence is exact because all the downward maps are surjective.4

It is easy to see that if N1 and N2 are two central Lie ring extensions of L that give

the same map β, then we can obtain an isomorphism [N1, N1] → [N2, N2] such that in the

diagram below, the composite of the downward maps in the middle column is ΩN2,L, and

the lower downward arrow in the middle column is an isomorphism.

4. Some proof details involving diagram chasing are being omitted for brevity.
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0 → M(L) → L ∧ L → [L,L] → 0

↓β′ ↓ΩN,L ↓id

0 → B → [N1, N1] → [L,L] → 0

↓id ↓ ↓id

0 → B → [N2, N2] → [L,L] → 0

3.7.4 The universal coefficient theorem short exact sequence

As before, let L be a Lie ring and let A be an abelian Lie ring. Our goal is to understand

all central extension Lie rings N , i.e., short exact sequences of the following form where the

image of A in N is in the center of N :

0 → A→ N → L→ 0

As discussed earlier, the set of all congruence classes of extensions is classified by the

group H2
Lie(L;A) (the second cohomology group for trivial Lie ring action). We now proceed

to describe a related short exact sequence, analogous to the short exact sequence discussed

in Section 3.6.4 for groups. The short exact sequence is as follows:

0 → Ext1Z(Lab, A) → H2(L;A) → Hom(M(L), A) → 0 (3.6)

Note that

Interpretation of the left map of the sequence

The map:

Ext1Z(Lab, A) → H2(L;A)

takes an abelian Lie ring extension with ideal A and quotient Lie ring Lab, and gives
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an extension with L on top of A that can loosely be described as follows: the restriction to

the derived subring [L,L] splits and the quotient sits as per the element of Ext1Z(Lab, A).

Explicitly, it can be thought of as a composite of two maps:

Ext1Z(Lab, A) → H2(Lab;A) → H2(L;A)

where the first map treats an abelian Lie ring extension simply as a Lie ring extension,

and the second map uses the contravariance of H2 in its first argument.

Interpretation of the right map of the sequence

The right map of the sequence:

H2(L;A) → Hom(M(L), A)

sends an extension Lie ring to the corresponding map β described in Section 3.7.1. In

Section 3.7.3, we showed that the map H2(L;A) → Hom(M(L), A) classifies extensions up

to isoclinism.

What the existence of the short exact sequence tells us

Consider again the short exact sequence:

0 → Ext1Z(Lab, A) → H2(L;A) → Hom(M(L), A) → 0

We now consider the three aspects of exactness:

• Left exactness, i.e., the injectivity of the map Ext1Z(Lab, A) → H2(L;A). This is the

assertion that the only abelian Lie ring extension for Lab on top of A that maps to

L× A is the trivial extension. This is immediate from the definition.
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• Middle exactness, i.e., the image of the map Ext1Z(Lab, A) → H2(L;A) is precisely the

same as the kernel of the map H2(L;A) → Hom(M(L), A). This is easy to see from

the definition.

• Right exactness, i.e., the surjectivity of the map H2(L;A) → Hom(M(L), A). This

says that every homomorphism from M(L) to A arises from an extension with central

subring A and quotient Lie ring L. In other words, the set of extension types up to

isoclinism can be identified with the group Hom(M(L), A). This is the most important

and least obvious of the three exactness statements. Many of our later constructive

results will rely crucially on right exactness.

How it is a special case of the dual universal coefficient theorem

The general version of the dual universal coefficient theorem for Lie ring cohomology is as

follows:

0 → Ext1Z(Hk−1(L; Z), A) → Hk(L;A) → Hom(Hk(L; Z), A) → 0

If we set p = 2 and use the fact that M(L) is canonically isomorphic to H2(L; Z), and

also that Lab is canonically isomorphic to H1(L; Z), we get the short exact sequence we have

been discussing.

The splitting of the short exact sequence

The dual universal coefficient theorem for Lie ring cohomology, in addition to providing the

short exact sequence above, also states that the short exact sequence always splits, but the

splitting is not in general canonical. Explicitly, the universal coefficient theorem states that:

Hk(L;A) ∼= Ext1Z(Hk−1(L; Z), A)⊕ Hom(Hk(L; Z), A)
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In the special case of interest to us, we obtain:

H2(L;A) ∼= Ext1Z(Lab, A)⊕ Hom(M(L), A)

The direct sum decomposition is not in general canonical.

In Section 5.4.5, we will note that the short exact sequence splits canonically in the case

that L itself is an abelian Lie ring.

3.7.5 An alternate characterization of initial objects, and the existence of

Schur covering Lie rings

Recall that, by Lemma 3.5.6, a central extension:

0 → A→ N → L→ 0

is an initial object in the category of central extensions of L with homoclinisms if the

natural homomorphism:

ΩN,L : L ∧ L→ [N,N ]

is an isomorphism. We now provide an alternative characterization.

Lemma 3.7.1. Consider a Lie ring L and a central extension:

0 → A→ N → L→ 0

The central extension is an initial object in the category of central extensions of L with

homoclinisms if and only if the corresponding homomorphism β : M(L) → A (described in

Section 3.6.1) is injective.
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Proof. Let B be the image in A of β and let β′ be the restriction of β to co-domain B, so

β′ is a surjective homomorphism from M(L) to B. Note also that β is injective if and only

if β′ is an isomorphism.

As discussed in Section 3.6.3, we have the following morphism of short exact sequences,

where all the downward maps are surjective:

0 → M(L) → L ∧ L → [L,L] → 0

↓β′ ↓ΩN,L ↓id

0 → B → [N,N ] → [L,L] → 0

Since the right-most downward map is the identity map, we see (from some elementary

diagram chasing) that β′ is an isomorphism if and only if ΩN,L is an isomorphism.

Recall the definition of stem extension from Section 3.2.3. We provide an alternative

characterization of such extensions:

Lemma 3.7.2. A central extension 0 → A → N → L → 0 is a stem extension if and

only if the corresponding map β : M(L) → A is surjective.

Proof. Let B be the image in A of β and let β′ be the restriction of β to co-domain B, so

β′ is a surjective homomorphism from M(L) to B. Note also that β is surjective if and only

if B = A. Note also that A ≤ Z(N) by the assumption that the extension is central, so the

challenge is to show that A ≤ [N,N ] if and only if B = A.

As described in Section 3.7.3, we have the following morphism of two short exact se-

quences, with all the downward maps surjective:

0 → M(L) → L ∧ L → [L,L] → 0

↓β′ ↓ΩN,L ↓id

0 → B → [N,N ] → [L,L] → 0
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Explicitly, B is the kernel of the homomorphism from [N,N ] to [L,L]. The homomor-

phism from [N,N ] to [L,L] is obtained by restricting to [N,N ] the homomorphism from N

to L.

Thus, B = A ∩ [N,N ]. It follows that A ≤ [N,N ] if and only if B = A, completing the

proof.

We are now prepared for a definition.

Definition (Schur covering Lie ring). We define a Schur covering Lie ring of L as a Lie

ring extension N of L with short exact sequence:

0 → A→ N → L→ 0

satisfying the condition that it is a central extension and the corresponding map β :

M(L) → A (defined in Section 3.7.1) is an isomorphism. Equivalently, the extension must

satisfy both these conditions:

• The extension is a stem extension, i.e., the image of A in N is contained in Z(N) ∩

[N,N ].

• The natural homomorphism ΩN,L : L ∧ L→ [N,N ] is an isomorphism.

The equivalence of the two versions of the definition follows from the two preceding

lemmas (Lemmas 3.7.1 and 3.7.2).

The existence of Schur covering Lie rings is not a priori clear, but can be deduced from

the short exact sequence of the preceding section.

Theorem 3.7.3. For any Lie ring L, Schur covering Lie rings of L exist.
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Proof. For any abelian Lie ring A, we have the short exact sequence described in Section

3.6.4:

0 → Ext1Z(Lab, A) → H2(L;A) → Hom(M(L), A) → 0

Now, set A = M(L):

0 → Ext1Z(Lab,M(L)) → H2(L;M(L)) → Hom(M(L),M(L)) → 0

Consider the element IdM(L) ∈ Hom(M(L),M(L)). By surjectivity (i.e., right exact-

ness), there exists at least one element of H2(L;M(L)) that maps to this. Note that the

inverse image is in fact a coset in H2(L;M(L)) of the image of Ext1Z(Lab,M(L)). Each

element in this inverse image corresponds to a Schur covering Lie ring. If Ext1Z(Lab,M(L))

is nontrivial, the Schur covering Lie ring need not be unique.

3.7.6 Realizability of surjective homomorphisms from the exterior square

Suppose L and D are Lie rings and α : L ∧ L → D and δ : D → [L,L] are surjective

homomorphisms such that δ ◦α : L∧L→ [L,L] is the canonical map sending x∧ y to [x, y].

We would like to know whether there is a central extension:

0 → A→ N → L→ 0

with the property that there is an isomorphism θ : N ′ → D such that if we consider the

homomorphism:

ΩN,L : L ∧ L→ N ′

then θ ◦ΩN,L = α. The answer to this question is yes. In fact, we can even choose N to

be a stem extension of L. We outline the construction below.
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Recall that we have the following short exact sequence, describing L ∧ L as a central

extension of [L,L]:

0 →M(L) → L ∧ L→ [L,L] → 0

Denote by A the image of M(L) under the set map α : L∧L→ D and by β : M(L) → A

the restricted map. We therefore have the following commutative diagram:

0 → M(L) → L ∧ L → [L,L] → 0

↓β ↓α ↓id

0 → A → D
δ→ [L,L] → 0

Now, consider the short exact sequence described in Section 3.7.4:

0 → Ext1Z(Lab, A) → H2(L;A) → Hom(M(L), A) → 0

The right map is surjective, so there exists an extension Lie ring N (corresponding to

an element of H2(L,A)) such that the map β corresponding to N (as described in Sections

3.7.1 and 3.7.3) is the map β that we specified. Also, for reasons discussed in Section 3.7.3,

we can find an isomorphism θ : [N,N ] → D such that θ ◦ ΩN,L = α.

3.7.7 The existence of stem Lie rings

Define a Lie ring L as a stem Lie ring if Z(L) ≤ L′. Now that we have defined the concept

of stem extension, we can provide an alternate definition of stem Lie ring: L is a stem Lie

ring if the short exact sequence:

0 → Z(L) → L→ L/Z(L) → 0

makes L a stem extension.
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Theorem 3.7.4. Suppose L is a Lie ring. There exists a stem Lie ring K that is isoclinic

to L.

Proof. Consider the short exact sequence:

0 → Z(L) → L→ L/Z(L) → 0

This short exact sequence allows us to think of L as a central extension with central

subring Z(L) and quotient Lie ring L/Z(L). We apply the construction in Section 3.7.3 to

obtain the natural map β : M(L/Z(L)) → Z(L). Let B be the image of β. By the explicit

construction, note that the image of β is actually inside Z(L)∩L′. Let β′ : M(L/Z(L)) → B

be the map obtained by restricting the co-domain of β to the image of β.

Consider now the short exact sequence of Section 3.7.4 for central subring B and quotient

Lie ring L/Z(L). The short exact sequence is:

0 → Ext1Z((L/Z(L))ab, B) → H2(L/Z(L);B) → Hom(M(L/Z(L)), B) → 0

In particular, the map:

H2(L/Z(L);B) → Hom(M(L/Z(L)), B)

is surjective. This means that we can find a (possibly non-unique and non-canonical)

central extension K with short exact sequence:

0 → B → K → L/Z(L) → 0

such that the map βK corresponding to this extension (per Section 3.6.3) is the same as

β′. The following are now easy to verify:

• The image of B in K is the center of K.
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• The image of B in K is contained in the derived subring K ′.

• L and K are isoclinic.

Note that although stem Lie rings exist, there may be no canonical choice of stem Lie

ring. The problem is the absence of a canonical splitting of the short exact sequence. If

a canonical splitting did exist, we could use that splitting to obtain a canonical choice of

extension.

3.7.8 The Stallings exact sequence

The Stallings exact sequence was defined by Stallings in [44] and explored further by Eck-

mann, Hilton, and Stammbach in [12] for arbitrary Lie ring extensions.

Start with a short exact sequence of Lie rings (note that A is not necessarily abelian, but

we use this notation to stay consistent with the other sections):

1 → A→ N → L→ 0

Then, the Stallings exact sequence is as follows:

M(N)
α→M(L)

β→ A/[N,A]
σ→ Nab τ→ Lab

The maps are described as follows:

• The homomorphism α : M(N) → M(L) arises from the functoriality of the Schur

multiplier, discussed in Section 3.4.8.

• The homomorphism β : M(L) → A/[N,A] arises from the corresponding map in

the central extension case (discussed below) once we replace the original short exact

sequence by the short exact sequence 1 → A/[N,A] → N/[N,A] → L→ 0.
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• The homomorphism σ : A/[N,A] → Nab = N/[N,N ] arises directly from the natural

inclusion A→ N under which [N,A] is mapped inside [N,N ].

• The homomorphism τ : Nab → Lab arises from the quotient map N → L under which

[N,N ] gets mapped inside [L,L].

In the central extension case, the Stallings exact sequence simplifies to:

M(N)
α→M(L)

β→ A
σ→ Nab τ→ Lab

The maps are described as follows:

• The homomorphism α : M(N) → M(L) arises from the functoriality of the Schur

multiplier.

• The homomorphism β : M(L) → A is the same as that described in Section 3.6.1.

• The homomorphism σ : A→ Nab = N/[N,N ] arises directly from the natural inclusion

A→ N under which [N,A] is mapped inside [N,N ].

• The homomorphism τ : Nab → Lab arises from the quotient map N → L under which

[N,N ] gets mapped inside [L,L].

3.7.9 Hopf’s formula for Lie rings: two proofs

Hopf’s formula for Lie rings states that if a Lie ring L can be expressed in the form F/R

where F is a free Lie ring and R is an ideal of F , then:

M(L) ∼= (R ∩ [F, F ])/([F,R]) (3.7)

We provide two related proofs. The first proof relies on the observation in Section 3.5.9

that if we consider N1 = F/[F,R] as a central extension of L in a natural fashion, then

this central extension is an initial object in the category of Lie ring extensions of L with
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homoclinisms. The exterior square L∧L is therefore isomorphic to N ′
1 = [F, F ]/[F,R]. The

Schur multiplier M(L) is isomorphic to the kernel of the natural homomorphism N ′
1 → L′,

which is the subring (R ∩ [F, F ])/[F,R] inside [F, F ]/[F,R].

Alternately, Hopf’s formula can be deduced from the Stallings exact sequence applied to

the short exact sequence:

1 → R→ F → L→ 0

combined with the information that M(F ) is trivial. Explicitly, the Stallings exact se-

quence is:

M(F )
α→M(L)

β→ R/[F,R]
σ→ F/[F, F ]

τ→ L/[L,L]

Since M(F ) is trivial, we obtain from exactness that M(L) is isomorphic to the kernel

of the map σ. From this, we obtain Hopf’s formula.

3.8 Exterior and tensor product for groups: explicit descriptions

The treatment of tensor products and exterior products found here is similar to that found

in [8], [35], and [15].

In keeping with the literature on the topic, we use the convention of groups acting on

the left. In particular, when talking of a conjugation action, we refer to the action (g, x) 7→
gx = gxg−1.

The material included in this section can be skipped. Its relevance is primarily that it

shows, as a special case, that the exterior square of an abelian group as a group is the same

as its exterior square as an abelian group. We alluded to this, without proof, in Section

3.6.11. However, we also provide an alternative proof in Section 5.4.3.5

5. The proofs are not really different once we write down all the details.
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3.8.1 Compatible pair of actions

Suppose G and H are groups and α : G → Aut(H) and β : H → Aut(G) are group

homomorphisms. We say that (α, β) form a compatible pair of actions if both the following

conditions hold:

β(α(g1)(h))(g2) = g1(β(h)(g
−1
1 (g2)))) ∀ g1, g2 ∈ G, h ∈ H

α(β(h1)(g))(h2) = h1(α(g)(h
−1
1 (h2))) ∀ h1, h2 ∈ H, g ∈ G

If we use · to denote the action of each group on itself by conjugation and both the actions

α and β, the above can be written as:

(g1 · h) · g2 = g1 · (h · (g−1
1 · g2)) ∀ g1, g2 ∈ G, h ∈ H

(h1 · g) · h2 = h1 · (g · (h−1
1 · h2)) ∀ h1, h2 ∈ H, g ∈ G

The following is an alternate description of the axioms that is sometimes easier to work

with:

g1(β(h)g2) = β(α(g1)h)(
g1(g2)) ∀ g1, g2 ∈ G, h ∈ H

h1(α(g)h2) = α(β(h1)g)(
h1(h2)) ∀ g ∈ G, h1, h2 ∈ H

With the · notation, this becomes:
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g1 · (h · g2) = (g1 · h) · (g1 · g2) ∀ g1, g2 ∈ G, h ∈ H

h1 · (g · h2) = (h1 · g) · (h1 · h2) ∀g ∈ G, h1, h2 ∈ H

The g2 of the first identity here equals the element g−1
1 · g2 of the preceding formulation.

The h2 of the second identity equals the element h−1
1 · h2 of the preceding formulation.

The following are examples of compatible pairs of actions:

• The trivial pair of actions is compatible. By “trivial pair of actions” we mean that

both the homomorphisms α : G→ Aut(H) and β : H → Aut(G) are trivial homomor-

phisms.

• For a group G, setting G = H and taking both actions to be the action of a group on

itself by conjugation gives a compatible pair of actions.

• This generalizes both the preceding examples: if G and H can be embedded as sub-

groups inside a group Q such that G and H normalize each other in Q, then the actions

of G and H on each other by conjugation are compatible. Note that this generalizes

the trivial pair of actions because we can set Q = G×H. It generalizes the action of

a group on itself by conjugation because, if G = H, we can set Q = G = H.

3.8.2 Tensor product for a compatible pair of actions

Suppose G and H are groups and α : G → Aut(H), β : H → Aut(G) form a compatible

pair of actions. For simplicity of notation, we will use · to denote the action of each group

on itself by conjugation and both the actions α and β.

The tensor product of G and H for this compatible pair of actions, denoted G⊗H, is the

quotient of the free group on the set {g ⊗ h | g ∈ G, h ∈ H} by the following relations:
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(g1g2)⊗ h = ((g1 · g2)⊗ (g1 · h))(g1 ⊗ h) ∀ g1, g2 ∈ G, h ∈ H

g ⊗ (h1h2) = (g ⊗ h1)((h1 · g)⊗ (h1 · h2)) ∀ g ∈ G, h1, h2 ∈ H

3.8.3 Exterior product of normal subgroups of a group

Suppose G and H are subgroups of a group Q such that G and H both normalize each

other. Then, the actions of G and H on each other by conjugation form a compatible pair of

actions. Note that we can assume without loss of generality that G and H are both normal

in Q, because if not, then Q can be replaced by the subgroup GH of Q and the rest of the

construction is unaffected.

We define the exterior product G∧H as the quotient of the tensor product G⊗H by the

normal subgroup generated by the set {x⊗ x | x ∈ G ∩H}. The image of g ⊗ h is denoted

g ∧ h.

3.8.4 Tensor square and exterior square of a group

Let G be a group. The tensor square of G, denoted G⊗G or
⊗2G, is defined as the tensor

product of G with itself for the compatible pair of actions where both actions equal the

action of G on itself by conjugation.

The exterior square of G, denoted G ∧ G or
∧2G, is defined as the exterior product

of G and G where both copies of G are viewed as normal subgroups inside G. Explicitly,

G = H = Q in the notation used in the preceding subsection.

Alternately the exterior square of G can be defined as the quotient of the tensor square

of G by the normal subgroup generated by the subset {g ⊗ g | g ∈ G}.
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3.8.5 Reconciling the definitions of exterior square

Clair Miller, in her 1952 paper [36] introducing the concept of the exterior square, proved

the equivalence of the two descriptions of exterior square.6 A later paper [17] by Graham J.

Ellis, published in 1993, discussed the matter and related questions in considerably greater

detail.

3.8.6 The special case of abelian groups

There are pre-existing concepts of tensor product, tensor square, and exterior square for

abelian groups. These coincide with our general definitions above when both definitions

make sense. Explicitly, the following are true and can be readily verified from the definitions

above. We will ⊗Z and ∧Z to denote tensor and exterior product operations as abelian

groups.

• The tensor product G⊗H for the trivial pair of actions of G and H on each other is an

abelian group that is canonically isomorphic to the tensor product of abelian groups

Gab ⊗Z H
ab.

• In particular, the tensor square G ⊗ G for an abelian group G agrees with its tensor

square as an abelian group, i.e., G⊗Z G ∼= G⊗G.

• The exterior square G ∧ G for an abelian group agrees with its exterior square as an

abelian group, i.e., G ∧Z G ∼= G ∧G.

3.9 Exterior and tensor product for Lie rings: explicit

descriptions

This section does for Lie rings what the preceding section (Section 3.8) did for groups.

6. This is a somewhat hard-to-verify statement, since Miller’s paper uses different terminology and lan-
guage from what we use.
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Our treatment here closely follows the 1989 paper [16] by Graham Ellis. Proofs of un-

proved assertions here can be found in the paper.

The section can be skipped without any loss of continuity.

3.9.1 Compatible pair of actions of Lie rings

Suppose M and N are Lie rings. Suppose α : M → Der(N) and β : N → Der(M) are

homomorphism of Lie rings, where Der(M) and Der(N) denote the Lie ring of derivations of

M and of N respectively. We say that α, β form a compatible pair of actions if the following

two conditions hold:

α(β(n1)m)(n2) = [n2, α(m)n1] ∀ m ∈M,n1, n2 ∈ N

β(α(m1)n)(m2) = [m2, β(n)m1] ∀ m1,m2 ∈M,n ∈ N

The above expressions are easier to write down if we use · to denote the actions. In this

case, the above become:

(n1 ·m) · n2 = [n2,m · n1] ∀ m ∈M,n1, n2 ∈ N

(m1 · n) ·m2 = [m2, n ·m1] ∀ m1,m2 ∈M,n ∈ N

The following are true:

• For any Lie ring L, the adjoint action of L on itself forms a compatible pair of actions

with itself.
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• For any Lie rings M and N , the trivial Lie ring actions of M and N on each other

form a compatible pair of actions.

• The following generalizes the preceding two examples: if M and N can be embedded

as ideals inside a Lie ring Q, then the adjoint actions of M and N on each other form

a compatible pair of actions. Note that it suffices to assume that M and N are Lie

subrings that idealize each other, but there is no loss of generality since we can replace

Q by the subring M +N .

3.9.2 Tensor product of Lie rings

Suppose M and N are Lie rings and α : M → Der(N) and β : N → Der(M) is a compatible

pair of actions of Lie rings. We define the tensor product M ⊗ N for this pair of actions

as follows. It is the quotient of the free Lie ring on formal symbols of the form m ⊗ n

(m ∈M,n ∈ N) by the following relations:

1. Additive in M : (m1 + m2) ⊗ n = (m1 ⊗ n) + (m2 ⊗ n) ∀ m1,m2 ∈ M,n ∈ N . Note

that if we are dealing with Lie algebras instead of Lie rings, we will replace additivity

by ”linearity” in M with respect to the ground ring.

2. Additive in N : m⊗ (n1 +n2) = (m⊗n1) + (m⊗n2) ∀ m ∈M,n1, n2 ∈ N . Note that

if we are dealing with Lie algebras instead of Lie rings, we will replace additivity by

”linearity” in N with respect to the ground ring.

3. Expanding a tensor product involving one Lie bracket:

• [m1,m2]⊗ n = m1 ⊗ α(m2)(n)−m2 ⊗ α(m1)(n) ∀ m1,m2 ∈M,n ∈ N

• m⊗ [n1, n2] = β(n2)m⊗ n1 − β(n1)(m)⊗ n2 ∀m ∈M,n1, n2 ∈ N

If both the actions are rewritten using ·, this simplifies to:

• [m1,m2]⊗ n = m1 ⊗ (m2 · n)−m2 ⊗ (m1 · n) ∀ m1,m2 ∈M,n ∈ N
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• m⊗ [n1, n2] = (n2 ·m)⊗ n1 − (n1 ·m)⊗ n2 ∀m ∈M,n1, n2 ∈ N

4. Expanding a Lie bracket of two pure tensors:

[(m1 ⊗ n1), (m2 ⊗ n2)] = −(β(n1)(m1))⊗ (α(m2)(n2))

5. If both the actions are rewritten using ·, this becomes:

[(m1 ⊗ n1), (m2 ⊗ n2)] = −(n1 ·m1)⊗ (m2 · n2)

3.9.3 Exterior product of Lie rings

Suppose M,N are (possibly equal, possibly distinct) ideals in a Lie ring Q. Note that in

fact it suffices to assume that they idealize each other, but there is no loss of generality in

assuming that they are both ideals because we could replace Q by M +N .

Define a compatible pair of actions of Lie rings of M and N on each other via the adjoint

action on each other, i.e., the action that each induces on the other by restricting the inner

derivation given by the adjoint action in the whole Lie ring. The exterior product of M

and N is then defined as the quotient of the tensor product of Lie rings M ⊗ N for this

compatible pair of actions by the ideal generated by elements of the form x⊗ x, x ∈M ∩N .

3.9.4 Tensor square and exterior square of a Lie ring

Let L be a Lie ring. The tensor square of L, denoted L ⊗ L or
⊗2 L, is defined as the

tensor product of L with itself for the compatible pair of actions where both actions equal

the adjoint action of L on itself.

The exterior square of L, denoted L ∧ L or
∧2 L, is defined as the exterior product of L

and L where both copies of L are viewed as ideals inside L. Explicitly, M = N = Q = L in

the notation used in the preceding subsection.
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Alternately the exterior square of L can be defined as the quotient of the tensor square

of L by the ideal generated by the subset {x⊗ x | x ∈ L}.

3.10 Free nilpotent groups: basic facts about their homology

groups

3.10.1 Free nilpotent group: definition

The free nilpotent group of class c on a set S can be defined as the free algebra on S in the

variety of groups of nilpotency class at most c. Below is an explicit definition in terms of

the free group.

Definition (Free nilpotent group). Suppose S is a set and c is a positive integer. The

free nilpotent group of class c on the set S is defined as the quotient group F (S)/γc+1(F (S))

where F (S) is the free group on S. Equivalently, this group, along with the set map to it

from S, is the initial object in the category of groups of nilpotency class at most c with set

maps to them from S.

The functor sending a set to the free nilpotent group of class c is left adjoint to the

forgetful functor from nilpotent groups of class c to sets.7

3.10.2 Homology of free nilpotent groups

Suppose G is the free nilpotent group of class c on a generating set S. G can be naturally

identified with F/γc+1(F ) where F is the free group of class c (i.e., F is a free algebra in the

variety of groups). We wish to compute the homology of G.

Setting R = γc+1(F ) and working out the details as discussed in Section 3.6.9, we obtain:

7. This means that given a set S and a group G of nilpotency class at most c, there is a canonical bijection
between the set of set maps from S to G and the set of group homomorphisms from F (S) to G. For more
on adjoint functors, see the Appendix, Section A.2.3.
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• The group [F,R] equals [F, γc+1(F )] = γc+2(F ).

• The group E = F/[F,R], with the natural quotient map E → G, is an initial object

in the category of central extensions of G with homoclinisms. Note that E is a free

nilpotent group of class c+ 1 on the same generating set S.

• The exterior square G ∧ G is canonically isomorphic to [E,E], or equivalently, to

[F, F ]/[F,R] = γ2(F )/γc+2(F ).

• The Schur multiplier M(G) is canonically isomorphic to the quotient group (R ∩

[F, F ])/[F,R] = γc+1(F )/γc+2(F ).

• The canonical short exact sequence:

0 →M(G) → G ∧G→ [G,G] → 1

is isomorphic to the short exact sequence:

0 → γc+1(F )/γc+2(F ) → γ2(F )/γc+2(F ) → γ2(F )/γc+1(F ) → 1

3.11 Free nilpotent Lie rings: basic facts about their homology

groups

3.11.1 Free nilpotent Lie ring: definition

The free nilpotent Lie ring of class c on a set S can be defined as the free algebra on S in

the variety of Lie rings of nilpotency Lie rings at most c. Below is an explicit definition in

terms of the free group.

Definition (Free nilpotent Lie ring). Suppose S is a set and c is a positive integer. The

free nilpotent of class c on the set S is defined as the quotient Lie ring F (S)/γc+1(F (S))
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where F (S) is the free Lie ring on S. Equivalently, this Lie ring, along with the set map to

it from S, is the initial object in the category of Lie rings of nilpotency class at most c with

set maps to them from S.

The functor sending a set to the free nilpotent Lie ring of class c is left adjoint to the

forgetful functor from nilpotent Lie rings of class c to sets.8

3.11.2 Homology of free nilpotent Lie rings

Suppose L is the free nilpotent Lie ring of class c on a generating set S. L can be naturally

identified with F/γc+1(F ) where F is the free Lie ring of class c (i.e., F is a free algebra in

the variety of Lie rings). We wish to compute the homology of L.

Setting R = γc+1(F ) and working out the details as discussed in Section 3.7.9, we obtain:

• The Lie ring [F,R] equals [F, γc+1(F )] = γc+2(F ).

• The Lie ring N = F/[F,R], with the natural quotient map N → L, is an initial object

in the category of central extensions of L with homoclinisms. Note that N is a free

nilpotent Lie ring of class c+ 1 on the same generating set S.

• The exterior square L ∧ L is canonically isomorphic to [N,N ], or equivalently, to

[F, F ]/[F,R] = γ2(F )/γc+2(F ).

• The Schur multiplier M(L) is canonically isomorphic to the quotient Lie ring (R ∩

[F, F ])/[F,R] = γc+1(F )/γc+2(F ).

• The canonical short exact sequence:

0 →M(L) → L ∧ L→ [L,L] → 0

8. This means that given a set S and a Lie ring L of nilpotency class at most c, there is a canonical
bijection between the set of set maps from S to L and the set of Lie ring homomorphisms from F (S) to L.
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is isomorphic to the short exact sequence:

0 → γc+1(F )/γc+2(F ) → γ2(F )/γc+2(F ) → γ2(F )/γc+1(F ) → 0
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CHAPTER 4

POWERING OVER SETS OF PRIMES

4.1 Groups powered over sets of primes: key results

Abelian groups can be defined as modules over Z, the ring of integers. We can therefore

think of groups as the non-abelian analogues of modules over Z. In other words, we can

think of group theory as essentially happening “over Z”: we can raise group elements only

to integer powers.

Working over Z is insufficient for the Lie correspondence and its generalizations. We

saw in Section 1.1.6 that the Lie correspondence between NT (n,R) and UT (n,R) relies on

the matrix exponential and logarithm maps, which involve division. This division happens

inside the associative algebra of n× n matrices over R, but it is also related to the question

of existence of rational powers of elements in the group UT (n,R).

The purpose of this section is to develop the general theory of π-powered groups: groups

where it is possible to define pth roots of elements uniquely for p in a specified set π of primes.

The main purpose is to understand how “closed” this collection is under various operations

including taking subgroups and quotient groups of important types. The theory will be

useful in establishing key aspects of the behavior of the Malcev and Lazard correspondences,

and their generalizations. When necessary, we will restrict attention to nilpotent groups,

where we can derive stronger conclusions than for arbitrary groups.

4.1.1 Some important intermediate rings between the integers and the

rationals

We denote the ring of integers as Z and the field of rational numbers as Q. Clearly, Z ⊆ Q.

The intermediate subrings between Z and Q can be described as follows. For any prime set

π, denote by Z[π−1] the subring of Q comprising those rational numbers such that, when
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the rational number is written as a reduced fraction, all prime divisors of the denominator

are in π. Equivalently, it is the subring of Q generated by the elements 1/p, p ∈ π. The

following are some special cases of interest:

• The case that π is the empty set: In this case, Z[π−1] = Z.

• The case that π is the set of all primes: In this case, Z[π−1] = Q.

• The case that π is a singleton set {p} for some prime number p: In this case, Z[π−1] =

Z[1/p] is the subring generated by 1/p.

In the language of commutative algebra, we would say that Z[π−1] is the localization of

Z at the multiplicative subset comprising all π-numbers. Here, a π-number is a number all

of whose prime divisors are in π.

4.1.2 Background and motivation

While building the Lazard correspondence and its generalizations, one of the important

operations we need to do is take nth roots of elements (on the group side) or divide elements

by n (on the Lie ring side). We need to be able to make sense of these operations.

There are two approaches to this:

1. The first approach is to impose conditions on the group and Lie ring of unique di-

visibility by specific primes. It suffices to restrict attention to primes because unique

divisibility by specific primes gives unique divisibility by all products of powers of

these, and conversely, unique divisibility by a number n implies unique divisibility by

all the prime divisors of n. In this approach, the operation of taking pth roots is not a

separate operation but one uniquely determined by the group operations.

2. The second approach is to redefine the concept of group and/or Lie ring by including

operations that correspond to taking pth roots for specific primes p. On the Lie ring
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side, this means that instead of a Lie ring, we are talking now of a Lie algebra over the

ring Z[1/p]. If there is more than one prime, we adjoin all their reciprocals, so that

we are considering a Lie algebra over the ring Z[π−1] where π is the set of primes for

which we want to adjoint roots. If all primes are included, we simply get a Lie algebra

over Q. On the group side, we need to define an appropriate corresponding notion of

group powered over a ring, then consider groups powered over Z[1/p] and similar rings.

Note that in this approach, there is additional structure being imposed on the group

and/or Lie ring. We would therefore revise the concept of “subgroup” and “quotient

group” as being systems that are closed under the additional newly defined operations.

Both approaches have their advantages and disadvantages. The advantage of approach

(1) is that since we are working with groups and Lie rings as we usually understand them

(over Z) we do not need to recheck any of the standard results, and conversely, any results

we discover here apply to abstract groups without additional structures. The disadvantage

is that we do need to verify that the subgroups and quotient groups of interest inherit the

unique divisibility (powering) structure. This section focuses on a number of simple lemmas

designed for that goal.

Approach (2) is also reasonably straightforward in this case, but it gets somewhat trickier

when we want to deal with groups powered over arbitrary rings. The axioms are easy to pin

down for arbitrary rings only in the case of nilpotent groups. For an exposition based on

approach (2), Thomas Weigel’s monograph [48] and the references therein are a good start.

We will use some aspects of approach (2) for some of the trickier results.

4.1.3 Group powered over a prime

We begin with some definitions. Our definitions match those in Khukhro’s text [29] and our

treatment is quite similar to that in Khukhro’s text.
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Definition (Powered for a set of primes). Suppose G is a group and π is a set of prime

numbers. We say thatG is powered over π, or π-powered, if it satisfies the following equivalent

conditions:

• For any g ∈ G and any p ∈ π, there is a unique element h ∈ G such that hp = g.

• For any g ∈ G and any natural number n all of whose prime factors are in π, there is

a unique element h ∈ G such that hn = g.

For a single prime p, we shorten {p}-powered to p-powered, following the time-honored

abuse of notation conflating elements with singleton subsets. Note that [29] uses the notation

Qπ-powered for what we call π-powered.1

Definition (Local for a set of primes). Suppose G is a group and π is a set of prime

numbers. We say that G is π-local if G is powered over all the primes not in π.

For a single prime p, we shorten {p}-local to p-local.

The term “local” here is used in analogy with localizations of rings at prime ideals: when

we localize at a prime ideal, we introduce inverses for all other primes. Note that this is not

directly related to the sense of the word “local” in the context of local analysis used in the

classification of finite simple groups.

For this section, we will frame all our results in terms of π-powered groups rather than

π-local groups. Obviously, each result formulated in the language of π-powered groups can

be formulated instead in the language of π-local groups.

An extreme case is the case of a rationally powered group:

Definition (Rationally powered group). A group G is termed a rationally powered group

1. One reason we avoid this notation is that Qp is often used for the p-adics, which are quite different
from what we wish to consider here.
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or a Q-powered group if it is powered over the set of all primes.

Our interest throughout this document will be on nilpotent and locally nilpotent groups,

but it is worth pointing out that there do exist non-nilpotent rationally powered groups.

The easiest example is the group GA+(1,R), which is defined as R o (R∗)+, i.e., the group

of affine maps from R to R of the form x 7→ ax+ b with a > 0, under composition. For any

natural number n, every element of the group has a unique nth root. Explicitly, the unique

nth root of x 7→ ax+ b is the map:

x 7→ a1/nx+
b

1 + a1/n + · · ·+ a(n−1)/n

This is an example of a rationally powered solvable group that is not nilpotent.

It is also possible to construct free π-powered groups for any set of prime numbers and

any size of generating set. When the generating set has size more than one, these are not

solvable. The free π-powered groups are extremely difficult to work with because of the

absence of an easily definable reduced form for words. We will discuss free constructions in

Section 4.3.

The majority of the results in this section can either be found in the literature or are

fairly easy to deduce, or both. The historical origins of many individual results are hard to

trace. For this reason, we provide full proofs and avoid citations to papers for individual

results in this section. A number of the results have appeared in [5], [34], [29], and other

references.

4.1.4 The variety of powered groups and its forgetful functor to groups

Suppose π is a set of primes. The collection of π-powered groups forms a variety of algebras.

The operations in the variety include the usual group operations (group multiplication,

identity element, inverse map) as well as operations of the form x 7→ x1/p for each prime
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p ∈ π, with the following two identities for each p ∈ π:

• (xp)1/p = x: This condition shows that the pth power map is injective, and that u1/p

is the unique pth root of u if u is a pth power.

• (x1/p)p = x: This condition shows that the pth power map is surjective, i.e., that every

element is a pth power.

Suppose π1 ⊆ π2 are sets of primes. As discussed in Section A.2.5, there is a forgetful

functor from the variety of π2-powered groups to the variety of π1-powered groups. Each

of these forgetful functors turns out to be full. Essentially, this means that a set map

ϕ : G1 → G2 between π2-powered groups G1 and G2 is a homomorphism of π2-powered

groups if and only if it is a homomorphism of π1-powered groups. The reason is that for all

primes p ∈ π2, the 1/p-powering map is preserved by the homomorphism simply on account

of the homomorphism being a group homomorphism and pth roots being unique in the target

group G2.

4.1.5 The concepts of divisible and torsion-free

We introduce some other useful definitions, again similar to those found in [29].

Definition (Divisibility for a set of primes). Suppose G is a group and π is a set of

primes. We say that G is π-divisible if it satisfies the following equivalent conditions:

• For any g ∈ G and any p ∈ π, there exists h ∈ G (not necessarily unique) such that

hp = g.

• For any g ∈ G and any natural number n all of whose prime factors are in π, there

exists h ∈ G (not necessarily unique) such that hn = g.
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For a single prime p, we use the term p-divisible for {p}-divisible, with the usual abuse

of notation conflating elements with singleton subsets.

When we say that G is divisible (without any set of primes specified) this will be under-

stood to mean that G is divisible for the set of all primes.

We now define torsion-free.

Definition (Torsion-free for a set of primes). Suppose G is a group and π is a set of

primes. We say that G is π-torsion-free if it has no element of order p for any p ∈ π.

When we say that G is torsion-free (without any set of primes specified) this will be

understood to mean that G is torsion-free for the set of all primes.

In a short while, we will prove that for nilpotent groups, being powered over a set of

primes is equivalent to being both divisible and torsion-free for that set of primes. However,

this is not completely obvious at the moment, and the corresponding result is false for non-

nilpotent groups.

Most of the results that follow rely on the following two crucial observations, where γi(G)

denote the members of the lower central series of G:

• Each successive quotient γi(G)/γi+1(G) is a homomorphic image of a tensor power of

G/G′, the abelianization of G, via the i-fold iterated commutator map:

G/G′ ×G/G′ × · · · ×G/G′ → γi(G)/γi+1(G)

See Lemma A.3.2 for more details.

• In the quotient G/γi+1(G), the subgroup γi(G)/γi+1(G) is central.

For simplicity, we will state and prove the results in subsequent sections with respect to

individual primes. However, the results easily extend to sets of primes. More explicitly, for
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each of our results, the corresponding result will hold if we uniformly replace “p-powered”

by “π-powered,” “p-divisible” by “π-divisible,” and “p-torsion-free” by π-torsion-free” for an

arbitrary set π of primes.

4.1.6 The case of finite groups

If our interest is solely in finite groups, then the machinery developed in this section is

unnecessary. In particular, the finite version of all results of interest follows from these two

lemmas.

Lemma 4.1.1. For a finite group G and a prime number p, the following are equivalent:

1. p does not divide the order of G.

2. p does not divide the exponent of G.

3. G is p-powered.

4. G is p-divisible.

5. G is p-torsion-free.

The proof is straightforward.

The next lemma builds on this.

Lemma 4.1.2. 1. Every subgroup, quotient group, and subquotient of a p-powered

(respectively, p-divisible, p-torsion-free) finite group is p-powered (respectively,

p-divisible, p-torsion-free).

2. If a finite group G has a normal subgroup H such that H and the quotient group G/H

are both p-powered (respectively, p-divisible, p-torsion-free), then G is also p-powered

(respectively p-divisible, p-torsion-free).

168



Proof. (1) follows directly by using the characterization in terms of p not dividing the order,

and using Lagrange’s theorem to note that the order of any subgroup and quotient group

divides the order of the group.

(2) follows by combining the characterization in terms of p not dividing the order, and

using Lagrange’s theorem to note that the order of a group is the product of the orders of

any normal subgroup and the corresponding quotient group.

In particular, a finite p-group is powered over all primes other than p. Thus, it is in

particular powered over all primes less than p (a very important observation) and also over

all primes greater than p (a less important, but still useful, observation). An equivalent

formulation is that any finite p-group is a p-local group.

Note that the result has some analogues for infinite groups in which every element has

finite order, but we do not need to develop these for our purpose.

4.1.7 Some general results on powering and divisibility

We begin with some preliminary lemmas.

Lemma 4.1.3 (Divisibility is inherited by quotient groups). Suppose G is a group and

H is a normal subgroup. Suppose that G is p-divisible for some prime number p. Then, the

quotient group G/H is also p-divisible. Explicitly, if a ∈ G/H, there exists b ∈ G/H such

that bp = a.

Proof. Let ϕ : G → G/H be the quotient map. Pick g ∈ G such that ϕ(g) = a. There

exists h ∈ G such that hp = g due to the p-divisibility of G. The element b = ϕ(h) satisfies

bp = a.

We next show that powering on the quotient group implies powering on the subgroup.

169



Lemma 4.1.4 (Quotient-to-subgroup powering implication). Suppose G is a group and

H is a normal subgroup of G. Suppose p is a prime number such that both G and G/H are

p-powered groups. Then, H is also a p-powered group. In other words, for any g ∈ H, there

exists a unique element x ∈ H such that xp = g.

Proof. Let ϕ : G→ G/H be the quotient map.

Since G as a whole is p-powered, there exists x ∈ G such that xp = g, and this x is

unique in G. It suffices to show that this unique x is an element of H. For this, note that

(ϕ(x))p = ϕ(xp) = ϕ(g) is the identity element of G/H. Thus, ϕ(x) is an element of order 1

or p in G/H. Since G/H is p-powered, this forces ϕ(x) to be the identity element of G/H,

so x ∈ H, as desired.

Theorem 4.1.18 gives a converse implication specific to the nilpotent context.

4.1.8 Results for the center

We begin with a lemma about the center.

Lemma 4.1.5. Suppose G is a group with center Z(G). Suppose n is a natural number.

If z ∈ Z(G) is such that there is a unique x ∈ G satisfying xn = z, then x ∈ Z(G).

In particular, if G is powered over a prime p, so is the center Z(G).

The key feature of the center that we use in the proof here is that it is the fixed-point

subgroup of a subgroup of Aut(G) (namely, Inn(G)). The proof also works for fixed-point

subgroups of other subgroups of Aut(G). In particular, the proof works for all subgroups

arising as centralizers of subgroups of G.

Proof. It suffices to show that for any y ∈ G, yxy−1 = y.

Note that:
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(yxy−1)n = yxny−1 = yzy−1 = z

Thus, (yxy−1)n = z = xn. Now, the uniqueness of x (as a nth root of z) forces that in

fact yxy−1 = x, completing the proof.

Next:

Lemma 4.1.6. Suppose p is a prime number, G is a p-powered group, and H is a central

subgroup of G that is also p-powered. Then, the quotient group G/H is also p-powered.

Explicitly, for any a ∈ G/H, there is a unique b ∈ G/H satisfying bp = a.

The proof below seems notationally complicated, but the idea is simple. We first use

the existence of pth roots in the whole group to find a candidate pth root in G/H. We now

want to show uniqueness. Since the subgroup H is in the center, we can take pth roots of

the subgroup elements used to translate within a coset in order to figure out the appropriate

translates on the pth roots. Then, we use the uniqueness aspect to argue that all pth roots

of elements in a particular coset must lie in a single coset.

Proof. Let ϕ : G→ G/H be the quotient map.

Let g ∈ G be such that ϕ(g) = a. There exists x ∈ G such that xp = g.

For any u ∈ H, there exists v ∈ H such that vp = u (due to our assumption that H

is p-powered). Thus, for any element of G of the form gu with g as above and u ∈ H,

we get (xv)p = xpvp = gu with v as the element satisfying vp = u. Note that rewriting

(xv)p = xpvp uses the assumption that H is in the center of G.

Now, we claim that the element b = ϕ(x) is the unique element satisfying bp = a. First,

note that bp = a follows by applying ϕ to both sides of xp = g. Suppose there is an element

c ∈ G/H satisfying cp = a. Let y ∈ G be such that ϕ(y) = c. Then, yp ∈ gH, hence is of

the form gu, u ∈ H, so by the preceding paragraph, it can also be written as (xv)p, v ∈ H.
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Thus, we get yp = (xv)p as elements of G. Since G is p-powered, this forces y = xv, so

c = ϕ(y) = ϕ(xv) = ϕ(x)ϕ(v) = ϕ(x) = b, thus proving the uniqueness of b as the pth root

of a.

The preceding two lemmas easily give us the following.

Lemma 4.1.7. SupposeG is a group and Z(G) is the center ofG. Then, ifG is p-powered

for a prime p, both the center Z(G) and the quotient group G/Z(G) are p-powered. Hence,

the inner automorphism group Inn(G), which is isomorphic to G/Z(G), is also p-powered.

We are now in a position to state the main result.

Theorem 4.1.8. Suppose G is a group (not necessarily nilpotent) and Zn(G) is the nth

member of the upper central series of G. Suppose p is a prime such that G is p-powered.

Then, Zn(G) and G/Zn(G) are also p-powered.

Proof. The fact that G/Zn(G) is p-powered follows by using mathematical induction on the

preceding lemma, and noting that G/Zn(G) is obtained by iteration of the operation of

factoring out by the center (starting from G). We can then use Lemma 4.1.4 to conclude

that Zn(G) is also p-powered.

Note that this result also extends to members of the transfinite upper central series. For

simplicity, however, we avoid dealing with transfinite central series.

We can now state the bigger theorem. Note that this establishes a partial converse to

Lemma 4.1.4.

Theorem 4.1.9. SupposeG is a group andH is a normal subgroup ofG that is contained

in a member of the upper central series of G. Suppose p is a prime number such that both

G and H are p-powered. Then, G/H is also p-powered.
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Note that if G is nilpotent, then the condition that H is contained in a member of the

upper central series of G is always satisfied. We will return to this implication in Theorem

4.1.18, which is deferred to a later section.

Proof. Let Z0(G), Z1(G), Z2(G), . . . be the upper central series of G (the trivial subgroup is

Z0(G), the center is Z1(G), the second center is Z2(G), and so on). Suppose H is contained

in the member Zn(G) for some n. Intersecting with H, we get a series:

1 = H ∩ Z0(G) ≤ H ∩ Z1(G) ≤ H ∩ Z2(G) ≤ · · · ≤ H ∩ Zn(G) = H

All the subgroups in this series are normal (since each is an intersection of normal sub-

groups) and further, for 0 ≤ i ≤ n− 1, (H ∩Zi+1(G))/(H ∩Zi(G)) is a central subgroup of

G/(H ∩ Zi(G)).

By Theorem 4.1.8, each Zi(G) is p-powered. Hence, each H ∩ Zi(G) is also p-powered.

We will now prove by induction on i that each G/(H ∩ Zi(G)) is p-powered. The base

case is clear. The inductive step is to show that if G/(H ∩ Zi(G)) is p-powered, so is

G/(H ∩ Zi+1(G)). For this, note that by the third isomorphism theorem:

G/(H ∩ Zi+1(G)) ∼=
G/(H ∩ Zi(G))

(H ∩ Zi+1(G))/(H ∩ Zi(G))
(*)

As noted above, (H ∩Zi+1(G))/(H ∩Zi(G)) is a central subgroup of G/(H ∩Zi(G)). As

also noted above, H ∩Zi+1(G) is p-powered, hence p-divisible. Combining this with Lemma

4.1.3, we see that (H ∩Zi+1(G))/(H ∩Zi(G)) is also p-divisible. Since (H ∩Zi+1(G))/(H ∩

Zi(G)) is a subgroup of the p-powered group G/(H ∩ Zi(G)), (H ∩ Zi+1(G))/(H ∩ Zi(G))

must be p-powered. Thus, we have a p-powered group G/(H ∩ Zi(G)) and a p-powered

central subgroup (H ∩ Zi+1(G))/(H ∩ Zi(G)). By Lemma 4.1.6, the quotient group is also

p-powered, so by (*), G/(H ∩ Zi+1(G)) is p-powered.

This completes the proof of the inductive step. Thus, G/(H ∩Zi(G)) is p-powered for all

i. In particular, setting i = n, we get that G/(H ∩Zn(G)) = G/H is p-powered, completing
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the proof.

A quick note on the “duality” between divisible and torsion-free

There is a heuristic duality between some of the results that we will be exploring in the coming

two sections. Unfortunately, it is difficult to make this duality rigorous. The following quick

glossary will give an idea of how the duality generally works.

• divisible ↔ torsion-free

• subgroup ↔ quotient group

• injective ↔ surjective

• lower central series ↔ upper central series

• derived subgroup ↔ inner automorphism group

• abelianization ↔ center

The way the duality works is that for any statement involving these concepts, we can

typically consider a “dual” statement that replaces each concept by its dual, and that dual

statement is usually true. Unfortunately, this duality does not always work. We shall see

examples where the “dual” statements to true statements are false. Nonetheless, it is a useful

guide for interpreting some of our easier results.

4.1.9 Basic results on divisible and torsion-free

We first begin with a basic divisibility result.

Lemma 4.1.10. Suppose G is a group and H is a central subgroup of G such that both

H and G/H are p-divisible groups. Then, G is a p-divisible group as well. In other words,

for any g ∈ G, there exists x ∈ G such that xp = g.
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Proof. Suppose ϕ : G→ G/H is the quotient map. Let a = ϕ(g), so a ∈ G/H. There exists

b ∈ G/H such that bp = a. Suppose y ∈ G is such that ϕ(y) = b. Then, y−pg ∈ H. Say,

it is an element u ∈ H. Let v be an element of H such that vp = u. Then, y−pg = vp, so

g = ypvp = (yv)p (because H is central). So, G is p-divisible.

We now turn to a result that is related to the idea of being torsion-free.

Lemma 4.1.11. Suppose G is a group and H is a central subgroup of G. Suppose p is

a prime number such that both H and the quotient group G/H have the property that the

map x 7→ xp is injective in the group. Then, G also has the property that the map x 7→ xp

is injective in G. Explicitly, if a, b ∈ G are elements such that ap = bp, then a = b.

The idea is to first show that the elements are in the same coset of H (i.e., they have

the same image in G/H) then take their quotient and argue that that must be the identity

element. The first part will use the injectivity of the power map in G/H. The second part

will use the injectivity of the power map in H.

Proof. Let ϕ : G→ G/H be the quotient map.

Since ap = bp, we have ϕ(a)p = ϕ(b)p. By the injectivity of the p-power map in G/H,

we conclude that ϕ(a) = ϕ(b). In other words, a and b are in the same coset of H, so the

element u = ab−1 is an element of H.

Since u = ab−1, a = ub. Further, u ∈ H so u is central, so (ub)p = upbp. Thus,

ap = (ub)p = upbp. Since ap = bp, we get that upbp = bp. Cancel bp from both sides to get

that up is the identity element of G, and hence also the identity element of the subgroup H.

We now use the injectivity of the p-power map in H to conclude that u itself is the

identity element of H, and hence, a = b.

It easily follows that:
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Lemma 4.1.12. Suppose G is a group and H is a central subgroup of G. Suppose p is

a prime number such that both H and the quotient group G/H are p-powered. Then, G is

p-powered.

Proof. This follows from the preceding lemma and Lemma 4.1.10.

Lemma 4.1.13. Suppose G is a group (not necessarily nilpotent) and p is a prime

number. Suppose i is a positive integer such that the quotient group Zi(G)/Zi−1(G) is

p-torsion-free. Then, the quotient group Zi+1(G)/Zi(G) in G is also p-torsion-free.

Proof. Suppose x is an element of Zi+1(G) whose image in Zi+1(G)/Zi(G) has order 1 or

p. Our goal will be to show that x ∈ Zi(G), i.e., the order of x modulo Zi(G) must be 1

and cannot be p.

For any y ∈ G, we have [x, y] ∈ Zi(G), and moreover, we have:

[x, y]p = [xp, y] (mod Zi−1(G))

Since xp ∈ Zi(G), the right side is the identity element mod Zi−1(G), hence [x, y] is

an element of Zi(G) whose image in Zi(G)/Zi−1(G) has pth power the identity. Thus,

[x, y] taken modulo Zi−1(G) has order either 1 or p. The order cannot be p because by the

inductive hypothesis, Zi(G)/Zi−1(G) is p-torsion-free. Hence, [x, y] ∈ Zi−1(G).

Since the above is true for all y ∈ G, we obtain that [x, y] ∈ Zi−1(G) for all y ∈ G. This

forces x ∈ Zi(G), so that the order of the image of x in Zi+1(G)/Zi(G) is in fact 1. Thus,

the order can never be p, showing that Zi+1(G)/Zi(G) is p-torsion-free.

Note that the analogous result breaks down for the lower central series. Specifically,

the problem with the lower central series is that the subgroups there are too small and the

quotients too big, and something being central modulo a quotient does not guarantee its
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containment in the adjacent member.

[29] gives a somewhat different proof (Lemma 3.16) that uses the lower central series but

“augments” it with the element of interest, thus overcoming the problem of the lower central

series being too small.

4.1.10 Definition equivalence for torsion-free nilpotent groups with

important corollaries

Theorem 4.1.14. The following are equivalent for a nilpotent group G and a prime

number p.

1. The powering map x 7→ xp is injective in G.

2. G is p-torsion-free.

3. The center Z(G) is p-torsion-free.

4. Each of the successive quotients Zi+1(G)/Zi(G) of the upper central series of G is a

p-torsion-free group.

5. In any quotient of the form Zi(G)/Zj(G), the powering map x 7→ xp is injective.

Moreover, the implication (1) to (2) to (3) to (4) to (5) holds in all groups. The only

implication that relies on G being nilpotent is the implication from (5) to (1).

Proof. (1) implies (2): This is direct from the definition.

(2) implies (3): This is immediate, since Z(G) is a subgroup of G.

(3) implies (4): This follows from Lemma 4.1.13 and the principle of mathematical in-

duction.

(4) implies (5): This relies on Lemma 4.1.11, the principle of mathematical induction, and

the observation that in the base case (for abelian groups) being p-torsion-free is obviously

equivalent to the p-power map being injective.
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(5) implies (1): If G has class c, set i = c, j = 0. Note that this is the only step where

we use that G is nilpotent.

An easy corollary is as follows:

Lemma 4.1.15. If G is a nilpotent group and p is a prime number, then the following

are equivalent:

1. G is p-divisible and p-torsion-free.

2. G is p-powered.

Proof. This is immediate, once we use the preceding theorem (Theorem 4.1.14) to replace

p-torsion-free by “the p-power map is injective.”

Lemma 4.1.16. If G is a group and H is a normal subgroup such that both G and H

are p-powered, then G/H is p-torsion-free.

Proof. Let ϕ : G → G/H be the quotient map and let a ∈ G/H be such that ap is the

identity element of G/H. Suppose g ∈ G is such that ϕ(g) = a. Then, (ϕ(g))p = ϕ(gp) is

the identity element of G/H, so gp ∈ H. Let h = gp. Since H is p-powered, there exists

an element x ∈ H such that xp = h. Thus, xp = gp. since G is also p-powered, this forces

x = g. Thus, g ∈ H, so ϕ(g) = a is the identity element of G/H. Thus, there is no element

of order p in G/H, as desired.

Theorem 4.1.17. Suppose G is a group and H is a normal subgroup of G such that

the quotient group G/H is nilpotent. Then, if p is a prime such that both G and H are

p-powered, the quotient group G/H is also p-powered.
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Proof. Clearly, G/H is p-divisible by Lemma 4.1.3. It is also p-torsion-free because G and

H are both p-powered and by the preceding lemma (Lemma 4.1.16).

Thus, by the lemma before last (Lemma 4.1.15), G/H is p-powered.

We can now state a fundamental result about normal subgroups of nilpotent groups with

two different proofs.

Theorem 4.1.18. Suppose G is a nilpotent group and H is a normal subgroup of G.

Then, if p is a prime number such that both G and H are p-powered, then the quotient

group G/H is also p-powered.

Proof. First proof alternative: Use Theorem 4.1.9, noting that since G is nilpotent, H must

lie in an upper central series member of G, namely G itself.

Second proof alternative: Use Theorem 4.1.17, noting that since G is nilpotent, so is

G/H.

4.1.11 Definition equivalence for divisible nilpotent groups with important

corollaries

This result is dual to Theorem 4.1.14, the chief result of the preceding section.

Theorem 4.1.19. The following are equivalent for a nilpotent group G and a prime

number p.

1. G is p-divisible.

2. The abelianization of G is p-divisible.

3. For every positive integer i, the quotient group γi(G)/γi+1(G) is p-divisible.

4. For all pairs of positive integers i < j, the quotient group γi(G)/γj(G) is p-divisible.
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Moreover, the implications (1) to (2) to (3) to (4) hold for all groups. It is only the

implication from (4) to (1) that uses that the group is nilpotent.

Proof. (1) implies (2): This follows from Lemma 4.1.3. Note that this step does not use G

being nilpotent.

(2) implies (3): Note that each γi(G)/γi+1(G) is p-divisible on account of being a ho-

momorphic image of a tensor power of the abelianization of G. This again does not use G

nilpotent.

(3) implies (4): We do mathematical induction using Lemma 4.1.10. This step again

does not use that G is nilpotent.

(4) implies (1): plug in i = 1, j = c + 1 where c is the nilpotency class of G. Note that

this is the only step where we use that G is nilpotent.

Theorem 4.1.20. Suppose G is a nilpotent group that is powered over a prime p. Then:

1. All members of the lower central series of G are p-powered, i.e., γi(G) is p-powered for

all p.

2. All quotients between members of the lower central series of G are p-powered, i.e.,

γi(G)/γj(G) is p-powered for all i < j. In particular, the abelianization of G is p-

powered.

Proof. Proof of (1): Since G is p-powered, it is p-divisible. Hence, by the preceding theorem

(Theorem 4.1.19), all quotients γi(G)/γj(G) are p-divisible. Let c be the nilpotency class of

G. Setting j = c+ 1, we get that all the lower central series members γi(G) are p-divisible.

But since G is p-powered (i.e., uniqueness of roots), this forces all of these subgroups to also

be p-powered.

Proof of (2): Note that since G is nilpotent, so are γi(G) and γj(G) for any i < j.

Further, γj(G) is characteristic in G, hence normal in G, hence normal in γi(G). Thus,
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the hypotheses of Theorem 4.1.18 apply, and we get the conclusion that the quotient group

γi(G)/γj(G) is p-powered.

4.1.12 Divisibility and the upper central series

We now mention and prove a result about the upper central series whose “dual” (in the

heuristic sense) fails to hold.

Theorem 4.1.21. Suppose G is a nilpotent group and p is a prime number such that G

is p-divisible. Then, all members of the upper central series of G are p-divisible.

The proof is somewhat unusual in the following sense: it proceeds using mathematical

induction starting from the largest member of the upper central series and going down.

Usually, when we use the upper central series for induction, we move upward. This is one

reason why the proof is difficult to discover, even though it is not hard to explain.

Proof. Suppose G has nilpotency class c ≥ 2 (note that if c = 1 there is nothing to prove).

Consider the c-fold left-normed Lie bracket map of the form:

T : (x1, x2, . . . , xc) 7→ [. . . [[x1, x2], x3], . . . , xc]

By Lemma A.3.2 in the Appendix, this map is a homomorphism in each coordinate

holding the other coordinates fixed. Note that this fact is very specific to the class being c.

It fails for higher class. Moreover, the set of values for x1 for which the output is always the

identity is precisely the subgroup Zc−1(G).

Now, suppose g ∈ Zc−1(G). Since G is p-divisible, there exists x ∈ G such that xp = g.

The goal is to show that there exists such a value of x in Zc−1(G) satisfying xp = g. In

fact, we will do better. We will show that any x ∈ G satisfying xp = g actually lies inside

Zc−1(G). In other words, we want to show that T (x, x2, . . . , xc) is the identity element of
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G for all x2, x3, . . . , xc ∈ G.

Fix the values of x2, x3, . . . , xc temporarily. Let u be an element of G such that up = xc.

Then, we know that:

T (g, x2, . . . , xc−1, u) = T (xp, x2, . . . , xc−1, u) = T (x, x2, . . . , xc−1, u)
p

Similarly:

T (x, x2, . . . , xc−1, xc) = T (x, x2, . . . , xc−1, u
p) = T (x, x2, . . . , xc−1, u)

p

The right sides of both equations are the same, so we get:

T (g, x2, . . . , xc−1, u) = T (x, x2, . . . , xc−1, xc)

Since g ∈ Zc−1(G), the left side is the identity element, hence so is the right side. Since

x2, . . . , xc−1, xc are arbitrary, this shows that x ∈ Zc−1(G).

The result can now be extended further down the upper central series. The key trick

in executing the extension is to replace the original c-fold commutator with smaller fold

commutators, but now restrict the first input to being within the member one higher. In

general when inducting down from Zi(G) to Zi−1(G), we consider a left-normed commutator

of length i, restricting the first input to be within Zi(G) and allowing all other inputs to

vary freely within G. We then use the same logic. Note that this logic works in each stage

as long as i ≥ 2, and hence we can do our induction all the way down to the center. We

cannot use the induction to get down to the trivial subgroup, but we know that the trivial

subgroup is p-divisible for all primes p, so this is unnecessary.

As we shall see in Example (4) in the next subsection, the naive dual statement for

torsion-free and quotient groups with the lower central series fails to hold.
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4.1.13 Collection of interesting counterexamples

For the examples below, we denote by UT (3, R) the group whose underlying set is the set

of unitriangular matrices of degree three over R under matrix multiplication where R is any

unital ring. In other words, UT (3, R) is the set:




1 a12 a13

0 1 a23

0 0 1

 | a12, a13, a23 ∈ R


with the usual matrix multiplication.

1. A group may be p-powered and have a subgroup that is not p-powered; in fact, we can

choose an abelian example: The subgroup Z inside Q is an example of a situation where

the whole group is powered over every prime but the subgroup is not powered over any

prime. Note that it is the “divisible” aspect, not the “torsion-free” aspect, that fails.

The corresponding quotient group (Q/Z) is also not p-powered for any prime p. For

the quotient, it is the “torsion-free” aspect that fails.

We can tweak this example a bit to construct, for any pair of prime sets π2 ⊆ π1, an

abelian group that is powered over π1 and a subgroup that is powered only over the

primes inside π2.

2. A characteristic subgroup of a p-powered group need not be p-powered: It is possible to

have a characteristic subgroup of a group that is not powered over some primes that

the whole group is powered over. Recall that GA+(1,R) = R o (R∗)+ is rationally

powered. The subgroup Ro(Q∗)+ is characteristic, but is not powered over any prime.

We can tweak this example a bit to construct, for any pair of prime sets π2 ⊆ π1, a

group that is powered precisely over the primes in π1 and a characteristic subgroup

that is powered precisely over the primes inside π2.

3. It is possible to have a nilpotent group G (in fact, we can choose G to have class two)
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such that the abelianization of G is rationally powered (hence torsion-free), but G itself

is not torsion-free: We can take G to be the quotient of UT (3,Q) by a subgroup Z

inside its central Q. The abelianization of G is Q×Q, while the center is Q/Z. Thus,

the abelianization of G is rationally powered, whereas G has p-torsion for all primes p.

Explicitly, G is given as the set of matrices:




1 a12 a13

0 1 a23

0 0 1

 | a12, a23 ∈ Q, a13 ∈ Q/Z


with the matrix multiplication defined as:


1 a12 a13

0 1 a23

0 0 1




1 b12 b13

0 1 b23

0 0 1

 =


1 a12 + b12 a12b23 + a13 + b13

0 1 a23 + b23

0 0 1


4. It is possible to have a nilpotent group G (in fact, we can choose G to have class two)

such that G is torsion-free but the abelianization of G is not torsion-free: Let G be a

central product of UT (3,Z) by Q identifying a copy of Z inside Q with the center of

UT (3,Z). In this case, the abelianization is isomorphic to Z × Z × Q/Z, which has

torsion for all primes.

Explicitly, G is the following set with matrix multiplication:




1 a12 a13

0 1 a23

0 0 1

 | a12, a23 ∈ Z, a13 ∈ Q


This result is the expected dual to Theorem 4.1.21 that fails to hold. The expected

dual to that result should say that all quotients of a p-torsion-free nilpotent group by
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its lower central series members are also p-torsion-free. This fails to be true in this

situation.

5. It is possible to have a non-nilpotent p-divisible group whose center is not p-divisible:

The simplest example is S3 ∼= SU(2,C), which can also be described as the group of

unit quaternions. The center is {−1, 1}. The group S3 as a whole is p-divisible for

all primes p, and in particular, every element in the group has a square root in the

group. However, the center of the group is not 2-divisible, because the element −1 has

no square root in the center.

Note that this example is an opposite of sorts to potential generalizations of Lemma

4.1.5 (which rules out similar examples for the p-powered case) and Theorem 4.1.21

(which rules out similar examples where the whole group is nilpotent).

6. It is possible to have a non-nilpotent p-divisible group whose derived subgroup is not

p-divisible: Consider the group GL(p,C). This is p-divisible (and in fact, also divisible

by all other primes). The derived subgroup SL(p,C) is not p-divisible (however, it is

divisible by other primes). Specifically, the element in SL(p,C) that is a single Jordan

block with eigenvalue a primitive pth root of unity has no pth root within SL(p,C),

even though it does have pth roots in GL(p,C).

More generally, for a finite set π of primes, we can take n as the product of all primes

in π. Then G = GL(n,C) is divisible by all primes, but G′ = SL(n,C) is divisible only

by those primes that are not in π, and is not divisible by any of the primes in π.

4.1.14 Extra: a two-out-of-three theorem

We are now ready to prove or “two-out-of-three” result for powering. We begin with a

lemma, which is structurally quite similar to, and in some ways a generalization of, Theorem

4.1.19.
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Lemma 4.1.22. Suppose G is a nilpotent group, p is a prime number, and H is a

p-divisible normal subgroup of G. Then, consider the descending chain:

H ≥ [H,G] ≥ [[H,G], G] ≥ [[[H,G], G], G] ≥ · · · ≥ 1

Note that this chain reaches the trivial subgroup because G is nilpotent.

Then, the following are true:

1. Each of the quotient groups between successive members of this descending series is

p-divisible.

2. Each of the quotient groups between members of this descending series (not necessarily

successive) is p-divisible.

3. Each of the members of this descending series is p-divisible.

Proof. Proof of (1): Once we note that divisibility inherits to quotient groups (Lemma 4.1.3),

the situation for each quotient is similar to the situation for the last (final) quotient, so for

notational simplicity, we prove the result only for the last quotient.

Suppose the penultimate member of the series involves c − 1 occurrences of G and one

occurrence of H. Thus, there is a c-fold iterated commutator map:

T : H ×G×G× · · · ×G→ G

whose image generates this subgroup. This map is multilinear, i.e., it is a homomorphism

in each coordinate. We can therefore use the p-divisibility of H to obtain that the image set

is p-divisible, and hence, so is the abelian subgroup generated by it.

Proof of (2): This follows from (1), Lemma 4.1.10, and mathematical induction.

Proof of (3): This is a special case of (2) where the lower end of the quotient is taken to

be the trivial subgroup.
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This is sufficient for the following theorem:

Theorem 4.1.23. Suppose G is a nilpotent group, H is a normal subgroup, and p is a

prime number such that both H and G/H are p-divisible. Then, G is also p-divisible.

Proof. Consider the series:

H ≥ [H,G] ≥ [[H,G], G] ≥ · · · ≥ 1

For simplicity, define H1 = H and Hi+1 = [Hi, G]. Then the series is:

H1 ≥ H2 ≥ H3 ≥ · · · ≥ 1

By Lemma 4.1.22 and the fact that H is p-divisible, all the successive quotients Hi/Hi+1

are also p-divisible. Further, by the nature of the series, each Hi is normal in G and each

quotient Hi/Hi+1 is central in the quotient G/Hi+1.

We can now prove, by upward induction on i, that each quotient G/Hi is p-divisible. The

base case i = 1 follows from the stipulation that G/H is p-divisible. For the inductive step,

suppose G/Hi is p-divisible and we need to show that G/Hi+1 is p-divisible. We already

have that Hi/Hi+1 is p-divisible and central in G/Hi+1, and G/Hi
∼= (G/Hi+1)/(H1/Hi+1)

by the third isomorphism theorem, so (G/Hi+1)/(H1/Hi+1) is also p-divisible. Thus, by

Lemma 4.1.10, G/Hi+1 is also p-divisible. This completes the inductive step.

For large enough i, Hi is the trivial subgroup of G, so this indeed gives us that G is

p-divisible.

The next lemma tries to do something similar for the torsion-free setting. It mimics and

generalizes Theorem 4.1.14.

Lemma 4.1.24. Suppose G is a nilpotent group, p is a prime number, and H is a p-
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torsion-free normal subgroup of G. There exists some natural number n such that H ≤

Zn(G). Consider the ascending chain of subgroups in H:

1 ≤ H ∩ Z(G) ≤ H ∩ Z2(G) ≤ · · · ≤ H ∩ Zn(G) = H

We have the following:

1. Each of the quotient groups between successive members of this ascending series is

p-torsion-free.

2. Each of the quotient groups between members of this ascending series (not necessarily

successive) is p-torsion-free.

3. Each of the members of this ascending series is p-torsion-free.

Proof. Proof of (1): We prove this for each quotient (H∩Zi(G))/(H∩Zi−1(G)) by induction

on i. The base case for induction, namely, the statement that H ∩ Z(G) is p-torsion-free,

follows from the fact that H is p-torsion-free. The proof method for the inductive step is

similar to the proof method used for Lemma 4.1.13.

Explicitly, we want to show that if (H ∩ Zi(G))/(H ∩ Zi−1(G)) is p-torsion-free, then

(H ∩ Zi+1(G))/(H ∩ Zi(G)) is p-torsion-free. We do this as follows.

Suppose x is an element of H ∩ Zi+1(G) whose image in (H ∩ Zi+1(G))/(H ∩ Zi(G))

has order 1 or p. Our goal will be to show that x ∈ H ∩ Zi(G), i.e., the order of the image

of x must be 1 and cannot be p.

For any y ∈ G, we have [x, y] ∈ H ∩ Zi(G), and moreover, we have:

[x, y]p = [xp, y] (mod H ∩ Zi−1(G))

Since xp ∈ H∩Zi(G), the right side is the identity element mod H∩Zi−1(G), hence [x, y]

is an element of H ∩ Zi(G) whose image in (H ∩ Zi(G))/(H ∩ Zi−1(G)) has pth power the

188



identity. Thus, [x, y] taken modulo H∩Zi−1(G) has order either 1 or p. The order cannot be

p because by the inductive hypothesis, (H ∩Zi(G))/(H ∩Zi−1(G)) is p-torsion-free. Hence,

[x, y] ∈ H ∩ Zi−1(G).

Since the above is true for all y ∈ G, we obtain that [x, y] ∈ H ∩ Zi−1(G) and hence

[x, y] ∈ Zi−1(G) for all y ∈ G. This forces x ∈ Zi(G) and hence x ∈ H ∩ Zi(G), so that

the order of the image of x in (H ∩ Zi+1(G))/(H ∩ Zi(G)) is in fact 1. Thus, the order can

never be p, showing that (H ∩ Zi+1(G))/(H ∩ Zi(G)) is p-torsion-free.

Proof of (2): This follows from (1) and Lemma 4.1.11 (note that we have already estab-

lished, in Theorem 4.1.14, that being p-torsion-free is equivalent to the p power map being

injective).

Proof of (3): This is already obvious.

We can now state the theorem:

Theorem 4.1.25. Suppose G is a nilpotent group, H is a normal subgroup, and p is a

prime number such that both H and G/H are p-torsion-free. Then, G is also p-torsion-free.

Proof. By the preceding lemma, we have the ascending chain of subgroups in H:

1 ≤ H ∩ Z(G) ≤ H ∩ Z2(G) ≤ · · · ≤ H ∩ Zn(G) = H

and further, we have that each successive quotient between members of this ascending

chain is p-torsion-free. We can now induct downward on i (going down from n to 0) to

show that G/(H ∩ Zi(G)) is p-torsion-free. The base case, i = n, is given to us. To induct

down from G/(H ∩ Zi(G)) to G/(H ∩ Zi−1(G)), we use Lemma 4.1.11, along with the

observation that the abelian group (H ∩Zi(G))/(H ∩Zi−1(G)) is p-torsion-free if and only

if the p-powering map in the group is injective.

Combining the theorems for divisibility and torsion-free, we have that:
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Theorem 4.1.26. Suppose G is a nilpotent group, H is a normal subgroup, and p is a

prime number such that both H and G/H are p-powered. Then, G is also p-powered.

Proof. This is a direct combination of Theorems 4.1.23 and 4.1.25.

We can now state the two-out-of-three theorem.

Theorem 4.1.27. Suppose G is a nilpotent group, H is a normal subgroup, and p is a

prime number. The following are true:

1. If any two of the three groups G, H, and G/H is p-powered, so is the third.

2. For p-divisibility, if G is p-divisible, so is G/H, and if H and G/H are p-divisible, so

is G.

3. For p-torsion-free, if G is p-torsion-free, so is H, and if H and G/H are p-torsion-free,

so is G.

Proof. Proof of (1):

• G and H to G/H: This follows from Theorem 4.1.18.

• G and G/H to H: This follows from Lemma 4.1.4.

• H and G/H to G: This follows from Theorem 4.1.26.

Proof of (2):

• G to G/H: This follows from Lemma 4.1.3.

• H and G/H to G: This follows from Theorem 4.1.23.

Proof of (3):
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• G to H: This is obvious.

• H and G/H to G: This follows from Theorem 4.1.25.

4.1.15 Is every characteristic subgroup invariant under powering?

The following is a conjecture.

Conjecture 4.1.28. Suppose G is a nilpotent group and H is a characteristic subgroup

of G. Suppose π is a set of primes such that G is π-powered. Then, H is also π-powered.

The conjecture appears to be open.2

The corresponding result is false for solvable groups: for instance, the group G =

GA+(1,R) = R o (R∗)+ is powered over all primes, and the subgroup H = R o (Q∗)+

is characteristic, but H is not powered over any prime.

The corresponding result is true for abelian groups, because the map x 7→ x1/p (which in

additive notation becomes x 7→ (1/p)x) is an automorphism of G for every p ∈ π.

Apart from abelian groups, there are some important types of nilpotent groups for which

the conjecture can be demonstrated to be true. For instance:

• The conjecture is trivially true for all finite nilpotent groups, because every subgroup

of a π-powered finite group is π-powered by Lemma 4.1.2. Similarly, it is also true for

periodic groups, i.e., groups in which every element has finite order.

• The conjecture is true for groups for which we can find an automorphism that behaves

like a power map on the successive quotient groups for some central series of the group.

For instance, suppose π = {p} and G is a p-powered nilpotent group of nilpotency

2. See http://mathoverflow.net/questions/124295/characteristic-subgroup-of-nilpotent-group-that-is-
not-invariant-under-powering
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class two. The conjecture holds for G if we can find a central subgroup H of G and an

automorphism σ of G such that σ induces the automorphism x 7→ xpk
on G/H and σ

behaves like x 7→ xp2k
on H.

In Section 5.2.3, we will discuss some implications of this conjecture being true when

restricted to the groups that participate in the Baer correspondence.

4.2 Lie rings powered over sets of primes: key results

This section covers Lie ring analogues of the material covered for groups in the preceding

section (Section 4.1). The majority of results carry over, but many of the proofs are notably

similar. We use results of the preceding section.

4.2.1 Definitions

We can define notions of powered, divisible, and torsion-free for Lie rings similar to the

definitions for groups. In fact, we do not need to redefine these terms: we simply define

them by invoking the corresponding definition for the additive group of the Lie ring. Thus,

for instance, a Lie ring is called p-powered for a prime p if and only if the additive group of

the Lie ring is p-powered. Similarly, for a prime set π, a Lie ring is called π-powered if and

only if the additive group of the Lie ring is π-powered.

π-powered Lie rings are the same as Z[π−1]-Lie algebras. For a more detailed discussion

of Lie algebras over rings other than Z, see the Appendix, Section A.1.4.

We will now go over results analogous to the results we established about groups in

the preceding section. The proofs in most cases are either the same or much simpler. For

instance, we note the following two-out-of-three result in the Lie ring context which is not

true in general for groups and took a lot of effort to establish for nilpotent groups:
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Lemma 4.2.1. Suppose L is a Lie ring and I is an ideal in L. Suppose p is a prime

number. Then, if any two of L, I, and L/I are p-powered, so is the third.

Proof. This is straightforward just from looking at the additive group structure and invoking

the corresponding result for abelian groups, where it is obvious:

• L and I to L/I: This follows from Lemma 4.1.6, applied to the additive group of L

and the additive subgroup I. Note that since L is abelian, the subgroup I is central

in the additive group sense, regardless of whether I is central as an ideal in L.

• L and L/I to I: This follows from Lemma 4.1.4 applied the additive group of L and

the additive subgroup I.

• I and L/I to L: This can be deduced from Lemma 4.1.12 applied to the additive

group of L and the additive subgroup I. Note that since L is abelian, the subgroup I

is central in the additive group sense, regardless of whether I is central as an ideal in

L.

Another basic fact is this.

Lemma 4.2.2. The following are equivalent for a Lie ring L and a prime number p:

1. The multiplication by p map is injective from L to itself.

2. The additive group of L is p-torsion-free.

Proof. This follows from the additive group of L being an abelian group.
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4.2.2 Results for the center

Lemma 4.2.3. Suppose L is a Lie ring that is powered over a prime p and Z(L) is the

center of L. Then, Z(L) is also powered over p. In other words, for any g ∈ Z(L), there

exists a unique x ∈ Z(L) such that px = g.

Proof. Since L is p-powered, we know there exists unique x ∈ L such that px = g. It

therefore suffices to show that this unique x is in Z(L). In other words, we need to show

that for any y ∈ L, [x, y] = 0.

Note that [g, y] = 0 on account of g being in the center of L, so:

0 = [g, y] = [px, y] = p[x, y]

Since L is powered over p, it is in particular p-torsion-free. Thus, we must have [x, y] = 0,

completing the proof.

Note that the analogous results to Lemma 4.1.6 and Theorem 4.1.9 are trivially obvious

due to the two-out-of-three lemma noted above. Thus, we can jump straight to:

Theorem 4.2.4. Suppose L is a Lie ring (not necessarily nilpotent) and Zn(L) is the

nth member of the upper central series of L. Suppose p is a prime such that L is p-powered.

Then, Zn(L) and L/Zn(L) are also p-powered.

Proof. Lemma 4.2.3 and the two-out-of-three lemma give that L/Z(L) is p-powered. Iterat-

ing inductively, we get that L/Zn(L) is p-powered. Again using the two-out-of-three lemma,

we get that Zn(L) is p-powered.

We now prove the Lie ring analogue to Lemma 4.1.13.
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Lemma 4.2.5. Suppose L is a Lie ring (not necessarily nilpotent) and p is a prime

number. Suppose i is a natural number. Then, if the quotient ring Zi(L)/Zi−1(L) is p-

torsion-free, so is the quotient ring Zi+1(L)/Zi(L).

Proof. Suppose x is an element of Zi+1(L) whose image in Zi+1(L)/Zi(L) has order 1 or p.

Our goal will be to show that x must be in Zi(L), i.e., its image must be the zero element

of Zi+1(L)/Zi(L).

For any y ∈ L, we have [x, y] ∈ Zi(L), and moreover, we have:

p[x, y] = [px, y] (mod Zi−1(L))

Since px ∈ Zi(L), the right side is the zero element mod Zi−1(L), hence [x, y] is an

element of Zi(L) whose image in Zi(L)/Zi−1(L), when multiplied by p, gives 0. Thus,

[x, y] taken modulo Zi−1(L) has order either 1 or p. The order cannot be p because by the

inductive hypothesis, Zi(L)/Zi−1(L) is p-torsion-free. Hence, [x, y] ∈ Zi−1(L).

Since the above is true for all y ∈ L, we obtain that [x, y] ∈ Zi−1(L) for all y ∈ L. This

forces x ∈ Zi(L), so that the order of the image of x in Zi+1(L)/Zi(L) is in fact 1. Thus,

the order can never be p, showing that Zi+1(L)/Zi(L) is p-torsion-free.

4.2.3 Definition equivalence for torsion-free nilpotent Lie rings

Theorem 4.2.6. The following are equivalent for a nilpotent Lie ring L and a prime

number p.

1. L is p-torsion-free.

2. The center Z(L) is p-torsion-free.

3. Each of the successive quotients Zi+1(L)/Zi(L) of the upper central series of L is a

p-torsion-free Lie ring.
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4. Each of the quotients Zi(L)/Zj(L) is a p-torsion-free Lie ring.

Moreover, the implication (1) to (2) to (3) to (4) holds in all Lie rings. The only impli-

cation that relies on L being nilpotent is the implication from (4) to (1).

Proof. (1) implies (2): This is immediate, since Z(L) is a subring, and hence additive sub-

group, of L.

(2) implies (3): This follows from Lemma 4.2.5 and the principle of mathematical induc-

tion.

(3) implies (4): This relies on Lemma 4.1.11 and mathematical induction.

(4) implies (1): This is follows by setting i = c, j = 0.

4.2.4 Definition equivalences for divisible nilpotent Lie rings

Theorem 4.2.7. The following are equivalent for a nilpotent Lie ring L and a prime

number p.

1. L is p-divisible.

2. The abelianization of L is p-divisible.

3. For every positive integer i, the quotient group γi(L)/γi+1(L) is p-divisible.

4. For all pairs of positive integers i < j, the quotient group γi(L)/γj(L) is p-divisible.

Note that the implications (1) to (2) to (3) to (4) hold for all Lie rings. It is only the

implication from (4) to (1) that uses that the Lie ring is nilpotent.

Proof. (1) implies (2): This follows from Lemma 4.1.3 applied to the additive group of L.

Note that this step does not use L being nilpotent.
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(2) implies (3): Note that each γi(L)/γi+1(L) is p-divisible on account of being a ho-

momorphic image of a tensor power of the abelianization of L (as an additive group). This

again does not use L being nilpotent.

(3) implies (4): We do mathematical induction using Lemma 4.1.10. This step again

does not use that L is nilpotent.

(4) implies (1): Plug in i = 1, j = c + 1 where c is the nilpotency class of L. Note that

this is the only step where we use that L is nilpotent.

Note that the following is true for any Lie ring (not necessarily nilpotent). The corre-

sponding statement for groups does not hold in the general case (see Section 4.1.13, Example

6).

Lemma 4.2.8. Suppose L is a Lie ring (not necessarily nilpotent) that is p-divisible for

some prime number p. Then, the derived subring of L and all the members of the lower

central series of L are also p-divisible. Moreover, if L is p-powered, then the derived subring

of L and all the members of the lower central series of L are also p-powered.

Proof. Every Lie element of the form [x, y] can be divided by p to give a Lie element.

Explicitly, if pu = x, then p[u, y] = [x, y]. Since the derived subring is generated additively

by Lie elements, every element of the derived subring can be divided by p within the derived

subring.

A similar logic applies to other members of the lower central series.

The statement for the p-powered case also follows.

4.2.5 Divisibility and the upper central series

The result for the upper central series for a Lie ring has a similar formulation and a similar

proof to the corresponding result for a group.
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Theorem 4.2.9. Suppose L is a nilpotent Lie ring and p is a prime number such that

L is p-divisible. Then, all members of the upper central series of L are p-divisible.

The proof is analogous to that for groups.

Proof. Suppose L has nilpotency class c ≥ 2 (note that if c = 1 there is nothing to prove).

Consider the c-fold left-normed commutator map of the form:

T : (x1, x2, . . . , xc) 7→ [. . . [[x1, x2], x3], . . . , xc]

Viewed as a map of the additive groups, this map is a homomorphism in each coordinate

when one fixes the values of the other coordinates. Moreover, the set of values for x1 for

which the output is always the zero element is precisely the subring Zc−1(L).

Now, suppose g ∈ Zc−1(L). Since L is p-divisible, there exists x ∈ L such that px = g.

The goal is to show that there exists a value of x in Zc−1(L) satisfying px = g. In fact,

we will do better. We will show that any x ∈ L satisfying px = g actually lies inside

Zc−1(L). In other words, we want to show that T (x, x2, . . . , xc) is the zero element of L for

all x2, x3, . . . , xc ∈ L.

Fix the values of x2, x3, . . . , xc temporarily. Let u be an element of L such that pu = xc.

Then, we know that:

(g, x2, . . . , xc−1, u) = T (px, x2, . . . , xc−1, u) = pT (x, x2, . . . , xc−1, u)

Similarly:

T (x, x2, . . . , xc−1, xc) = T (x, x2, . . . , xc−1, pu) = pT (x, x2, . . . , xc−1, u)

The right sides of both equations are the same, so we get:
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T (g, x2, . . . , xc−1, u) = T (x, x2, . . . , xc−1, xc)

Since g ∈ Zc−1(L), the left side is the zero element, hence so is the right side. Since

x2, . . . , xc−1, xc are arbitrary, this shows that x ∈ Zc−1(L).

The result can now be extended further down the upper central series. The key trick

in executing the extension is to replace the original c-fold commutator with smaller fold

commutators, but now restrict the first input to being within the member one higher. In

general when inducting down from Zi(L) to Zi−1(L), we consider a left-normed commutator

of length i, restricting the first input to be within Zi(L) and allowing all other inputs to

vary freely within L. We then use the same logic. Note that this logic works in each stage

as long as i ≥ 2, and hence we can do our induction all the way down to the center. We

cannot use the induction to get down to the zero subring, but we know that the zero subring

is p-divisible for all primes p, so this is unnecessary.

4.2.6 Counterexamples for Lie rings

For the examples below, we denote by NT (3, R) the set of niltriangular matrices of de-

gree three over R under matrix multiplication where R is any unital ring. In other words,

NT (3, R) is the set:




0 a12 a13

0 0 a23

0 0 0

 | a12, a13, a23 ∈ R


with the usual matrix multiplication. To make it into a Lie ring, we define the Lie bracket

as the additive commutator corresponding to the matrix multiplication. Explicitly, we define

the Lie bracket of matrices x and y as [x, y] = xy − yx where xy and yx are the products

with respect to the usual matrix multiplication.
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1. A Lie ring may be p-powered and have a subring that is not p-powered; in fact, we

can choose an abelian example: The subgroup Z inside Q is an example of a situation

where the whole group is powered over every prime but the subgroup is not powered

over any prime. Viewing all the group as abelian Lie rings (with the trivial bracket)

we obtain the desired examples for Lie rings. Note that it is the “divisible” aspect, not

the “torsion-free” aspect, that fails. The corresponding quotient group (Q/Z) is also

not p-powered for any prime p. For the quotient, it is the “torsion-free” aspect that

fails.

We can tweak this example a bit to construct, for any pair of prime sets π2 ⊆ π1,

an abelian group (hence an abelian Lie ring) that is powered over π1 and a subgroup

(hence, subring) that is powered only over the primes inside π2.

2. A characteristic subring of a p-powered Lie ring need not be p-powered: Consider the Lie

ring L = Q o Q where the action of the acting Q on the other Q is by rational number

multiplication. The ring is rationally powered, i.e., it is a Q-Lie algebra. However, the

characteristic subring Q o Z is not powered over any prime.

3. It is possible to have a nilpotent Lie ring L (in fact, we can choose L to have class two)

such that the abelianization of L is rationally powered (hence torsion-free), but L itself

is not torsion-free: We can take L to be the quotient of NT (3,Q) by a subgroup Z

inside its central Q. The abelianization of L is Q×Q, while the center is Q/Z. Thus,

the abelianization of L is rationally powered, whereas L has p-torsion for all primes p.

Explicitly, L is given as the set of matrices:




0 a12 a13

0 0 a23

0 0 0

 | a12, a23 ∈ Q, a13 ∈ Q/Z


with the Lie bracket defined as the bracket arising from matrix multiplication.
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4. It is possible to have a nilpotent Lie ring L (in fact, we can choose L to have class two)

such that L is torsion-free but the abelianization of L is not torsion-free: Let L be a

central product of NT (3,Z) by Q identifying a copy of Z inside Q with the center of

UT (3,Z). In this case, the abelianization is isomorphic to Z × Z × Q/Z, which has

torsion for all primes.

Explicitly, L is:




0 a12 a13

0 0 a23

0 0 0

 | a12, a23 ∈ Z, a13 ∈ Q


This result is the expected dual to Theorem 4.1.21 that fails to hold. The expected

dual to that result should say that all quotients of a p-torsion-free nilpotent group by

its lower central series members are also p-torsion-free. This fails to be true in this

situation.

4.2.7 Is every characteristic subring invariant under powering?

The following is a Lie ring analogue of Conjecture 4.1.28.

Conjecture 4.2.10. Suppose L is a nilpotent Lie ring and M is a characteristic subring

of L. Suppose π is a set of primes such that L is π-powered. Then, M is also π-powered.

The corresponding result is false for solvable Lie rings. See (2) in the list of counterex-

amples in Section 4.2.6.

The corresponding result is true for abelian Lie rings, because the map x 7→ (1/p)x is an

automorphism of L for every p ∈ π.

Apart from abelian Lie rings, there are some important types of nilpotent groups for

which the conjecture can be demonstrated to be true. Remars about special cases similar to
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those found in Section 4.1.15 apply here.

In Section 5.2.3, we will discuss some implications of this conjecture being true when

restricted to the Lie rings that participate in the Baer correspondence.

4.3 Free powered groups and powering functors

4.3.1 Construction of the free powered group

This section uses basic terminology from universal algebra. For background on the termi-

nology, see Section A.2.4. The section also builds on Section 4.1.4, where we described how

the collection of π-powered groups for a prime set π is a variety of algebras with a natural

forgetful functor to the variety of groups.

For any variety of algebras, we can talk of the free algebra in that variety on any set. In

particular, we can talk of the free π-powered group F (S, π) on a set S. Working with this

free group is difficult because, unlike the usual free group, it is difficult to work out a reduced

form for elements of the free π-powered group. It is also obvious that the canonical map

from S to F (S, π) is injective. To see this, note that the free π-powered abelian group on S

is the free Z[π−1]-module with basis indexed by S, and this is a quotient group of F (S, π).

Since the free π-powered abelian group on S has the property that the natural map from S

to it is injective, the natural map from S to F (S, π) is also injective.

An explicit construction of the free π-powered group on a set S is as follows. Start with

the abstract free group F (S). In each iteration, do the following:

• Adjoin pth roots (for all p ∈ π) of all the elements so far.

• Take the free group generated by all these.

• For every pair of elements that have the same pth power (for one or more p ∈ π), set

them to be equal (i.e., factor out by the relation of their being equal).
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The group constructed at each stage has a natural homomorphism to it from the previous

group. The direct limit of this sequence is the desired group F (S, π).

4.3.2 Free powered nilpotent groups

In Section 3.10, we defined the free nilpotent group of class c on a set S. We now define the

π-powered analogue of that construction.

Definition (Free π-powered nilpotent group). Suppose S is a set, π is a set of primes,

and c is a positive integer. The free π-powered nilpotent group of class c on S is defined as

the quotient group F (S, π)/γc+1(F (S, π)) where F (S, π) is the free π-powered group on S.

Equivalently, this group, along with the set map to it from S, is the initial object in the

category of groups of nilpotency class at most c with set maps to them from S.

The functor sending a set to its free π-powered nilpotent group of class c is left adjoint

to the forgetful functor from π-powered nilpotent groups of class (at most) c to sets.

4.3.3 π-powered words and word maps

Word maps (described in the Appendix, Section A.5.1) are an important tool in the study of

the variety of groups and other varieties of algebras. In particular, we can define words and

word maps relative to the variety of π-powered groups. We will use the jargon π-powered

word to describe a word relative to the variety of π-powered groups. A π-powered word

in n letters g1, g2, . . . , gn can be described using an expression that involves composing the

operations of multiplication, inverses, and taking pth roots for primes p ∈ π. Two such

expressions define the same word if they give the same element in the free π-powered group

F (S, π) where S = {g1, g2, . . . , gn}.

For any π-powered group G and any π-powered word w in n letters, we can define the π-

powered word map on G corresponding to w. This is a map Gn → G. By abuse of notation,
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we will denote this map by the letter w as well, i.e., for x1, x2, . . . , xn ∈ G, we denote the

image of (x1, x2, . . . , xn) under w by w(x1, x2, . . . , xn).

For a prime set π and a positive integer c, we can also consider π-powered class c words.

These are words with respect to the variety of π-powered groups of nilpotency class at most

c. We can correspondingly considered π-powered class c word maps. For a π-powered class

c word w in n letters and a π-powered class c group G, the word map induced by w is a set

map Gn → G.

4.3.4 Localization and powering functors

For a set π of primes, the π-powering functor is a functor from the category of groups to the

category of π-powered groups that is left adjoint to the forgetful functor from the category of

π-powered groups to the category of groups. More explicitly, for a group G, the π-powering

of G is a group K along with a homomorphism ϕ : G→ K such that for any homomorphism

θ : G → L from G to a π-powered group L, there is a unique homomorphism α : K → L

such that θ = α ◦ ϕ.

For a prime set π, the π-localization functor refers to the powering functor for the set of

primes outside of π.

We begin with a lemma.

Lemma 4.3.1. Suppose G is a group, π is a set of primes, and K is the π-powering of

G with the π-powering homomorphism ϕ : G→ K. The following are true:

1. Let N be the kernel of ϕ. Then, N contains all the elements of G whose order is a

π-number.

2. K is generated as a π-powered group by the image ϕ(G). Equivalently, K does not

have any proper π-powered subgroup containing ϕ(G).
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Proof. Proof of (1): If g ∈ G has order a π-number, then ϕ(g) also has order a π-number,

since the order of ϕ(g) divides the order of g. However, K is π-powered, hence π-torsion-free,

so ϕ(g) is the identity element of K. Thus, g is in N , the kernel of ϕ.

Proof of (2): Viewing the π-powering functor as a “free” functor, we see that K is

generated as a π-powered group by the image of G.

In general, we cannot say much more: the kernel of the homomorphism may be a lot

bigger than the subgroup generated by π-torsion elements. However, in the case of nilpotent

groups, the kernel is precisely the set of π-torsion elements (which in fact form a subgroup),

and the π-powering is itself a nilpotent group with the same nilpotency class. We now

develop the framework that will allow us to get to proofs. We will prove this at the end of

Section 4.3.6.

4.3.5 Root set of a subgroup

Suppose G is a group and H is a subgroup of G. We denote by π
√
H (relative to the ambient

group G) the set of all elements x ∈ G such that xn ∈ H for some π-number n. We begin

with some lemmas. Note that if G is non-nilpotent, π
√
H need not be a subgroup of G.3

Thus, the results below do depend on the assumption of G being nilpotent.

Theorem 4.3.2. 1. Suppose G is a nilpotent group, H is a subgroup of G, and π is

a set of primes. Then, π
√
H is also a subgroup of G.

2. Suppose G is a nilpotent group, π is a set of primes, and A,B are subgroups of G with

A normal in B. Then, π
√
A is normal in π

√
B.

This appears as Theorem 10.19 in Khukhro’s book [29]. The book does not prove this

3. For instance, let G be the symmetric group S3 and H be the trivial subgroup. Let π be the set {2}.
Then, π

√
H is a subset of size four comprising the identity element and the three elements of order two, and

it is not a subgroup.

205



result, but provides a similar, more specialized proof for a related result, Theorem 9.18.

Proof. Proof of (1): We can assume without loss of generality G = 〈 π
√
H〉. If not, simply

replace G by the subgroup 〈 π
√
H〉 and proceed.

With this assumption, the goal is to show that G = π
√
H.

We note that for any quotient map ϕ : G→M , ϕ(G) = 〈 π
√
ϕ(H)〉. In particular, this is

true for quotient maps by lower central series members.

We now prove that G = π
√
H by induction on the nilpotency class of G. The base case

for induction, namely the case of abelian groups, is obviously true. For the inductive step,

assume we have established the result for class c− 1, and need to prove it for G of class c.

Any element of γc(G) is a product of iterated c-fold commutators involving elements of

G. Since the c-fold iterated commutator is multilinear, the element can be expressed as a

product of iterated c-fold commutators involving elements of π
√
H, which is a generating set

for G. Each such iterated commutator is of the form:

u = [[. . . [[x1, x2], x3], . . . , xc−1], xc]

with xi ∈
π
√
H. For each xi, there exists a π-number ni such that xni

i ∈ H, and then,

using multilinearity, we get that:

un1n2...nc = [[. . . [[xn1
1 , xn2

2 ], xn3
3 ], . . . , x

nc−1
c−1 ], xnc

c ]

The number n1n2 . . . nc is a π-number since each ni is a π-number. Hence, a suitable

power of u in in H ∩ γc(G), so u ∈ π
√
H ∩ γc(G). Thus, γc(G) is abelian and is generated

by elements in π
√
H ∩ γc(G). Since a product of commuting elements of π

√
H ∩ γc(G) must

also be in π
√
H ∩ γc(G), we get that:

γc(G) ≤ π
√
H ∩ γc(G)
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In particular, we get that:

γc(G) ≤ π
√
H

By the observation regarding quotients, we also have that:

G/γc(G) = 〈 π
√
Hγc(G)/γc(G)〉

By the inductive hypothesis, this gives us that:

G/γc(G) = π
√
Hγc(G)/γc(G)

We now complete the proof. Suppose g ∈ G. From the fact about G/γc(G), there exists

a π-number m such that gm ∈ Hγc(G). Thus, gm = hu where h ∈ H and u ∈ γc(G) (which

is in particular central). Since γc(G) ≤ π
√
H, there exists a π-number n such that un ∈ H.

Thus, gmn = (gm)n = (hu)n = hnun (since u ∈ γc(G) is central) and this is an element of

H. Thus, mn is a π-number such that gmn ∈ H, so g ∈ π
√
H.

Proof of (2): Please see the reference ([29], Theorem 9.18 and 10.19).

Note in particular that this shows that in a nilpotent group G, π
√

1, i.e., the set of elements

whose order is a π-number, is a subgroup of G.

4.3.6 Minimal powered group containing a torsion-free group

The following is a theorem from [29] (Theorem 10.20, Page 122).

Theorem 4.3.3. Suppose π is a set of primes and G is a π-torsion-free nilpotent group

of class c.

1. There exists a π-powered group Ĝπ of nilpotency class c containing G such that Ĝπ =

π
√
G is precisely the set of elements that arise as nth roots of elements of G for n varying
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over π-numbers.

2. The group Ĝπ is uniquely determined up to isomorphism. In particular, any automor-

phism of G extends to an automorphism of Ĝπ.

3. If F is free nilpotent of class c, then F̂π is the free nilpotent π-powered group of class

c.

A few comments are in order here before we proceed. Note that π-powered groups are very

nicely behaved – all their important characteristic subgroups, quotients, and subquotients

are π-powered. For the most part, therefore, if we start with a π-powered group and use

deterministic processes, we will stay with π-powered groups.

The π-torsion-free groups are not so nice. In the counterexamples section (section 4.1.13),

we saw situations where a torsion-free group has an abelianization that is not torsion-free.

This means that we need to proceed with a little more care.

We now prove a statement we made at the end of Section 4.3.4.

Theorem 4.3.4. The following are true for a set of primes π:

1. Suppose G is a π-torsion-free nilpotent group. Then, Ĝπ is the π-powering of G and

the inclusion map G→ Ĝπ is the natural homomorphism.

2. Suppose G is a nilpotent group and T is the set of elements of G whose order is a

π-number. The quotient group G/T is a π-torsion-free nilpotent group, ˆG/T
π

is the

π-powering of G, and the composite of the quotient map G→ G/T and the inclusion

G/T → ( ˆG/T )π is the natural homomorphism to the π-powering of G.

Proof. Proof of (1): Suppose ϕ : G→ K is the natural homomorphism to the π-powering of

G. Denote by θ : G→ Ĝπ the canonical inclusion map of Theorem 4.3.3. By the universality

of K, there exists α : K → Ĝπ such that θ = α ◦ ϕ.
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Since θ is injective, ϕ is also injective, so we can view G as a subgroup of K. Part (2) of

Theorem 4.3.3 tells us that inside K, Ĝπ = π
√
G. Thus, Ĝπ is a π-powered subgroup of K

containing G. By Lemma 4.3.1, Ĝπ = K.

Proof of (2): By Theorem 4.3.2, T = π
√

1 is a subgroup of G. If any element in G/T

has π-torsion, then any representative g for it in G has the property that gn ∈ T for n a

π-number, and therefore, that (gn)m = 1 for n and m both π-numbers, forcing g to have

order a π-number, so g ∈ T . Thus, G/T is π-torsion-free. The rest of the proof is similar to

(1).

4.3.7 Every π-powered class c word is expressible as a root of an ordinary

class c word

This theorem follows from Theorem 4.3.3.

Theorem 4.3.5. Suppose w is a π-powered class c word in n letters. Then, w can be

expressed as v1/m where v is an ordinary word (i.e., a word using the group operations only,

without any powering operations), and m is a π-number, i.e., all the prime divisors of m are

in π.

Proof. Denote by F the free group on n letters of nilpotency class c, and denote by F̂π

its π-powered envelope, which is clearly the free π-powered group on n letters. w can be

described as an element of F̂π. By Theorem 4.3.3, F̂π = π
√
F . Thus, there exists a π-number

m such that wm ∈ F . Let v = wm. The result follows.

4.3.8 Results about isoclinisms for π-powered nilpotent groups

We now state and prove a π-powered analogue of Theorem 2.1.2. We will prove the results

in the context of nilpotent groups, since this will be the area of primary application. Similar
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statements can be made for non-nilpotent groups, but the notation and proof become messier,

so we restrict attention to the nilpotent case.

Theorem 4.3.6. Suppose c ≥ 1 and π is any set of primes. Suppose w(g1, g2, . . . , gn)

is a π-powered class c word in n letters with the property that w evaluates to the identity

element in any π-powered abelian group. Then, for any group G, the word map w : Gn → G

obtained by evaluating w descends to a map:

χw,G : (Inn(G))n → G′

Any word w that is an iterated commutator (with any bracketing) satisfies this condition.

Proof. By Theorem 4.3.5, we can write w as v1/m where v is an ordinary word and m is a

π-number. Moreover, since w is guaranteed to be satisfied in any π-powered abelian group,

so is v. Thus, v is satisfied in the vector space over the rationals generated by the n letters.

So, v is satisfied in the free abelian group generated by the n letters, and therefore v is

satisfied in any abelian group. Thus, Theorem 2.1.2 applies to the word v, and we obtain

that the map descends to a map:

χv,G : Inn(G))n → G′

Since w = v1/m and G′ is π-powered by Theorem 4.1.20, we can obtain the map:

χw,G : Inn(G))n → G′

The next theorem is related to Theorem 2.1.3.
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Theorem 4.3.7. Suppose c ≥ 1, π is a set of primes, and (ζ, ϕ) is a homoclinism of

π-powered class c groups G1 and G2, where ζ : Inn(G1) → Inn(G2) and ϕ : G′1 → G′2 are

the component homomorphisms. Then for any π-powered class c word w(g1, g2, . . . , gn) that

is trivial in every π-powered abelian group (as described above), we have:

χw,G2
(ζ(x1), ζ(x2), . . . , ζ(xn)) = ϕ(χw,G1

(x1, x2, . . . , xn))

for all x1, x2, . . . , xn ∈ Inn(G).

Any word w that is an iterated commutator (with any order of bracketing) satisfies this

condition, and the theorem applies to such word maps.

Proof. By Theorem 4.3.5, we can write w as v1/m where v is an ordinary word and m is a

π-number. Moreover, since w is guaranteed to be satisfied in any π-powered abelian group,

so is v. Thus, v is satisfied in the vector space over the rationals generated by the n letters.

So, v is satisfied in the free abelian group generated by the n letters, and therefore v is

satisfied in any abelian group. Thus, Theorem 2.1.2 applies to the word v, and we obtain:

χv,G2
(ζ(x1), ζ(x2), . . . , ζ(xn)) = ϕ(χv,G1

(x1, x2, . . . , xn))

Taking mth roots on both sides, we obtain:

χw,G2
(ζ(x1), ζ(x2), . . . , ζ(xn)) = ϕ(χw,G1

(x1, x2, . . . , xn))

as desired.

4.3.9 Results for the upper central series

We begin with a simple-looking result whose proof relies on downward induction with the

upper central series. The technique used in the proof is similar to the technique used in the

proof of Theorem 4.1.21.
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Lemma 4.3.8. Suppose π is a set of primes and G is a π-torsion-free nilpotent group.

Suppose H is a subgroup of G. Then, for any natural number n, Zn( π
√
H) = π

√
Zn(H).

Proof. The direction Zn( π
√
H) ≤ π

√
Zn(H) is obvious: note that any element in the group

on the left has some π-multiple that is in H, and that therefore must also be in Zn(H) by

definition. We thus concentrate on proving the opposite inclusion.

Suppose G has nilpotency class c ≥ 2 (note that if c = 1 there is nothing to prove).

Consider the c-fold left-normed commutator map of the form:

T : (x1, x2, . . . , xc) 7→ [. . . [[x1, x2], x3], . . . , xc]

This map is a homomorphism in each coordinate holding the other coordinates fixed.

Note that this fact is very specific to the class being c. It fails for higher class. Moreover,

the set of values for x1 ∈ H for which the output is always the identity for the other inputs

restricted to H is precisely the subgroup Zc−1(H).

Now, suppose x ∈ π
√
Zc−1(H). If we now consider:

T (x, x2, . . . , xc)

where each xi in in π
√
H, we see that if we replace each input by a suitable power of

it, the first input lands inside Zc−1(H) and the remaining inputs land inside H. Thus, a

suitable π-multiple of T (x, x2, . . . , xc) is the identity. Since G is π-torsion-free, this forces

T (x, x2, . . . , xc) to be the identity, so we obtain that π
√
Zc−1(H) ≤ Zc−1( π

√
H).

The result can now be extended further down the upper central series. The key trick

in executing the extension is to replace the original c-fold commutator with smaller-fold

commutators, but now restrict the first input to being within the member one higher. In

general when inducting down from Zi(H) to Zi−1(H), we consider a left-normed commutator

of length i, restricting the first input to be within Zi(H) and allowing all other inputs to
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vary freely within H or π
√
H.

We can apply this to the minimal π-powered group:

Lemma 4.3.9. Suppose G is a π-torsion-free nilpotent group and Ĝπ is a minimal

π-powered group containing G. Let K = Zn(G) Then, K̂π is canonically isomorphic to

Zn(Ĝπ).

Proof. This follows from the preceding lemma (Lemma 4.3.8) and Theorem 4.3.3.

4.3.10 Results for the lower central series

Of the two results stated for the upper central series, only one has an analogue for the lower

central series. The analogue of the first lemma breaks down, while the second still has a

valid analogue.

To see why the analogue of the first lemma breaks down, let G be the central product

of UT (3,Z) and Q where we identify the central Z in UT (3,Z) with a Z subgroup in Q.

Let H be the subgroup UT (3,Z). Then, if we take π as the set of all primes, we have that

π
√
H = G. Thus, ( π

√
H)′ = G′, which is the central Z of G and also the center of H. On the

other hand
π
√
H ′ is the full center of G, and it is isomorphic to Q. Clearly, the two are not

the same.

On the other hand, the second result, pertaining to the minimal π-powered group, still

holds.

Lemma 4.3.10. Suppose G is a π-torsion-free nilpotent group and Ĝπ is a minimal

π-powered group containing G. Then, ˆγi(G)
π

is canonically isomorphic to γi(Ĝ
π).

Proof. Since Ĝπ is π-powered, Theorem 4.1.20 tells us that γi(Ĝ
π) is also π-powered. We

already know that γi(G) ≤ γi(Ĝ), and thus, π
√
γi(G) ≤ γi(Ĝ

π). By Theorem 4.3.3, the left
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side becomes ˆγi(G)
π
. Thus, we have that:

ˆγi(G)
π
≤ γi(Ĝ

π)

The proof for the other direction is also fairly similar and proceeds by inducting over the

lower central series, starting from smaller members upwards. The mechanics of the proof are

quite similar to that of Theorem 4.3.2. We begin by looking at γc(G) as the image of the

c-fold iterated left normed commutator map, and note that we can pull powers in and out

of the commutators. For brevity, we omit the proof details.

4.4 Free powered Lie rings and powering functors for Lie rings

The final results of this section mirror those of the preceding section (Section 4.3). However,

the proofs are much easier.

4.4.1 Construction of the free powered Lie ring

This section uses basic terminology from universal algebra. For background on the termi-

nology, see Section A.2.4.

For any variety of algebras, we can talk of the free algebra in that variety on any set. In

particular, we can talk of the free π-powered Lie ring on a set S. We already saw in Section

4.2 that π-powered Lie rings are the same as Z[π−1]-Lie algebras. Thus, the free π-powered

Lie ring on S coincides with the free Z[π−1]-Lie algebras. Equivalently, the free Z[π−1]-Lie

algebra on S is Z[π−1] ⊗ L where L is the free Lie algebra on S. We will denote the free

π-powered Lie algebra on S as Lie algebra as F (S, π) here to keep notation similar to the

preceding section.

4.4.2 Free nilpotent and free powered nilpotent Lie rings

We begin with the definition.
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Definition (Free π-powered nilpotent Lie ring). Suppose S is a set, π is a set of primes,

and c is a positive integer. The free π-powered nilpotent Lie ring of class c on S is defined

as the quotient Lie ring F (S, π)/γc+1(F (S, π)) where F (S, π) is the free π-powered Lie ring

on S. Equivalently, this Lie ring, along with the set map to it from S, is the initial object

in the category of Lie rings of nilpotency class at most c with set maps to them from S.

The functor sending a set to its free π-powered nilpotent Lie ring of class c is left adjoint

to the forgetful functor from π-powered nilpotent Lie rings of class (at most) c to sets.

4.4.3 π-powered words and word maps

We can define π-powered words and π-powered class c words, and the corresponding word

maps, in a manner analogous to Section 4.3.3. Due to the biadditivity of the Lie bracket,

we can readily deduce the Lie ring analogues of results that took us some effort to deduce

for groups. Further, we do not need the assumption of nilpotency.

Any π-powered word w(g1, g2, . . . , gn) can be written in the form 1
mv(g1, g2, . . . , gn) where

v is an ordinary word (a sum of Lie products) and m is a π-number. The same conclusion

applies if we start with a π-powered class c word.

4.4.4 Localization and powering functors

For a set π of primes, the π-powering functor is a functor from the category of Lie rings

to the category of π-powered Lie rings that is left adjoint to the forgetful functor from the

category of π-powered Lie rings to the category of Lie rings. More explicitly, for a Lie ring

L, the π-powering of L is a Lie ring K along with a homomorphism ϕ : L → K such that

for any homomorphism θ : L → N from L to a π-powered Lie ring N , there is a unique

homomorphism α : K → N such that θ = α ◦ ϕ.

It turns out that the π-powering functor is the same as the functor that tensors with

Z[π−1] to change the base ring to Z[π−1]. Explicitly, the functor takes the Z-Lie algebra L
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and returns the Z[π−1]-Lie algebra Z[π−1]⊗Z L.

For a prime set π, the π-localization functor refers to the powering functor for the set of

primes outside of π.

4.4.5 Results about isoclinisms for π-powered Lie rings

We now state and prove a π-powered analogue of Theorem 2.2.2. Note that unlike the

situation for groups, we do not restrict ourselves to the nilpotent case, because the proofs

are straightforward without the assumption of nilpotency. However, if we wish, we can

formulate the results in the context of π-powered class c Lie ring words. The proofs will

remain similar.

Theorem 4.4.1. Suppose π is a set of primes and w(g1, g2, . . . , gn) is a π-powered word

in n letters with the property that w evaluates to the zero element in any π-powered abelian

Lie ring. Then, for any π-powered Lie ring L, the word map w : Ln → L obtained by

evaluating w descends to a map:

χw,L : (Inn(L))n → L′

Proof. As discussed above, we can write w = (1/m)v where m is a π-number and v is a

Lie word (a sum of Lie products) and m is a π-number. Moreover, since w is guaranteed

to be satisfied in any π-powered abelian Lie ring, so is v. Thus, v is satisfied in the vector

space over the rationals generated by the n letters. So, v is satisfied in the free abelian Lie

ring generated by the n letters, and therefore v is satisfied in any abelian Lie ring. Thus,

Theorem 2.2.2 applies to the word v, and we obtain that the map descends to a map:

χv,L : Inn(L))n → L′
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Since w = (1/m)v and L′ is π-powered by Lemma 4.2.8, we can obtain the map:

χw,L : Inn(L))n → L′

The next theorem is related to Theorem 2.2.3.

Theorem 4.4.2. Suppose π is a set of primes and (ζ, ϕ) is a homoclinism of π-powered

Lie rings L1 and L2, where ζ : Inn(L1) → Inn(L2) and ϕ : L′1 → L′2 are the component

homomorphisms. Then for any π-powered word w(g1, g2, . . . , gn) that is trivial in every

π-powered abelian Lie ring (as described above), we have:

χw,L2
(ζ(x1), ζ(x2), . . . , ζ(xn)) = ϕ(χw,L1

(x1, x2, . . . , xn))

for all x1, x2, . . . , xn ∈ Inn(G).

Any word w that is an iterated commutator (with any order of bracketing) satisfies this

condition, and the theorem applies to such word maps.

Proof. We can write w = (1/m)v where v is an ordinary word and m is a π-number. More-

over, since w is guaranteed to be satisfied in any π-powered abelian Lie ring, so is v. Thus, v

is satisfied in the vector space over the rationals generated by the n letters. So, v is satisfied

in the free abelian Lie ring generated by the n letters, and therefore v is satisfied in any

abelian Lie ring. Thus, Theorem 2.2.2 applies to the word v, and we obtain:

χv,L2
(ζ(x1), ζ(x2), . . . , ζ(xn)) = ϕ(χv,L1

(x1, x2, . . . , xn))

Dividing both sides by m, we obtain:
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χw,L2
(ζ(x1), ζ(x2), . . . , ζ(xn)) = ϕ(χw,L1

(x1, x2, . . . , xn))

as desired.
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CHAPTER 5

BAER CORRESPONDENCE

5.1 Baer correspondence: the basic setup

The Baer correspondence was introduced by Reinhold Baer in [3]. We will review the cor-

respondence in this section, and study it in further detail in the next two sections (Sections

5.2 and 5.3). This paves the way for the section after that (Section 5.4), which contains

a novel contribution of this thesis, that we call the Baer correspondence up to isoclinism.

This is relatively straightforward to prove and understand. It sets the stage for the next few

sections, where we discuss the Lazard correspondence (introduced by Lazard in [30]) and our

variation of it, namely the Lazard correspondence up to isoclinism.

Many of the ideas described in this section are similar to, and build upon, ideas in Section

1.3, where we describe the abelian Lie correspondence.

5.1.1 Baer Lie groups and Baer Lie rings

We begin with some definitions. These definitions are not standard, and there may be

somewhat different meanings in other sources that use these words.

Definition (Baer Lie group). A group G is termed a Baer Lie group if G is powered

over the prime 2 (per Definition 4.1.3; explicitly, this means that every element of G has a

unique square root) and G is nilpotent with nilpotency class at most 2.

Definition (Baer Lie ring). A Lie ring L is termed a Baer Lie ring if L is powered over

the prime 2 (i.e., its additive group is powered over 2 per Definition 4.1.3; explicitly, this

means that every element has a unique half) and L is nilpotent with nilpotency class at most

2.
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The Baer correspondence is a correspondence:

Baer Lie groups ↔ Baer Lie rings

A group and Lie ring that are in Baer correspondence have the same underlying set.

5.1.2 Construction from group to Lie ring

Consider a Baer Lie group G with multiplication denoted by juxtaposition and the identity

element denoted by 1. We define a Baer Lie ring, denoted logG or log(G), as follows. The

underlying set of logG is the same as the underlying set of G, and the operations are as

follows.

• The addition on log(G) is defined as x + y := xy√
[x,y]

where [x, y] denotes the group

commutator. Note that because the group has class two, it does not matter whether

we use the left action convention for the commutator [x, y] = xyx−1y−1 or the right

action convention for the commutator [x, y] = x−1y−1xy: they both mean the same

thing.

Note that [x, y] ∈ Z(G) (where Z(G) denotes the center of G) because G has class

at most two. G is 2-powered, so by Lemma 4.1.5, the center Z(G) is also 2-powered.

Thus,
√

[x, y] is also in Z(G). Thus, we can “divide” xy by this element unambiguously,

without specifying whether the division is on the left or on the right.

There are two alternative expressions for x + y that are equal to the above and are

sometimes more useful to use: x+y =
√
xy
√
x and x+y =

√
xy2x. For more on these

expressions, see Section 5.1.6.

• The zero element of log(G) is defined as equal to the identity element 1 of G.

• The additive inverse −x is defined as −x := x−1.
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• The Lie bracket [x, y]Lie is defined as the group commutator [x, y]. As remarked above,

it does not matter whether we use the left action convention or the right action con-

vention for the commutator.

Lemma 5.1.1. logG (as defined above, with the same underlying set as G), is a Baer

Lie ring.

Proof. The proof requires showing the following:

1. Addition is associative

2. Addition is commutative

3. Identity and inverses work

4. The Lie bracket is additive in the first variable

5. The Lie bracket is additive in the second variable

6. The Lie bracket is alternating

7. The Lie bracket satisfies the Jacobi condition and gives a class two Lie ring

8. The Lie ring is 2-powered.

Proof of (1): We want to show that for every x, y, z in G (possibly equal, possibly

distinct), we have:

(x+ y) + z = x+ (y + z)

We first consider the left side:

(x+ y) + z =

xy√
[x,y]

· z√[
xy√
[x,y]

, z

]
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We know that for c central, [a, bc] = [ac, b] = [a, b]. Since the reciprocal of
√

[x, y] is

central, it can be dropped from inside commutator expressions, and we simplify to:

(x+ y) + z =
xyz√

[x, y]
√

[xy, z]

The square root operation is a homomorphism on the center, and we can thus rewrite it

as:

(x+ y) + z =
xyz√

[x, y][xy, z]
(†)

Similarly, the right side of the associativity result we want to prove becomes:

x+ (y + z) =
xyz√

[x, yz][y, z]
(††)

Thus, to prove associativity, it suffices to show that the right sides of (†) and (††) are

equal, which in turn reduces to proving that:

[x, y][xy, z] = [x, yz][y, z]

For a group of class two, the commutator map is a homomorphism in each of its co-

ordinates (see Lemma A.3.2 for a proof of this and related statements). Thus, both sides

simplify to:

[x, y][x, z][y, z]

and hence both sides are equal, completing the proof.

Proof of (2): We want to show that for any x, y in the group, x + y = y + x. The key

ingredient to our proof is the observation that [x, y]−1 = [y, x].

We have, by definition:
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x+ y =
xy√
[x, y]

and:

y + x =
yx√
[y, x]

It thus suffices to prove that:

xy√
[x, y]

=
yx√
[y, x]

which is equivalent to proving that:

xy√
[x, y]

= yx
√

[x, y]

which in turn is equivalent to proving that:

xy = yx[x, y]

which is true by the definition of [x, y].

Proof of (3): We have:

x+ 1 =
x1√
[x, 1]

= x

and:

1 + x =
1x√
[1, x]

= x

Thus, 1 is an identity element for the Lie ring addition.

We also have:
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x+ x−1 =
xx−1√
[x, x−1]

= 1

and:

x−1 + x =
x−1x√
[x−1, x]

= 1

Proof of (4) and (5): These follow from the corresponding facts for the commutator map

in a group of class two.

Proof of (6): This follows from the general fact that [x, y]−1 = [y, x].

Proof of (7): In fact, all Lie products [[x, y], z] are zero, so the Jacobi identity is trivially

satisfied.

Proof of (8): We have:

x+ x =
x2√
[x, x]

= x2

In other words, the double of an element in the Lie ring is the same as its square in the

group. Since the group is 2-powered, the Lie ring is also 2-powered.

5.1.3 Construction from Lie ring to group

Suppose L is a Baer Lie ring with addition + and Lie bracket [ , ]. We define a Baer Lie

group exp(L) as follows. The underlying set of exp(L) is the same as the underlying set of

L. The group operations are defined as follows:

• The group multiplication on exp(L) is defined as:

xy = x+ y +
1

2
[x, y]

• The identity element for the group multiplication of exp(L) is defined as the element

0 of L.
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• The inverse operation is defined as x−1 := −x.

Lemma 5.1.2. exp(L) (defined as above, with the same underlying set as L) is a Baer

Lie group. Moreover, the group commutator in exp(L) coincides with the Lie bracket in L.

Proof. The proof requires showing the following:

1. Multiplication is associative.

2. The identity element and inverses work.

3. The commutator map in the group agrees with the Lie bracket.

4. The group has nilpotency class at most two.

5. The group is 2-powered.

Proof of (1): Let x, y, z be arbitrary (possibly equal, possibly distinct) elements of L.

To prove: (xy)z = x(yz)

Proof: We begin by simplifying the left side. We have:

(xy)z =

(
x+ y +

1

2
[x, y]

)
+ z +

1

2

[
x+ y +

1

2
[x, y], z

]
We use the linearity of the Lie bracket, and also use that the Lie ring has nilpotency

class two to simplify [[x, y], z] to zero. The expression simplifies to:

(xy)z = x+ y + z +
1

2
([x, y] + [x, z] + [y, z])

Similarly, we can show that:

x(yz) = x+ y + z +
1

2
([x, y] + [x, z] + [y, z])
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Thus, associativity holds.

Proof of (2): From the expression for group multiplication, we obtain that if [x, y] = 0,

then xy = x+ y. In particular, this means that:

x(0) = x+ 0 = x

and:

(0)x = 0 + x = x

Thus, x(0) = (0)x = x, so 0 is an identity element for multiplication, and we obtain that

the multiplication defined turns L into a monoid.

Further, we obtain that:

x(−x) = x+ (−x) = 0

and:

(−x)x = (−x) + x = 0

Thus, −x is a two-sided multiplicative inverse for x. L is thus a monoid where every

element has a two-sided multiplicative inverse, hence is a group. Further, −x = x−1 in this

group for all x.

Proof of (3): We want to compute an explicit expression for the group commutator

[x, y]Group = xyx−1y−1 = (xy)(yx)−1 in terms of the Lie ring operations.

First, we use that (yx)−1 = −(yx), so we get:

[x, y]Group = (xy)(−(yx)) = (xy) + (−(yx)) +
1

2
[xy,−(yx)]

This simplifies to:
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[x, y]Group = x+ y +
1

2
[x, y]− (y + x+

1

2
[y, x]) +

1

2
[x+ y +

1

2
[x, y],−(y + x+

1

2
[y, x])]

Simplify using the fact that the Lie ring has class two, so that all Lie products of the

form [a, [b, c]] or [[a, b], c] are zero. We get:

[x, y]Group = [x, y]

Thus, the group commutator equals the Lie bracket. Note that the proof above is for the

group commutator defined using the left action convention, but an analogous proof exists

for the group commutator defined using the right action convention.

Proof of (4): This follows from (3) and the fact that the Lie ring has nilpotency class

two.

Proof of (5): For any x ∈ L, x2 with respect to the group structure is given by:

x2 = x+ x+
1

2
[x, x] = 2x

In other words, the squaring operation in the group coincides with the doubling operation

in the Lie ring. The latter is bijective because the Lie ring is 2-powered. Hence, the former

operation is also bijective. Therefore, the group is 2-powered.

5.1.4 Mutually inverse nature of the constructions

We now show that exp and log are two-sided inverses of each other.

Lemma 5.1.3. The construction of the Baer Lie ring of a Baer Lie group and the

construction of the Baer Lie group of a Baer Lie ring are two-sided inverses of each other.

Explicitly:
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1. Start with a Baer Lie group G. Then, G = exp(log(G)).

2. Start with a Baer Lie ring L. Then, L = log(exp(L)).

Proof. Note that the identity element and inverse map are the same for the group and Lie

ring, and the Lie bracket for the Lie ring is the same as the commutator for the group,

so the main thing to check is the interplay between the Lie ring addition and the group

multiplication.

Proof of (1): We want to show that the “new” group multiplication coincides with the

original group multiplication:

(x+ y) +
1

2
[x, y] = xy

We begin by simplifying the left side. We begin by replacing x + y by its expression in

terms of the group multiplication, and obtain:

xy√
[x, y]

+
1

2
[x, y]

This further simplifies to:

xy√
[x,y]

√
[x, y]√[

xy√
[x,y]

,
√

[x, y]

]
The lower denominator is the identity element because

√
[x, y] is central on account of

the group having class two and being 2-powered. The numerator simplifies to xy. This

completes the proof.

Proof of (2): We want to show that the “new” Lie ring addition coincides with the

original Lie ring addition. Explicitly, we want to show that:
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xy√
[x, y]

= x+ y

We simplify the left side. Note that
√

[x, y] = 1
2 [x, y] is central back in the Lie ring, so

this becomes:

(x+ y + 1
2 [x, y])− 1

2 [x, y]

This simplifies to x+ y, as desired.

5.1.5 Understanding the formulas in the Baer correspondence

Given two elements x and y in a Baer Lie group G, there are two possible products we can

consider: xy and yx. The quotient of these products (xy)/(yx) is the commutator [x, y]. Note

that we get the same answer whether we use left or right quotients, because the elements xy

and yx commute on account of the class being two.

The “average” of the two products can be thought of as an element z that is midway

between xy and yx, i.e., we want z to satisfy:

xy

z
=

z

yx

If we rearrange and solve, we will get:

z =
xy√
[x, y]

The Baer Lie ring construction sets x + y to equal this “average” value and sets the

Lie bracket [x, y] to equal the “distance” between xy and yx. This agrees with our earlier

statement made in Section 1.1.7 about Lie-type correspondences in general: “The addition

operation of the Lie ring captures the abelian part of the group multiplication, whereas the

Lie bracket captures the non-abelian part of the group multiplication.”
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5.1.6 Twisted multiplication of a 2-powered group

Suppose G is a 2-powered (not necessarily nilpotent) group. For any u ∈ G, denote by
√
u

the unique element v ∈ G such that v2 = u.1

The twisted multiplication on G has two somewhat different but related definitions. The

two definitions are denoted as ∗1 and ∗2 below, and the reason for their equivalence is

discussed below:

x ∗1 y :=
√
xy
√
x

x ∗2 y :=

√
xy2x =

√
(xy)(yx)

The latter can be thought of as the “mean” between xy and yx, and more explicitly, it

is the unique solution z to:

z−1xy = z(yx)−1

For any x, y ∈ G, we have:

x2 ∗1 y2 = (x ∗2 y)2 = xy2x

Thus, the square map establishes an isomorphism between (G, ∗2) and (G, ∗1).

As proved in [18], G acquires the structure of a gyrocommutative gyrogroup (and in

particular, the structure of a loop) under either of these equivalent operations. Explicitly:

• The identity element for ∗1 equals the identity element for ∗2, and both are equal to

the identity element for G as a group.

1. The typical case of interest is where G is a finite group, in which case being 2-powered is equivalent to
being an odd-order group. However, none of the statements here rely on finiteness.
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• The inverse map for ∗1 is the same as the inverse map for ∗2, and both are equal to

the inverse map for G as a group.

• In terms of ∗2, the gyroautomorphism gyr([x, y]) is defined to be conjugation in G by√
xy2xx−1y−1 = (

√
xy2x)−1xy. Note that the conjugation element can be thought

of as the “mean deviation”, i.e., it is the distance between either of xy and yx and the

“mean” between them, in a manner similar to that described in Section 5.1.5.

The connection of the twisted multiplication with the Baer correspondence is as follows:

given a Baer Lie group, the addition operation in the corresponding Baer Lie ring coincides

with the twisted multiplication (in fact, it coincides with both ∗1 and ∗2). Explicitly, for a

Baer Lie group, the Lie ring addition has the following equivalent forms:

x+ y =
xy√
[x, y]

=
√
xy
√
x =

√
xy2x

5.1.7 Preservation of homomorphisms and isomorphism of categories

In Section 1.3.2, we made a number of observations leading to the conclusion that the

category of abelian groups is isomorphic to the category of abelian Lie rings, with the iso-

morphisms given explicitly by the log and exp functors.

The analogous conclusion also holds for the Baer correspondence. However, the reasoning

behind these steps is somewhat different from the abelian case. In the abelian case, the only

conceptual distinction between the group side and Lie ring side was that the latter had a

trivial Lie bracket operation. Other than that, the operations were the same. In the Baer

case, the group operations and Lie ring operations are defined somewhat differently. The

reason that the correspondence works is that any formula commutes with any homomor-

phism. For instance, if w(x, y) is the word describing the Lie ring addition in terms of the

group operations (including powering operations), then for any group homomorphism ϕ:
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ϕ(w(x, y)) = w(ϕ(x), ϕ(y))

In the case of the Baer correspondence, the formula in question is:

w(x, y) =
xy√
[x, y]

and the assertion becomes:

ϕ

(
xy√
[x, y]

)
=

ϕ(x)ϕ(y)√
[ϕ(x), ϕ(y)]

Since the Lie ring operations are defined in terms of the group operations, a homomor-

phism of groups preserves the Lie ring operations, and therefore gives a homomorphism of

Lie rings. In the opposite direction, since the group operations are defined in terms of the Lie

ring operations, a homomorphism of Lie rings preserves the group operations, and therefore

gives a homomorphism of groups. Explicitly, in this case, if ϕ is a Lie ring homomorphism

between Baer Lie rings, then the assertion is that:

ϕ

(
x+ y +

1

2
[x, y]

)
= ϕ(x) + ϕ(y) +

1

2
[ϕ(x), ϕ(y)]

The explicit statements are below:

• log defines a functor from Baer Lie groups to Baer Lie rings: Suppose G1 and G2

are Baer Lie groups and ϕ : G1 → G2 is a group homomorphism. Then, there exists

a unique Lie ring homomorphism log(ϕ) : log(G1) → log(G2) that has the same

underlying set map as ϕ. Reason: The Lie ring operations are defined as formal

expressions in terms of the group operations and the square root operation, and this

expression is preserved under homomorphisms.

• exp defines a functor from Baer Lie rings to Baer Lie groups: Suppose L1 and L2 are

Baer Lie rings and ϕ : L1 → L2 is a Lie ring homomorphism. Then, there exists a
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unique group homomorphism exp(ϕ) : exp(G1) → exp(G2) that has the same under-

lying set map as ϕ. Reason: The group operations are defined as formal expressions

in terms of the Lie ring operations and the halving operation, and this expression is

preserved under homomorphisms.

• The log and exp functors are two-sided inverses of each other: This has four parts:

– For every Baer Lie group G, G = exp(log(G)). This is part of Lemma 5.1.3.

– For every Baer Lie ring L, L = log(exp(L)). This is part of Lemma 5.1.3.

– For every group homomorphism ϕ : G1 → G2 of Baer Lie groups, exp(log(ϕ)) =

ϕ. This follows immediately from the fact that both taking log and taking exp

preserve the underlying set map.

– For every Lie ring homomorphism ϕ : L1 → L2 of Baer Lie rings, log(exp(ϕ)) = ϕ.

This follows immediately. This following immediately from the fact that both

taking log and taking exp preserve the underlying set map.

The upshot is that the Baer correspondence defines an isomorphism of categories over

the category of sets between the category of Baer Lie groups and the category of Baer Lie

rings. Here, by “category of Baer Lie groups” we mean the full subcategory2 of the category

of groups where the objects are the Baer Lie groups. Similarly, by “category of Baer Lie

rings” we mean the full subcategory of the category of Lie rings where the objects are Baer

Lie rings.

Note that all steps of this reasoning can be repeated for the Lazard correspondence. To

avoid repetition, we will omit the details and instead refer back to this section as needed.

2. Full subcategory means that all morphisms of the big category (in this case, the category of groups)
between objects of the subcategory (in this case, Baer Lie groups) are morphisms in the subcategory.
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5.1.8 Consequences for the Baer correspondence of being an isomorphism

of categories

We have established above that the Baer correspondence defines an isomorphism of cate-

gories. Mimicking the steps in Section 1.3, we obtain the following:

• The Baer correspondence preserves endomorphism monoids. Explicitly, if G is a Baer

Lie group and L = log(G), then End(G) and End(L) are isomorphic monoids, and

define the same collection of set maps. The reasoning mimicks Section 1.3.4.

• The Baer correspondence also preserves automorphism groups. Again, the reasoning

mimicks Section 1.3.4.

• We can define the Baer correspondence up to isomorphism (mimicking Section 1.3.5).

This is a correspondence:

Isomorphism classes of Baer Lie groups ↔ Isomorphism classes of Baer Lie rings

5.2 Baer correspondence: additional remarks

5.2.1 Subgroups, quotients, and direct products

In Section 1.3.7, we noted that the abelian Lie correspondence between an abelian group

and an abelian Lie ring gives rise to a correspondence between all subgroups of the group

and all subrings of the Lie ring.

A related result holds for the Baer correspondence, but there are more caveats. The

important caveat is that the 2-powered groups do not form a subvariety of the variety of

groups. Therefore, the Baer Lie groups do not form a subvariety of the variety of groups.

Let us examine subgroups, quotients, and direct products separately:
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• Subgroups: A subgroup of a Baer Lie group need not be a Baer Lie group. For instance,

the group Q of rational numbers is a Baer Lie group, but its subgroup Z is not a Baer

Lie group.

• Quotients: A quotient group of a Baer Lie group need not be a Baer Lie group. For

instance, the group Q of rational numbers is a Baer Lie group, but its quotient group

Q/Z is not a Baer Lie group.

• Direct products: An arbitrary direct product of Baer Lie groups is a Baer Lie group.

Similar observations hold for Baer Lie rings:

• Subrings: A subring of a Baer Lie ring need not be a Baer Lie ring. For instance, the

abelian Lie ring with additive group Q but its subring with additive group Z is not a

Baer Lie ring.

• Quotient rings: A quotient ring of a Baer Lie ring need not be a Baer Lie ring. For

instance, the abelian Lie ring with additive group Q is a Baer Lie ring, but the quotient

ring with additive group Q/Z is not a Baer Lie ring.

• Direct products: An arbitrary direct product of Baer Lie rings is a Baer Lie ring.

Due to the above considerations, we need to impose some restrictions on the nature of

the subgroup and nature of the quotient group in order to use the Baer correspondence to

obtain a correspondence between subgroups and subrings, or between quotient groups and

quotient rings.

Call a subgroup H of a Baer Lie group G a Baer Lie subgroup if H is 2-powered. In

particular, this means that H is a Baer Lie group in its own right. Note also that for a

normal subgroup H of G, H is a Baer Lie subgroup if and only if the quotient group G/H is

a Baer Lie group (this follows from the two-out-of-three theorem, Theorem 4.1.27). In this

case, we say that G/H is a Baer Lie quotient group of G.
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Call a subring M of a Baer Lie ring L a Baer Lie subring if M is 2-powered. In particular,

this means that M is a Baer Lie ring in its own right. Note also that for an ideal I of L,

I is a Baer Lie subring if and only if the quotient ring L/I is a Baer Lie ring (this follows

from Theorem 4.2.1). In these equivalent cases, we will say that I is a Baer Lie ideal of L

and L/I is a Baer Lie quotient ring of L.

• Baer Lie subgroups correspond to Baer Lie subrings: Suppose a Baer Lie ring L is

in Baer correspondence with a Baer Lie group G, i.e., L = log(G) and G = exp(L).

Then, for every Baer Lie subgroup H of G, log(H) is a subring of L, and the inclusion

map of log(H) in L is obtained by applying the log functor to the inclusion map of

H in G. In the opposite direction, for every Baer Lie subring M of L, exp(M) is a

subgroup of G, and the inclusion map of exp(M) in G is obtained by applying the exp

functor to the inclusion map of M in L. The Baer correspondence thus gives rise to a

correspondence:

Baer Lie subgroups of G ↔ Baer Lie subrings of L

• Quotient groups by normal Baer Lie subgroups correspond to quotient rings by Baer

Lie ideals: Suppose a Baer Lie ring L is in Baer correspondence with a Baer Lie group

G. Then, for every normal Baer Lie subgroup H of G, log(G/H) is a quotient Lie ring

of L, and the quotient map L→ log(G/H) is obtained by applying the log functor to

the quotient map G→ G/H. In the opposite direction, for every Baer Lie ideal I of L,

exp(L/I) is a quotient group of G, and the quotient map G → exp(L/I) is obtained

by applying the exp functor to the quotient map L→ L/I. The Baer correspondence

thus gives rise to correspondences:

Normal Baer Lie subgroups of G ↔ Baer Lie ideals of L

Baer Lie quotient groups of G ↔ Baer Lie quotient rings of L
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• Direct products correspond to direct products: Suppose I is an indexing set, and Gi, i ∈

I is a collection of Baer Lie groups. For each i ∈ I, let Li = log(Gi). Then, the external

direct product
∏

i∈I Li is in Baer correspondence with the external direct product∏
i∈I Gi. Moreover, the projection maps from the direct product to the individual

direct factors are in Baer correspondence. Also, the inclusion maps of each direct

factor in the direct product are in Baer correspondence.

5.2.2 Twisted subgroups and subrings

We introduce the notion of twisted subgroup of a group. Our definition differs somewhat from

the definition found in the literature (see, for instance, [18]) in that our definition requires

twisted subgroups to be closed under taking inverses. The condition is not stated in [18]

because that paper, and the other related literature, are interested primarily in finite groups,

where the condition is redundant.

Definition (Twisted subgroup). A subset K of a group G is termed a twisted subgroup

if it satisfies the following three conditions:

1. For any x, y ∈ K (possibly equal, possibly distinct), xyx ∈ K.

2. The identity element of G is in K.

3. For any x ∈ K, x−1 ∈ K.

Note that Conditions (1) and (2) imply closure under taking positive powers, so if every

element of K has finite order in G, condition (3) is redundant.

We will call a twisted subgroup K of a group G powered over a set of primes π if the map

x 7→ xp is a bijection from K to itself for every p ∈ π.

We had earlier defined the addition in a Baer Lie group as follows:
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x+ y =
xy√
[x, y]

As described in Section 5.1.6, we can rewrite this as:

x+ y =
√
xy
√
x

It follows that under the Baer correspondence, we have a correspondence:

2-powered twisted subgroups of the Baer Lie group ↔ 2-powered additive subgroups of the

Baer Lie ring

5.2.3 Characteristic subgroups and subrings

In Section 5.2.1, we noted that the Baer correspondence between a Baer Lie group G and a

Baer Lie ring L induces a correspondence:

Baer Lie subgroups of G ↔ Baer Lie subrings in L

Recall that a Baer Lie subgroup of a Baer Lie group is simply a 2-powered subgroup.

Similarly, a Baer Lie subring of a Baer Lie ring is simply a 2-powered subring.

In Section 5.1.8, we noted that the Baer correspondence preserves automorphisms groups,

i.e., Aut(G) and Aut(L) define the same collection of permutations on the underlying set.

Thus, the above correspondence preserves the property of being invariant under automor-

phisms, and we obtain a correspondence:

Characteristic Baer Lie subgroups of G ↔ Characteristic Baer Lie subrings of L

Note that, combined with the fact that normal Baer Lie subgroups of G correspond with

Baer Lie ideals of L, this tells us that any characteristic Baer Lie subring of L (i.e., any 2-

powered characteristic subring of L) is an ideal of L. Note that this is a nontrivial statement

238



about the structure of L, since there do exist Lie rings that have characteristic subrings that

are not ideals.

Conjecture 4.1.28 (respectively, Conjecture 4.2.10) stated that for a prime set π, any

characteristic subgroup (respectively, characteristic Lie subring) in a π-powered nilpotent

group (respectively, π-powered nilpotent Lie ring) must be π-powered. We can consider

restricted versions of Conjectures 4.1.28 and 4.2.10 to the case of Baer Lie groups and Baer

Lie rings respectively. If both restricted conjectures are true, then we have a correspondence:

Characteristic subgroups of G ↔ Characteristic subrings of L

Analogous remarks to the above remarks for characteristic subgroups and subrings apply

to the case of fully invariant subgroups and subrings. Note that the conjecture that would

be necessary for fully invariant subgroups and subrings is implied by the conjecture for

characteristic subgroups.

5.2.4 The p-group case

Let p be an odd prime. We will use the term p-group for a group (not necessarily finite) in

which the order of every element is a power of p. We will use the term p-Lie ring for a Lie ring

whose additive group is a p-group. The Baer correspondence restricts to a correspondence:

p-groups of nilpotency class (at most) two ↔ p-Lie rings of nilpotency class (at most) two

The square root operation in this case corresponds to a powering operation. Explicitly,

if g is an element of a p-group G, the order of g is a prime power pk.
√
g equals g(p

k+1)/2.

In particular, it is a positive integral power of g.

Thus, every subset of a p-group that is closed under taking positive powers is also closed

under taking square roots. In particular, every subgroup of a p-group is 2-powered, and

every twisted subgroup of a p-group is 2-powered.
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Thus, in the case of p-groups for odd primes p, the correspondences discussed in the

preceding sections are particularly easy. The correspondence between 2-powered subgroups

and 2-powered subrings becomes a correspondence:

Subgroups of G ↔ Subrings of L

We also obtain correspondences:

• Normal subgroups of G ↔ Ideals of L

• Quotient groups of G ↔ Quotient rings of L

• Characteristic subgroups of G ↔ Characteristic subrings of L

• Fully invariant subgroups of G ↔ Fully invariant subrings of L

The correspondence between 2-powered twisted subgroups and 2-powered additive sub-

groups of the Lie ring becomes a correspondence:

Twisted subgroups of G ↔ Subgroups of the additive group of L

5.2.5 Relation between the Baer correspondence and the abelian Lie

correspondence

In an earlier section (Section 1.3), we introduced the abelian Lie correspondence:

Abelian groups ↔ Abelian Lie rings

In the preceding section (Section 5.1), we introduced the Baer correspondence:

Baer Lie groups ↔ Baer Lie rings

We used the same symbols (log and exp) to describe the functors for both correspon-

dences. This leads to a potential for ambiguity: what happens if a group happens to be both

an abelian group and a Baer Lie group? It turns out that in this case, the two correspon-

dences agree. Explicitly:
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• Suppose G is a 2-powered abelian group, i.e., G is both an abelian group and a Baer

Lie group. Then, the two definitions of logG (based on the abelian Lie correspondence

and Baer correspondence respectively) agree with each other.

• Suppose L is a 2-powered abelian Lie ring, i.e., L is both an abelian Lie ring and a Baer

Lie ring. Then, the two definitions of expL (using the abelian Lie correspondence and

Baer Lie correspondence) agree with each other.

• Suppose G1 and G2 are 2-powered abelian groups and ϕ : G1 → G2 is a homomorphism

of groups. Then, the two definitions of log(ϕ) (based on the abelian Lie correspondence

and Baer correspondence respectively) agree.

• Suppose L1 and L2 are 2-powered abelian Lie rings and ϕ : L1 → L2 is a homo-

morphism of Lie rings. Then, the two definitions of exp(ϕ) (based on the abelian Lie

correspondence and Baer correspondence respectively) agree.

Every time we introduce a new correspondence between groups and Lie rings, we will

attempt to verify whether it is compatible with existing correspondences. Checking compat-

ibility will reduce to the question of checking whether the formulas agree with each other in

the case of overlap. For illustrative purposes, consider the proof that for a 2-powered abelian

Lie ring L, the two definitions of expL agree. The definitions of group multiplication in

terms of the Lie ring operations:

x+y for the abelian Lie correspondence, x+y+
1

2
[x, y] for the Baer Lie correspondence

These formulas agree for a 2-powered abelian group.
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5.2.6 Abelian subgroups, abelian quotient groups, center and derived

subgroup

Suppose a group G is in Baer correspondence with a Lie ring L. We know that G and L

have the same underlying set, and the commutator map in G coincides with the Lie bracket

in L. From this, we can deduce the following:

1. The abelian subgroups of G are in abelian Lie correspondence with the abelian subrings

of L, and this abelian Lie correspondence arises by restricting the Baer correspondence

between G and L.

Abelian subgroups of G ↔ Abelian subrings of L

Note that for the 2-powered abelian subgroups and 2-powered abelian subrings, this

coincides with the Baer correspondence.

The correspondence also restricts to a correspondence:

Abelian normal subgroups of G ↔ Abelian ideals of L

and to a subcorrespondence:

Abelian characteristic subgroups of G ↔ Abelian characteristic subrings of L

Finally, the correspondence gives rise to a correspondence:

Quotient groups of G by abelian normal subgroups ↔ Quotient rings of L by abelian

ideals

Note, however, that the instances of this last correspondence are not instances of the

Baer correspondence. They do, however, form instances of the divided Baer correspon-

dence described in Section 5.3.4.
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2. For a subset S of the common underlying set of G and L, the subgroup generated by

S in G is abelian if and only if the subring generated by S in L is abelian, and if so,

the subgroup and subring are in abelian Lie correspondence.

3. The abelian quotient groups of G are in abelian Lie correspondence with the abelian

quotient Lie rings of L. Explicitly:

Abelian quotient groups of G ↔ Abelian quotient Lie rings of L

We obtain a correspondence between the corresponding kernels. Explicitly, the Baer

correspondence between G and L restricts to a correspondence via identification of the

underlying sets:

Subgroups of G containing G′ ↔ Subrings of L containing L′

Note, however, that each individual instance of this correspondence is not an instance

of the Baer correspondence. Rather, it would be an instance of the generalization of

the Baer correspondence described in Section 5.3.2.

4. The center Z(G) is in abelian Lie correspondence as well as in Baer correspondence

with the center Z(L). Note that the claim has two parts:

(a) Z(G) and Z(L) have the same underlying set: This follows from the fact that

the commutator map of G coincides with the Lie bracket map of L, so the set

of elements whose commutator with every element of G is the identity element

coincides with the set of elements whose Lie bracket with every element of L is

the zero element.

(b) Both Z(G) and Z(L) are 2-powered, so that we can apply the Baer correspon-

dence: This follows from Lemmas 4.1.5 and 4.2.3.
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5. The inner automorphism group G/Z(G) is in abelian Lie correspondence as well as in

Baer correspondence with the inner derivation Lie ring L/Z(L). This follows from the

preceding point about Z(G) being in correspondence with Z(L) and the observations

made regarding subgroups and quotients in Section 5.2.1.

6. The derived subgroup G′ is in abelian Lie correspondence as well as in Baer correspon-

dence with the derived subring L′. Note that the claim has two parts:

(a) G′ and L′ have the same underlying set: The commutator map in G coincides

with the Lie bracket map in L, so the set of commutators in G coincides with the

set of elements in L that can be expressed as Lie brackets. We know that both

G′ is an abelian group and L′ is an abelian Lie ring, because both G and L have

class two. By point (2) above, G′ and L′ are in abelian Lie correspondence and

have the same underlying set.

(b) G′ and L′ are both 2-powered: This follows from Theorem 4.1.20 and Lemma

4.2.8 respectively.

7. The abelianization Gab = G/G′ is in abelian Lie correspondence as well as in Baer

correspondence with the abelianization Lab = L/L′. This follows from the preceding

point and the observations regarding subgroups and quotients in Section 5.2.1.

8. The abelian subgroups of G that contain G′ and are contained in Z(G) are in abelian

Lie correspondence with the abelian subgroups of L that contain L′ and are contained

in Z(L). Moreover, the corresponding quotient group is in abelian Lie correspondence

with the corresponding quotient ring.
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5.2.7 Cyclic subgroups, preservation of element orders, and the parallels

with one-parameter subgroups

We noted in Section 5.2.6 that given a group G and a Lie ring L that are in Baer correspon-

dence, we obtain a correspondence, with each instance also an instance of the abelian Lie

correspondence:

Abelian subgroups of G ↔ Abelian subrings of L

In particular, we get a correspondence:

Cyclic subgroups of G ↔ Cyclic subrings of L

Another way of framing this is that the additive group of L and the group G have the

same cyclic subgroup structure. In other words, the map exp : L → G restricts to an

isomorphism on cyclic subgroups of the additive group of L. Some of the generalizations of

the Baer correspondence, including all those described in the next section, continue to have

this property, so that the remarks of the next paragraph apply to these generalizations.

For any element of the common underlying set, its order as an element of the additive

group of L is the same as its order as an element ofG. In the case that the common underlying

set of G and L is finite, this translates to the requirement that for every positive integer

d, the number of elements of G of order d equals the number of elements of the additive

group of L as order d. In particular, we obtain that the order statistics of G (information

about how many elements are there of any given order) coincide with the order statistics

of some abelian group. When considering whether a group G can participate in a potential

generalization of the Baer correspondence, this condition serves as a potential filter.

The Baer correspondence for cyclic subgroups and subrings is closely related to the cor-

respondence between one-dimensional subspaces of the real Lie algebra and one-parameter

subgroups of the real Lie group under the Lie correspondence described in Section 1.1.3 (we

did not describe one-parameter subgroups there).
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5.2.8 Inner automorphisms and inner derivations

Supose G is a Baer Lie group and L is the corresponding Baer Lie ring. Under the Baer

correspondence, Z(G) is in Baer correspondence (and hence also in abelian Lie correspon-

dence) with Z(L), and the quotient group G/Z(G) ∼= Inn(G) is in Baer correspondence (and

hence also in abelian Lie correspondence) with the quotient Lie ring L/Z(L) ∼= Inn(L). The

former gives the inner automorphisms of the group G (that are hence also automorphisms

of L). The latter gives the inner derivations of L.

Consider an element x ∈ G with image x in the common underlying set of G/Z(G) and

L/Z(L). We would like to understand the relationship between these two set maps from L

to L:

• The inner automorphism corresponding to x, i.e., the map g 7→ xgx−1, now viewed as

a automorphism of L as a Lie ring. As noted in Section 5.1.8, the automorphisms of

L as a Lie ring coincide with the automorphisms of G as a group. We will denote this

map as Adx.

• The inner derivation corresponding to x, i.e., the map g 7→ [x, g] where [ , ] denotes

the Lie bracket. We will denote this map as adx. Derivations and inner derivations

are discussed in more detail in the Appendix, Sections A.1.7 and A.1.8.

We first work out the set map Adx in terms of the Lie ring operations.

Adx(g) = xgx−1 =

(
x+ g +

1

2
[x, g]

)
x−1

This simplifies to:

Adx(g) = x+ g +
1

2
[x, g] + (−x) +

[(
x+ g +

1

2
[x, g]

)
,−x

]
This simplifies to:
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Adx(g) = g + [x, g]

or equivalently:

Adx(g) = g + adx(g)

If we view both Adx and adx as elements of the ring EndZ(L) of endomorphisms of the

underlying additive group of L, then we can write the above relationship as:

Adx = 1 + adx

The expression for Adx in terms of adx is a truncated form of the power series for the

exponential function. It turns out that this is not a coincidence. We will see in Section 6.6.9

that for the Malcev and Lazard correspondences, Adx = exp(adx).

5.3 Generalizations of the Baer correspondence: relaxing the

definitions

In the construction of the Baer Lie ring and Baer Lie group from one another, we did not

use the existence of unique square roots in the whole group or Lie ring. Rather, we only

made use of the fact that we be able to make sense of the expression
√

[x, y] when going

from groups to Lie rings and of the expression 1
2 [x, y] when going from Lie rings to groups,

and further, that the outputs of these expressions land in the respective centers.

5.3.1 Generalization that allows for division within the lower central series

This generalization is a correspondence:

Groups of nilpotency class (at most) two where the derived subgroup is 2-powered ↔ Lie

rings of nilpotency class (at most) two where the derived subring is 2-powered
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Note that this correspondence has the advantage of including as subcorrespondences both

the abelian Lie correspondence and the Baer correspondence.

This correspondence behaves nicely in a number of ways:

• Isomorphism of categories: We can define log and exp functors and obtain an iso-

morphism of categories between the full subcategories of the category of groups and

category of Lie rings as described above. We can then deduce consequences similar to

those described for the Baer correspondence in Section 5.1.8.

• Subgroups and subrings: A subgroup of a group in this subcategory need not be in the

subcategory. However, if we do restrict to subgroups that satisfy the condition for being

in the category, we can deduce results analogous to the results stated for subgroups

in Section 5.2.1. Note in particular that the correspondence between subgroups and

subrings here includes two subcorrespondences:

Abelian subgroups ↔ Abelian subrings

Baer Lie subgroups ↔ Baer Lie subrings

• Direct products: Direct products on the group side correspond with direct products on

the Lie ring side. The statement is similar to that for the abelian Lie correspondence

(as described in Section 1.3.7) and the Baer correspondence (as described in Section

5.2.1).

However, the categories in question are not well-behaved with respect to the relation

between subgroups and quotients. Explicitly, it is possible to have a group in the category

and a normal subgroup that is also in the category, but such that the quotient group is not

in the category. For instance, consider the case that G = UT (3,Q) and H is a copy of Z in

the center. Then, both G and H are objects of the category, and H is normal in G, but the

quotient group G/H is not an object of the category.
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5.3.2 Generalization that allows for division starting in the lower central

series and ending in the upper central series

This generalization is a correspondence:

Groups of nilpotency class (at most) two where every element of the derived subgroup

has a unique square root in the center ↔ Lie rings of nilpotency class (at most) two where

every element of the derived subring has a unique half in the center.

Note that the “unique square root in the center” clause could be interpreted in two ways:

one could understand it to mean that there is a unique square root in the whole group that

happens to be in the center, or one could understand it to mean that there is a unique square

root among the elements in the center. However, for nilpotent groups, these are equivalent.

If every element of the derived subgroup has a unique square root among elements of the

center, then in particular the identity element has a unique square root among elements in

the center, so the center is 2-torsion-free. Thus. by Theorem 4.1.14, the whole group is

2-torsion-free, so the squaring map is injective on the whole group.

Similarly, both ways of interpreting “unique half in the center” on the Lie ring side are

equivalent to each other.

Note also that by Lemma 4.1.5, the condition on the group side can be reformulated as

“group of nilpotency class (at most) two where every element of the derived subgroup has a

unique square root in the whole group.” A similar reformulation is possible on the Lie ring

side by Lemma 4.2.3.

The correspondence is nice in a number of ways:

• Isomorphism of categories: We can define log and exp functors and obtain an iso-

morphism of categories between the full subcategories of the category of groups and

category of Lie rings as described above. We can then deduce consequences similar to

those described for the Baer correspondence in Section 5.1.8.

• Subgroups and subrings: A subgroup of a group in this subcategory need not be in
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the subcategory. However, if we do restrict to subgroups that satisfy the condition

for being in the category, we can deduce results analogous to the results stated for

subgroups in Section 5.2.1.

• Direct products: Direct products on the group side correspond with direct products on

the Lie ring side. The statement is similar to that for the abelian Lie correspondence

(as described in Section 1.3.7) and the Baer correspondence (as described in Section

5.2.1).

However, the categories in question are not well-behaved with respect to the relation

between subgroups and quotients. Explicitly, it is possible to have a group in the category

and a normal subgroup that is also in the category, but such that the quotient group is not

in the category. For instance, consider the case that G = UT (3,Q) and H is a copy of Z in

the center. Then, both G and H are objects of the category, and H is normal in G, but the

quotient group G/H is not an object of the category.

5.3.3 Incomparability of the generalizations

Neither of the two preceding generalizations contains the other. Explicitly:

• Any abelian group with 2-torsion would be covered under the first generalization (de-

scribed in Section 5.3.1) but not the second (described in Section 5.3.2).

• An example of a group that would be covered under the second generalization but not

the first is the group UT (3,Z) ∗Z Q where ∗ denotes the central product where we

identify the center of UT (3,Z) with a copy of Z in Q.

There are generalizations that are strictly more general than both the above generaliza-

tions. We consider one such generalization below.
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5.3.4 The divided Baer correspondence: a generalization that uses

additional structure

This generalization of the Baer correspondence involves specifying additional structure on

the Lie ring and on the group. We use new terminology in this section. However, the results

of this section are not necessary for our main results, and the terminology used here is not

required for our main results.

Definition (Baer-divided Lie group). A Baer-divided Lie group is a group G of nilpo-

tency class at most two equipped with an alternating Z-bilinear map {, } : G × G → G

(i.e., the map is a homomorphism in each coordinate holding the other coordinate fixed, and

{x, x} = 1 for all x ∈ G) such that the following hold:

1. {x, y}2 = [x, y] for all x, y ∈ G, where [x, y] denotes the group commutator.

2. {{x, y}, z} is the identity element of G for all x, y, z ∈ G.

Definition (Baer-divided Lie ring). A Baer-divided Lie ring is a Lie ring L (with Lie

bracket denoted [ , ]) equipped with an alternating Z-bilinear map {, } : L × L → L such

that the following hold:

1. 2{x, y} = [x, y] for all x, y ∈ L.

2. {, } also defines a Lie bracket on the additive group of L, and the corresponding Lie

ring has nilpotency class two.

In particular, the original Lie ring L with Lie bracket [ , ] is also a Lie ring of nilpotency

class at most two.

We can now define the divided Baer correspondence as a correspondence:
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Baer-divided Lie groups ↔ Baer-divided Lie rings

In the direction from the group to the Lie ring, the correspondence uses the formula:

x+ y :=
xy

{x, y}

and:

[x, y] = [x, y]Group

In the direction from the Lie ring to the group, the correspondence uses the formula:

xy := x+ y + {x, y}

In other words, the roles of 1
2 [x, y] and

√
[x, y] are taken over by the operation {x, y} (of

the group or the Lie ring). The key difference is that this operation is an additional structure

specified rather than being purely dependent on the group or Lie ring as an abstract structure.

The Baer correspondence and the generalizations of it described earlier can be reframed

in terms of the divided Baer correspondence as follows:

1. In the case of the Baer correspondence, as well as in the generalization described in

Section 5.3.2, there is a unique possibility for {x, y}. In fact, in the Baer correspondence

as well as the generalization, the uniqueness is at the level of elements: every element

of the form [x, y] has a unique square root or half. Note that there could be situations

that fall outside this generalization where there is a unique possibility for {x, y}, even

though individual elements in the derived subgroup (respectively, derived subring) have

non-unique halves, as discussed in the example of UT (3,Z[1/2])× Z/2Z below.

2. In the case of the generalization described in Section 5.3.1, the possibility for {x, y}

need not be unique. Nonetheless, there is a particular canonical choice we can make

252



for {x, y}, namely the unique option available within the deried subgroup or derived

subring.

Below, we describe some examples of the divided Baer correspondence.

1. The case G = UT (3,Q)/Z and L = NT (3,Q)/Z: G is the group described as Example

(3) in the counterexample list in Section 4.1.13 and L is the Lie ring described in

Example (3) in the counterexample list in Section 4.2.6.

In this case, G is not a Baer Lie group and L is not a Baer Lie ring, because neither

G nor L is 2-powered. However, we can give G the structure of a Baer-divided Lie

group as follows. Note that Z(G) = G′ is isomorphic to the subgroup Q/Z in G, and

G/Z(G) = G/G′ is isomorphic to Q×Q. The commutator map G/Z(G)×G/Z(G) →

G′ can be described as the composite of the maps:

(Q×Q)× (Q×Q) → Q → Q/Z

where the map on the left is given by:

((a1, b1), (a2, b2)) 7→ a1b2 − a2b1

and the map Q → Q/Z is the quotient map.

There is a canonical choice of half for this map, namely, the composite:

(Q×Q)× (Q×Q) → Q → Q/Z

where the first map is:

((a1, b1), (a2, b2)) 7→
1

2
(a1b2 − a2b1)
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Note that we circumvent the problem of non-unique halves in the derived subgroup or

subring by performing the halving in an intermediate group (namely Q) through which

we factor the map.

Similar observations hold on the Lie ring side.

2. The case G = UT (3,Z[1/2]) × Z/2Z and L = NT (3,Z[1/2]) × Z/2Z: Note that this

case actually falls under the earlier generalization described in Section 5.3.1. One

interesting feature of this example is that although in general the choice of half is non-

unique when the center has 2-torsion, in this case, there is a unique choice of divided

Baer structure. Explicitly, each element of the derived subgroup has two halves: a

half inside the first direct factor, and a half that has a nontrivial second coordinate.

However, a linear choice of {, } requires that we choose each half inside the first direct

factor. Similar observations hold on the Lie ring side.

3. The case where G and L are as follows:

G = 〈a, b, c | a4 = b4 = c4 = 1, ab = ba, ac = ca, [b, c] = a2〉

L = 〈a, b, c | 4a = 4a = 4c = 0, [a, b] = 0, [a, c] = 0, [b, c] = 2a〉

In this case, Z(G) = 〈a〉 and G′ = 〈a2〉. Z(G) is isomorphic to Z/4Z and G′ is the

unique subgroup of order two. We can define {, } as {b, c} = a with the rest of the

definition following from that. Note that this is not the unique choice of { , }, because

we could choose {b, c} = a−1 as well. However, it is a choice that works.

A similar construction works for L, and the divided Baer correspondence between G

and L works as expected.
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5.3.5 Category-theoretic perspective on the divided Baer correspondence

The Baer-divided Lie groups form a category as follows:

• The objects of the category are Baer-divided Lie groups.

• For Baer-divided Lie groups G1 and G2, the morphisms from G1 to G2 are group homo-

morphisms ϕ : G1 → G2 satisfying the additional condition ϕ({x, y}) = {ϕ(x), ϕ(y)}

for all x, y ∈ G1. Note that in the case that { , } is defined canonically in terms of the

group operations, the additional condition is satisfied for all group homomorphisms.

We can similarly define a category of Baer-divided Lie rings. The divided Baer corre-

spondence defines an isomorphism of categories between the category of Baer-divided Lie

groups and the category of Baer-divided Lie rings.

There is a natural forgetful functor from the category of Baer-divided Lie groups to

the category of groups. This functor forgets the { , }-structure and simply stores the

underlying group structure. This forgetful functor is faithful but not full: there may well be

homomorphisms between groups that do not preserve the { , }-structure. The functor is not

injective or surjective on objects. It is not injective because there exist groups with multiple

possibilities for { , }. It is not surjective, even to the subcategory of groups of nilpotency

class two, because there exist such groups for which there is no possible { , }-structure.

The following are true.

• IfG is a Baer Lie group, or more generally, a group that fits the generalization described

in Section 5.3.2, then the functor is injective to G, i.e., there is a unique Baer-divided

Lie group structure on G. Further, if G1 and G2 are two such groups, then all homo-

morphisms between them are realized as Baer-divided Lie group homomorphisms, so

the functor behaves as a full functor if we restrict to such groups.

• If G fits the generalization described in Section 5.3.1, then the functor need not be in-

jective to G, but there does exist a canonical choice of Baer-divided Lie group structure
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on G. In other words, if we restrict attention to the subcategory of groups described

in Section 5.3.1, we can obtain a functor from this subcategory to the category of

Baer-divided Lie groups that is a one-sided inverse to the forgetful functor.

Analogous observations hold on the Lie ring side.

5.3.6 The case of finite p-groups

Note that for odd primes p, p-groups of class two and p-Lie rings of class two fall in the domain

of the Lazard correspondence, and we do not need to rely on any of the generalizations. The

case p = 2 is interesting. In this case, the following are true:

• The generalization described in Section 5.3.1 applies only to abelian 2-groups and

abelian 2-Lie rings, and not to any others.

• The generalization described in Section 5.3.2 does not apply to any nontrivial 2-groups

or nontrivial 2-Lie rings, because the center is nontrivial and hence is not 2-powered.

• The divided Baer correspondence generalization applies to some but not all 2-groups

of class two. Explicitly, a necessary but not sufficient condition for a group G to be the

underlying group of a Baer-divided Lie group is that G′ ⊆ f1(Z(G)), where f1(Z(G))

denotes the set of squares of elements in Z(G). A similar necessary but not sufficient

condition exists on the Lie ring side.

5.4 Baer correspondence up to isoclinism

The concept of “Baer correspondence up to isoclinism” is a novel contribution of this thesis.

Many of the results in this section are based on joint work with John Wiltshire-Gordon.
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5.4.1 Motivation

In Section 5.2.6, we noted that if G and L are in Baer correspondence, the subgroups of

G that contain G′ and are contained in Z(G) are in abelian Lie correspondence with the

subrings of L that contain L′ and are contained in Z(L). Further, for each such subgroup

and subring in correspondence, the associated quotient group and quotient ring are also in

abelian Lie correspondence. In other words, we can build the group G as a central extension

of groups, and the Lie ring L as a central extension of Lie rings, where the central subgroup

of G is in abelian Lie correspondence with the central subring of L, and the quotient group

of G is in abelian Lie correspondence with the quotient ring of L.

We describe two extreme cases below.

1. The case where the subgroup is Z(G) and the subring is Z(L). We can depict this case

as follows:

0 → Z(G) → G→ G/Z(G) → 1

↓log ↓log ↓log

0 → Z(L) → L→ L/Z(L) → 0

Note that the log connecting G and L arises from the Baer correspondence. The

log connecting Z(G) with Z(L), and the log connecting G/Z(G) with L/Z(L), can

be viewed as arising both from the Baer correspondence and from the abelian Lie

correspondence, as described in Section 5.2.6.

2. The case where the subgroup is G′ and the subring is L′. We can depict this case as

follows:

0 → G′ → G → G/G′ → 1

↓log ↓log ↓log

0 → L′ → L → L/L′ → 0

257



An analogous observation to the note in point (1) above applies here, with Z(G), Z(L),

G/Z(G), and L/Z(L) replaced by G′, L′, G/G′, and L/L′ respectively.

Our aim is to generalize the Baer correspondence to a situation where the middle down-

ward arrow (connecting G with L) is missing, but we still have an abelian Lie correspondence

between the central subgroup and central subring, an abelian Lie correspondence between

the quotient group and quotient ring, and a condition to the effect that the commutator map

on the group side looks the same as the Lie bracket map on the Lie ring side.

5.4.2 Definition of the correspondence

The Baer correspondence up to isoclinism is a correspondence that we will define between

the following two sets:

Equivalence classes up to isoclinism of groups of nilpotency class at most two ↔ Equiv-

alence classes up to isoclinism of Lie rings of nilpotency class at most two

Suppose G is a group of nilpotency class at most two and L is a Lie ring of nilpotency

class at most two. A Baer correspondence up to isoclinism between G and L is a pair (ζ, ϕ)

where:

• ζ is an isomorphism from the abelian group Inn(G) to the abelian group that is the

additive group exp(Inn(L)) of Inn(L), and

• ϕ is an isomorphism from the abelian group G′ to the abelian group that is the additive

group exp(L′) of L′,

such that the following diagram commutes:

Inn(G)× Inn(G)
ζ×ζ→ exp(Inn(L))× exp(Inn(L))

↓ωG ↓exp(ωL)

G′
ϕ→ exp(L′)
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where ωG is the map Inn(G)× Inn(G) → G′ obtained from the commutator map on G,

and ωL is the map Inn(L) × Inn(L) → L′ obtained from the Lie bracket on L. We had

introduced the notation for the maps ωG and ωL in Sections 2.1 and 2.2.

We say that G and L are in Baer correspondence up to isoclinism if there exists a Baer

correspondence up to isoclinism between G and L.

The following are easy to verify. All the groups and Lie rings referred to below are

of nilpotency class at most two. The proofs of all the assertions below rely on a similar

commutative diagram setup to the setup used in Section 2.1.3 to prove that a composite of

homoclinisms is a homoclinism.

• If G1 and G2 are isoclinic groups, and G1 and L are in Baer correspondence up to

isoclinism, then G2 and L are also in Baer correspondence up to isoclinism.

• If L1 and L2 are isoclinic Lie rings, and G and L1 are in Baer correspondence up to

isoclinism, then G and L2 are also in Baer correspondence up to isoclinism.

• If G1 and G2 are groups and L is a Lie ring such that G1 is in Baer correspondence

up to isoclinism with L and G2 is also in Baer correspondence up to isoclinism with

L, then G1 and G2 are isoclinic.

• If L1 and L2 are Lie rings and G is a group such that G is in Baer correspondence up

to isoclinism with L1 and G is in Baer correspondence up to isoclinism with L2, then

L1 and L2 are isoclinic Lie rings.

In other words, the definition we gave above establishes a correspondence between some

equivalences classes up to isoclinism of groups and some equivalence classes up to isoclinism

of Lie rings. However, it is not yet clear that the correspondence applies to every equivalence

class up to isoclinism of groups and to every equivalence class up to isoclinism of Lie rings.

Essentially, we need to show two things:
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1. For every groupG of nilpotency class at most two, there exists a Lie ring L of nilpotency

class at most two such that G is in Baer correspondence up to isoclinism with L.

2. For every Lie ring L of nilpotency class at most two, there exists a groupG of nilpotency

class at most two such that G is in Baer correspondence up to isoclinism with L.

(1) is relatively easy to show: we can take the associated graded Lie ring of a group. (2)

is harder to show. We will now discuss some ideas related to group extension theory that

will help us establish both (1) and (2) in a better way.

5.4.3 Exterior square for an abelian group

Suppose G is an abelian group. Then, the following are canonically isomorphic:

1. The exterior square G ∧Z G of G as an abelian group.

2. The exterior square G ∧ G of G as a group (as defined in section 3.4.1). The map in

the forward direction G ∧Z G→ G ∧G is as follows. Note that the commutator map

in a class two group is Z-bilinear, so that the map G×G→ G∧G is Z-bilinear. Thus,

it gives rise to a homomorphism G ∧Z G→ G ∧G.

3. The Schur multiplier M(G) of G as a group.

4. The exterior square G∧G of G as an abelian Lie ring. The exterior square is itself an

abelian Lie ring with the same additive group structure. We have already described

this map in Section 3.5.3.

5. The Schur multiplier M(G) of G as an abelian Lie ring.

We first note the equivalence of (2) with (3) and also the equivalence of (4) with (5).

For the equivalence of (2) and (3), note the canonical short exact sequence, introduced in

Section 3.4.1:
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0 →M(G) → G ∧G→ [G,G] → 1

Since G is abelian, [G,G] is trivial and we get an isomorphism M(G) ∼= G ∧G.

Similarly, the equivalence of (4) with (5) follows from the analogous canonical short exact

sequence for Lie rings introduced in Section 3.5.1.

It remains to show that the canonical map from (1) to (2) is an isomorphism and the

canonical map from (1) to (4) is an isomorphism.

To see this, we can rely on the explicit presentations for the exterior square provided in

Section 3.8.4 (for groups) and 3.9.3 (for Lie rings) to confirm that in the case that the group

(respectively Lie ring) is abelian, its exterior square as a group (respectively Lie ring) agrees

with its exterior square as an abelian group.

In order to better keep track of whether we are thinking of G as an abelian group or as

an abelian Lie ring, it may sometimes help to use the log and exp functors of the abelian Lie

correspondence (as described in Section 1.3) to go back and forth between the descriptions.

With this language, we can rewrite the above results in the form:

• For any abelian group G, log(G∧G) is canonically isomorphic to logG∧ logG, where

the ∧ on the left represents the exterior square as a group and the ∧ on the right

represents the exterior square as a Lie ring.

• For any abelian Lie ring L, exp(L∧L) is canonically isomorphic to expL∧expL where

the ∧ on the left represents the exterior square as a Lie ring and the ∧ on the right

represents the exterior square as a group.

5.4.4 Description of central extensions for an abelian group

Suppose A and G are abelian groups. Recall from Section 3.1.5 that H2(G;A), termed

the second cohomology group for trivial group action of G on A, is a group whose elements

correspond with the central extensions with central subgroup A and quotient group G.
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We are now assuming that G is abelian. Hence, all the extension groups have nilpotency

class at most two. Further, Gab = G and M(G) = G∧G as discussed. Thus, the short exact

sequence described in Section 3.6.4 simplifies to:

0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G,A) → 0 (5.1)

The short exact sequence splits (but not necessarily canonically) and we get:

H2(G;A) ∼= Ext1Z(G;A)⊕ Hom(G ∧G,A)

We will now proceed to explain the meaning of the short exact sequence in this context.

Description of the left map of the sequence

The map:

Ext1Z(G;A) → H2(G;A)

can be interpreted as follows. The underlying set of the group on the left is canonically

identified with the set of all abelian group extensions with subgroup A and quotient group G.

The group on the right is the group whose elements are all the central extensions with central

subgroup A and quotient group G. Every abelian group extension is a central extension,

and there is therefore a canonical injective set map from Ext1Z(G;A) to H2(G;A). This

set map turns out to be a group homomorphism based on the way the group structures on

Ext1Z(G;A) and H2(G;A) are defined. Delving into the group structure on Ext1Z(G;A) will

be too much of a diversion from our goal here, so we skip it.

The image of the map is described as precisely the set of those cohomology classes whose

representative 2-cocycles are symmetric, i.e., any 2-cocycle f in that cohomology class sat-

isfies the property that f(x, y) = f(y, x) for all x, y ∈ G. This can be easily deduced from

the discussion in Section 3.3.3.

262



Description of the right map of the sequence

The map:

H2(G;A) → Hom(G ∧G,A)

can be described as follows. For any group extension E, the commutator map E×E → E

descends to a set map:

ωE,G : G×G→ A

Our earlier definition of ωE,G defined it as a map to [E,E], but [E,E] lies in the image

of A (under the inclusion of A in E), so it can be viewed as a map to A.

Note that the image of the map is in A because G is abelian. Further, ωE,G is bilinear,

because the image of the map is central. It thus defines a group homomorphism G∧G→ A.

The homomorphism above can also be described in terms of the how it operates at the

level of 2-cocycles (this description requires understanding the explicit description of the

second cohomology group using the bar resolution, as given in Section 3.3). Explicitly, the

map:

H2(G;A) → Hom(G ∧G,A)

arises from a homomorphism:

Z2(G;A) → Hom(G ∧G,A)

given by:

f 7→ Skew(f)

where Skew(f) is the map (x, y) 7→ f(x, y)− f(y, x).
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Intuitively, this is because the commutator of two elements represents the distance be-

tween their products in both possible orders, i.e., [x, y] is the quotient (xy)/(yx). Whether

we use left or right quotients does not matter because the group has class two.

Based on the discussion in Section 3.6.2, the homomorphism:

H2(G;A) → Hom(G ∧G,A)

classifies extensions up to isoclinism of group extensions. In other words, the fibers for

this map are precisely the equivalence classes up to isoclinism of group extensions.

5.4.5 Description of central extensions for an abelian Lie ring

Suppose A and L are abelian Lie rings. Recall that H2
Lie(L;A), called the second cohomology

group for trivial Lie ring action, is a group whose elements correspond to the congruence

classes of central extensions with central subring A and quotient Lie ring L.

We are now assuming that L is abelian. Hence, Lab = L and M(L) = L ∧ L. The short

exact sequence of Section 3.7.4 simplifies to:

0 → Ext1Z(L;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0 (5.2)

The short exact sequence splits canonically, and we get a canonical isomorphism:

H2
Lie(L;A) ∼= Ext1Z(L;A)⊕ Hom(L ∧ L,A)

Note that L being abelian is crucial to the splitting being canonical. We will understand

the splitting in more detail, but first we need to explain what the maps are.

Description of the left map of the sequence

The map:
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Ext1Z(L;A) → H2
Lie(L;A)

can be described as follows. The group on the left is canonically identified with the

abelian Lie rings arising as extensions with subring A and quotient ring L. The group on

the right is canonically identified with the central extensions with subring A and quotient

ring L. Every abelian Lie ring extension is a central extension, and there is therefore a

canonical injective set map from Ext1Z(L;A) to H2
Lie(L;A). This set map turns out to be a

group homomorphism based on the way the group structures on Ext1Z(L;A) and H2
Lie(L;A)

are defined. Delving into the group structure on Ext1Z(L;A) will be too much of a diversion

from our goal here, so we skip it.

Description of the right map of the sequence

The map:

H2
Lie(L;A) → Hom(L ∧ L,A)

is defined as follows. For any extension Lie ringM , consider the Lie bracketM×M →M .

This descends to a Z-bilinear map:

ωM : L× L→ A

Note that the image is in A because L is abelian. The map can be viewed as a homo-

morphism from L ∧ L to A, and hence as an element of Hom(L ∧ L,A).

Note also that, per the discussion in Section 3.7.2, this homomorphism classifies the

extension up to isoclinism of Lie ring extensions. In other words, the fibers of this map are

precisely the equivalence classes up to isoclinism of Lie ring extensions.
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Canonical splitting

We will now describe how the short exact sequence below splits:

0 → Ext1Z(L;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0

We can describe the splitting either by specifying the projectionH2
Lie(L;A) → Ext1Z(L;A)

or by specifying the inclusion Hom(L ∧ L,A) → H2
Lie(L;A). We do both.

The projection:

H2
Lie(L;A) → Ext1Z(L;A)

is defined as follows. For any extension Lie ring M , map it to the extension Lie ring that

is abelian as a Lie ring and has the same additive group as M . In other words, keep the

additive structure intact, but “forget” the Lie bracket.

The inclusion:

Hom(L ∧ L,A) → H2
Lie(L;A)

is defined as follows. Given a bilinear map b : L× L→ A, define the extension Lie ring

as a Lie ring M whose additive group is L⊕ A, and where the Lie bracket is:

[(x1, y1), (x2, y2)] = [0, b(x1, x2)]

In other words, we use the direct sum for the additive structure, and use the bilinear

map to define the Lie bracket.

In light of this, we can think of the direct sum decomposition as follows:

H2
Lie(L;A) ∼= Ext1Z(L;A)⊕ Hom(L ∧ L,A)

The projection onto the first component stores the additive structure of the Lie ring,
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while destroying, or forgetting, the Lie bracket. The projection onto the second component

preserves the Lie bracket while replacing the additive structure with a direct sum of L and

A. Note also that the latter projection is equivalent to passing to the associated graded Lie

ring. The associated graded Lie ring is discussed in more detail in the Appendix, Sections

A.4.3, A.4.4, and A.4.5.

5.4.6 The Baer correspondence up to isoclinism for extensions

Suppose A and G are abelian groups. Denote by L the abelian Lie ring whose additive group

is G. In other words, L = logG under the abelian Lie correspondence described in Section

1.3.

We abuse notation regarding A, using the same letter A to denote the abelian group

and the abelian Lie ring, which might more properly be written as logA when viewed as a

Lie ring. We engage in this abuse because, throughout this document, we deal with central

extensions, so that the base of the extention is always abelian. We do not abuse notation

when dealing with G and L, because the distinction will be helpful when we describe our

later generalization, the Lazard correspondence up to isoclinism, in Section 7.7.

We have discussed above two short exact sequences:

0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G,A) → 0

and

0 → Ext1Z(L;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0

We have canonical isomorphisms between the left terms of the exact sequences and be-

tween the right terms of the exact sequences:
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0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G,A) → 0

↓ ↓

0 → Ext1Z(L;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0

We now try to understand both component isomorphisms in greater detail.

The isomorphism of the Ext1 groups on the left side, and its relation to the

abelian Lie correspondence

We have a canonical isomorphism of groups:

Ext1Z(G;A) ∼= Ext1Z(L;A)

This is because, although we use different symbols for G and L, they both have the same

underlying additive group, and the Ext1 computation uses only the underlying additive

group.

The elements of Ext1Z(G;A) correspond to the extension groups with subgroup A and

quotient group G where the extension group is abelian. The elements of Ext1Z(L;A) corre-

spond to the extension Lie rings with subring A and quotient Lie ring L where the extension

Lie ring is abelian. The isomorphism above therefore gives a correspondence:

Group extensions with subgroup A and quotient group G such that the extensions are

abelian groups ↔ Lie ring extensions with subring A and quotient ring L such that the

extensions are abelian Lie rings

For each group extension and Lie ring extension that are in bijection (in other words,

each pair of elements in the two isomorphic groups that are in bijection with each other),

the corresponding extension group is in abelian Lie correspondence with the corresponding

extension Lie ring.
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The isomorphism of the Hom groups on the right side, and its relation to the

Baer correspondence up to isoclinism

We have a canonical isomorphism:

Hom(G ∧G,A) ∼= Hom(L ∧ L,A)

We reviewed the meanings of the two groups in Sections 5.4.4 and 5.4.5. The group

Hom(G∧G,A) classifies the central extensions with central subgroup A and quotient group

G up to isoclinism of extension. The group Hom(L ∧ L,A) classifies the central extensions

with central subring A and quotient Lie ring L up to isoclinism of the extension.

The two Hom groups are isomorphic because, since L = logG, Section 5.4.3 tells us

that the additive group of L ∧ L is isomorphic to G ∧ G as an abelian group. Thus, the

homomorphism groups can also be identified with one another.

The isomorphism gives a correspondence:

Equivalence classes up to isoclinism of Lie ring extensions with central subring A and

quotient Lie ring L ↔ Equivalence classes up to isoclinism of group extensions with central

subgroup A and quotient group G

Any particular instance of this bijection (i.e., an equivalence class of Lie ring extensions

and an equivalence class of group extensions that are in bijection with each other) is termed

a Baer correspondence up to isoclinism for extensions.

We now state an important lemma that relates the Baer correspondence up to isoclinism

for extensions with the Baer correspondence up to isoclinism.

Lemma 5.4.1. Supose A and G are abelian groups and L = logG is the corresponding

abelian Lie ring. Suppose E is a group extension with central subgroup A and quotient

group G. Suppose N is a Lie ring extension with central subring logA (which we denote

269



as A via abuse of notation) and quotient Lie ring L. Suppose further than the equivalence

class up to isoclinism of the group extension E corresponds, via the above bijection, to the

equivalence class of the Lie ring extension N . Then, the group E is in Baer correspondence

up to isoclinism with the Lie ring N .

Proof. We have the following map induced by the commutator map in E:

ωE,G : G×G→ A

Similarly, we have the following map induced by the Lie bracket map in N :

ωN,L : L× L→ A

The extensions being in correspondence up to isoclinism means that ωN,L = log(ωE,G),

in the sense that the underlying set map of ωN,L coincides with the underlying set map of

ωE,G. Note also that the images of these maps need not be all of A. The image of the first

map generates a subgroup that can be identified with E′, whereas the image of the second

map generates a subgroup that can be identified with the additive group of N ′. Both maps

coincide, so E′ and N ′ are in abelian Lie corespondence.

The image of Z(E) in G coincides with the normal subgroup {x ∈ G | ωE,G(x, y) =

0 ∀ y ∈ G}. Similarly, the image of Z(N) in L coincides with the ideal {x ∈ L | ωN,L(x, y) =

0 ∀ y ∈ L}. The underlying sets coincide, so the normal subgroup and ideal are in abelian

Lie correspondence. Thus, the quotient group of G by the image of Z(E) in G is in abelian

Lie correspondence with the quotient group of L by the image of Z(N) in L. Thus, E/Z(E)

is in abelian Lie correspondence with N/Z(N). Thus, the descended maps:

ωE : E/Z(E)× E/Z(E) → E′

and
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ωN : N/Z(N)×N/Z(N) → N ′

are in correspondence.

Relation between the middle groups

We have demonstrated the existence of canonical isomorphisms between the left groups and

between the right groups in the two short exact sequences:

0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G,A) → 0

↓ ↓

0 → Ext1Z(L;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0

As described in Sections 5.4.4 and 5.4.5, both short exact sequences split. Therefore, it

is possible to find an isomorphism H2(G;A) → H2
Lie(L;A) that establishes an isomorphism

of the short exact sequences:

0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G,A) → 0

↓ ↓ ↓

0 → Ext1Z(L;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0

Note, however, that the middle isomorphism is not canonical. In fact, choosing a middle

isomorphism is equivalent to choosing a splitting of the top sequence. This is because

the bottom sequence splits canonically, as described in Section 5.4.5. We will return to a

discussion of this in Sections 5.4.8 and 5.4.9.
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5.4.7 The Baer correspondence up to isoclinism for groups: filling the

details

We are now in a position to flesh out the remaining details of the Baer correspondence up

to isoclinism, which we defined in Section 5.4.2:

Equivalence classes up to isoclinism of groups of nilpotency class at most two ↔

Equivalence classes up to isoclinism of Lie rings of nilpotency class at most two

There are two pending facts we need to establish:

1. For every groupG of nilpotency class at most two, there exists a Lie ring L of nilpotency

class at most two such that G is in Baer correspondence up to isoclinism with L.

2. For every Lie ring L of nilpotency class at most two, there exists a groupG of nilpotency

class at most two such that G is in Baer correspondence up to isoclinism with L.

We had already noted in Section 5.4.2 that (1) can be achieved by using the associated

graded Lie ring for the group. We will now provide a better way to think about both (1)

and (2). We will begin with (1).

Explicit construction from the group to the Lie ring

We are given a group G of nilpotency class at most two, and we need to find a Lie ring L of

nilpotency class at most two such that L and G are in Baer correspondence up to isoclinism.

(a) Consider G as a central extension:

0 → Z(G) → G→ G/Z(G) → 1

Consider the equivalence class up to isoclinism of this extension.
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(b) Based on the discussion in Section 5.4.6, this equivalence class corresponds to an equiv-

alence class up to isoclinism of Lie ring extensions with central subring log(Z(G)) and

quotient Lie ring log(G/Z(G)). Let L be any extension Lie ring in this equivalence class.

(c) By Lemma 5.4.1, L and G are in Baer correspondence up to isoclinism.

Note that in this direction, one can make a canonical choice of L based on G, namely,

one can take the associated graded ring for the central series 0 ≤ Z(G) ≤ G. Note that this

choice of L will be the same for all G in the equivalence class up to isoclinism. The ability to

make a canonical choice here is related to the canonical splitting of the short exact sequence

for Lie ring extensions with abelian quotient group, as discussed in Section 5.4.5.

Explicit construction from the Lie ring to the group

We are given a Lie ring L of nilpotency class at most two, and we need to find a group G of

nilpotency class at most two such that L and G are in Baer correspondence up to isoclinism.

(a) Consider L as a central extension:

0 → Z(L) → L→ L/Z(L) → 0

Consider the equivalence class up to isoclinism of this extension.

(b) Based on the discussion in Section 5.4.6, this equivalence class corresponds to an equiv-

alence class up to isoclinism of group extensions with central subgroup exp(Z(L)) and

quotient group exp(L/Z(L)). Let G be any extension group in this equivalence class.

(c) By Lemma 5.4.1, L and G are in Baer correspondence up to isoclinism.
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Preservation of order

In both directions, the constructions preserve the orders. In other words, if we start with a

finite group and use the construction in the direction from groups to Lie rings, the Lie ring

that we obtain has the same order as the group that we started with. Similarly, if we start

with a finite Lie ring and use the construction in the direction from Lie groups to groups,

the group that we obtain has the same order as the Lie ring that we started with.

This does not imply that every group and every Lie ring that are in Baer correspondence

up to isoclinism must have the same order. Rather, we are saying that the answer to the

existence question continues to be affirmative even after we impose the condition that the

orders have to be equal.

In particular, given a a finite 2-group of nilpotency class 2, we can find a finite 2-Lie

ring (i.e., a Lie ring whose additive group is a finite 2-group) of nilpotency class 2 such that

the group and Lie ring are in Baer correspondence up to isoclinism. Similarly, given a finite

2-Lie ring of nilpotency class 2, we can find a finite 2-group of nilpotency class 2 such that

the group and Lie ring are in Baer correspondence up to isoclinism.

5.4.8 Relating the Baer correspondence and the Baer correspondence up to

isoclinism

If a Baer Lie group G is in Baer correspondence with a Baer Lie ring L, then G and L are

in Baer correspondence up to isoclinism (as defined in Section 5.4.2). Explicitly, the Baer

correspondence between G and L can be used to define an isomorphism ζ between Inn(G)

and the additive group of Inn(L), and also an isomorphism ϕ between G′ and the additive

group of L′, satisfying the compatibility condition for being a Baer correspondence up to

isoclinism.

Another way of framing this is that if we restrict attention to Baer Lie groups and Baer

Lie rings, then the Baer correspondence up to isoclinism can be refined to a correspondence
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that works up to isomorphism, namely the usual Baer correspondence up to isomorphism.

In fact, it can be refined even further to obtain the strict Baer correspondence between

individual groups and Lie rings, as has been done in the previous two sections (Sections 5.1

and 5.2).

We now turn to how the Baer correspondence relates to the Baer correspondence up to

isoclinism for group extensions. Let G and A be abelian groups, and let L = logG be the

abelian Lie ring with additive group G. In Section 5.4.6, we worked out the following relation

between the universal coefficient theorem short exact sequences, where the downward maps

are isomorphisms:

0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G,A) → 0

↓ ↓

0 → Ext1Z(L;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0

We had also noted in Section 5.4.5 that the second short exact sequence splits canonically,

i.e.,:

H2
Lie(L;A) ∼= Ext1Z(L;A)⊕ Hom(L ∧ L,A)

Thus, as observed in Section 5.4.6, specifying an isomorphism between the middle groups

such that the diagram commutes is equivalent to specifying a splitting of the first short exact

sequence.

Now, consider the case that G and A are both 2-powered abelian groups. In that case, by

Lemma 4.1.12, all the extensions with central subgroup A and quotient group G are them-

selves 2-powered, and are therefore Baer Lie groups. Similarly, all the extension Lie rings

with central subring A and quotient Lie ring L are Baer Lie rings. Further, the Baer cor-

respondence establishes a bijection between the group extensions and Lie ring extensions in

such a manner that the diagram commutes. Equivalently, it provides a canonical splitting of

the top row. Explicitly, we now obtain a commutative diagram with the middle isomorphism
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filled in:

0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G,A) → 0

↓ ↓ ↓

0 → Ext1Z(L;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0

Equivalently, we have an explicit splitting:

H2(G;A) ∼= Ext1Z(G;A)⊕ Hom(G ∧G,A)

We will now discuss explicitly how this splitting works.

5.4.9 Cocycle-level description of the Baer correspondence

Suppose G and A are abelian groups (we will soon restrict to the case that one or both

of G and A is 2-powered). Consider the following two short exact sequences. The first is

the short exact sequence relating the coboundary, cocycle and cohomology groups, originally

described in Section 3.3.4:

0 → B2(G;A) → Z2(G;A) → H2(G;A) → 0

The second is the universal coefficient theorem short exact sequence, originally described

in Section 3.6.4 and described specifically for abelian G in Section 5.4.4:

0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G,A) → 0

The first short exact sequence need not split. An example where it does not split was

discussed in Section 3.3.4. The second short exact sequence does always split but the splitting

need not be canonical (see Section 3.6.4).

The right parts of these short exact sequences give surjective homomorphisms, which we

can compose:
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Z2(G;A) → H2(G;A) → Hom(G ∧G,A)

As we discussed in Section 5.4.4, the composite of these maps is the skew map. Explicitly,

the composite is the map f 7→ Skew(f), that sends a function f to the function:

Skew(f) = (x, y) 7→ f(x, y)− f(y, x)

Note that the function Skew(f) is a Z-bilinear map G×G to A, which can be interpreted

as a homomorphism G ∧G→ A.

Now, suppose that G and A are both 2-powered abelian groups. In that case, there is a

canonical splitting of the composite map, given as follows:

f 7→ 1

2
f

In other words, a Z-bilinear map f : G×G→ A is sent to 1
2f : G×G→ A. Note that

any Z-bilinear map is a 2-cocycle (in general, any n-linear map is a n-cocycle) so this works.

In particular, both the short exact sequences split, and we get canonical direct sum

decompositions:

Z2(G;A) ∼= B2(G;A)⊕H2(G;A), splitting is H2(G;A) → Z2(G;A)

H2(G;A) ∼= Ext1Z(G;A)⊕ Hom(G ∧G,A), splitting is Hom(G ∧G,A) → H2(G;A)

Note that the first short exact sequence need not split for all G and A (see the discussion

in Section 3.3.4) and the existence of a splitting is itself a piece of information. The second

short exact sequence does split for all G and A, but the splitting is not in general canonical,

as discussed in Section 3.6.4, so the case where G and A are both 2-powered is special in
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that we obtain a canonical splitting.

The splitting map Hom(G ∧ G,A) → H2(G;A) is the same as the one arising from

the Baer correspondence. Explicitly, as noted in Section 5.4.6, specifying the splitting map

Hom(G ∧ G,A) → H2(G;A) is equivalent to specifying an isomorphism of H2(G;A) and

H2
Lie(L;A) such that the diagram below commutes:

0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G,A) → 0

↓ ↓ ↓

0 → Ext1Z(L;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0

This isomorphism can be described in an alternative way. Let E be an extension group

corresponding to an element of H2(G;A). Let N = log(E) via the Baer correspondence. We

can relate two short exact sequences via a log functor.

0 → A→ E → G→ 1

↓log ↓log ↓log

0 → A→ N → L→ 0

Note that we abuse notation again, using the same letter A for A as a group and as a

Lie ring.

Then, the element of H2
Lie(L;A) that corresponds to the second row is the same as the

image of the element of H2(G;A) under the isomorphism described earlier.

5.4.10 Relaxation of the 2-powered assumption

We consider what can be said when the assumption that both G and A are 2-powered is

relaxed.

0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G,A) → 0

Note that if the group Hom(G∧G,A) itself is 2-powered, then the preceding construction
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can still be carried out, and we can obtain a splitting of the short exact sequence. The

correspondence between the extension group and the extension Lie ring need no longer be

an instance of the Baer correspondence. However, it will continue to be an instance of the

divided Baer correspondence described in Section 5.3.4. Note in particular that this includes

the case where the group A alone is 2-powered. It will also include the case where the group

G alone is 2-powered.

In the case that Hom(G ∧ G,A) is not 2-powered, the preceding method for obtaining

a splitting will not work. However, we know that the short exact sequence must still split.

For some choices of G and A, it is possible to obtain an automorphism-invariant splitting,

even though such a splitting does not arise from the Baer correspondence or any of its

generalizations described here.

5.4.11 Inner automorphisms and inner derivations in the context of the

correspondence up to isoclinism

Many aspects of the relationship between inner automorphisms and inner derivations de-

scribed in Section 5.2.8 continue to be valid, with suitable modification, for the Baer corre-

spondence up to isoclinism.

Suppose G is a group of nilpotency class two and L is a Lie ring of nilpotency class two

such that G and L are in Baer correspondence up to isoclinism. In particular, this means

that the groups G/Z(G) ∼= Inn(G) and L/Z(L) ∼= Inn(L) are in abelian Lie correspondence

up to isomorphism.

The adjoint action of G on L is defined as follows:

Ad : G→ Aut(L)

For any u ∈ G, define Adu as follows. Denote by u the image of u in G/Z(G). Denote

by x an element of L such that the image of x in L/Z(L) corresponds to the element u
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under the abelian Lie correspondence between L/Z(L) and G/Z(G). We define Adu as the

following automorphism of L:

Adu(g) = g + [x, g]

It can easily be verified that Adu is an automorphism of L. It can also be verified that

Aduv = Adu Adv, making Ad a homomorphism.

More conceptually, we can write the description as follows:

Adu = 1 + adx

where the images of u and x modulo the respective centers are in abelian Lie correspon-

dence.

5.5 Examples of the Baer correspondence up to isoclinism

In the case that G and A are odd-order abelian groups, the original Baer correspondence

works. To obtain finite examples where the Baer correspondence works only up to isoclinism,

we need to look at 2-groups. Further, our examples must be cases where the quotient

Hom(G ∧G,A) is nontrivial, so that there is at least some non-abelian extension.3

5.5.1 Extensions with quotient the Klein four-group and center cyclic of

order two

The smallest sized example is: A = Z2 is the cyclic group of order 2 and G = V4 is the Klein

four-group, isomorphic to Z2 × Z2.

3. The abelian extensions can be put in correspondence based on the correspondence between abelian
groups and abelian Lie rings, which, although not strictly part of the Baer correspondence as have defined
it, falls under the generalization described in Section 5.3.1
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The short exact sequences discussed in Sections 5.4.4 and 5.4.5, along with the canonical

isomorphisms discussed in Section 5.4.6, give the following:

0 → Ext1(V4; Z2) → H2(V4; Z2) → Hom(V4 ∧ V4,Z2) → 0

↓ ↓

0 → Ext1(V4; Z2) → H2
Lie(V4; Z2) → Hom(V4 ∧ V4,Z2) → 0

Recall that both short exact sequences split, and, as per the discussion in Section 5.4.5,

the Lie ring short exact sequence splits canonically (with the splitting separating out the

addition and Lie bracket parts).

It turns out that:

• Ext1(V4; Z2) is itself isomorphic to V4, the Klein four-group.

• (V4 ∧ V4) is isomorphic to Z2, and thus, Hom(H2(V4; Z),Z2) is isomorphic to Z2.

• Thus, both of the second cohomology groups (the group and Lie ring side) are isomor-

phic to the elementary abelian group of order eight.

On the group side, we have the following eight extensions (eight being the order of the

cohomology group):

(a) Elementary abelian group of order eight (1 time).

(b) Z4 ⊕ Z2 (3 times).

(c) D8 (3 times).

(d) Q8 (1 time).

(a) and (b) together form the image of Ext1 (total size 4) while (c) and (d) form the

non-identity coset of that image.

On the Lie ring side, the eight extensions (eight being the order of the cohomology group)

are:
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(a) Abelian Lie ring, additive group elementary abelian of order eight (1 time)

(b) Abelian Lie ring, additive group direct product of Z4 and Z2 (3 times).

(c) The niltriangular matrix Lie ring (3×3 strictly upper triangular matrices) over the field

of two elements. (1 time)

(d) The semidirect product of Z4 and Z2 as Lie rings. (3 times).

(a) and (b) together form the image of Ext1 (total size 4) while (c) and (d) form the

non-identity coset of that image.

Note that there is no canonical bijection between the set of eight group extensions and

the set of eight Lie ring extensions, but we can naturally correspond the images of Ext1

in both. The problem arises when attempting an element-to-element identification of the

non-identity cosets in the two cases. In other words, we have a correspondence at a coset

level:

{D8, D8, D8, Q8} ↔ {The four non-abelian Lie ring extensions}

But there is no clear-cut way of making sense of which Lie ring extension to correspond

to which group. This is an example of a situation where the Baer correspondence up to

isoclinism does not seem to have any natural refinement to a correspondence up to isomor-

phism.

Note that in this case, it so happens that we can use an automorphism-invariance crite-

rion and get a unique automorphism-invariant bijection. This would map the niltriangular

matrix Lie ring to the quaternion group and the semidirect product of Z4 and Z2 to the dihe-

dral group. However, this does not give a meaningful bijection at the level of elements. For

instance, as described in Section 5.2.7, one feature that holds in all generalizations described

so far for the Baer correspondence is that the correspondence restricts to isomorphism be-

tween cyclic subgroups and cyclic subrings. In particular, the rder statistics of the group
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(i.e., the multiset of the orders of the elements) in the group must match the order statistics

of the additive group of the Lie ring. However, the order statistics of D8 do not match the

order statistics of any abelian group of order 8. The same is true for Q8.

5.5.2 Extensions with quotient the Klein four-group and center cyclic of

order four

We consider a slight variation of the preceding example. We set G = V4 as before, but now

set A = Z4, so A is the cyclic group of order four. The extension groups and extension Lie

rings are all of order 16.

It turns out that:

• Ext1(V4; Z4) is itself isomorphic to V4, the Klein four-group.

• (V4 ∧ V4) is isomorphic to Z2, and thus, Hom(H2(V4; Z),Z4) is isomorphic to Z2.

• Thus, both of the second cohomology groups (the group and Lie ring side) are isomor-

phic to the elementary abelian group of order eight.

On the group side, we have the following eight extensions (eight being the order of the

cohomology group):

(a) Z4 ⊕ V4 (1 time).

(b) Z8 ⊕ Z2 (3 times).

(c) The group M16 = M4(2), given by the presentation 〈a, x | a8 = x2 = 1, xax−1 = a5〉 (3

times). This group has ID (16,6) in the SmallGroups library used in GAP and Magma.

(d) The groupD8∗Z2
Z4 = Q8∗Z2

Z4 (1 time). This group has ID (16,13) in the SmallGroups

library used in GAP and Magma.
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(a) and (b) together form the image of Ext1 (total size 4) while (c) and (d) form the

non-identity coset of that image.

On the Lie ring side, we have the following eight extensions (eight being the order of the

cohomology group):

(a) Abelian Lie ring with additive group Z4 ⊕ V4 (1 time).

(b) Abelian Lie ring with additive group Z8 ⊕ Z2 (3 times).

(c) Lie ring with presentation 〈a, x | 8a = 2x = 0, [a, x] = 4a〉 (3 times).

(d) Lie ring with presentation 〈a, x, y | 4a = 2x = 4y = 0, 2a = 2y, [a, x] = 2a, [a, y] =

[x, y] = 0〉 (1 time).

(a) and (b) together form the image of Ext1 (total size 4) while (c) and (d) form the

non-identity coset of that image.

We can naturally correspond the images of Ext1 in both. We also have a correspondence

at a coset level:

The four non-abelian group extensions ↔ The four non-abelian Lie ring extensions

In general, we cannot refine this to a canonical bijection at the level of individual ex-

tensions. However, in this case, there does exist an automorphism-invariant splitting, under

which the type (c) for groups corresponds to the type (c) for Lie rings, and the type (d)

for groups corresponds to the type (d) for Lie rings. The splitting here is somewhat nicer

than the splitting in the preceding example because for each group and Lie ring in corre-

spondence, we can obtain a bijection between the group and the Lie ring that preserves the

cyclic subgroup structure, similar to the description in Section 5.2.7.
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CHAPTER 6

THE MALCEV AND LAZARD CORRESPONDENCES

6.1 Adjoint groups and the exponential and logarithm maps

6.1.1 Remarks on the approach followed from this point onward

Many of the identities that we will obtain in this section and the subsequent sections are

formal identities. They make sense in a wide array of situations, if appropriately interpreted.

Below, we outline our typical logic flow.

• Some of our identities start off as identities involving infinite series that make sense

over the reals, or over real Lie groups. In those contexts, the identities may have

specific interpretations related to differential equations, although those interpretations

do not concern us directly.

• Our identities are valid formally in a noncommutative (but associative) power series

algebra over Q. Note that we need to use power series algebras because the identities

involve infinite series.

• As a result, our identities are valid in free nilpotent associative Q-algebras of nilpotency

class c, where the identities get truncated to expressions of finite length. We therefore

get identities involving the truncated expressions of finite length with the assumption

about nilpotency class.

• We notice that the truncated expressions, for which the identity is valid, have only a

finite number of coefficients, that in turn have only a finite number of prime divisors of

their denominators. Typically, the truncated expression to class c uses only the primes

that are less than or equal to c. Denote this prime set by πc.

• We then notice that our identities (in truncated form) are valid in free nilpotent (as-

sociative) Z[π−1
c ]-algebras of nilpotency class c.
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• We conclude that our identities (in truncated form) are valid in all nilpotent (associa-

tive) Z[π−1
c ]-algebras of nilpotency class at most c, on account of our being able to

express such algebras as quotients of the free nilpotent Z[π−1
c ]-algebras of nilpotency

class c.

6.1.2 Some background on adjoint groups and algebra groups

An associative (not necessarily unital) ring N is termed a radical ring if for every x ∈ N

there exists y ∈ N such that x+ y + xy = 0.

For any radical ring N , we define the adjoint group corresponding to N as the set 1 +N ,

i.e., the set of formal symbols:

{1 + x | x ∈ N}

equipped with the multiplication:

(1 + x)(1 + y) = 1 + (x+ y + xy)

The identity element for this adjoint group is 1+0 (simply denoted as 1). For any x ∈ N ,

the inverse of 1+x is the element 1+y where y is an element satisfying x+y+xy = 0. Such

an element exists by the assumption that N is radical. The uniqueness and two-sidedness of

inverses follows from group theory.1

An algebra group over a field F is defined as a group arising as the adjoint group corre-

sponding to an associative algebra N over F that is also a radical ring.

Suppose G is an algebra group over a field F corresponding to a radical ring N that is an

associative algebra over F . A subgroup H of G is termed an algebra subgroup if H = 1 +M

for a subalgebra M of N (note that M must also be a radical ring for H to be a subgroup).

1. Specifically, if every element of a monoid has a right inverse, then every element has a two-sided inverse
and the two-sided inverse is unique.
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The following facts about algebra groups can be easily checked.

1. An associative ring in which every element is nilpotent is a radical ring. In particular,

an associative ring that is itself nilpotent is a radical ring.

The proof of this assertion relies on the observation that if xn = 0, then the element

y =
∑n−1

i=1 (−1)ixi = −x + x2 − x3 + · · · + (−1)n−1xn−1 satisfies x + y + xy = 0.

Secretly, the expression above relies on expanding (1 − (−x)n)(1 − (−x)) as a power

series in x.

2. Suppose K is a field extension of a field F . Then, any K-algebra group naturally

acquires the structure of a F -algebra group. In particular, any algebra group over a

field of characteristic zero is a Q-algebra group. Similarly any algebra group over a

field of characteristic p is a Fp-algebra group.

3. It is possible to have two non-isomorphic Fp-algebras N1 and N2 such that the algebra

group corresponding to N1 is isomorphic (as an abstract group) to the algebra group

corresponding to N2. In fact, we can construct examples of non-isomorphic associative

algebras over F2 whose corresponding algebra groups are both isomorphic to Z/4Z ⊕

Z/2Z.

4. Suppose N is a radical Fp-algebra where p is a prime number. Then, we have (1+x)p =

1+xp for all x ∈ N . In other words, the pth power map in the algebra and the algebra

group correspond to each other.

5. A finite Fp-algebra N is radical if and only if every element of N is nilpotent. One

direction was already established in (1). For the reverse direction, note that if 1 + x

has finite order pk, then 1 + xpk
= (1 + x)p

k
= 1, so xpk

= 0, and thus, x is nilpotent.

6. For any field F and a positive integer n, consider the group UT (n, F ) of upper tri-

angular unipotent matrices over F . UT (n, F ) is the algebra group corresponding to
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NT (n, F ), the strictly upper triangular matrices over F , where we view NT (n, F ) as

an associative F -algebra with the usual addition and multiplication of matrices.

7. Any Fq-algebra group G = 1 +N of order qm is isomorphic to an algebra subgroup of

the algebra group UT (m + 1, q) = UT (m + 1,Fq). The proof idea is to consider G as

a multiplicative subgroup of the ring N + Fq (the unitization of N) and then consider

the action of G on the underlying vector space of N + Fq by multiplication. This

action is faithful, and defines an injective homomorphism G → GL(m + 1,Fq). By

Sylow’s theorem, G can be conjugated to a subgroup inside any p-Sylow subgroup of

GL(m+1, q) (where p is the underlying prime of q). UT (m+1, q) is one such p-Sylow

subgroup.

6.1.3 Exponential map inside an associative ring: the torsion-free case

Suppose R is an associative unital ring. For now, assume that the additive group of R is

torsion-free (we will later relax the assumption). An element x ∈ R is termed exponentiable

if the following sum makes sense, and if so the sum is termed the exponential of x:

exp(x) = ex =
∞∑

m=0

xm

m!
= 1 + x+

x2

2!
+
x3

3!
+ . . .

The notations exp(x) and ex are both used. The exp notation is more helpful when the

argument to the function is complicated and cumbersome to write in a superscript.

Here, x0 = 1, and xm/m! is the unique element y ∈ R such that m!y = xm. Note that

uniqueness follows from our assumption that R is torsion-free.

For the sum to make sense, we need two conditions:

• x is nilpotent, i.e., there exists a natural number n such that xn = 0. The smallest

such n is the nilpotency of x.

• For all positive integers m < n, m! divides xm, i.e., there exists an element y ∈ R
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(unique by the torsion-free assumption) such that m!y = xm.

If both the above conditions hold, then we can rewrite:

ex =
n−1∑
m=0

xm

m!

For an element x ∈ R, we say that x is logarithmable if there exists a positive integer n

such that (x− 1)n = 0, and the following can be computed:

log x := (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · ·+ (−1)n(x− 1)n−1

n

Explicitly, x is logarithmable if the following two conditions hold:

• x is unipotent, or equivalently, x− 1 is nilpotent, i.e., there exists a natural number n

such that (x− 1)n = 0. The smallest such n is termed the unipotency of x.

• For all positive integers m < n, m divides (x− 1)m, i.e., there exists an element y ∈ R

such that my = (x− 1)m.

The following can be deduced from formal manipulation:

• If x ∈ R is exponentiable and ex is logarithmable, then log(ex) = x.

• If x ∈ R is logarithmable and log x is exponentiable, then elog x = x.

This follows from the fact that the identities hold formally on account of these being

the usual Taylor series for the exponential and logarithm functions that are inverses of each

other.

6.1.4 Exponential to and logarithm from the adjoint group

Suppose N is an associative (but not necessarily commutative and generally not unital) ring

whose additive group is torsion-free and x is a nilpotent element of N satisfying the following

two conditions:
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• x is nilpotent, i.e., there exists a natural number n such that xn = 0. The smallest

such n is the nilpotency of x.

• For all positive integers m < n, m! divides xm, i.e., there exists an element y ∈ R

(unique by the torsion-free assumption) such that m!y = xm.

Then, we can make sense of the element ex as an element of the adjoint group 1 + N .

Explicitly:

ex := 1 +

(
x+

x2

2!
+
x3

3!
+ . . .

xn−1

(n− 1)!

)
Similarly, for an element 1 + x, x ∈ N , we say that 1 + x is logarithmable if the following

two conditions hold:

• x is nilpotent, i.e., there exists a natural number n such that xn = 0. The smallest

such n is the nilpotency of x.

• For all positive integers m < n, m divides xm, i.e., there exists an element y ∈ R

(unique by the torsion-free assumption) such that my = xm.

We then define log(1 + x) as an element of N :

log(1 + x) = x− x2

2
+
x3

3
− · · ·+ (−1)nxn−1

n− 1

We have observations similar to those in Section 6.1.3:

• If x ∈ N is exponentiable and ex is logarithmable, then log(ex) = x.

• If x ∈ N is logarithmable and log x is exponentiable, then elog x = x.

Note that this notion of exponential differs slightly from the preceding definition in that

the exponential of an element is now no longer in the ring but rather in its adjoint group.

However, we can embed N inside its unitization R = N + Z and both the definitions would
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then agree.2 In fact, via this method, we can deduce all results here from the results of

Section 6.1.3 without redoing any of the work.

6.1.5 The exponential and logarithm as global maps

Suppose N is an associative ring whose additive group is torsion-free and in which every

element is exponentiable (to the adjoint group) and every element of the adjoint group is

logarithmable. Then, the exponential can be defined as a global set map:

exp : N → 1 +N

In this case, the logarithm is also a global map:

log : 1 +N → N

and further, the two maps are inverses of each other.

The following are some cases where these hypotheses are satisfied:

• The case that N is a nilpotent Q-algebra. This will be the case that interests us the

most in the beginning.

• The case that N is a torsion-free Z[π−1
c ]-algebra of nilpotency class at most c where πc

is the set of all primes less than or equal to c. Many of our generalizations will apply to

this case. (See the next subsection regarding relaxation to the non-torsion-free case).

6.1.6 Truncated exponentials and the case of torsion

So far, we have considered the definition of exponential and logarithm in the context of

torsion-free additive groups. The torsion-free assumption is significant because it guarantees

2. Note that the definition of “unitization” depends on what commutative unital ring we are considering
N as an algebra over. The default assumption is to treat it as an algebra over Z, in which case the unitization
is N + Z. If, howevever, we are viewing N as an algebra over a field F , the unitization is N + F .
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that all the summands of the form xn/n! or xn/n are uniquely defined if they exist. We now

consider whether this torsion-free assumption can be relaxed somewhat.

In the case that an element x satisfies xn = 0 for some natural number n, we can truncate

the exponential series and get:

ex = 1 +

(
x+

x2

2!
+ · · ·+ xn−1

(n− 1)!

)
Similarly, we can truncate the logarithm series and get:

log(1 + x) = x− x2

2
+
x3

3
− · · ·+ (−1)nxn−1

n− 1

Thus, we can relax the torsion-free assumption to the assumption that the ring is π-

torsion-free where π is the set of all primes strictly less than the nilpotency. Alterna-

tively, if N is a nilpotent associative ring of nilpotency class c (explicitly, this means that

x1x2 . . . xcxc+1 = 0 for all x1, x2, . . . , xc, xc+1 ∈ N) that is πc-torsion-free where πc is the

set of primes less than or equal to c, then we can make unique sense of the terms xm/m!

and xm/m used in the definitions of the exponential and logarithm maps.

In particular, if N is a Z[π−1
c ]-algebra of nilpotency class at most c, then the exponential

and logarithm maps make sense globally.

There is, however, a small caveat. Namely, the process of truncating the exponential

map involves a choice, even though the choice we have made is a canonical choice. Consider

again the infinite series for the exponential:

ex = 1 +

(
x+

x2

2!
+
x3

3!
+ . . .

)
The mth term of the summation is xm

m! . In the case that m ≥ n, the numerator is the

zero element of N . We are therefore trying to make sense of the computation:

0

m!

292



A canonical candidate for the answer is 0. However, if N has p-torsion for some prime

p less than or equal to m, this is not the unique candidate for the answer. Our decision to

truncate the exponential implicitly involves making the canonical choice of the answer of 0

for all terms xm/m!, even though this choice is not uniquely fixed.

Despite the non-uniqueness of these choices, all the formal manipulations involving ex-

ponentials and logarithms continue to be valid. A quick explanation for this is as follows:

all the proofs for these manipulations involve using the existing (truncated) expressions and

then applying the operations of addition, subtraction, multiplication, and composition. None

of these operations is capable of introducing new primes into the denominators. Thus, we do

not ever need to confront the non-uniqueness of division by larger primes when mimicking

the proofs that work over the rational numbers.

6.1.7 Exponential and logarithm maps preserve abelian and cyclic subgroup

structures

The following lemmas follow from manipulation similar to the formal manipulation used

when dealing with power series over the reals. We therefore omit the proofs.

Lemma 6.1.1. Suppose c is a positive integer and πc is the set of primes less than

or equal to c. Suppose N is an associative Z[π−1
c ]-algebra of nilpotency class less than or

equal to c. Suppose x, y ∈ N are elements such that xy = yx. Then, the exponential map

exp : N → 1 +N satisfies the condition that:

exp(x+ y) = exp(x) exp(y)

Lemma 6.1.2. Suppose c is a positive integer and πc is the set of primes less than or

equal to c. Suppose N is an associative Z[π−1
c ]-algebra of nilpotency class less than or equal

to c. Suppose x ∈ N and n ∈ Z. Then, the exponential map exp : N → 1 +N satisfies the
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condition that:

exp(nx) = (exp(x))n

This follows from the preceding lemma, combined with a proof by induction.

6.2 Free nilpotent groups and the exponential and logarithm

6.2.1 Free associative algebra and free nilpotent associative algebra

The notation and results here follow Khukhro’s book [29], Chapters 9 and 10. For brevity,

we omit some proofs and provide citations to Khukhro.

For this and the next few subsections, c is a fixed but arbitrary positive integer. The

algebraic structures F , A, and L are all dependent on c. However, to keep the notation as

uncluttered as possible, we will not use c as an explicit parameter to these.

Denote by A the free associative Q-algebra on a generating set S = {x1, x2, . . . } The

generating set may have any cardinality. By the well-ordering principle, we will index the

generating set by a well-ordered set.

The algebra A is naturally a graded associative algebra. Explicitly, the ith graded com-

ponent of A is the Q-subspace generated by all products of length i of elements from the

generating set. Formally, A has the following direct sum decomposition as a vector space:

A =
∞⊕
i=1

Ai

and further:

AiAj ⊆ Ai+j

For any positive integer i, we can define an ideal:
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Ai =
∞⊕
j=i

Aj

For any positive integer c, define the associative algebra:

A = A/Ac+1

A can be described as the free nilpotent associative algebra of class c on the same gen-

erating set S. Explicitly, this means that all products in A of length more than c become

zero.

Based on the discussion in Sections 6.1.4 and 6.1.5, the exponential and logarithm map

are globally defined, i.e., we have global maps:

exp : A→ 1 + A, log : 1 + A→ A

that are inverses of each other. Explicitly:

exp(x) = 1 +

(
x+

x2

2!
+ · · ·+ xc

c!

)
log(1 + x) = x− x2

2
+ · · ·+ (−1)c−1xc

c

6.2.2 Free Lie algebra and free nilpotent Lie algebra

Denote by L the Lie subring of A generated by the free generating set S. Note that L is

only a Lie ring, not a Q-Lie algebra. QL is the Q-Lie algebra generated by S in A.

By [29], Theorem 5.39, L is the free Lie ring on S, and QL is the free Q-Lie algebra on

S. Further, for every prime set π, Z[π−1]L is the free π-powered Lie ring on S.

We can define L in the following equivalent ways:
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• L = L/γc+1(L) = L/(L ∩ Ac+1).

• L is the Lie subring generated by the image of S inside A, i.e., it is the Lie subring

generated by the freely generating set inside A.

Denote by 1 + A the adjoint group to A.

Denote by F the subgroup of 1 + A generated by the elements exi , xi ∈ S.

Lemma 6.2.1. 1 + A is a rationally powered group.

Proof. The maps log : 1 +A→ A and exp : A→ 1 +A are inverses of each other. We know

that A is a Q-algebra, and Lemma 6.1.2 tells us that the map exp : A → 1 + A preserves

the cyclic subgroup structure (i.e., exp(nx) = (exp(x))n for any n ∈ Z). Thus, 1 +A is also

rationally powered.

Theorem 6.2.2. 1. For each xi in the generating set S, choose an element yi ∈ A

that has no homogeneous degree one component. Then, the subgroup of 1+A generated

by the elements 1 + xi + yi is a free nilpotent group of class c on the generating set

{1 + xi + yi | i ∈ I}.

2. The subgroup F of 1 + A generated by the elements exi , xi ∈ S is a free nilpotent

group of class c on the generating set exi , xi ∈ S. Thus, it is canonically isomorphic to

the free nilpotent group of class c on S.

3. For any prime set σ, the subgroup σ
√
F of 1 +A (where F is defined as in part (2)) is

a free σ-powered nilpotent group of class c on the generating set exi , xi ∈ S.

Proof. Proof of (1): See [29], Theorem 9.2.

Proof of (2): This follows from (1), setting
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yi =
c∑

j=2

x
j
i

j!

Proof of (3): By (2), we obtain that F̂σ is the free σ-powered free class c nilpotent group

on the set exi , xi ∈ S. We also know that the group 1 + A is rationally powered, hence in

particular it is torsion-free and σ-powered. Thus, F̂σ is canonically isomorphic to σ
√
F inside

1 + A. This proves the result.

6.3 Baker-Campbell-Hausdorff formula

We use the same notation as in the preceding section (Section 6.2).

6.3.1 Introduction

Consider the case of a generating set {x1, x2} of size two. A is the free associative algebra

of class c generated by {x1, x2}. L is the Lie subring of A generated by the elements x1 and

x2. Note that A is powered over all primes on account of being a Q-algebra, and further,

every element of A is nilpotent, in fact, uc+1 = 0 for all u ∈ A. Thus, for all u ∈ A, it makes

sense to consider the element eu ∈ 1 + A defined as follows:

eu = 1 +

(
u+

u2

2!
+
u3

3!
+ · · ·+ uc

c!

)
The Baker-Campbell-Hausdoroff formula for class c is a formal expression Hc(x1, x2) with

the property that:

eHc(x1,x2) = ex1ex2

It is not a priori obvious that Hc(x1, x2) exists, but [29], Section 9.2 demonstrates that

Hc(x1, x2) exists, and moreover, that Hc(x1, x2) ∈ QL, i.e., it is in the Q-Lie subalgebra

generated by x1 and x2.
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It is easy to see that in the Baker-Campbell-Hausdorff formula for class c, truncating

to products of length c− 1 and lower gives the Baker-Campbell-Hausdorff formula for class

c − 1. Equivalently, the Baker-Campbell-Hausdorff formula for class c can be obtained by

adding a degree c term to the Baker-Campbell-Hausdorff formula for class c− 1.

We can thus define an infinite Baker-Campbell-Hausdorff formula as follows:

H(x1, x2) = t1(x1, x2) + t2(x1, x2) + . . .

where each ti(x1, x2) is in the ith homogeneous component of QL, with the further

property that if we truncate the summation to:

Hc(x1, x2) = t1(x1, x2) + t2(x1, x2) + · · ·+ tc(x1, x2)

then for A = A/Ac+1, we have:

eHc(x1,x2) = ex1ex2

6.3.2 Computational procedure for the Baker-Campbell-Hausdorff formula

The following procedure can be used to compute the Baker-Campbell-Hausdorff formula.

The procedure as described here is incomplete, because it only gives the formula inside the

associative algebra, but does not express it in terms of Lie products. There are closed-form

expressions using Lie products, but these are extremely messy to work with, so we provide

only the conceptual outline for obtaining H(x1, x2) as an expression in terms of x1 and x2

in the associative algebra. See [29], Sections 5.3 and 9.9 for more more details, and see [9]

for the most efficient known computational procedure.

First, we begin by considering the product:

ex1ex2 =
∞∑

k=0

∞∑
l=0

xk
1
k!

xl
2
l!

298



Subtract 1 and obtain:

w = ex1ex2 − 1 =
∑

k,l≥0,0<k+l

xk
1x

l
2

k!l!

We have a formal power series:

log(1 + w) = w − w2

2
+
w3

3
− . . .

It can also be formally verified that:

elog(1+w) = 1 + w = 1 + (ex1ex2 − 1) = ex1ex2

Thus, H(x1, x2) = log(1 + w). Formally:

H(x1, x2) =
∑

k,l≥0,0<k+l

xk
1x

l
2

k!l!
− 1

2

 ∑
k,l≥0,0<k+l

xk
1x

l
2

k!l!

2

+
1

3

 ∑
k,l≥0,0<k+l

xk
1x

l
2

k!l!

3

− . . .

The above calculation gives the full Baker-Campbell-Hausdorff formula. If we are in-

terested in the class c Baker-Campbell-Hausdorff formula, we can use truncated versions of

both the exponential and the logarithm power series.

6.3.3 Homogeneous terms of the Baker-Campbell-Hausdorff formula

The infinite Baker-Campbell-Hausdorff formula has the form:

H(x1, x2) = t1(x1, x2) + t2(x1, x2) + . . .

where ti(x1, x2) is the homogeneous component of degree i. The first few homogeneous

components are given below:

The case i = 1 is obvious. The case i = 2 is derived in the Appendix, Section B.1.1. The
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Table 6.1: Truncations of the Baker-Campbell-Hausdorff formula
i ti(x1, x2) Hi(x1, x2)
1 x1 + x2 x1 + x2
2 1

2 [x1, x2] x1 + x2 + 1
2 [x1, x2]

3 1
12([x1, [x1, x2]]− [x2, [x1, x2]]) x1 + x2 + 1

2 [x1, x2] + 1
12([x1, [x1, x2]]− [x2, [x1, x2]])

4 − 1
24 [x2, [x1, [x2, x2]]] H3(x1, x2)− 1

24 [x2, [x1, [x2, x2]]]

case i = 3 is derived in the Appendix, Section B.1.2.

For explicit descriptions of higher degree terms of the Baker-Campbell-Hausdorff formula,

see [9].

6.3.4 Universal validity of the Baker-Campbell-Hausdorff formula

The Baker-Campbell-Hausdorff formula is valid wherever it makes sense. Explicitly, the

following holds. Note that Lemma 6.1.1 can be viewed as a special case of this theorem (or

rather, of Theorem 6.3.4, the generalization to Z[π−1
c ]-algebras).

Theorem 6.3.1. Suppose R is a nilpotent Q-algebra. Then, the Baker-Campbell-

Hausdorff formula is valid for any x, y ∈ R:

eH(x,y) = exey

where we make sense of the exponentials as expressions in the adjoint group 1+R, which

can be viewed as a multiplicative subgroup inside the unitization Q⊕R.

Proof. Denote by c the nilpotency class of R. Let A be the free nilpotent Q-algebra of class

c on two generators x1 and x2. There is a unique Q-algebra homomorphism θ : A→ R that

sends x1 to x and x2 to y. The existence of this homomorphism is guaranteed by A being

the free class c nilpotent Q-algebra on two generators.

It is useful to extend θ to a homomorphism between the unitizations:
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ϕ : Q⊕ A→ Q⊕R

where ϕ acts as the identity map on the first coordinate and acts as θ on the second

coordinate. ϕ is a Q-algebra homomorphism satisfying ϕ(x1) = x and ϕ(x2) = y.

We now use the fact that the corresponding identity holds in A, and the fact that ho-

momorphisms preserve all formulas, to obtain the identity for x and y. Explicitly, we know

that:

eHc(x1,x2) = ex1ex2

Apply ϕ to both sides:

ϕ(eHc(x1,x2)) = ϕ(ex1ex2)

Q-algebra homomorphisms commute with exponentiation and with products, so this

becomes:

eϕ(Hc(x1,x2)) = eϕ(x1)eϕ(x2)

Q-algebra homomorphism also commute with Hc, and we get:

eHc(ϕ(x1),ϕ(x2)) = eϕ(x1)eϕ(x2)

We had set ϕ(x1) = x and ϕ(x2) = y, so we get:

eHc(x,y) = exey

as desired.
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6.3.5 Formal properties of the Baker-Campbell-Hausdorff formula

Below are some important properties of the Baker-Campbell-Hausdorff formula:

1. The ith homogeneous component ti(x1, x2) of the Baker-Campbell-Hausdorff formula

is symmetric if i is odd and skew-symmetric if i is even. Explicitly:

ti(x1, x2) = (−1)i−1ti(x2, x1)

2. The Baker-Campbell-Hausdorff formula is associative, i.e., we have the following formal

identity:

H(H(x1, x2), x3) = H(x1, H(x2, x3))

Equivalently, for every positive integer c, the following identity holds in class c:

Hc(Hc(x1, x2), x3) = Hc(x1, Hc(x2, x3))

Note that by “holds in class c” we mean that we truncate the formula to all Lie products

of degree at most c, and set all higher degree Lie products to be zero.

3. The Baker-Campbell-Hausdorff formula satisfies:

H(x, 0) = H(0, x) = x

Equivalently, for every positive integer c, we have:

Hc(x, 0) = Hc(0, x) = x

Note that in this case, explicit truncation to class c is not necessary.
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4. The Baker-Campbell-Hausdorff formula satisfies:

H(x,−x) = H(−x, x) = 0

Equivalently, for every positive integer c, we have:

Hc(x,−x) = Hc(−x, x) = 0

Note that in this case, explicit truncation to class c is not necessary.

6.3.6 Universal validity of the formal properties of the

Baker-Campbell-Hausdorff formula

Note that the universal validity being alluded to here differs in spirit from the universal

validity that was alluded to in Section 6.3.4. The universal validity alluded to earlier was the

universal validity of the Baker-Campbell-Hausdorff formula in relation with the exponential

map in an associative algebra. The universal validity alluded to here is in Lie algebras.

Theorem 6.3.2. Suppose N is a nilpotent Q-Lie algebra of nilpotency class c for some

positive integer c. Then, the following hold for all x, y, z ∈ N :

Hc(Hc(x, y), z) = Hc(x,Hc(y, z))

Hc(x, 0) = x

Hc(0, x) = x

Hc(x,−x) = 0

Hc(−x, x) = 0
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Proof. All identities except the first are obvious from the expressions. We therefore concen-

trate on the first identity.

Denote by L the free Lie ring on the set {x1, x2, x3}. Then, QL is the free Q-Lie algebra

on {x1, x2, x3}. Consider the unique Q-algebra homomorphism ϕ : QL → N defined as

follows: ϕ(x1) = x, ϕ(x2) = y, and ϕ(x3) = z.

We know that Hc(Hc(x1, x2), x3) = Hc(x1, Hc(x2, x3)) by the formal associativity of the

Baker-Campbell-Hausdorff formula. The homomorphism ϕ is a homomorphism of Q-Lie

algebras, hence it preserves the identity, and we obtain that:

Hc(Hc(x, y), z) = Hc(x,Hc(y, z))

6.3.7 Primes in the denominator for the Baker-Campbell-Hausdorff

formula

The lemma below allows us to restrict the Baker-Campbell-Hausdorff formula to Z[π−1
c ]L

where πc is the set of primes less than or equal to c.

Lemma 6.3.3. It is possible to express the Baker-Campbell-Hausdorff formula Hc(x, y)

in a manner where all primes that appear as divisors of denominators of the coefficients are

less than or equal to c.

Proof. The Baker-Campbell-Hausdorff formula is obtained from the class c exponential and

logarithm formulas using the operations of addition, subtraction, multiplication, and com-

position. The class c exponential and logarithm formulas use only the primes less than or

equal to c, and the operations of addition, subtraction, multiplication and composition can-

not introduce new prime divisors into the denominators, so the Baker-Campbell-Hausdorff
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formula does not have any other primes in its denominator.

Note that the above only demonstrates the result for the associative expression for the

Baker-Campbell-Hausdorff formula. However, [29], Theorem 5.393 demonstrates that we can

rewrite the expression as a sum of basic Lie products in a manner that does not use any new

prime divisors in the denominator.

A somewhat stronger result is true: Suppose p is a prime. Then, the largest k such

that pk divides one or more of the denominators in the coefficients for Hc(x1, x2) is at most⌊
c−1
p−1

⌋
. This is derived in the Appendix, Section B.1.3. Note that this would immediately

imply the preceding lemma, but it has additional significance.

6.3.8 Universal validity assuming powering over the required primes

Below, we present results analogous to those described in Sections 6.3.4 and 6.3.6, but with

the base ring taken to be Z[π−1
c ] instead of Q, where πc is the set of primes less than or

equal to c.

Theorem 6.3.4. Suppose c is a positive integer, πc is the set of all primes less than or

equal to c, and R is an associative Z[π−1]-algebra that is nilpotent of nilpotency class at

most c. Then, the Baker-Campbell-Hausdorff formula is valid for any x, y ∈ R:

eHc(x,y) = exey

where we make sense of the exponentials as expressions in the adjoint group 1+R, which

can be viewed as a multiplicative subgroup inside the unitization Z[π−1]⊕R.

Proof. Let A be the free nilpotent associative Q-algebra of class c on the two generators

x1 and x2 and let B be the Z[π−1]-subalgebra generated by x1 and x2. Clearly, B is the

3. It would be helpful to read the surrounding discussion in Section 5.3
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free Z[π−1]-algebra on x1 and x2. There is a natural homomorphism θ : B → R of Z[π−1]-

algebras that sends x1 to x and x2 to y. The existence of this homomorphism is guaranteed

by B being the free class c nilpotent Z[π−1]-algebra on two generators. Further, θ extends

uniquely to a homomorphism ϕ : Z[π−1] ⊕ B → Z[π−1] ⊕ R between the unitizations of B

and R as Z[π−1]-algebras.

Note that the Baker-Campbell-Hausdorff formula is valid for the elements x1, x2 ∈ A,

i.e., we have:

eHc(x1,x2) = ex1ex2

Both sides of the identity and all intermediate calculations happen inside B, because the

exponential map as well as the Baker-Campbell-Hausdorff formula all involve division only

by the primes in πc (by Lemma 6.3.3). Thus, the above identity holds in B.

We now apply ϕ to both sides and obtain the conclusion. The details are analogous to

those of Theorem 6.3.1. The main difference is that the homomorphism ϕ is now a Z[π−1]-

algebra homomorphism rather than a Q-algebra homomorphism. The reason it commutes

with the formulas is that all the formulas involved make sense over Z[π−1].

Theorem 6.3.5. Suppose c is a positive integer and πc is the set of all primes less than

or equal to c. Suppose N is a nilpotent Z[π−1]-Lie algebra of nilpotency class c. Then, the

following hold for all x, y, z ∈ N :
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Hc(Hc(x, y), z) = Hc(x,Hc(y, z))

Hc(x, 0) = x

Hc((0, x) = x

Hc(x,−x) = 0

Hc(−x, x) = 0

Proof. All identities except the first one are obvious from the expressions. We therefore

concentrate on proving the first identity.

Denote by L the free Lie ring on the set {x1, x2, x3}. Then, Z[π−1]L is the free Z[π−1]-

Lie algebra on the set {x1, x2, x3}. Consider the unique Z[π−1]-algebra homomorphism

ϕ : Z[π−1]L→ N defined by the conditions ϕ(x1) = x, ϕ(x2) = y, ϕ(x3) = z.

We know that Hc(Hc(x1, x2), x3) = Hc(x1, Hc(x2, x3)) by the formal associativity of

the Baker-Campbell-Hausdorff formula. Lemma 6.3.3 tells us that this identity holds inside

Z[π−1]L. The homomorphism ϕ : Z[π−1]L → N is a homomorphism of Z[π−1]-algebras,

hence it preserves the identity, and we obtain that:

Hc(Hc(x, y), z) = Hc(x,Hc(y, z))
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6.4 The inverse Baker-Campbell-Hausdorff formulas

6.4.1 Brief description of the formulas

There are two inverse Baker-Campbell-Hausdorff formulas. The first inverse Baker-Campbell-

Hausdorff formula is a formula to compute:

h1(x, y) = exp(log x+ log y)

The second inverse Baker-Campbell-Hausdorff formula is a formula to compute:

h2(x, y) = exp([log x, log y])

We will now provide a few important details regarding the formulas that will help un-

derstand the correspondence. However, we do not attempt to be comprehensive here. More

information about the inverse Baker-Campbell-Hausdorff formula is in [29], Section 10.1.

Lemma 10.7 in particular establishes the key nature of the formula. For an explicit descrip-

tion of the first few terms for both h1 and h2, as well as an efficient computation strategy,

see [9].

6.4.2 Origin of the formulas

We follow the notation of Section 6.2. The highlights of the notation follow: A is the free

associative Q-algebra on a generating set S = {x1, x2, . . . }. L is the Lie subring (not the

Q-Lie subalgebra, but just the Z-Lie subalgebra) of A generated by S. c is a fixed positive

integer. We denote by Ac the cth graded component in the natural gradation of A, and we

denote by Ac the sum of all graded components at and beyond c. Define A = A/Ac+1 and

define L to be the Lie subring of A generated by S.4 By Theorem 6.2.2, the set {exi | xi ∈ S}

generates a free nilpotent group of class c and is a freely generating set for it. We denote

4. Note that the S viewed as a subset inside A is the image of the S viewed as a subset of A.
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this group as F .

Corollary 9.22 in Khukhro’s book ([29]) states that
√
F is a free rationally powered

nilpotent group of nilpotency class c. This is a consequence of Theorem 4.3.3. Further,

Theorem 10.4 of [29] states that
√
F = eQL. Thus, every element of eQL can be expressed

in terms of the elements exi using group operations as well as taking roots.

The first inverse Baker-Campbell-Hausdorff formula expresses ex1+x2 as a word in terms

of ex1 and ex2 using the group operations and taking roots. Explicitly, the first inverse

Baker-Campbell-Hausdorff formula in class c is a formula h1,c such that:

ex1+x2 = h1,c(e
x1 , ex2)

Note importantly that the element ex1+x2 need not lie inside F , but it does lie inside
√
F .

Similarly, the second inverse Baker-Campbell-Hausdorff formula expresses e[x1,x2] as a

word in terms of ex1 and ex2 using the group operations and taking roots. The second inverse

Baker-Campbell-Hausdorff formula in class c is a formula h2,c such that:

e[x1,x2] = h2,c(e
x1 , ex2)

Here, [x1, x2] denotes the Lie bracket of x1 and x2 inside L. Inside A, this can be viewed

as the expression x1x2 − x2x1. However, the latter does not make sense as an expression

inside L.

6.4.3 Formal properties of the inverse Baker-Campbell-Hausdorff formulas

• As with the original Baker-Campbell-Hausdorff formula, both the inverse

Baker-Campbell-Hausdorff formulas can be truncated to class c for any positive integer

c. We will denote the truncations as h1,c and h2,c respectively.

• The class c + 1 inverse Baker-Campbell-Hausdorff formula is obtained by taking the
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class c inverse Baker-Campbell-Hausdorff formula and multiplying by a suitable prod-

uct of iterated commutators, each of length c+ 1. Note that the precise nature of the

terms depends on whether we multiply on the left or the right.5

• For h1(x1, x2), the degree one term is x1x2 and the degree two term is [x1, x2]
−1/2,

the reciprocal of the square root of the group commutator.

• For h2(x1, x2), there is no degree one term, and the degree two term is the group

commutator [x1, x2].

6.4.4 Universal validity of Lie ring axioms for inverse

Baker-Campbell-Hausdorff formulas

We begin by establishing the universal validity over rationally powered nilpotent groups.

Theorem 6.4.1. Suppose G is a rationally powered nilpotent group of nilpotency class

c. Then, the following are true for all x, y, z ∈ G:

5. Technically, the new term that needs to be inserted is the same whether on the left or on the right,
because it is central and therefore commutes with the rest of the expression. However, the choice of whether
previous terms were inserted on the left or the right affects the precise choice of the term being inserted at
a given stage, so in that sense, it does matter whether the higher degree terms are being inserted on the left
or the right.
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h1,c(h1,c(x, y), z) = h1,c(x, h1,c(y, z))

h1,c(x, 1) = x

h1,c(1, x) = x

h1,c(x, x−1) = 1

h1,c(x−1, x) = 1

h1,c(x, y) = h1,c(y, x)

h2,c(x, h1,c(y, z)) = h1,c(h2,c(x, y), h2,c(x, z))

h2,c(h1,c(x, y), z) = h1,c(h2,c(x, z), h2,c(y, z))

h2,c(x, x) = 1

h1,c(h1,c(h2,c(h2,c(x, y), z), h2,c(h2,c(y, z), x)), h2,c(h2,c(z, x), y)) = 1

Proof. Let S = {x1, x2, x3} and use the setup of Section 6.4.2. F is therefore a free nilpotent

group of class c with freely generating set comprising ex1 , ex2 , ex3 . There is therefore a

unique group homomorphism from F to G sending ex1 to x, ex2 to y, and ex3 to z. By

Theorem 4.3.3 and the fact that G is rationally powered, this extends to a unique group

homomorphism from
√
F to G. All the above identites hold for

√
F because of the Lie ring

structure on L. The identities are preserved under homomorphisms, therefore they also hold

in G (the proof details are similar to those for Theorems 6.3.1 and 6.3.2).

6.4.5 Universal validity of Lie ring axioms: the πc-powered case

Denote by πc the set of all primes less than or equal to c. Theorem 10.22 of Khukhro’s book

[29] states that for any prime set σ ⊇ πc, we have σ
√
F = eZ[σ−1]L. In particular, this means

that πc
√
F = eZ[π−1

c ]L. Therefore, both the formulas h1,c and h2,c (which describe elements

of eL and hence elements of eZ[π−1
c ]L) can be written using pth roots only for the primes p
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that are in πc.

We will later see, in Lemma 7.1.2, that a slightly stricter bound applies to h2,c, though

the bound here is tight for h1,c. However, we do not need the stricter bound for our present

purpose.

Based on this, we can formulate a πc-powered version of the preceding theorem.

Theorem 6.4.2. Suppose G is a πc-powered nilpotent group of nilpotency class c. Then,

the following are true for all x, y, z ∈ G:

h1,c(h1,c(x, y), z) = h1,c(x, h1,c(y, z))

h1,c(x, 1) = x

h1,c(1, x) = x

h1,c(x, x
−1) = 1

h1,c(x
−1, x) = 1

h1,c(x, y) = h1,c(y, x)

h2,c(x, h1,c(y, z)) = h1,c(h2,c(x, y), h2,c(x, z))

h2,c(h1,c(x, y), z) = h1,c(h2,c(x, z), h2,c(y, z))

h2,c(x, x) = 1

h1,c(h1,c(h2,c(h2,c(x, y), z), h2,c(h2,c(y, z), x)), h2,c(h2,c(z, x), y)) = 1

Proof. Let S = {x1, x2, x3} and use the setup of Section 6.4.2. F is therefore a free nilpotent

group of class c with freely generating set comprising ex1 , ex2 , ex3 . There is therefore a unique

group homomorphism from F to G sending ex1 to x, ex2 to y, and ex3 to z. By Theorem

4.3.3 and the fact that G is πc-powered, this extends to a unique group homomorphism from
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πc
√
F to G. All the above identities hold inside πc

√
F , therefore, they also hold in G.

6.5 The Malcev correspondence

6.5.1 The class c Malcev correspondence

The class c Malcev correspondence is a correspondence:

Rationally powered nilpotent groups of nilpotency class at most c↔ Rationally powered

nilpotent Lie rings of nilpotency class at most c (i.e., nilpotent Q-Lie algebras)

The class c Malcev correspondence has a number of features similar to the abelian Lie

correspondence (described in Section 1.3) and the Baer correspondence (described in Sections

5.1 and 5.2). To avoid repetition, we refer to relevant sections for the earlier correspondences

where helpful.

Given a rationally powered nilpotent Lie ring L of nilpotency class at most c, the Malcev

Lie group for L, denoted exp(L), is a rationally powered nilpotent group of nilpotency class

at most c defined as follows:

• The underlying set of exp(L) is the same as the underlying set of L.

• The group operation of exp(L) is defined as follows: xy = Hc(x, y) whereHc is the class

c Baker-Campbell-Hausdorff formula, and the operations in the formula are interpreted

over L.

• The identity element 1 ∈ exp(L) of the group is the same as the zero element 0 ∈ L.

• The inverse map is defined as x−1 := −x.

Conversely, given a rationally powered nilpotent group G of nilpotency class at most

c, the Malcev Lie ring for G, denoted log(G), is a rationally powered nilpotent Lie ring of

nilpotency class at most c defined as follows:

• The underlying set of log(G) is the same as the underlying set of G.
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• The Lie ring addition is defined using the first inverse Baker-Campbell-Hausdorff for-

mula in terms of the group operations. Explicitly, we define x+ y := h1,c(x, y), where

h1,c is the first inverse Baker-Campbell-Hausdorff formula for class c, and the opera-

tions in the formula are interpreted over G.

• The Lie bracket is defined using the second inverse-Baker-Campbell-Hausdorff formula

in terms of the group operations. Explicitly, we define [x, y] := h2,c(x, y), where h2,c

is the inverse Baker-Campbell-Hausdorff formula for class c, and the operations in the

formula are interpreted over G.

• The zero element 0 ∈ log(G) is defined to be the identity element 1 ∈ G.

• The negation map in log(G) is defined to be the same as the inverse map in the group,

i.e., −x := x−1.

6.5.2 Why the class c Malcev correspondence works

The class c Malcev correspondence works in the direction from Lie rings to groups due to

Theorem 6.3.2. It works in the reverse direction due to Theorem 6.4.1. The fact that the

two directions are inverses of each other (i.e., applying the correspondence in one direction

and then in the other direction returns to the original object) also follows from the original

setup of the formulas.

6.5.3 Description of the Malcev correspondence (combining all possibilities

for nilpotency class)

The class c Malcev correspondences for different values of c are related in the following

manner. Suppose c1 ≤ c2. Then, the class c1 Malcev correspondence is a subcorrespondence

of the class c2 Malcev correspondence. Explicitly, this means that the subcategory (on the

group side and the Lie ring side respectively) for the class c1 Malcev correspondence is a
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full subcategory of the subcategory (on the group and the Lie ring side respectively) for the

class c2 Malcev correspondence. Further, the exp and log functors for the class c1 Malcev

correspondence are obtained by restricting to that subcategory the exp and log functors for

the class c2 Malcev correspondence.

Thus, as we increase the value of c, both sides of the correspondence become larger. We

can thus consider a combined correspondence for all classes. This is the Malcev correspon-

dence. The Malcev correspondence is a correspondence:

Rationally powered nilpotent groups ↔ Rationally powered nilpotent Lie rings

6.5.4 The Malcev correspondence as an isomorphism of categories over Set

We can use reasoning analogous to that used for the Baer correspondence in Section 5.1.7

to deduce that the Malcev correspondence defines an isomorphism of categories over the

category of sets between the following two categories: the category of rationally powered

nilpotent groups and the category of rationally powered nilpotent Lie rings. We can also

deduce some immediate consequences similar to those deduced for the Baer correspondence

in Section 5.1.8.

6.6 The global Lazard correspondence

Remark about the “global” and “3-local” terminology

Although the terms “Lazard Lie group” and “Lazard Lie ring” are reasonably standard, the

prefix adjectives “global” and “3-local” are not standard. Some sources, such as Khukhro’s

book [29], use the term “Lazard correspondence” only for the global Lazard correspondence,

and do not describe the 3-local Lazard correspondence. Others, including Lazard’s original

paper [30], describe the 3-local Lazard correspondence.

We will separate the two ideas because the statements and proofs are easier to understand

in the global class case, and due to considerations of space and complexity, we provide
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complete proofs only for the global class case. We begin by understanding the global class

case of the Lazard correspondence.

6.6.1 Definitions of global class Lazard Lie group and global class Lazard

Lie ring

Definition (Global class c Lazard Lie group). Suppose G is a nilpotent group and c is

a positive integer. Denote by πc the set of all primes less than or equal to c. We say that G

is a global class c Lazard Lie group if the following two conditions are satisfied:

• The nilpotency class of G is at most equal to c.

• G is πc-powered, i.e., G is powered over all primes less than or equal to c.

We say that G is a global Lazard Lie group if G is a global class c Lazard Lie group for

some positive integer c. Equivalently, G is a global Lazard Lie group if it is powered over all

primes less than or equal to its nilpotency class.

Definition (Global class c Lazard Lie ring). Suppose L is a nilpotent Lie ring and c is

a positive integer. Denote by πc the set of all primes less than or equal to c. We say that L

is a global class c Lazard Lie ring if the following two conditions are satisfied:

1. The nilpotency class of L is at most equal to c.

2. L is πc-powered, i.e., L is powered over all primes less than or equal to c.

We say that L is a global Lazard Lie ring if L is a global class c Lazard Lie ring for some

positive integer c. Equivalently, L is a global Lazard Lie ring if L is powered over all primes

less than or equal to its nilpotency class.
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6.6.2 Possibilities for the set of values of c for a global class c Lazard Lie

group

We re-examine the two conditions for a group G to be a “global class c Lazard Lie group”:

1. The nilpotency class of G is at most equal to c.

2. G is powered over all primes less than or equal to c.

Condition (1) becomes weaker as we increase c. Condition (2), on the other hand, becomes

stronger as we increase c. Overall, therefore, being a global class c Lazard Lie group is neither

stronger nor weaker than being a global class (c+ 1) Lazard Lie group.

For instance, an abelian group with 2-torsion is a global class 1 Lazard Lie group, but

not a global class 2 Lazard Lie group. On the other hand, a finite non-abelian p-group of

class two for odd p (such as the unitriangular group UT (3, p), which is a non-abelian group

of order p3 and exponent p) is a global class 2 Lazard Lie group, but not a global class 1

Lazard Lie group. Thus, neither condition implies the other.

We now turn to what we can say about the set of possible values c for which a given

group is a global class c Lazard Lie group.

Suppose G is a nilpotent group. Denote by c0 the nilpotency class of G. Let p0 be

the smallest prime such that G is not powered over p0, if there exists such a prime (G is

rationally powered if and only if no such p0 exists). There are four possibilities:

• c0 ≥ p0: In this case, G is not a global class c Lazard Lie group for any value of c.

• c0 = p0 − 1: In this case, G is a global class c0 Lazard Lie group, but is not a global

class c Lazard Lie group for any other value of c.

• c0 < p0 − 1: In this case, G is a global class c Lazard Lie group for all c satisfying

c0 ≤ c ≤ p0 − 1.
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• G is rationally powered: In this case, G is a global class c Lazard Lie group for all c

satisfying c0 ≤ c.

The upshot is that the set of values c for which G is a global class c Lazard Lie group is ei-

ther empty or a single value or a contiguous (possibly finite and possibly infinite) subsegment

of the nonnegative integers.

Analogous remarks apply for the case of nilpotent Lie rings.

6.6.3 The global class c Lazard correspondence

The global class c Lazard correspondence is a correspondence:

Global class c Lazard Lie groups ↔ Global class c Lazard Lie rings

The global class c Lazard correspondence operates in a manner quite similar to the class c

Malcev correspondence. We describe it explicitly below.

Given a global class c Lazard Lie ring L, the corresponding global class c Lazard Lie ring

exp(L) is defined as follows:

• The underlying set of exp(L) is the same as the underlying set of L.

• The group operation of exp(L) is defined as follows: xy = Hc(x, y) where Hc is the

class c Baker-Campbell-Hausdorff formula, and the Lie brackets in the formula are

interpreted as Lie brackets in L. The reason this makes sense is that we have assumed

that L powered over all primes less than or equal to c, and by Lemma 6.3.3, these are

the only primes that appear as divisors of the denominators in Hc(x, y).

• The identity element 1 ∈ exp(L) of the group is the same as the zero element 0 ∈ L.

• The inverse map is defined as x−1 := −x.

In the reverse direction, given a global class c Lazard Lie group G of nilpotency class

c, the Lazard Lie ring for G is a rationally powered nilpotent Lie ring log(G) of nilpotency

class c defined as follows:
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• The underlying set of log(G) is the same as the underlying set of G.

• The Lie ring addition is defined using the first inverse Baker-Campbell-Hausdorff for-

mula h1,c in terms of the group operations. Note that, as explained in Section 6.4.5,

the formula for h1,c makes sense in a πc-powered nilpotent group of nilpotency class

at most c.

• The Lie bracket is defined using the second inverse-Baker-Campbell-Hausdorff formula

in terms of the group operations. Note that, as explained in Section 6.4.5, the formula

for h2,c makes sense in a πc-powered nilpotent group of nilpotency class at most c.

• The zero element of log(G) is defined to be the identity element of G.

• The negation map in the Lie ring is defined to be the same as the inverse map in the

group, i.e., −x := x−1.

The forward direction (from Lie rings to groups) works because of Theorem 6.3.5. The

reverse direction works due to Theorem 6.4.2. The directions are reverses of each other due

to the formal properties of the formulas.

6.6.4 The global class one Lazard correspondence is the abelian Lie

correspondence

The global class one Lazard correspondence is the abelian Lie correspondence described in

Section 1.3:

Abelian groups ↔ Abelian Lie rings
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6.6.5 The global class two Lazard correspondence is the Baer

correspondence

Recall the definition of Baer Lie group from Section 5.1.1: a 2-powered group of nilpotency

class at most two. This agrees with the definition of a global class 2 Lazard Lie group.

Similarly, the definition of Baer Lie ring in Section 5.1.1 agrees with the definition of a

global class 2 Lazard Lie ring.

The class two Baker-Campbell-Hausdorff formula, stated in Section 6.3.3 and worked out

in the Appendix, Section B.1.1, is:

H2(x, y) = x+ y +
1

2
[x, y]

This is precisely the same as the formula in the direction from Lie rings to groups in the

Baer correspondence. Similarly, the class two inverse Baker-Campbell-Hausdorff formulas

are:

x+ y =
xy√
[x, y]

[x, y]Lie = [x, y]Group

These are precisely the same as the formulas in the direction from groups to Lie rings in

the Baer correspondence.

Thus, the Baer correspondence is the same as the global class two Lazard correspondence.

6.6.6 Interaction of global Lazard correspondences for different classes

In Section 6.6.2, we noted that a given global Lazard Lie group may be a global class c

Lazard Lie group for multiple values of c. The analogous observation applies to Lie rings.

This leads to potential for ambiguity regarding which global class c Lazard correspondence
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we are referring to.

It turns out that the global class c Lazard correspondences for different values of c agree

with each other wherever both are applicable. Explicitly, the following are true:

• Suppose G is a group of nilpotency class exactly c0, and p0 is the smallest prime for

which G is not powered (see below for the case that G is rationally powered). Suppose

that c0 ≤ p0 − 1. Then, for each c satisfying c0 ≤ c ≤ p0 − 1, G is a global class c

Lazard Lie group. Therefore, for each such c, we can consider a definition of log(G)

based on the global class c Lazard correspondence. All these definitions coincide.

In the case that G is rationally powered and has class exactly c0, we can consider a

definition of log(G) based on the global class c Lazard correspondence for all c ≥ c0.

All the definitions coincide.

• Suppose L is a Lie ring of nilpotency class exactly c0, and p0 is the smallest prime for

which L is not powered (see below for the case that L is rationally powered). Suppose

that c0 ≤ p0 − 1. Then, for each c satisfying c0 ≤ c ≤ p0 − 1, L is a global class

c Lazard Lie ring. Therefore, for each such c, we can consider a definition of exp(L)

based on the global class c Lazard correspondence. All these definitions coincide.

In the case that L is rationally powered and has class exactly c0, we can consider a

definition of exp(L) based on the global class c Lazard correspondence for all c ≥ c0.

All the definitions coincide.

Thus, we can define the global Lazard correspondence as the union of all the global class

c Lazard correspondences. We now make a brief philosophical remark regarding why this

behaves a little worse than the correspondences discussed earlier.

An observation people make early on in their study of algebraic structures is that whereas

intersections behave nicely with respect to presrving closure and important structural at-

tributes, unions rarely do. For instance, an intersection of subgroups is a subgroup, but a

union of two subgroups is not a subgroup unless one of them contains the other. In general,
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unions are not guaranteed to preserve closure except in situations where they are unions of

ascending chains or of directed sets.

We encounter a similar type of problem dealing with the global Lazard correspondence,

albeit the problem is now at a higher level of abstraction. Each of the individual global

class c Lazard correspondences behaves very nicely, just as the Baer correspondence and

the abelian Lie correspondence do. However, when we combine the correspondences, we are

dealing with heterogeneous types of objects, and we need to be more careful. In particular,

the combined correspondence does not behave well with respect to direct products. Also, it

does not behave well with respect to the relation between subgroups and quotient groups:

the normal subgroups that are in the category are not the same as the normal subgroups

for which the quotient groups are in the category. We will return to these in more detail in

Section 6.6.8.

6.6.7 Isomorphism of categories

We follow here the general template outlined in Section 1.3.9.

Each global class c Lazard correspondence defines an isomorphism of categories over the

category of sets6 between the full subcategory of the category of groups comprising the global

class c Lazard Lie groups and the full subcategory of the category of Lie rings comprising

the global class c Lazard Lie rings. The functor from Lie rings to groups is the exp functor

and the functor from groups to Lie rings is the log functor.

The global Lazard correspondence can be viewed as an isomorphism of categories over

the category of sets between the full subcategory of the category of groups comprising all the

global Lazard Lie groups, and the full subcategory of the category of Lie rings comprising

all the global Lazard Lie rings.

The set of objects involved in the global Lazard correspondence is the union of the sets of

objects involved in each of the global class c Lazard correspondences. The set of morphisms,

6. This means that the functors in both directions preserve the underlying set.
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however, is strictly larger, because the new correspondence includes morphisms between

global class c Lazard Lie groups for different values of c. For instance, an inclusion of Z

in UT (3,Q) is a morphism in the category on the group side, because Z is a global class 1

Lazard Lie group and UT (3,Q) is a global class 2 Lazard Lie group.

We can deduce a number of immediate consequences of the isomorphism of categories

similar to those in Section 5.1.8.

6.6.8 Subgroups, quotients, and direct products

We describe how subgroups, quotient groups, and direct products interact with the global

class c Lazard correspondence.

Subgroups

Suppose G is a global class c Lazard Lie group and L = log(G) is the corresponding global

class c Lazard Lie ring. Then, the global class c Lazard correspondence gives a bijective

correspondence:

Global class c Lazard Lie subgroups of G ↔ Global class c Lazard Lie subrings of L

The global Lazard correspondence gives a bijective correspondence:

Global Lazard Lie subgroups of G ↔ Global Lazard Lie subrings of L

The latter correspondence is somewhat more general than the former, because it includes

subgroups (respectively, subrings) that are global Lazard Lie groups (respectively, global

Lazard Lie rings) for smaller nilpotency class values. In particular, it includes all abelian

subgroups and abelian subrings, as well as all Baer Lie subgroups and Baer Lie subrings.

These may not qualify for the earlier correspondence because they may not be powered over

all the primes less than or equal to c. For instance, any copy of Z inside UT (3,Q) is part of

the latter correspondence but not the former.
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Quotient groups

Suppose G is a global class c Lazard Lie group and L = log(G) is the corresponding global

class c Lazard Lie ring. We have a correspondence:

Global class c Lazard Lie groups that are quotient groups of G ↔ Global class c Lazard Lie

rings that are quotient Lie rings of L

We also obtain correspondences between the corresponding kernels:

Global class c Lazard Lie groups that are normal subgroups of G ↔ Global class c Lazard

Lie rings that are ideals of L

Note that the equivalence relies on Theorem 4.1.27 and Lemma 4.2.1. These show that in

a πc-powered nilpotent group (respectively, πc-powered nilpotent Lie ring) a normal subgroup

(respectively, ideal) is πc-powered if and only if the quotient group (respectively, quotient

Lie ring) is πc-powered. Here, we take πc to be the set of all primes less than or equal to c.

We also have a correspondence:

Global Lazard Lie groups that are quotient groups of G ↔ Global Lazard Lie rings that

are quotient Lie rings of L

This gives rise to another correspondence:

Normal subgroups of G for which the quotient group is a global Lazard Lie group ↔ Ideals

of L for which the quotient Lie ring is a global Lazard Lie ring

Note, however, that these normal subgroups are not necessarily the same as the normal

subgroups that are also global Lazard Lie groups. For instance, consider the global class two

Lazard Lie group (i.e., the Baer Lie group) G = UT (3,Q). A subgroup H isomorphic to

Z inside the center of G is a normal subgroup that is a global class one Lazard Lie group.

However, G/H is not a global Lazard Lie group, because it has class two but has 2-torsion
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in the center. On the other hand, consider the subgroup K of G such that K/Z(G) is

isomorphic to Z× Z inside G/Z(G) ∼= Q×Q. K is a normal subgroup that is not a global

Lazard Lie group, but the quotient group G/K is a global Lazard Lie group.

Direct products

Suppose Gi, i ∈ I, are all global class c Lazard Lie groups for the same value of c. Then,

the external direct product
∏

i∈I Gi is also a global class c Lazard Lie group. Moreover,

log(
∏

i∈I Gi) =
∏

i∈I log(Gi).

On the other hand, it may happen that G1 is a global class c1 Lazard Lie group, G2 is

a global class c2 Lazard Lie group, and the direct product G1 × G2 is not a global class c

Lazard Lie group for any value of c. For instance, this happens if G1 = Z/2Z (with c1 = 1)

and G2 = UT (3,Q) (with c2 = 2).

6.6.9 Inner derivations and inner automorphisms

Suppose G is a global class c Lazard Lie group and L is the corresponding global class c

Lazard Lie ring. The group G/Z(G) ∼= Inn(G) is in global class c−1 Lazard correspondence

with the Lie ring L/Z(L) ∼= Inn(L). In particular, G/Z(G) and L/Z(L) have the same

underlying set.

For any x in the common underlying set of G and L, denote by x its image in the common

underlying set of G/Z(G) and L/Z(L). We have two set maps of interest from L to itself

induced by x:

• The automorphism of L arising from the inner automorphism of G given by conjugation

by x, i.e., the map g 7→ xgx−1. We denote this as Adx.

• The inner derivation of L given as g 7→ [x, g]. We denote this as adx.

We then have the relationship:
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Adx = exp(adx)

where the exponentiation occurs inside the ring EndZ(L) of the additive group of L.

Deducing the result would require us to return to the free group scenario, obtain the

result in that scenario where the group and Lie ring are both subsets in an associative ring,

and then apply homomorphisms. We are not using this result for our main proofs, so we

skip the proof. Interested readers may look at Lemma 3.3 of George Glauberman’s paper

[19].

This relationship continues to be valid in the general case (the 3-local case) that we

discuss in the next section.

6.6.10 The case of adjoint groups

In Section 6.1, we introduced the general idea of the adjoint group of a radical ring. Suppose

N is a nilpotent associative ring of nilpotency class c (this means that any product of length

c + 1 or more is zero) and 1 + N is the corresponding adjoint group. We can view N as a

Lie ring by using the same additive structure and defining:

[x, y] := xy − yx

N as a Lie ring also has nilpotency class at most c (although the nilpotency class as a

Lie ring could be smaller). The following turn out to be true.

• The adjoint group 1 +N is a nilpotent group of nilpotency class at most c. Note that

this is true regardless of whether N is powered over any primes.

• Suppose the additive group of N is powered over the set πc of all primes less than or

equal to c. Then, the Lie ring N and the group 1 + N are in global class c Lazard

correspondence up to isomorphism. Moreover, the isomorphism is given by the set
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maps exp : N → 1 +N and log : 1 +N → N described in Section 6.1 (specifically, see

Section 6.1.6). This follows quite directly from the analytical framework described in

Section 6.1.

6.6.11 The case of the niltriangular matrix Lie ring and the unitriangular

matrix group

The material discussed here builds on Section 1.1.6 in the introduction.

Suppose R is a commutative associative unital ring and n is a positive integer. We define

UT (n,R) as the group of n× n upper triangular matrices with 1s on the diagonal, with the

group operation being the usual matrix multiplication. we define NT (n,R) as the Lie ring

of n× n strictly upper triangular matrices, with the Lie bracket defined as [x, y] = xy − yx

where the multiplication here is matrix multiplication. We had considered groups of the

form UT (n,R) and NT (n,R) (in the case n = 3) when describing counterexamples to

naively plausible statements about powering and divisibility in Sections 4.1.13 and 4.2.6.

The following turn out to be true for any positive integer c. Denote by πc the set of all

primes less than or equal to c.

1. The group UT (c+ 1, R) is a group of nilpotency class c and the Lie ring NT (c+ 1, R)

is a Lie ring of nilpotency class c.

2. The group UT (c + 1, R) is the adjoint group to the radical ring NT (c + 1, R), based

on the definitions in Section 6.1.

3. If the additive group of R is πc-powered, the additive group of NT (c + 1, R) is also

πc-powered, and the group UT (c+ 1, R) is also πc-powered. This follows from (2) and

the discussion in Section 6.6.10.

4. If the equivalent conditions for (3) hold, then the group UT (c+ 1, R) is in global class

c Lazard correspondence up to isomorphism with NT (c + 1, R). The logarithm and
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exponential maps used to describe the bijection of sets are the usual matrix logarithm

and exponential maps. This follows by combining (2) and the discussion in Section

6.6.10.

Particular cases of interest for the above scenario are:

• R is a field of characteristic zero. Note that in this case, we get an instance of the class

c Malcev correspondence.

• R is a field of characteristic p, where p > c.

• R is a local ring of characteristic pk, where p is the underlying prime and p > c. For

instance, the case c = 2 and R = Z/9Z.

6.7 The general definition of the Lazard correspondence: 3-local

case

6.7.1 Definition of local nilpotency class

This is the general version of the Lazard correspondence.

Definition (k-local nilpotency class). Suppose G is a group and k is a positive integer

(we are generally interested in k ≥ 2). The k-local nilpotency class of G is the supremum

over all subgroups H of G with generating set of size at most k of the nilpotency class of H.

Note that if any subgroup of G with generating set of size at most k is non-nilpotent, or if

there is no common finite upper bound on the nilpotency classes of all such subgroups, then

the k-local nilpotency class is ∞.

We say that G is a group of k-local nilpotency class (at most) c if the k-local nilpotency

class of G is finite and less than or equal to c.
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Definition (k-local nilpotency class of a Lie ring). Suppose L is a Lie ring and k is a

positive integer (we are generally interested in k ≥ 2). The k-local nilpotency class of L

is the supremum over all Lie subrings M of L with generating set of size at most k of the

nilpotency class of M . Note that if any Lie subring of L with generating set of size at most

k is non-nilpotent, or if there is no common finite upper bound on the nilpotency classes of

all such subgroups, then the k-local nilpotency class is ∞.

We say that L is a Lie ring of k-local nilpotency class (at most) c if the k-local nilpotency

class of L is finite and less than or equal to c.

6.7.2 Definition of Lazard Lie group and Lazard Lie ring, and the

correspondence

We can now define Lazard Lie group and Lazard Lie ring.

Definition (Lazard Lie group). Suppose G is a group and c is a positive integer. G is

termed a class c Lazard Lie group if both the following conditions are satisfied:

1. The 3-local nilpotency class of G is at most c.

2. G is powered over all primes less than or equal to c.

Definition (Lazard Lie ring). Suppose L is a Lie ring and c is a positive integer. L is

termed a class c Lazard Lie ring if both the following conditions are satisfied:

1. The 3-local nilpotency class of L is at most c.

2. L is powered over all primes less than or equal to c.

The (3-local) class c Lazard correspondence is a correspondence:

(3-local) class c Lazard Lie groups ↔ (3-local) class c Lazard Lie rings
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Note that the “(3-local)” qualifier may be specified on occasions where there is potential

for confusion with the global class c Lazard correspondence. However, by default, in this

section and later, if we just say class c Lazard (followed by any of the terms correspondence,

Lie group, and Lie ring), we are referring to the 3-local case.

This correspondence works in a manner analogous to the global class c Lazard correspon-

dence, and the remarks made in the preceding section (Section 6.6) about the global Lazard

correspondence apply to the (3-local) Lazard correspondence. For brevity, we will not repeat

the observations.

Note that the formulas use only 2 elements at a time. So one might naively expect that

a “2-local” condition would suffice. However, the associativity condition for groups, and

correspondingly, many of the Lie ring identities (associativity of addition, distributivity, and

the Jacobi identity), reference three arbitrary elements at a time. This is why we need to

impose the “3-local” condition. With this caveat, the reasoning is similar to that for the

global class c Lazard correspondence. All the other remarks made in the previous section

also apply. We had touched on the significance of the numbers 2 and 3 in an introductory

section (Section 1.1.11) and we are now making use of the observations made at the time.

6.7.3 Divergence between the 3-local and global class cases

For c = 1, 2, 3, the global class c Lazard correspondence coincides with the class c Lazard

correspondence. The cases c = 1 and c = 2 are obvious: if every 3-generated subgroup

(respectively Lie subring) is abelian, the whole group (respectively, Lie ring) is abelian.

Similarly, if every 3-generated subgroup (respectively Lie subring) has class at most two,

the whole group (respectively, Lie ring) has class at most two. This is because the class

two condition involves checking the triviality of [[x, y], z], and this expression uses only three

elements. The case c = 3 is more interesting, because it is not immediate. However, providing

details of this case would distract us from our main goal, so we omit it. The case of c = 3

for Lie rings is discussed in the Appendix, Section B.2.1.
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The global class c Lazard correspondence becomes strictly weaker than the class c Lazard

correspondence for c ≥ 4, as demonstrated by Lazard in [30]. For more about the relation-

ship between local and global nilpotency, see the literature on Engel conditions and local

nilpotency. In particular, the paper [41] by Pilgrim and the paper [42] by Plotkin provide a

summary of the known results relating local and global nilpotency.

6.7.4 The p-group case of the Lazard correspondence

Recall that a p-group is a group in which the order of every element is a power of p. We use

the term p-Lie ring for a Lie ring whose additive group is a p-group.

The global Lazard correspondence is a correspondence:

p-groups of nilpotency class at most p− 1 ↔ p-Lie rings of nilpotency class at most p− 1

The Lazard correspondence (including the 3-local case) is a correspondence:

p-groups of 3-local nilpotency class at most p−1 ↔ p-Lie rings of 3-local nilpotency class

at most p− 1.
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CHAPTER 7

GENERALIZING THE LAZARD CORRESPONDENCE TO A

CORRESPONDENCE UP TO ISOCLINISM

7.1 The Lie bracket and group commutator in terms of each

other: prime bounds

7.1.1 Group commutator formula in terms of the Lie bracket

For reasons that will become clear later, we will work with the class (c+1) Baker-Campbell-

Hausdorff formula instead of the class c Baker-Campbell-Hausdorff formula, where c is a

positive integer. This is purely a matter of notation, and its main advantage is that later

results that use the results here can do so directly without needing to increase or decrease

the values by one.

In the usual Lazard correspondence, there is an explicit formula for the group commutator

of two elements in terms of Lie brackets. In fact, there is an infinite series, which can be

obtained from the Baker-Campbell-Hausdorff formula series, whose truncations give the

formula for the group commutator. We will now describe how this formula is obtained.

Note that the explicit expressions here are sensitive to whether we use the left or right

action convention for computing the group commutator. We will use the left action conven-

tion.

[x, y]Group = (xy)(yx)−1

Inverses in the group correspond to taking the negative in the Lie ring, so this becomes:

[x, y]Group = (xy)(−(yx))

We now need to apply the Baker-Campbell-Hausdorff formula to expand each piece.
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We have the following in the class (c+ 1) case:

xy = x+ y + t2(x, y) + t3(x, y) + · · ·+ tc+1(x, y)

yx = y + x+ t2(y, x) + t3(y, x) + · · ·+ tc+1(y, x)

We thus get the following expression for [x, y]Group.

(x + y + t2(x, y) + t3(x, y) + · · ·+ tc+1(x, y))

−(y + x + t2(y, x) + t3(y, x) + · · ·+ tc+1(y, x))

+t2(xy,−(yx)) + t3(xy,−(yx)) + · · ·+ tc+1(xy,−(yx))

Based on the symmetry and skew symmetry properties deduced in the preceding section,

we obtain the following, where c′ is the largest even number less than or equal to c+ 1:

[x, y]Group = 2(t2(x, y)+t4(x, y)+· · ·+tc′(x, y))+t2(xy,−(yx))+t3(xy,−(yx))+· · ·+tc+1(xy,−(yx))

It is also the case that tc+1(xy,−(yx)) = 0. This is because when we expand these out,

all the degree c terms in the product are iterated products with each piece equal to (x+ y)

or −(x + y), and all higher degree terms are anyway zero. Thus, the group commutator

simplifies to:

[x, y]Group = 2(t2(x, y)+t4(x, y)+ · · ·+tc′(x, y))+t2(xy,−(yx))+t3(xy,−(yx))+ · · ·+tc(xy,−(yx))
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Denote this formula of x and y by Mc+1(x, y). In other words:

[x, y]Group = Mc+1(x, y)

Note that in the case that we are using the Lazard correspondence up to isomorphism,

such as the case where we are using the exponential and logarithm maps inside an associative

ring of class c+ 1, Mc+1 can be interpreted as follows:

eMc+1(x,y) = [ex, ey]Group

The distinction between this and the earlier interpretation is that with the earlier in-

tepretation, we identified x and ex as the same element, whereas now, we are treating them

as different elements. The latter interpretation makes sense when we are describing the

exponential and logarithm maps inside an associative ring.

Note that the explicit formula Mc+1 is sensitive to whether we are using the left action

convention or the right action convention, but the existence of a formula of the sort is

not, and the general properties of the prime divisors of denominators for the formula are

not. The corresponding formula with the right action convention would expand the product

(yx)−1(xy) instead of (xy)(yx)−1, and the steps would be fairly similar. The results from

this point onward do not depend on the choice of action convention (left versus right).

We are now in a position to prove a lemma.

Lemma 7.1.1. In the formula Mc+1(x, y) for the group commutator [x, y]Group in terms

of Lie ring operations (addition and Lie bracket) in class c + 1, all prime divisors of the

denominators are less than or equal to c.

Proof. We divide into cases:
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• c = 1, so that c + 1 = 2: In this case, we can work the formula out and we get that

[x, y]Group = [x, y]. This satisfies the condition, since there are no prime factors of the

denominator.

• c is even, so that c+ 1 is odd: In this case, the formula above shows that we use terms

only up to tc, and do not use tc+1. Thus, we can only get the primes less than or equal

to c.

• c is odd and at least 3, so that c + 1 is even and greater than 2: In this case, c + 1 is

composite. We know from the formula that we only use primes less than or equal to

c+ 1. Since c+ 1 is composite, this means we only use primes less than or equal to c.

It is also possible to construct an infinite series expression whose truncations give the

group commutator formulas for various choices of 3-local nilpotency class.

The importance of these observations is as follows. We can make sense of the formula for

Mc+1(x, y) for certain Lie rings that are not Lazard Lie rings. Specifically, we can make sense

of this formula for Lie rings of 3-local nilpotency class (c + 1) which are uniquely divisible

by primes strictly less than c + 1, but not by c + 1 itself. This case is of interest (i.e., it

conveys nontrivial information) when c + 1 itself is a prime number. We will build on the

results here in Sections 7.3.4 and 7.7.

The procedure outlined above has been used to compute Mc+1 for small values of c in

the Appendix. The case c = 2 is described in Section B.1.4 and the case c = 3 is described

in Section B.1.5.

7.1.2 Inverse Baker-Campbell-Hausdorff formula: bound on denominators

We want to prove a similar result for the bounds on prime powers of denominators for the

formula h2 that describes the Lie bracket of the Lie ring in terms of group commutators.
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The result follows from Theorem 6.4 in [9], but we provide a minimalistic proof below that

builds on Lemma 7.1.1.

Lemma 7.1.2. In the formula h2,c+1(x, y) for the Lie bracket [x, y]Lie in terms of group

commutators, all prime divisors of the denominators in the exponents are less than or equal

to c.

Proof. Recall that Mc+1(x, y) expresses the group commutator in terms of the Lie bracket

and its iterations, whereas h2,c+1(x, y) expresses the Lie bracket in terms of the group

commutator and its iterations. These formulas are therefore “inverses” of each other in the

following sense. Denote by (h2,c+1 ◦Mc+1)(x, y) the formula that substitutes, in each of

the commutators appearing in the expression for h2,c+1, the formula for Mc+1, and then

expands group products of these commutators as Lie ring expressions using the class (c+ 1)

Baker-Campbell-Hausdorff formula. Then:

(h2,c+1 ◦Mc+1)(x, y) ≡ [x, y]Lie,

where the equality is considered modulo Ac+2 where A is the free associative Q-algebra

with generators x and y. Replacing c+ 1 by c above, we obtain:

(h2,c ◦Mc)(x, y) ≡ [x, y]Lie (mod Ac+1)

Thus, we get that:

(h2,c ◦Mc)(x, y) ≡ [x, y]Lie + χc+1(x, y) (mod Ac+2)

where χc+1 is a Q-linear combination of weight c+ 1 Lie products. Note that since χc+1

is obtained by composing and manipulating terms from h2,c, Mc, and the class c Baker-

Campbell-Hausdorff formula, all the prime divisors appearing in its denominators are less
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than or equal to c.

We also have that:

Mc+1(x, y) = Mc(x, y) + ξc+1(x, y)

where, by Lemma 7.1.1, all the prime divisors of denominators appearing in the expression

for ξc+1 are less than or equal to c. It follows that:

(h2,c ◦Mc+1)(x, y) ≡ [x, y]Lie + χc+1(x, y) + ξc+1(x, y)

It now follows that:

h2,c+1(x, y) = h2,c(x, y)(χ̃c+1(x, y)ξ̃c+1(x, y))
−1

where χ̃ and ξ̃ denote the same expressions as those used for χ and ξ but interpreting

the Lie brackets as commutators. This works because the (c + 1)-fold iterated commutator

coincides with the (c + 1)-fold iterated Lie bracket in class c + 1. In other words, the set

map:

(x1, x2, . . . , xc+1) 7→ [[. . . [x1, x2], x3], . . . , xc], xc+1]

is the same whether we interpret the brackets on the right as group commutators or as

Lie brackets: this follows immediately from the formula Mc+1.

In particular, note that the only prime divisors that appear in the denominators of the

exponents on the right are primes less than or equal to c, completing the proof.

The case c = 2 (so that c+ 1 = 3) has been worked out in the Appendix, Section B.1.6.

Readers interested in understanding the proof via a concrete illustration are advised to read

this.
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7.2 Lazard correspondence, commutativity relation, and central

series

7.2.1 The commutativity relation and the upper central series

We begin with an important lemma.

Lemma 7.2.1. Suppose G is a (3-local) class c Lazard Lie group and L = log(G) is its

Lazard Lie ring. Then, for elements x, y ∈ G, the commutator [x, y] is the identity element

of G if and only if the Lie bracket [x, y] is zero. In other words, x and y commute as group

elements if and only if they commute as Lie ring elements.

Proof. In Section 7.1.1, we described a formula Mc+1 for the group commutator in terms

of the Lie bracket. The formula makes it clear that if the Lie bracket is zero, the group

commutator is the identity element.

In Section 6.4, we described a formula h2,c+1 for the Lie bracket in terms of the group

commutator. The formula makes it clear that if the group commutator is the identity

element, then the Lie bracket is zero.

It is possible to prove one direction directly from the Baker-Campbell-Hausdorff formula

rather than referencing the above sections. The idea behind a direct proof would be to show

that if the Lie bracket [x, y] is 0, then xy = x + y = yx, so that the group commutator is

zero.

We now show that the Lazard correspondence relates the upper central series of the Lie

ring with the upper central series of the group.

Theorem 7.2.2. Suppose G is a (3-local) class c Lazard Lie group and L = log(G) is

its Lazard Lie ring. Then the following are true:
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1. log(Z(G)) = Z(L) (this is an instance of the 3-local class c Lazard correspondence)

2. log(G/Z(G)) = L/Z(L) (this is an instance of the 3-local class c Lazard correspon-

dence)

3. For all positive integers i, we have log(Zi(G)) = Zi(L) and log(G/Zi(G)) = L/Zi(L).

where Zi denotes the ith member of the upper central series (for G or L respectively).

4. For all positive integers i > j, log(Zi(G)/Zj(G)) = Zi(L)/Zj(L) where Zi, Zj denote

the ith and jth members of the lower central series (for G or L respectively).

Note that since we are in general using the 3-local class c Lazard correspondence, the

global class of G and L may be greater than c. Thus, the result is potentially of interest

even for i ≥ c.

Proof. Proof of (1): The fact that log(Z(G)) = Z(L) follows immediately from the preceding

lemma (Lemma 7.2.1). By Lemmas 4.1.5 and 4.2.3, Z(G) and Z(L) are both πc-powered,

so this is an instance of the 3-local class c Lazard correspondence.

Proof of (2): This follows from (1) and from facts for the 3-local class c Lazard corre-

spondence similar to those for the global Lazard correspondence described in Section 6.6.8.

Thus, log(G/Z(G)) = L/Z(L).

Proof of (3): We obtain this by induction using (1) and (2).

Proof of (4): This follows from (3), using reasoning similar to that in (2).

7.2.2 The commutator map and the lower central series

We begin with a lemma.

Lemma 7.2.3. Suppose G is a 3-local class c Lazard Lie group and L = log(G) is its

Lazard Lie ring. Suppose H is a πc-powered normal subgroup of G and I = log(H) is the
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corresponding πc-powered ideal of L. Then, [G,H] is a πc-powered normal subgroup of G,

[L, I] is a πc-powered ideal of L, and [L, I] = log([G,H]).

Proof. [G,H] is normal by basic group theory, and it is πc-powered by Lemma 4.1.22. [L, I]

is a πc-powered ideal by basic Lie ring theory. Thus, log([G,H]) is a 3-local class c Lazard

Lie subring of L, and exp([L, I]) is a 3-local class c Lazard Lie subgroup of G. It therefore

suffices to show that a generating set for [G,H] is inside [L, I] and that a generating set for

[L, I] is inside [G,H].

Proof that log([G,H]) ⊆ [L, I]: It suffices to show that every element of the form [g, h],

for g ∈ G, h ∈ H, is in [L, I]. This follows from the formula [g, h] = Mc+1(g, h) described in

Section 7.1.1. In particular, we use Lemma 7.1.1 to argue that the expression is in [L, I].

Proof that [L, I] ⊆ log([G,H]): It suffices to show that every element of the form [x, y],

for x ∈ L, y ∈ I, is in [G,H]. This follows from the formula [x, y] = h2,c+1(x, y) described

as the second inverse Baker-Campbell-Hausdorff formula in Section 6.4. In particular, we

use Lemma 7.1.2 to argue that the expression is in [G,H].

We now show that the Lazard correspondence relates the lower central series of the Lie

ring with the lower central series of the group.

Theorem 7.2.4. Suppose G is a 3-local class c Lazard Lie group and L = log(G) is its

Lazard Lie ring. Then, the following hold.

1. For all positive integers i, log(γi(G)) = γi(L) where γi denotes the ith member of the

lower central series (for G or L respectively).

2. For all positive integers i < j, log(γi(G)/γj(G)) = γi(L)/γj(L). In particular, setting

i = 1, log(G/γj(G)) = L/γj(L).

Proof. Proof of (1): This follows by inducting on Lemma 7.2.3. The base case i = 1 is given.
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For the inductive step from i to i+ 1, set H = γi(G) and I = γi(L).

Proof of (2): This follows from (1).

7.3 The Malcev and Lazard correspondence in the free case

7.3.1 Setup

We use the same notation as in Section 6.2.1. The notation is reviewed below for convenience.

Denote by A the free associative Q-algebra on a generating set S = {x1, x2, . . . }. The

generating set may have any cardinality. By the well-ordering principle, we will index the

generating set by a well-ordered set. For a positive integer c, define A := A/Ac+1. A can

be described as the free nilpotent associative algebra of class c on the same generating set

S. Explicitly, this means that all products in A of length more than c become zero.

Denote by L the Lie subring of A generated by the free generating set S. Note that L is

only a Lie ring, not a Q-Lie algebra. QL is the Q-Lie algebra generated by S in A.

We can define L in the following equivalent ways:

• L = L/γc+1(L) = L/(L ∩ Ac+1).

• L is the Lie subring generated by the image of S inside A, i.e., it is the Lie subring

generated by the freely generating set inside A.

Denote by F the group generated by the elements exi , xi varying over the generating

set S of L. As per Theorem 6.2.2, F is a free nilpotent group with exi forming a freely

generating set.

We can define an exponential map

exp : L→ 1 + A

by:
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exp(x) = 1 + x+
x2

2!
+ · · ·+ xc

c!

We can also define a logarithm map:

log : F → A

by:

log x = (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · ·+ (−1)c(x− 1)c

c

We might naively hope that exp(L) = F and log(F ) = L. This, however, is not the

case. A somewhat weaker version of the statement is true, as described in Section 6.4.5 (the

original proof is in Khukhro’s book [29], Theorem 10.22), and we recall that below, because

we will be using it extensively in some of our proofs. Denote by πc the set of all primes less

than or equal to c. Then, for any prime set σ ⊇ πc,
σ
√
F = exp(Z[σ−1]L). In particular,

both of these hold:

• πc
√
F = exp(Z[π−1

c ]L)

•
√
F = exp(QL)

7.3.2 Interpretation as correspondences up to isomorphism

In Section 1.3.5, we had described the abelian Lie correspondence up to isomorphism. This

differs from the abelian Lie correspondence in the important sense that the group and the Lie

ring need not have the same underlying set. Instead, we are given a set map (denoted exp)

from the Lie ring to the group and a set map (denoted log) from the group to the Lie ring

that play the role of identifying the sets with each other. We noted in Section 1.3.9 that this

notion of relaxing up to isomorphism applies to all the similarly defined correspondences in

this document. In Section 5.1.8, we noted that the notion applies to the Baer correspondence.
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The notion of a correspondence up to isomorphism also applies to the Malcev correspon-

dence and the Lazard correspondence. In both cases, we need to specify a set map from the

Lie ring to the group (customarily denoted exp) and a set map from the group to the Lie

ring (customarily denoted log) that play the role of identifying the sets.

Using the same notation as in Section 7.3.1, we obtain the following correspondences up

to isomorphism:

• The Lie ring QL and the group
√
F are in class c Malcev correspondence up to iso-

morphism. The exp and log maps defining the correspondence coincide with the exp

and log maps defined in Section 7.3.1. This is not a coincidence: the terminology exp

and log that we introduced in the abstract setting was specifically chosen based on this

setup.

• For any prime set σ containing πc, the Lie ring Z[σ−1]L and the group σ
√
F are in global

class c Lazard correspondence up to isomorphism. The exp and log maps defining the

correspondence coincide with the exp and log maps defined in Section 7.3.1.

• In particular, the Lie ring Z[π−1
c ]L and the group πc

√
F are in global class c Lazard

correspondence up to isomorphism, with the same exp and log maps.

7.3.3 Restriction of the Malcev correspondence to groups and Lie rings

that lack adequate powering

We continue using the same notation as above: L is a free nilpotent Lie ring of class c on the

generating set S, and F is a free nilpotent group of class c on the generating set eS , which

is in canonical bijection with S. We had already noticed that L and F are not in Lazard

correspondence with one another. We will now take a closer look at the statement.

Any element of L can be written as a sum involving the xis and Lie products involving

the xis. Consider, for instance, the case that |S| = 2 and the generating set is {x1, x2}.
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Consider the element x1 + x2 of L. Then, to find ex1+x2 , we can use the inverse Baker-

Campbell-Haudorff formula, and obtain:

ex1+x2 = h1,c(e
x1 , ex2)

The formula h1,c involves taking pth roots for primes p ∈ πc. Therefore, even though the

elements ex1 and ex2 are in F , the element ex1+x2 is not in F if c ≥ 2.

Consider a more complicated element of L.

z = x1 + x2 + 3[x1, x2]

We can compute ez by splitting z as a sum (x1 + x2) + 3[x1, x2], then splitting x1 + x2

as a sum again, and also h2,c to compute e[x1,x2]. The final formula is:

ez = h1,c(h1,c(e
x1 , ex2), (h2,c(e

x1 , ex2))3)

Once again, we are guaranteed that ez ∈ πc
√
F . However, it will not in general be in F

itself.

There do exist some elements of L whose exponential is in F . For instance, all the

elements of the generating set S have exponentials in F . Other examples also exist. For

instance, in the case c = 2, the exponential of [x1, x2] is [ex1 , ex2 ] and is inside F . The subset

of L comprising those elements whose exponential is in F is a generating set for L as a Lie

ring (because in particular it contains S) and therefore in particular it is not a subring of L.

Suppose now that we consider the Lie ring Z[σ−1]L and the group σ
√
F , where σ is a

subset of πc that does not include all the primes in πc. Note that the whole Lie ring Z[σ−1]L

is not in Lazard correspondence with the whole group σ
√
F . In particular, exp(Z[σ−1]L) is

not contained in σ
√
F , and log( σ

√
F ) is not contained in Z[σ−1]L.

It might still be the case, however, that there are subrings of Z[σ−1]L that are in Lazard

correspondence with certain subgroups of σ
√
F . The naive intuition is that, as long as the
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formulas involved require division only by the primes in σ and not by any of the other primes

in πc, the correspondence should work.

We will now establish a few important results of this sort.

7.3.4 Lazard correspondence between derived subgroup and derived subring

The following result is an extremely important first step both in defining and in establishing

important aspects of the Lazard correspondence up to isoclinism.

We will perform our calculuations in class c + 1. This will make it easier to use our

results directly in later sections. However, it will be a slight departure from the preceding

discussion. For clarity, we use subscripts to remind ourselves of the class we are operating

in.

Let c be a positive integer and πc be the set of all primes less than or equal to c. Let

S be a set. The algebra A = Ac+1, the Lie ring L = Lc+1, and the group F = Fc+1 are

defined the same way as in Sections 7.3.1 and 7.3.2, but replacing c by c+ 1. In particular,

A is a free Q-algebra on S of nilpotency class c+ 1, L is the Lie subring of Ac+1 generated

by S, and D is the group generated by exi , xi ∈ S.

Let K be the group πc
√
F and N be the group Z[π−1

c ](L). As shown in Theorem 6.2.2,

K is a free πc-powered class (c + 1) group on eS (and therefore canonically isomorphic to

the free πc-powered class (c + 1) group on S), and N is a free πc-powered class (c + 1) Lie

ring on S.

Before proceeding, we note a few basic facts that we will repeatedly use in the course of

our proofs.

•
√
F =

√
K is the free Q-powered group on eS .

• QN = QL is the free Q-powered Lie ring on S.

Our eventual goal will be to show that the exponential and logarithm map establish

a Lazard corespondence between [N,N ] and [K,K]. We will begin by establishing some
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preliminaries.

Lemma 7.3.1. With notation as above, the following are true:

1. [N,N ] is a global class c Lazard Lie ring, i.e., it is a πc-powered Lie ring of nilpotency

class at most c.

2. [K,K] is a global class c Lazard Lie group, i.e., it is a πc-powered group of nilpotency

class at most c.

3. Under the exponential map from A to 1 +A, exp([N,N ]) is a πc-powered subgroup of

1+A (in fact, it is a subgroup of
√
F ). Moreover, the exponential and logarithm maps

establish a Lazard correspondence up to isomorphism between [N,N ] and exp([N,N ]).

4. Under the logarithm map from 1 +A to A, log([K,K]) is a πc-powered Lie subring of

A (in fact, it is a Lie subring of QL). Moreover, the exponential and logarithm maps

establish a Lazard correspondence up to isomorphism between log([K,K]) and [K,K].

Proof. We prove the parts one by one.

1. [N,N ] is a global class c Lazard Lie ring:

• [N,N ] is πc-powered: This follows from the fact that N is πc-powered and Lemma

4.2.8.

• [N,N ] has nilpotency class at most c: In fact, since N has nilpotency class c+ 1,

[N,N ] has nilpotency class at most b(c+ 1)/2c, which is less than or equal to c.

2. [K,K] is a global class c Lazard Lie group:

• [K,K] is πc-powered: The follows from the fact thatK is πc-powered and Theorem

4.1.20.
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• [K,K] has nilpotency class at most c: In fact, since K has nilpotency class c+ 1,

[K,K] has nilpotency class at most b(c+ 1)/2c, which is less than or equal to c.

3. This follows directly from (1) and applying the global Lazard correspondence between

subrings and subgroups described in Section 6.6.8, to the Lazard correspondence be-

tween QL and
√
F .

4. This follows directly from (2) and applying the global Lazard correspondence between

subrings and subgroups described in Section 6.6.8, to the Lazard correspondence be-

tween QL and
√
F .

Lemma 7.3.2. With notation as above, the following are true (recall that Z(
√
K) is the

center of
√
K =

√
F ):

1. Under the exponential map exp : QL = QN →
√
F =

√
K (which in turn is obtained

from the exponential map exp : A→ 1 + A), we have exp(N) ⊆ KZ(
√
K).

2. Under the logarithm map log :
√
F =

√
K → QL = QN (which in turn is obtained

from the logarithm map log : 1 + A→ A), we have log(K) ⊆ N + Z(QN).

3. Under the exponential map exp : QL = QN →
√
F =

√
K (which in turn is obtained

from the exponential map exp : A→ 1 + A), we have K ⊆ exp(N)Z(
√
K).

4. Under the logarithm map log :
√
F =

√
K → QL = QN (which in turn is obtained

from the logarithm map log : 1 + A→ A), we have N ⊆ log(K) + Z(QN).

Proof. Consider the quotient map A → A/Ac+1. This map factors out the products of

length c+ 1 and the quotient is therefore the free nilpotent associative algebra of nilpotency

class c on S. Based on the setup described in Section 6.2, the image of F under the quotient
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map is Fc (the class c version of F ) and the image of L under the quotient map is Lc (the

class c version of L). Denote by Kc and Nc the images of K and N under the quotient

map. Then, Kc = πc
√
Fc and Nc = Z[π−1

c ]Lc, so that Kc and Nc are in global class c Lazard

correspondence up to isomorphism.

Proof of (1): For x ∈ N , denote by x the image of x in Nc. Then, exp(x) = exp(x) ∈ Kc,

so exp(x) can be written in the form g + a where g ∈ K and a is in the (c + 1)th graded

component of A. This can be rewritten as g(1 + g−1a). The element 1 + g−1a is an element

of
√
F =

√
K, and g−1a is in the (c + 1)th graded component of A, so that 1 + g−1a ∈

Z(
√
F ) = Z(

√
K).

Proof of (2): For g ∈ K, denote by g the image of g in Kc. Then, log(x) = log(x) ∈ Nc,

so log x can be written in the form x + a where x ∈ N and a is in the (c + 1)th graded

component of A, so that a ∈ Z(QL) = Z(QN).

Proof of (3): For g ∈ K, part (2) says that we can write log g = x+ a where a is central.

Exponentiating both sides, we obtain that g = exea, with ea ∈ Z(
√
K).

Proof (4): For x ∈ N , part (1) says that we can write ex = gu where g ∈ K and

u ∈ Z(
√
K). Taking logarithms both sides, and using the centrality of u, we obtain that

x = log g + log u, with log u ∈ Z(QN).

Theorem 7.3.3 (Lazard correspondence between derived subgroup and derived subring).

With notation as above, the derived subgroup [K,K] and the derived subring [N,N ] are in

Lazard correspondence up to isomorphism. Moreover, this Lazard correspondence arises as

a restriction of the Malcev correspondence between
√
F = K̂ and QN = QL described in

Section 7.3.2.

Before we begin the proof, we make a few remarks. First, note that K and N are very

close to being in Lazard correspondence themselves. If we had inverted all primes in πc+1,

then we would have obtained the Lazard correspondence. This also means that if c + 1 is
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composite, then K and N are in Lazard correspondence. In that case, the result follows

from Theorem 7.2.4.

The case of interest is where c + 1 is prime, so that K and N are not in Lazard corre-

spondence themselves. In other words, when we compute eu for some u ∈ N , we do obtain

an element of
√
K but not necessarily an element of K. We want to show that if the element

of N that we start with is in [N,N ], then computing the exponential gives an element in

[K,K], and that every element of [K,K] can be obtained in this fashion.

We are now in a position to begin the proof.

Proof. By Lemma 7.3.1, it suffices to show that exp([N,N ]) = [K,K], or equivalently, that

log([K,K]) = [N,N ]. We can show this in two steps: showing that [K,K] ⊆ exp([N,N ])

and showing that [N,N ] ⊆ log([K,K]).

1. Proof that [K,K] ⊆ exp([N,N ]): Lemma 7.3.1 established that exp([N,N ]) is a group.

Thus, it suffices to show that a generating set of [K,K] is in exp([N,N ]). Specifically,

it suffices to show that for all g, h ∈ K, [g, h] ∈ exp([N,N ]).

By Lemma 7.3.2 (part (3)), g = exu and h = eyv where x, y ∈ N and u, v ∈ Z(
√
K).

Thus, [g, h] = [ex, ey] = eMc+1(x,y). By Lemma 7.1.1, Mc+1 uses only division by

primes in πc, so that [g, h] ∈ exp([N,N ]).

2. Proof that [N,N ] ⊆ log([K,K]): We showed in Lemma 7.3.1 that log([K,K]) is a

Lie ring. Thus, it suffices to show that a generating set of [N,N ] is in log([K,K]).

Specifically, it suffices to show that for x, y ∈ N , [x, y] ∈ log([K,K]).

By Lemma 7.3.2 (part (4)), x = log g + s and y = log k + t where g, k ∈ K and

s, t ∈ Z(QN). Thus, [x, y] = [log g, log k] = log(h2,c+1(g, k)). By Lemma 7.1.2,

h2,c+1(g, k) ∈ [K,K], so [x, y] ∈ log([K,K]).
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In later applications of the result, we will use the result in its abstract form, i.e., instead

of treating K and N as subsets inside Q + A as we did above, we will treat them as the

abstract free πc-powered group and Lie ring respectively of class c+ 1.

Lemma 7.3.4. Continuing notation from the preceding theorem (Theorem 7.3.3), let

K1 = K/γc(K) and N1 = N/γc(N). Let R be the πc-powered normal subgroup of K con-

taining γc(K) while J is a πc-powered ideal of N containing γc(N). Let R1 = R/γc(K) and

J1 = J/γc(N). Further, suppose that R1 = exp(J1) with respect to the Lazard correspon-

dence given by the usual logarithm and exponential map between N1 and K1. Then, the

following are true:

1. Under the exponential map exp : QL = QN →
√
F =

√
K (which in turn is obtained

from the exponential map exp : A→ 1 + A), we have exp(J) ⊆ RZ(
√
K).

2. Under the logarithm map log :
√
F =

√
K → QL = QN (which in turn is obtained

from the logarithm map log : 1 + A→ A), we have log(R) ⊆ J + Z(QN).

3. Under the exponential map exp : QL = QN →
√
F =

√
K (which in turn is obtained

from the exponential map exp : A→ 1 + A), we have R ⊆ exp(J)Z(
√
K).

4. Under the logarithm map log :
√
F =

√
K → QL = QN (which in turn is obtained

from the logarithm map log : 1 + A→ A), we have J ⊆ log(R) + Z(QN).

Proof. The proof is analogous to the proof of Lemma 7.3.2.

Theorem 7.3.5. Continuing notation from Lemma 7.3.4, the Lazard correspondence

between [K,K] and [N,N ] restricts to a Lazard correspondence between R ∩ [K,K] and

J ∩ [N,N ].

Before we begin the proof, note that R and J are not themselves necessarily in Lazard
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correspondence. They would be in Lazard correspondence if c+1 were composite, because in

that case, πc = πc+1. We want to show here that even though R and J may themselves fail

to be in Lazard correspondence, their respective intersections with [K,K] and [N,N ] are in

Lazard correspondence.

Proof. We prove the result in several steps:

1. R∩[K,K] is a global class c Lazard Lie group: By Lemma 7.3.1, [K,K] is a global class

c Lazard Lie group. In particular, it is πc-powered and has nilpotency class at most c.

R is given to be πc-powered. Thus, R ∩ [K,K] is πc-powered, and its nilpotency class

is at most c. Note that the only bound we have on the nilpotency class of R is c + 1,

but bounding the class of [K,K] is sufficient to bound the class of R ∩ [K,K].

2. J ∩ [N,N ] is a global class c Lazard Lie ring: By Lemma 7.3.1, [N,N ] is a global class

c Lazard Lie ring. In particular, it is πc-powered and has nilpotency class at most c.

J is πc-powered. Thus, J ∩ [N,N ] is πc-powered, and its nilpotency class is at most c.

Note that the only bound we have on the nilpotency class of J is c+ 1, but bounding

the class of [N,N ] is sufficient to bound the class of J ∩ [N,N ].

3. exp(J∩[N,N ]) ⊆ R∩[K,K]: We know that exp([N,N ]) = [K,K], so exp(J∩[N,N ]) ⊆

[K,K]. In addition, exp(J ∩ [N,N ]) ⊆ exp(J). By Lemma 7.3.4 (part (1)), we obtain

that exp(J ∩ [N,N ]) ⊆ RZ(
√
K), and hence exp(J ∩ [N,N ]) ⊆ RZ(

√
K)∩ [K,K]. We

will show that RZ(
√
K) ∩ [K,K] = R ∩ [K,K], completing the proof.

Consider an element g ∈ RZ(
√
K)∩[K,K]. Then, g = uv with u ∈ R and v ∈ Z(

√
K).

We obtain that v = u−1g. Since both R and [K,K] are subgroups of K, we obtain

that v ∈ K, so v ∈ Z(
√
K) ∩ K, so that v ∈ Z(K). But Z(K) = γc(K) (both are

precisely the elements in K that have the form 1 + a with a a homogeneous degree

c + 1 element of A), so v ∈ γc(K) ⊆ R. Thus, g = uv ∈ R, so that g ∈ R ∩ [K,K] as

desired.
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4. log(R∩ [K,K]) ⊆ J∩ [N,N ]: We know that log([K,K]) = [N,N ], so log(R∩ [K,K]) ⊆

[N,N ]). In addition, log(R ∩ [K,K]) ⊆ log(R). By Lemma 7.3.4 (part (2)), we obtain

that log(R∩ [K,K]) ⊆ J+Z(QN), and hence log(R∩ [K,K]) ⊆ (J+Z(QN))∩ [N,N ].

We will now show that (J + Z(QN)) ∩ [N,N ] = J ∩ [N,N ], completing the proof.

Consider an element x ∈ (J + Z(QN)) ∩ [N,N ]. Then, x = y + z with y ∈ J and

z ∈ Z(QN). We obtain that z = x − y. Since both J and [N,N ] are subrings of N ,

we obtain that z ∈ N , so z ∈ Z(QN) ∩N , so z ∈ Z(N). We have Z(N) = γc(N), so

z ∈ γc(N) ⊆ J . Thus, x = y + z ∈ J , so x ∈ J ∩ [N,N ] as desired.

Theorem 7.3.6. Continuing notation from the preceding theorem (Theorem 7.3.3), the

Lazard correspondence between [K,K] and [N,N ] restricts to a Lazard correspondence be-

tween [K,R] and [N, J ].

Proof. 1. [K,R] is a global class c Lazard Lie group and [N, J ] is a global class c Lazard

Lie ring: This requires verifying that both [K,R] and [N, J ] are πc-powered, and both

have class at most c. We break this down further:

• [K,R] is a πc-powered group: This follows from Lemma 4.1.22.

• [N, J ] is a πc-powered Lie ring: This follows from N and J both being πc-powered,

and the additivity of the Lie bracket.

• [K,R] has nilpotency class at most c: [K,R] is a subgroup of [K,K], which has

nilpotency class at most c as established in Theorem 7.3.3.

• [N, J ] has nilpotency class at most c: [N, J ] is a subring of [N,N ], which has

nilpotency class at most c as established in Theorem 7.3.3.

2. exp([N, J ]) is a group with which [N, J ] is in global class c Lazard correspondence

up to isomorphism via exp, and log([K,R]) is a Lie ring that is in global class c
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Lazard correspondence with it via exp: These follow from Step (1) and the fact that

the exponential and logarithm maps establish correspondences between global class c

Lazard Lie subgroups and global class c Lazard Lie subrings.

3. [K,R] ⊆ exp([N, J ]) and [N, J ] ⊆ log([K,R]): We show both parts:

• [K,R] ⊆ exp([N, J ]): In Step (2), we established that exp([N, J ]) is a group.

Thus, it suffices to show that every commutator between an element of K and an

element of R is in exp([N, J ]). Explicitly, given g ∈ K and h ∈ R, we need to

show that [g, k] ∈ exp([N, J ]).

By Lemma 7.3.2 (part (3)) and Lemma 7.3.4 (part (3)), g = exu and h = eyv

where x ∈ N , y ∈ J and u, v ∈ Z(
√
K). Thus, [g, h] = [ex, ey] = eMc+1(x,y). By

Lemma 7.1.1, Mc+1 uses only division by primes in πc, so that [g, h] ∈ exp([N, J ]).

• [N, J ] ⊆ log([K,R]): In Step (2), we established that log([K,R]) is a Lie ring.

Thus, it suffices to show that a generating set of [N, J ] is in log([K,R]). Specifi-

cally, it suffices to show that for x ∈ N and y ∈ J , [x, y] ∈ log([K,R]).

By Lemma 7.3.2 (part (4)) and Lemma 7.3.4 (part (4)), x = log g + s and y =

log k + t where g ∈ K, k ∈ R, and s, t ∈ Z(QN). Thus, [x, y] = [log g, log k] =

log(h2,c+1(g, k)). By Lemma 7.1.2, h2,c+1(g, k) ∈ [K,R], so [x, y] ∈ log([K,R]).

Combining these, we obtain the result.

7.4 Homology of powered nilpotent groups

7.4.1 Hopf’s formula variant for Schur multiplier of powered nilpotent

group

So far, we have studied the extension theory and homology theory of groups qua groups. We

now consider the extension theory and homology theory in the context of π-powered groups.
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For the results presented throughout this section, π is any set of primes. Later, we will apply

the results to the case where π = πc is the set of all primes less than or equal to c, but the

results for this section are not restricted to such sets of primes.

It turns out that, in the nilpotent case, the Schur multiplier, Schur covering group,

exterior square, and all related constructions qua group are the same as the corresponding

constructions qua π-powered group. This is specific to the nilpotent case.

Lemma 7.4.1. Suppose G is a π-powered nilpotent group. Then, the following hold:

1. All the homology groups Hi(G; Z), i > 0, are π-powered abelian groups.

2. The Schur multiplier M(G), which is H2(G; Z), is a π-powered abelian group.

Proof. Proof of (1): This follows from May and Ponto’s text, [34], Theorem 6.1.1, implication

(iii) =⇒ (iv), setting Z = K(G, 1) and T as the complement of π in the set of primes.

The result appeared earlier in [25], Theorem 2.9. However, the notation and surrounding

explanation in May and Ponto’s text are easier to follow.

Proof of (2): This follows immediately from (1).

Lemma 7.4.2. Suppose G is a π-powered nilpotent group. Every Schur covering group

of G is π-powered. Since Schur covering groups exist and are by definition initial objects in

the category of central extensions of G with homoclinisms, there exist initial objects in the

category of extensions of G with homoclinisms that are π-powered.

Proof. By the preceding lemma (Lemma 7.4.1), M(G) = H2(G; Z) is π-powered. Consider

a Schur covering group E of G. E is a central extension of the form:

0 →M(G) → E → G→ 1
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By Lemma 4.1.12, E is also π-powered. By definition, any Schur covering group gives an

inital object in the category of central extensions of G with homoclinisms, so the last part

of the statement follows.

Schur covering groups exist by Theorem 3.6.3, so the final sentence follows.

We are now in a position to prove results that establish analogues of Hopf’s formula

(discussed in Section 3.6.9):

Theorem 7.4.3. Suppose π is a set of primes and G is a π-powered nilpotent group.

Express G in the form G ∼= F/R where F is a free π-powered group. Then, the following

are true.

1. The group E1 = F/[F,R], with the natural quotient map E1 → G, is an initial object

in the category of central extensions of G with homoclinisms.

2. The exterior square G∧G is canonically isomorphic to the quotient group [F, F ]/[F,R].

3. The Schur multiplier M(G) is canonically isomorphic to the quotient group (R ∩

[F, F ])/[F,R]:

M(G) ∼= (R ∩ [F, F ])/[F,R] (7.1)

Proof. Proof of (1): Let E2 be a Schur covering group of G. By Lemma 7.4.2, E2 is π-

powered.

Consider the commutator map ω1 : G × G → E1 and denote by Ω1 the corresponding

group homomorphism:

Ω1 : G ∧G→ [E1, E1]

Consider also the extension:
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0 → A→ E2
µ→ G→ 1

with the natural commutator map ω2 : G×G→ E2 and the corresponding commutator

map homomorphism:

Ω2 : G ∧G→ [E2, E2]

Our goal is to show that there there exists a unique homomorphism ϕ : [E1, E1] →

[E2, E2] such that ϕ ◦ ω1 = ω2, or equivalently, ϕ ◦ Ω1 = Ω2.

The map ν : F → G lifts to a map ψ : F → E2 on account of F being a free π-

powered group and E2 being a π-powered group (note that the lift is not necessarily unique).

Explicitly, this means that µ ◦ ψ = ν.

We know that ν(R) is trivial, so µ(ψ(R)) is trivial. Thus, ψ(R) lands inside the kernel

of µ, which is the image of A in E2. Thus, ψ(R) is a central subgroup of E2. Therefore,

ψ([F,R]) = [ψ(F ), ψ(R)] is trivial.

Thus, ψ descends to a homomorphism θ : E1 → E2, where E1 = F/[F,R] as defined

above, with the property that µ◦θ = ν. The condition µ◦θ = ν can be interpreted as saying

that θ is a homomorphism between the central extensions (E1, ν) and (E2, µ). Denote by

ϕ : E′1 → E′2 the restriction of θ to E′1. Thus, by Lemma 3.4.1, ϕ defines a homoclinism of

the central extensions.

Now, we know that (E2, µ) is an initial object in the category, so there is a homoclinism

from it to any other object in the category. Composing with the above gives a homoclinism

from (E1, ν) to any central extension of G. By Lemma 3.4.2, this homoclinism is unique.

Finally, Lemma 3.4.3 establishes from this that (E1, ν) defines an initial object in the category

of central extensions of G with homoclinisms.

Proof of (2): By definition, G ∧ G is isomorphic to the derived subgroup [E1, E1] on

account of E1 being an initial object in the category of central extensions with homoclinisms.
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[E1, E1] is canonically isomorphic to [F, F ]/[F,R].

Proof of (3): The Schur multiplier is the kernel of the map [E1, E1] → [G,G], or equiva-

lently, it is the kernel of the map [F, F ]/[F,R] → [F, F ]/(R ∩ [F, F ]). The kernel works out

to (R ∩ [F, F ])/[F,R].

7.4.2 Hopf’s formula variant for Schur multiplier of powered nilpotent

group: class one more version

Suppose π is a set of primes and G is a π-powered nilpotent group of nilpotency class c.

Suppose G can be expressed in the form F/R where F is a free π-powered nilpotent group

of class c+ 1 and R is a normal subgroup of F . Then:

M(G) ∼= (R ∩ [F, F ])/([F,R]) (7.2)

Also:

G ∧G ∼= [F, F ]/[F,R] (7.3)

Our application of these results, in Section 7.7, will combine these results with the results

of Section 7.3. In that section, we use the letter K for the free group, and R for the normal

subgroup that is being factored out. Therefore, in our application of the above theorem, the

letter K will appear instead of the letter F .

7.4.3 Remark on powered Schur multipliers and powered Schur covering

groups

It is possible to define concepts of Schur multiplier, Schur covering group, and exterior

square, all within the variety of π-powered groups. In other words, we can mimic the steps

of Section 3.4, replacing “group” by π-powered group”, and obtain corresponding notions of
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π-powered exterior square and π-powered Schur multiplier. We can also define π-powered

Schur covering group.

The results of Sections 7.4.1 and 7.4.2 tell us that for nilpotent groups, the π-powered

Schur multiplier coincides with the usual Schur multiplier and the π-powered exterior square

coincides with the usual exterior square.

7.4.4 Results about isoclinisms for π-powered central extensions

The results here follow from the results of Section 4.3.8 using reasoning similar to the way

the results in Section 3.4.9 follow from the results in Section 2.1.6. Note that we restrict

our statements to π-powered class c nilpotent groups and π-powered class c words. Note

that although the result is stated for π-powered class c words, it also applies to π-powered

words in general, because a π-powered class c word can be viewed as an equivalence class of

π-powered words that are equal in any π-powered class c group.

Lemma 7.4.4. Suppose c ≥ 1 and π is a set of primes. Suppose G is a π-powered

group and w(g1, g2, . . . , gn) is a π-powered class c word in n letters with the property that w

evaluates to the identity element in every π-powered abelian group. The following are true.

1. For every π-powered central extension E of G such that E has class at most c, w can

be used to define a set map χw,E : Gn → [E,E].

2. For any homoclinism between π-powered central extensions E1 and E2, with the central

extension specified via a homomorphism ϕ : [E1, E1] → [E2, E2], we have that:

ϕ ◦ χw,E1
= χw,E2

Proof. Proof of (1): This is similar to the proof of Theorem 4.3.6. Alternatively, we can

deduce it from the result of Theorem 4.3.6 by noting that the map factors as follows:
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Gn → (E/Z(E))n → [E,E]

Proof of (2): This is similar to the proof of Theorem 4.3.7. Alternatively, we can deduce

it from the result of Theorem 4.3.7 by factoring through E/Z(E).

We can now prove the theorem.

Theorem 7.4.5. Suppose π is a set of primes. Suppose G is a π-powered nilpotent group

and w(g1, g2, . . . , gn) is a π-powered word in n letters with the property that w evaluates

to the identity element in every π-powered abelian group. Then, there exists a set map

Xw : Gn → G ∧ G with the property that for any π-powered central extension E of G,

ΩE,G ◦Xw = χw,E .

Proof. Set c to be one more than the nilpotency class of G, and treat w as a π-powered

class c word. Apply Part (1) of Lemma 7.4.4 to the case where the extension E0 is an initial

object in the category of central extensions of G, and E0 is π-powered (this is possible by

Lemma 7.4.2). The rest of the proof is analogous to Theorem 3.4.5.

7.5 Homology of powered Lie rings

This section develops the Lie ring analogues of the results in Section 7.4. One key difference

is that whereas the results of the previous section were restricted to nilpotent groups, some

of the results in this section apply in full generality to all Lie rings.

7.5.1 Hopf’s formula for powered Lie rings

We now establish the Lie ring analogues of the results describe in Section 7.4.1.

Lemma 7.5.1. Suppose L is a π-powered Lie ring. Then, the following hold:
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1. All the homology groups Hi(L; Z), i > 0, are π-powered abelian groups.

2. The Schur multiplier M(L), which is H2(L; Z), is a π-powered abelian group.

Proof. Proof of (1): This is a direct consequence of how we define cohomology, and follows

from the fact that the universal enveloping algebra is the same except in degree zero whether

taken over Z or Z[π−1], and the homology groups are defined in terms of the universal

enveloping algebra.

Proof of (2): This follows immediately from (1).

Lemma 7.5.2. Suppose L is a π-powered Lie ring. Every Schur covering Lie ring of L

is π-powered. Since Schur covering Lie rings exist and are by definition initial objects in the

category of extensions of L with homoclinisms, there exist initial objects in the category of

extensions of L with homoclinisms that are π-powered.

Proof. By the preceding lemma (Lemma 7.5.1), M(L) is π-powered. Consider a Schur cov-

ering Lie ring N of L. N is a central extension of the form:

0 →M(L) → N → L→ 1

By Lemma 4.2.1, N is also π-powered. By definition, any Schur covering Lie ring gives

an inital object in the category of central extensions of L with homoclinisms, so the last part

of the statement follows.

Schur covering Lie rings exist by Theorem 3.7.3, so the final sentence follows.

We are now in a position to prove results that establish analogues of Hopf’s formula

(discussed in Section 3.6.9):

Theorem 7.5.3. Suppose π is a set of primes and L is a π-powered Lie ring. Express L
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in the form L ∼= F/R where F is a free π-powered Lie ring. Then, the following are true.

1. The Lie ring N1 = F/[F,R], with the natural quotient map N1 → L, is an initial

object in the category of central extensions of L with homoclinisms.

2. The exterior square L∧L is canonically isomorphic to the quotient Lie ring [F, F ]/[F,R].

3. The Schur multiplier M(L) is canonically isomorphic to the quotient Lie ring (R ∩

[F, F ])/[F,R]:

M(L) ∼= (R ∩ [F, F ])/[F,R] (7.4)

Proof. Proof of (1): Let N2 be a Schur covering Lie ring of L. By Lemma 7.5.2, N2 is

π-powered.

Consider the commutator map ω1 : L×L→ N1 and denote by Ω1 the corresponding Lie

ring homomorphism:

Ω1 : L ∧ L→ [N1, N1]

Consider also the extension:

0 → A→ N2
µ→ L→ 1

with the natural commutator map ω2 : L× L→ N2 and the corresponding commutator

map homomorphism:

Ω2 : L ∧ L→ [N2, N2]

Our goal is to show that there there exists a unique homomorphism ϕ : [N1, N1] →

[N2, N2] such that ϕ ◦ ω1 = ω2, or equivalently, ϕ ◦ Ω1 = Ω2.

361



The map ν : F → L lifts to a map ψ : F → N2 on account of F being a free pi-powered

Lie ring and N2 being a π-powered Lie ring (note that the lift is not necessarily unique).

Explicitly, this means that µ ◦ ψ = ν.

We know that ν(R) is trivial, so µ(ψ(R)) is trivial. Thus, ψ(R) lands inside the kernel

of µ, which is the image of A in N2. Thus, ψ(R) is a central Lie subring of N2. Therefore,

ψ([F,R]) = [ψ(F ), ψ(R)] is trivial.

Thus, ψ descends to a homomorphism θ : N1 → N2, where N1 = F/[F,R] as defined

above, with the property that µ◦θ = ν. The condition µ◦θ = ν can be interpreted as saying

that θ is a homomorphism between the central extensions (N1, ν) and (N2, µ). Denote by

ϕ : N ′
1 → N ′

2 the restriction of θ to N ′
1. Thus, by Lemma 3.5.4, ϕ defines a homoclinism of

the central extensions.

Now, we know that (N2, µ) is an initial object in the category, so there is a homoclinism

from it to any other object in the category. Composing with the above gives a homoclinism

from (N1, ν) to any central extension of L. By Lemma 3.5.5, this homoclinism is unique. Fi-

nally, Lemma 3.5.6 establishes from this that (N1, ν) defines an initial object in the category

of central extensions of L with homoclinisms.

Proof of (2): By definition, L∧L is isomorphic to the derived subring [N1, N1] on account

ofN1 being an initial object in the category of central extensions with homoclinisms. [N1, N1]

is canonically isomorphic to [F, F ]/[F,R].

Proof of (3): The Schur multiplier is the kernel of the map [N1, N1] → [L,L], or equiva-

lently, it is the kernel of the map [F, F ]/[F,R] → [F, F ]/(R ∩ [F, F ]). The kernel works out

to (R ∩ [F, F ])/[F,R].

7.5.2 Hopf’s formula variant for Schur multiplier of powered nilpotent Lie

ring: class one more version

Suppose π is a set of primes and L is a π-powered nilpotent Lie ring of nilpotency class c.

Suppose L can be expressed in the form F/R where F is a free π-powered nilpotent Lie ring
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of class c+ 1 and R is an ideal of F . Then:

M(L) ∼= (R ∩ [F, F ])/([F,R]) (7.5)

Also:

L ∧ L ∼= [F, F ]/[F,R] (7.6)

Our application of these results, in Section 7.7, will combine these results with the results

of Section 7.3. In that section, we used the letter N for the free Lie ring, and J for the ideal

is being factored out. Therefore, in our application of the above theorem, the letter N will

appear instead of the letter F , and the letter J will appear instead of the letter R.

7.5.3 Sidenote on powered Schur multipliers and powered Schur covering

Lie rings

It is possible to define concepts of Schur multiplier, Schur covering group, and exterior

square, all within the variety of π-powered Lie rings. In other words, we can mimic the

steps of Section 3.5, replacing “Lie ring” by π-powered Lie ring”, and obtain corresponding

notions of π-powered exterior square and π-powered Schur multiplier. We can also define

π-powered Schur covering Lie ring.

The results of Sections 7.5.1 and 7.5.2 tell us that the π-powered Schur multiplier coincides

with the usual Schur multiplier and the π-powered exterior square coincides with the usual

exterior square.
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7.5.4 Results about isoclinisms for π-powered central extensions of Lie

rings

The results here follow from the results of Section 4.3.8 using reasoning similar to the way

the results in Section 3.4.9 follow from the results in Section 2.1.6. Unlike the corresponding

section for groups (Section 7.4.4), we do not restrict ouselves to the nilpotent case. However,

we can formulate all our results for the nilpotent setting. The proofs remain similar.

Lemma 7.5.4. Suppose π is a set of primes. Suppose L is a π-powered Lie ring and

w(g1, g2, . . . , gn) is a π-powered Lie ring word in n letters with the property that w evaluates

to the zero element in every abelian Lie ring. The following are true.

1. For every central extension N of L, w can be used to define a set map χw,N : Ln →

[N,N ].

2. For any homoclinism between central extensions N1 and N2, with the central extension

specified via a homomorphism ϕ : [N1, N1] → [N2, N2], we have that:

ϕ ◦ χw,N1
= χw,N2

Proof. Proof of (1): This is similar to the proof of Theorem 4.4.1. Alternatively, we can

deduce it from the result of Theorem 4.4.1 by noting that the map factors as follows:

Ln → (N/Z(N))n → [N,N ]

Proof of (2): This is similar to the proof of Theorem 4.4.2. Alternatively, we can deduce

it from the result of Theorem 4.4.2 by factoring through N/Z(N).

We can now prove the theorem.
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Theorem 7.5.5. Suppose π is a set of primes. Suppose L is a π-powered Lie ring

and w(g1, g2, . . . , gn) is a π-powered Lie ring word in n letters with the property that w

evaluates to the identity element in every abelian Lie ring. Then, there exists a set map

Xw : Ln → L∧L with the property that for any central extension N of L, ΩN,L◦Xw = χw,N .

Proof. Apply Part (1) of Lemma 7.5.4 to the case where the extension N0 is an initial object

in the category of central extensions of L and such that N0 is π-powered. Such an extension

exists by Lemma 7.5.2. The rest of the proof is analogous to the proof of Theorem 3.5.8.

7.6 Commutator-like and Lie bracket-like maps

This section describes maps that can be used to compute a “commutator-like” expression

for Lie rings whose nilpotency class is one more than desired (or the 3-local variant thereof),

and correspondingly, a “Lie bracket-like” expression for groups whose nilpotency class is one

more than desired (or the 3-local variant thereof). We use the formula Mc+1 (introduced

in Section 7.1.1) to express the group commutator as a πc-powered word that makes use of

the Lie bracket. We use the formula h2,c+1 (the second inverse Baker-Campbell-Hausdorff

formula) to express the Lie bracket as a πc-powered word that makes use of the group

commutator.

For simplicity, we will restrict our definitions to situations where the groups and Lie rings

involved are globally nilpotent, but without any restriction on their global nilpotency class.

This will allow us to apply the theorems stated about nilpotent groups and Lie rings. It is

possible to relax these assumptions to some extent, but the ensuing greater generality will

not be worth the additional cost in the complexity of proofs.

7.6.1 Commutator-like map for Lie ring whose class is one more

Suppose c is a natural number and πc is the set of primes less than or equal to c.
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Suppose L is a πc-powered nilpotent Lie ring such that the inner derivation Lie ring

L/Z(L) is a 3-local class c Lazard Lie ring. We can define a set map:

ω
Group
L : Inn(L)× Inn(L) → [L,L]

The set map is defined as follows:

ω
Group
L (x, y) := Mc+1(x̃, ỹ)

whereMc+1 is the formula for the group commutator in terms of the Lie bracket described

in Section 7.1.1, and x̃, ỹ are elements of L that map to x and y respectively in L/Z(L).

Note that this is defined because of the following:

• The expression Mc+1 makes sense because L is πc-powered, and Lemma 7.1.1 shows

that all prime divisors of the denominators of coefficients for Mc+1 are in πc.

• The output of the expression is independent of the choice of lifts, because the Lie

bracket map descends to a map L/Z(L)× L/Z(L) → [L,L], and Mc+1 is obtained by

using the Lie bracket and its iterations. See Theorem 4.4.1 for an explanation.

Further, in the case that L itself is a 3-local class c Lazard Lie ring, ω
Group
L (x, y) agrees

with the commutator-induced map ωG : Inn(G) × Inn(G) → G′ where G is the Lazard Lie

group for L. Recall that ωG was originally defined in Section 2.1.1 along with the definition

of isoclinism.

This again follows from the definition of Mc+1 as introduced in Section 7.1.1.

We now show that the map ωGroup is an isoclinism-invariant.

Lemma 7.6.1. Suppose c is a natural number and πc is the set of primes less than or

equal to c. Suppose L1 and L2 are isoclinic πc-powered Lie rings, such that Inn(L1) ∼=

Inn(L2) is a 3-local class c Lazard Lie ring.
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Suppose (ζ, ϕ) is an isoclinism from L1 to L2: ζ is the isomorphism Inn(L1) → Inn(L2)

and ϕ is the isomorphism L′1 → L′2. Then:

ϕ(ω
Group
L1

(x, y)) = ω
Group
L2

(ζ(x), ζ(y))

Proof. Apply Theorem 4.4.2 to the word ωGroup and obtain the result.

7.6.2 Lie bracket-like map for group whose class is one more

A special case of the map described here appeared in Theorem 5.1 of the 2008 paper [20]

by George Glauberman. Glauberman’s paper proves certain properties of the map that we

do not prove in this section, but that follow from stronger results we will prove later in the

course of establishing the global Lazard correspondence up to isoclinism. We discuss the

relationship in more detail in Section 8.1.1.

Suppose c is a natural number and πc is the set of primes less than or equal to c.

Suppose G is a πc-powered nilpotent group such that the inner automorphism group

G/Z(G) is a 3-local class c Lazard Lie group. We can define a set map:

ωLie
G : G/Z(G)×G/Z(G) → [G,G]

The set map is defined as follows:

(x, y) 7→ h2,c+1(x̃, ỹ)

where h2,c+1 is the formula for the Lie bracket in terms of the group commutator and its

iterations. It is the second of the two inverse Baker-Campbell-Hausdorff formulas described

in Section 6.4. Note that this is defined because:

• The expression h2,c+1 makes sense because G is πc-powered, and Lemma 7.1.2 shows

that all prime divisors of the denominators of coefficients for h2,c+1 are in πc.
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• The output of the expression is independent of the choice of lifts, because the commu-

tator map descends to a map G/Z(G)×G/Z(G) → [G,G], and h2,c+1 is obtained by

using the commutator map and its iterations. See Theorem 4.3.6 for an explanation.

Further, in the case that G itself is a 3-local class c Lazard Lie group, ωLie
G (x, y) agrees

with the definition of the Lie bracket-induced map ωL : Inn(L) × Inn(L) → L′ where L is

the Lazard Lie ring for G. Recall that ωL was defined in Section 2.2.1 where we introduced

the definition of isoclinism and homoclinism for Lie rings.

This again follows from the definition of h2,c+1.

We now show that ωLie
G is an isoclinism-invariant.

Lemma 7.6.2. Suppose c is a natural number and πc is the set of primes less than or

equal to c. Suppose G1 and G2 are isoclinic πc-powered groups such that Inn(G1) ∼= Inn(G2)

is a 3-local class c Lazard Lie group.

Suppose (ζ, ϕ) is an isoclinism from G1 to G2: ζ is the isomorphism Inn(G1) → Inn(G2)

and ϕ is the isomorphism G′1 → G′2. Then:

ϕ(ωLie
G1

(x, y)) = ωLie
G2

(ζ(x), ζ(y))

Proof. Apply Theorem 4.3.7 to the word ωLie and obtain the result. Note that the c used

in that theorem refers to a bound on the global class of G1 and G2, and may be a different

value from the value of c used here. The fact of significance is that G1 and G2 are nilpotent,

so the theorem can be applied.

7.6.3 Commutator-like map for Lie ring extensions

In Section 7.6.1, we described a commutator-like map that can be defined for any πc-powered

Lie ring whose inner derivation Lie ring is nilpotent and of 3-local nilpotency class at most
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c. We will now consider the corresponding notion for Lie ring extensions. Consider a central

extension of Lie rings, with the following central extension short exact sequence:

0 → A→ N → L→ 0

The Lie bracket map in N descends to a Z-bilinear map:

ωN,L : L× L→ [N,N ]

Suppose now that N is πc-powered and that L has 3-local nilpotency class at most c.

Then, we can define a commutator-like map:

ω
Group
N,L : L× L→ [N,N ]

The map ω
Group
N,L can be defined as the map χw,N described in Lemma 7.5.4 where w is

the word Mc+1.

ω
Group
N,L can be obtained by composing the quotient map L × L → N/Z(N) × N/Z(N)

with the map ω
Group
N described in Section 7.6.1 (the Lie ring is now N instead of L).

7.6.4 Lie bracket-like map for group extensions

In Section 7.6.2, we described a Lie bracket-like map that can be defined for any πc-powered

nilpotent group whose inner automorphism group is of 3-local nilpotency class at most c.

We will now consider the corresponding notion for Lie ring extensions. Consider a central

extension of groups, with the following central extension short exact sequence:

0 → A→ E → G→ 1

The commutator map in E descends to a set map:
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ωE,G : G×G→ [E,E]

Suppose now that E is πc-powered and that G has 3-local nilpotency class at most c.

Then, we can define a Lie bracket-like map:

ωLie
E,G : G×G→ [E,E]

The map ωLie
E,G can be defined as the map χw,N described in Lemma 7.4.4 where w is

the word Mc+1.

This map ωLie
E,G can be obtained by composing the quotient map G × G → E/Z(E) ×

E/Z(E) with the map ωLie
E described in Section 7.6.2 (the group is now E instead of G).

7.6.5 The commutator in terms of the Lie bracket: the central extension

and exterior square version

Suppose c is a positive integer and L is a πc-powered nilpotent Lie ring of 3-local nilpotency

class at most c. Our goal is to define a set map:

M̃c+1(x, y) : L× L→ L ∧ L

where L∧L is the exterior square of L as defined in Section 3.5.1 (and later explicitly in

Section 3.9.3).

The definition of M̃c+1 is as follows: it is the map Xw of Theorem 7.5.5 where π = πc

and w is the word Mc+1. The word Mc+1 satisfies the hypotheses of the theorem, so the

theorem applies.

Using Theorem 7.5.5 again, the map ω
Group
N,L defined in Section 7.6.3 is related to the map

M̃c+1 defined in Section as follows:
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ω
Group
N,L (x, y) = ΩN,L(M̃c+1(x, y))

where the maps are ω
Group
N,L : L × L → [N,N ], ΩN,L : L ∧ L → [N,N ], and M̃c+1 :

L× L→ L ∧ L.

7.6.6 The Lie bracket in terms of the commutator: the central extension

and exterior square version

Suppose c is a positive integer and G is a πc-powered nilpotent group of 3-local nilpotency

class at most c. Our goal is to define a set map:

h̃2,c+1(x, y) : G×G→ G ∧G

where G ∧ G is the exterior square of G as defined in Section 3.4.1 (and later explicitly

in Section 3.8.4).

The definition of h̃2,c+1 is as follows: it is the map Xw of Theorem 7.4.5 where π = πc,

w is the word h2,c+1, and the value c of the theorem is taken to be c+ 1. The word h2,c+1

satisfies the hypotheses of the theorem, so the result applies.

Using Theorem 7.4.5 again, the map ωLie
E,G defined in Section 7.6.4 is related to the map

h̃2,c+1 as follows:

ωLie
E,G(x, y) = ΩE,G(h̃2,c+1(x, y))

where the maps are ωLie
E,G : G × G → [E,E], ΩE,G : G ∧ G → [E,E], and h̃2,c+1 :

G×G→ G ∧G.
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7.7 Lazard correspondence up to isoclinism

7.7.1 Definition of Lazard correspondence up to isoclinism

The Lazard correspondence up to isoclinism combines the idea of isoclinism with the idea of

the Lazard correspondence.

Definition (3-local class (c+ 1) Lazard correspondence up to isoclinism). Suppose c is

a positive integer and πc is the set of all prime numbers less than or equal to c. Suppose G

is a πc-powered nilpotent group whose inner automorphism group and derived subgroup are

both 3-local class c Lazard Lie groups, and L is a πc-powered nilpotent Lie ring whose inner

derivation Lie ring and derived subring are both 3-local class c Lazard Lie rings. A Lazard

correspondence up to isoclinism from L to G is a pair of isomorphisms (ζ, ϕ) where ζ is an

isomorphism from Inn(L) to log(Inn(G)) and ϕ is an isomorphism from L′ to log(G′) such

that:

ϕ(ωL(x, y)) = ωLie
G (ζ(x), ζ(y))

This is equivalent to the requirement that:

ϕ(ω
Group
L (x, y)) = ωG(ζ(x), ζ(y))

The following are easy to verify for the 3-local class (c+ 1) Lazard correspondence up to

isoclinism. All the groups mentioned below are πc-powered groups that have the property

that their inner automorphism group and derived subgroup are both 3-local class c Lazard

Lie groups, and all the Lie rings mentioned below are πc-powered Lie rings that have the

property that their inner derivation Lie ring and derived subring are both 3-local class c

Lazard Lie rings.
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• If G1 and G2 are isoclinic groups, and G1 and L are in 3-local class (c + 1) Lazard

correspondence up to isoclinism, then G2 and L are also in 3-local class (c+1) Lazard

correspondence up to isoclinism. This follows from Lemma 7.6.2.

• If L1 and L2 are isoclinic Lie rings, and G and L1 are in 3-local class (c + 1) Lazard

correspondence up to isoclinism, then G and L2 are in 3-local class (c + 1) Lazard

correspondence up to isoclinism. This follows from Lemma 7.6.1.

• If G1 and G2 are groups and L is a Lie ring such that G1 is in 3-local class (c + 1)

Lazard correspondence up to isoclinism with L and G2 is also in 3-local class (c + 1)

Lazard correspondence up to isoclinism with L, then G1 and G2 are isoclinic.

• If L1 and L2 are Lie rings and G is a group such that G is in 3-local class (c + 1)

Lazard correspondence up to isoclinism with L1 and G is in 3-local class (c+1) Lazard

correspondence up to isoclinism with L2, then L1 and L2 are isoclinic Lie rings.

In other words, the definition we gave above establishes a correspondence between some

equivalences classes up to isoclinism of groups and some equivalence classes up to isoclinism

of Lie rings. However, it is not yet clear that the correspondence applies to every equivalence

class up to isoclinism of groups of the specified type and to every equivalence class up to

isoclinism of Lie rings of the specified type. Ideally, we would like to demonstrate the

following two facts:

1. For every πc-powered group G whose inner automorphism group and derived subgroup

are both 3-local class c Lazard Lie groups, there exists a πc-powered Lie ring L whose

inner derivation Lie ring and derived subring are both 3-local class c Lazard Lie rings

such that G is in 3-local class (c+ 1) Lazard correspondence up to isoclinism with L.

2. For every πc-powered Lie ring L whose inner derivation Lie ring and derived subring

are both 3-local class c Lazard Lie rings, there exists a πc-powered group G whose

inner automorphism group and derived subgroup are both 3-local class c Lazard Lie
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groups, such that G is in 3-local class (c + 1) Lazard correspondence up to isoclinism

with L.

Unfortunately, the full proofs of these results would require us to develop further ma-

chinery and notation that would take too much work. Therefore, we restrict attention to

the global class case. The proofs in the 3-local case are analogous, but would require us

to deal with a 3-local version of the free constructions that we used earlier, which would

considerably complicate the presentation. For this reason, we restrict our proof to the global

case.

7.7.2 Global Lazard correspondence up to isoclinism

We begin with a couple of lemmas about the structures between which we aim to establish

the correspondence.

Lemma 7.7.1. Suppose c is a positive integer and πc is the set of all primes less than

or equal to c. Suppose G is a πc-powered nilpotent group of nilpotency class at most c+ 1.

Then, both Inn(G) and G′ are global class c Lazard Lie groups, i.e., both Inn(G) and G′ are

πc-powered groups of nilpotency class at most c.

Proof. We need to establish four facts:

1. Inn(G) has nilpotency class at most c: This is obvious from the condition on the

nilpotency class of G.

2. Inn(G) is πc-powered: This follows from Lemma 4.1.7.

3. G′ has nilpotency class at most c: In fact, G′ has nilpotency class at most b(c +

1)/2c, which in turn is at most c, but the naive bound of c can be established in a

straightforward manner by looking at the lower central series of G and comparing with
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that of G′. More explicitly, this follows from the fact that the lower central series is a

strongly central series. See the Appendix, Section A.3.4 for more details.

4. G′ is πc-powered: This follows from Theorem 4.1.20.

Lemma 7.7.2. Suppose c is a positive integer and πc is the set of all primes less than or

equal to c. Suppose L is a πc-powered Lie ring of nilpotency class at most c+1. Then, both

Inn(L) and L′ are global class c Lazard Lie rings, i.e., both Inn(L) and L′ are πc-powered

groups of nilpotency class at most c.

Proof. We need to establish four facts:

1. Inn(L) has nilpotency class at most c: This is obvious from the condition on the

nilpotency class of L.

2. Inn(L) is πc-powered: This follows from Theorem 4.2.4.

3. L′ has nilpotency class at most c: In fact, L′ has nilpotency class at most b(c +

1)/2c, which in turn is at most c, but the naive bound of c can be established very

straightforwardly by looking at the lower central series of L and comparing with that

of L′.

4. L′ is πc-powered: This follows from Lemma 4.2.8.

We can now define the correspondence:

Definition (Global class (c+ 1) Lazard correspondence up to isoclinism). Suppose c is

a positive integer and πc is the set of (all) prime numbers less than or equal to c. Suppose
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G is a πc-powered group of nilpotency class at most c + 1, and L is a πc-powered Lie ring

of nilpotency class at most c + 1. A global class (c + 1) Lazard correspondence up to

isoclinism from L to G is a pair of isomorphisms (ζ, ϕ) where ζ is an isomorphism from

Inn(L) to log(Inn(G)) (note that this log uses the global Lazard correspondence) and ϕ is

an isomorphism from L′ to log(G′) such that:

ϕ(ωL(x, y)) = ωLie
G (ζ(x), ζ(y))

This is equivalent to the requirement that:

ϕ(ω
Group
L (x, y)) = ωG(ζ(x), ζ(y))

The observations from Section 7.7.1 about the 3-local class (c+1) Lazard correspondence

up to isoclinism continue to apply here: the correspondence establishes a correspondence

between some πc-powered groups of class at most c + 1 and some πc-powered Lie rings of

class at most c + 1. However, it is not yet clear that the correspondence applies to every

equivalence class up to isoclinism of groups of the specified type and to every equivalence

class up to isoclinism of Lie rings of the specified type. Essentially, we need to establish two

facts:

1. For every πc-powered group G of nilpotency class at most c + 1, there exists a πc-

powered Lie ring L of nilpotency class at most c + 1 such that L and G are in global

class (c+ 1) Lazard correspondence up to isoclinism.

2. For every πc-powered Lie ring L of nilpotency class at most c + 1, there exists a πc-

powered group G of nilpotency class at most c + 1 such that L and G are in global

class (c+ 1) Lazard correspondence up to isoclinism.
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7.7.3 The Baer correspondence up to isoclinism is the case c = 1

If we set c = 1, then the global class (c+ 1) Lazard correspondence up to isoclinism reduces

to the Baer correspondence up to isoclinism, as described in Section 5.4. The general proof

that we will now give follows steps very similar to the proof of the statement for the Baer

correspondence. The key difference is that the group whose Schur multiplier and exterior

square we are computing is no longer an abelian group. Therefore, we have to explicitly use

the Lazard correspondence rather than the abelian Lie correspondence to move back and

forth between the group and the Lie ring.

7.7.4 Global Lazard correspondence preserves Schur multipliers

For both groups and Lie rings, the Schur multiplier is the object that controls the equivalence

class of the extension up to isoclinism. The first step in establishing the global Lazard

correspondence up to isoclinism is therefore to establish that Schur multipliers are preserved

under the global Lazard correspondence.

A particular case of this statement appeared as a conjecture in the paper [13] by Eick,

Horn, and Zandi in September 2012, stated informally after Theorem 2 of the paper. Specif-

ically, the authors conjectured that for a finite p-groups of nilpotency class at most p − 1,

the Schur multiplier of the group coincides with the Schur multiplier of its Lazard Lie ring.

The authors proved the corresponding statement for p-groups of nilpotency class at most

p− 2 by noting that the central extensions of the group are in Lazard correspondence with

the central extensions of the Lie ring.1

Theorem 7.7.3. Suppose c is a positive integer and πc is the set of all primes less than

or equal to c. Suppose G is a πc-powered group of nilpotency class at most c and L is its

1. The authors write: “Based on various example computations, see also [7], we believe that Theorems
1 and 2 also hold for finite p-groups of class p − 1. However, our proofs do not extend to this case.” The
reference [7] alluded to by the authors has not yet been published or made available online.
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Lazard Lie ring under the global Lazard correspondence. Then:

1. The short exact sequences:

0 →M(L) → L ∧ L→ [L,L] → 0

and

0 →M(G) → G ∧G→ [G,G] → 1

are canonically in Lazard correspondence.

2. L∧L and G∧G are in Lazard correspondence up to canonical isomorphism. Moreover,

if we denote the isomorphism as a set map exp : L ∧ L → G ∧ G, we have exp(x ∧

y) = h̃2,c+1(x, y) where h̃2,c+1 is the adaptation of h2,c+1 described in Section 7.6.6.

Similarly, under the inverse set map log : G ∧ G → L ∧ L, we have log(x ∧ y) =

M̃c+1(x, y), where M̃c+1 is the adaptation of Mc+1 described in Section 7.6.5.

3. M(L) and M(G) are canonically isomorphic as abelian groups.

Note that these theorems are framed in terms of the Lazard correspondence up to iso-

morphism rather than the strict Lazard correspondence (in the sense of equality of sets).

It does not make sense to do the latter here because a strict Lazard correspondence would

require us to keep track of the strict definition of the sets. However, although our results are

up to isomorphism, they are up to canonical isomorphism, which means that they commute

with the isomorphisms induced by transitioning from a group to an isomorphic group.

Proof. Proof of (1): Denote by K1 the free πc-powered group of class c on the underlying

set of G. Denote by R1 the kernel of the natural homomorphism K1 → G.
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Denote by K the free πc-powered group of class c + 1 on the underlying set G. Denote

by R the kernel of the natural homomorphism K → G. Note that K1 = K/γc(K), and R is

the inverse image of R1 under the projection map.

Denote by N1 the free πc-powered Lie ring of class c on the underlying set of L (which

is identified with the underlying set of G). Denote by J1 the kernel of the natural ho-

momorphism N1 → L. Denote by N the free πc-powered Lie ring of class c + 1 on the

underlying set of L. Denote by J the kernel of the natural homomorphism N → L. Note

that N1 = N/γc(N) and J is the inverse image of J1 under the projection map.

From Theorem 7.3.3 (note that the notation of that theorem matches the notation here),

the derived subgroup [K,K] is in Lazard correspondence with the derived subring [N,N ].

From Theorems 7.3.5 and 7.3.6 (again, note that the notation of that theorem matches the

notation here), we see that this Lazard correspondence restricts to a Lazard correspondence

between [K,R] and [N, J ] and also to a Lazard correspondence between R ∩ [K,K] and

J ∩ [N,N ]. Applying these to quotient groups, we obtain that:

• [K,K]/[K,R] is canonically in Lazard correspondence with the quotient Lie ring

[N,N ]/[N, J ].

• [K,K]/(R∩ [K,K]) is canonically in Lazard correspondence with [N,N ]/(J ∩ [N,N ]).

• (R ∩ [K,K])/[K,R] is canonically in Lazard correspondence with (J ∩ [N,N ])/[N, J ].

Moreover, these short exact sequences are also in Lazard correspondence:

0 → (J ∩ [N,N ])/[N, J ] → [N,N ]/[N, J ] → [N,N ]/(J ∩ [N,N ]) → 0

0 → (R ∩ [K,K])/[K,R] → [K,K]/[K,R] → [K,K]/(K ∩ [R,R]) → 1

By the discussion in Sections 7.4.2 and 7.5.2, these correspond respectively to the short

exact sequences:
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0 →M(L) → L ∧ L→ [L,L] → 0

0 →M(G) → G ∧G→ [G,G] → 1

Proof of (2): The fact of isomorphism follows directly from (1). The assertions about

Mc+1 and h2,c+1 follow from the fact that the Lazard correspondence between [N,N ] and

[K,K] arises as the restriction of the Lazard correspondence between QN and
√
K, and

under this correspondence, by definition, eMc+1(x,y) = [ex, ey] (with the group commutator

appearing on the right) and [log x, log y] = log(h2,c+1(x, y)) (with the Lie bracket appearing

on the left) by the respective definitions of Mc+1 and h2,c+1.

Proof of (3): This follows from (1), and the observation that the Lazard correspondence

coincides with the abelian Lie correspondence where they overlap, so M(L) and M(G) are

isomorphic as abelian groups.

7.7.5 The global Lazard correspondence up to isoclinism for extensions

Suppose c is a positive integer and πc is the set of all primes less than or equal to c. Suppose

A is an abelian group and G is a global class c Lazard Lie group.

Denote by L the Lazard Lie ring of G.

We have the following short exact sequence (originally described in Section 3.6.4) for the

central extensions with central subgroup A and quotient group G:

0 → Ext1Z(Gab;A) → H2(G;A) → Hom(M(G), A) → 0

We also have the following short exact sequence (originally described in Section 3.7.4)

for the central extensions with central subring A and quotient Lie ring L:

0 → Ext1Z(Lab;A) → H2
Lie(L;A) → Hom(M(L), A) → 0
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By Theorem 7.7.3, M(L) and M(G) are canonically isomorphic. Also, Lab is canonically

in abelian Lie correspondence with Gab. Thus, the downward arrows below are canonical

isomorphisms:

0 → Ext1Z(Gab;A) → H2(G;A) → Hom(M(G), A) → 0

↓ ↓

0 → Ext1Z(Lab;A) → H2
Lie(L;A) → Hom(M(L), A) → 0

The middle groups H2(G;A) and H2
Lie(L;A) are isomorphic to each other, because both

short exact sequences split. However, we do not in general have a canonical isomorphism

between the middle groups.

The isomorphism of the Ext1 groups on the left side, and its relation to the

global class c Lazard correspondence

We have a canonical isomorphism of groups:

Ext1Z(Gab;A) ∼= Ext1Z(Lab;A)

This is because the abelian group Gab is in abelian Lie correspondence with the abelian

Lie ring Lab, so the additive groups are the same, and Ext1 computation uses only the

underlying additive group.

The elements of Ext1Z(Gab;A) correspond to the extension groups with subgroup A and

quotient group G for which the sub-extension with quotient group G′ splits (as G′×A) and

the induced extension with subgroup A and quotient group Gab gives an abelian group. As a

result, all extensions corresponding to elements of Ext1Z(Gab;A) have the property that the

extension group is a global class c Lazard Lie group. Similarly, the extensions corresponding

to elements of Ext1Z(Lab;A) have the property that the extension group is a global class c

Lazard Lie ring. We thus obtain a correspondence:
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Group extensions with subgroup A and quotient group G that are in the image of

Ext1Z(Gab;A) ↔ Lie ring extensions with subring A and quotient ring L that are in the

image of Ext1Z(Lab;A)

For each group extension and Lie ring extension that are in bijection (in other words,

each pair of elements in the two isomorphic groups that are in bijection with each other),

the corresponding extension group is in global class c Lazard correspondence with the cor-

responding extension Lie ring.

The isomorphism of the Hom groups on the right side, and its relation to the

Lazard correspondence up to isoclinism

We have a canonical isomorphism:

Hom(M(G), A) ∼= Hom(M(L), A)

We reviewed the meanings of the two groups in Sections 3.6.3 and 3.6.4 (for groups)

and Sections 3.7.3 and 3.7.4 (for Lie rings). The group Hom(M(G), A) classifies the central

extensions with central subgroup A and quotient group G up to isoclinism of extensions. The

group Hom(M(L), A) classifies the central extensions with central subring A and quotient

Lie ring L up to isoclinism of extensions.

The two Hom groups are isomorphic because, as established above (Theorem 7.7.3), the

Schur multipliers M(L) and M(G) are canonically isomorphic.

The isomorphism gives a correspondence:

Equivalence classes up to isoclinism of group extensions with central subgroup A and

quotient group G ↔ Equivalence classes up to isoclinism of Lie ring extensions with central

subring A and quotient Lie ring L

Any particular instance of this bijection (i.e., an equivalence class of Lie ring extensions
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and an equivalence class of group extensions that are in bijection with each other) is termed

a global class (c+ 1) Lazard correspondence up to isoclinism for extensions.

We now state an important lemma that relates the global class (c+1) Lazard correspon-

dence up to isoclinism for extensions with the global class (c+ 1) Lazard correspondence up

to isoclinism.

Theorem 7.7.4. Suppose A is an abelian group, G is a global class c Lazard Lie group,

and L = logG is the corresponding global class c Lazard Lie ring. Suppose E is a group

extension with central subgroup A and quotient group G. Suppose N is a Lie ring extension

with central subring logA (which we denote as A via abuse of notation) and quotient Lie

ring L. Suppose further that the equivalence class up to isoclinism of the group extension

E corresponds, via the above bijection, to the equivalence class of the Lie ring extension N .

Then, the following are true.

1. The group [E,E] is in global class c Lazard correspondence with the Lie ring [N,N ].

2. The commutator-induced group homomorphism ΩE,G : G ∧ G → [E,E] is in global

class c Lazard correspondence with the commutator-induced group homomorphism

ΩN,L : L ∧ L → [N,N ], where we use the canonical Lazard correspondence between

G∧G and L∧L described in Theorem 7.7.3, and the Lazard correspondence between

[E,E] and [N,N ] described in part (1).

3. Explicitly, if ϕ : [N,N ] → log([E,E]) describes the isomorphism of Step (1), then for

all x, y ∈ G (so that x, y ∈ L as well because L and G have the same underlying set):

ϕ(ωN,L(x, y)) = ωLie
E,G(x, y)

Equivalently:
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ϕ(ω
Group
N,L (x, y)) = ωE,G(x, y)

4. The group E is in global class (c+1) Lazard correspondence up to isoclinism with the

Lie ring N .

Proof. Proof of (1) and (2): We have the following map induced by the commutator map in

E:

ωE,G : G×G→ [E,E]

Similarly, we have the following map induced by the Lie bracket map in N :

ωN,L : L× L→ [N,N ]

We can define ωLie
E,G in terms of ωE,G as explained in Section 7.6.4. Consider the canonical

isomorphism between L∧L and G∧G (described in Theorem 7.7.3) and denote the set map

by exp : L ∧ L→ G ∧G.

In Section 3.6.3, we considered short exact sequences with surjective downward maps,

where βG is the element of Hom(M(G), A) and β′ is the morphism obtained by restricting

βG to its image, which we call B:

0 → M(G) → G ∧G → [G,G] → 1

↓β
′
G ↓ ↓id

0 → B → [E,E] → [G,G] → 1

In Section 3.7.3, we considered a similar short exact sequence with surjective downward

maps, where βL is the element of Hom(M(L), A) and β′L is the morphism obtained by

restricting βL to its image, which we call B:
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0 → M(L) → L ∧ L → [L,L] → 1

↓ ↓β
′
L ↓ ↓ ↓

0 → B → [N,N ] → [L,L] → 1

Under the canonical isomorphism of M(L) and M(G), βL and βG are canonically iden-

tified, so that the subgroups B in both cases are the same, and β′L and β′G are canonically

identified as well.

The left and right downward maps for the group short exact sequence are in Lazard

correspondence respectively with the left and right downward maps for the Lie ring short

exact sequence. Therefore, the middle maps for these sequences, which are determined

uniquely up to isomorphism, are also in Lazard correspondence up to isomorphism.2 In

particular, [E,E] and [N,N ] are in Lazard correspondence up to isomorphism and the maps

G ∧G→ [E,E] and L ∧ L→ [N,N ] are in Lazard correspondence.

Proof of (3): The explicit description of the Lazard correspondence between G ∧G and

L∧L described in Theorem 7.7.3 gives us that, for x, y ∈ L (so that x, y ∈ G because L and

G have the same underlying set):

exp(x ∧ y) = h̃2,c+1(x, y)

where the x ∧ y on the left is interpreted as an element of L ∧ L.

Apply ΩE,G to both sides and obtain:

ΩE,G(exp(x ∧ y)) = ΩE,G(h̃2,c+1(x, y))

The right side is ωLie
E,G(x, y), as described at the end of Section 7.6.6. We thus obtain:

ΩE,G(exp(x ∧ y)) = ωLie
E,G(x, y)

The left side involves composing the set map exp : L ∧ L → G ∧ G and the group

2. To see this, we could apply exp to the diagram for Lie rings and note that that diagram is equivalent
up to isomorphism with the diagram for groups.
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homomorphism ΩE,G : G∧G→ [E,E]. By Part (2), this is equivalent to composing the map

ΩN,L : L ∧ L→ [N,N ] with the Lazard correspondence up to isomorphism between [N,N ]

and [E,E]. The statement of the theorem uses the symbol ϕ to denote the isomorphism

[N,N ] → log([E,E]) describing the correspondence, so we obtain:

ϕ(ΩN,L(x ∧ y)) = ωLie
E,G(x, y)

ΩN,L(x ∧ y) = ωN,L(x, y), and we obtain:

ϕ(ωN,L(x, y)) = ωLie
E,G(x, y)

as desired.

The proof of the other identity is similar.

Proof of (4): The image of Z(N) in L is precisely the set {x ∈ L | ωN,L(x, y) = 0∀ y ∈ L}.

The image of Z(E) in G is precisely the set {x ∈ G | ωE,G(x, y) = 1 ∀ y ∈ G}. The condition

ωE,G(x, y) = 1 implies that ωLie
E,G(x, y) = 0 which in turn implies that ωN,L(x, y) = 0.

Similarly, the condition that ωN,L(x, y) = 0 implies that ω
Group
N,L (x, y) = 1 which in turn

implies that ωE,G(x, y) = 1. The upshot is that the image of Z(N) in L coincides with the

image of Z(E) in G.

Thus, the quotient of L by the image of Z(N) in L is in strict Lazard correspondence

with the quotient of G by the image of Z(E) in G. The former is canonically isomorphic to

N/Z(N) and the latter is canonically isomorphic to E/Z(E). Thus, N/Z(N) is in Lazard

correspondence with E/Z(E). Finally, the maps ωN,L and ωE,G descend in the same way

to maps ωN and ωE , and we obtain, for all x, y ∈ Inn(N):

ϕ(ωN (x, y)) = ωLie
E (x, y)

We thus obtain that N and E are in global class (c + 1) Lazard correspondence up to

isoclinism.
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Relation between the middle groups

We have demonstrated the existence of canonical isomorphisms between the left groups and

between the right groups in the two short exact sequences:

0 → Ext1Z(Gab;A) → H2(G;A) → Hom(G ∧G,A) → 0

↓ ↓

0 → Ext1Z(Lab;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0

As described in Sections 3.6.4 and 3.7.4, both short exact sequences split. Therefore, it

is possible to find an isomorphism H2(G;A) → H2
Lie(L;A) that establishes an isomorphism

of the short exact sequences:

0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G,A) → 0

↓ ↓ ↓

0 → Ext1Z(L;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0

Note, however, that the middle isomorphism is not canonical. In general, here, neither

sequence splits canonically. This is in contrast with the Baer correspondence up to isoclinism,

where the short exact sequence for Lie rings splits, as per Section 5.4.6. For the Baer

correspondence up to isoclinism, specifying an isomorphism of the middle groups is equivalent

to specifying a splitting of the short exact sequence corresponding to group extensions. For

the global Lazard correspondence up to isoclinism, however, the analogous statement is not

true.

7.7.6 The global Lazard correspondence up to isoclinism: filling the details

Suppose c is a positive integer and πc is the set of all primes less than or equal to c.

We are now in a position to flesh out the remaining details of the global Lazard corre-

spondence up to isoclinism, which we defined in Section 7.7.2:
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Equivalence classes up to isoclinism of πc-powered groups of nilpotency class at most c+ 1

↔ Equivalence classes up to isoclinism of πc-powered Lie rings of nilpotency class at most

c+ 1

There are two pending facts we need to establish:

1. For every πc-powered group G of nilpotency class at most c + 1, there exists a πc-

powered Lie ring L of nilpotency class at most c + 1 such that G and L are in global

class (c+ 1) Lazard correspondence up to isoclinism.

2. For every πc-powered Lie ring L of nilpotency class at most c + 1, there exists a πc-

powered group G of nilpotency class at most c + 1 such that G and L are in global

class (c+ 1) Lazard correspondence up to isoclinism.

Explicit construction from the group to the Lie ring

We are given a πc-powered group G of nilpotency class at most c + 1, and we need to find

a πc-powered Lie ring L of nilpotency class at most c + 1 such that L and G are in global

class c+ 1 Lazard correspondence up to isoclinism.

(a) Consider G as a central extension:

0 → Z(G) → G→ G/Z(G) → 1

Consider the equivalence class up to isoclinism of this extension.

(b) Based on the discussion in Section 7.7.5, this equivalence class corresponds to an equiv-

alence class up to isoclinism of Lie ring extensions with central subring log(Z(G)) and

quotient Lie ring log(G/Z(G)). Let L be any extension Lie ring in this equivalence class.

(c) By Theorem 7.7.4, L and G are in global Lazard correspondence up to isoclinism.
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Explicit construction from the Lie ring to the group

We are given a πc-powered Lie ring L of nilpotency class at most c+ 1, and we need to find

a πc-powered group G of nilpotency class at most c+1 such that L and G are in global class

c+ 1 Lazard correspondence up to isoclinism.

(a) Consider L as a central extension:

0 → Z(L) → L→ L/Z(L) → 0

Consider the equivalence class up to isoclinism of this extension.

(b) Based on the discussion in Section 7.7.5, this equivalence class corresponds to an equiv-

alence class up to isoclinism of group extensions with central subgroup exp(Z(L)) and

quotient group exp(L/Z(L)). Let G be any extension group in this equivalence class.

(c) By Theorem 7.7.4, L and G are in global class (c + 1) Lazard correspondence up to

isoclinism.

Preservation of order

In both directions, the constructions preserve the orders. In other words, if we start with a

finite group and use the construction in the direction from groups to Lie rings, the Lie ring

that we obtain has the same order as the group that we started with. Similarly, if we start

with a finite Lie ring and use the construction in the direction from Lie groups to groups,

the group that we obtain has the same order as the Lie ring that we started with.

This does not imply that every group and every Lie ring that are in global Lazard

correspondence up to isoclinism must have the same order. Rather, we are saying that

the answer to the existence question continues to be affirmative even after we impose the

condition that the orders have to be equal.
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In particular, given a a finite p-group of nilpotency class p, we can find a finite p-Lie ring

(i.e., a Lie ring whose additive group is a finite p-group) of nilpotency class p such that the

group and Lie ring are in global class p Lazard correspondence up to isoclinism. Similarly,

given a finite p-Lie ring of nilpotency class p, we can find a finite p-group of nilpotency

class p such that the group and Lie ring are in global class p Lazard correspondence up to

isoclinism.

7.7.7 Relating the global Lazard correspondence and the global Lazard

correspondence up to isoclinism

Suppose c is a positive integer and πc is the set of all primes less than or equal to c. In

Section 7.7.5, we considered the case where A is an abelian group and G is a global class c

Lazard Lie group (i.e., a πc-powered group of nilpotency class at most c) with Lazard Lie

ring L. Recall the short exact sequences described in Section 7.7.5:

0 → Ext1Z(Gab;A) → H2(G;A) → Hom(M(G), A) → 0

↓ ↓

0 → Ext1Z(Lab;A) → H2
Lie(L;A) → Hom(M(L), A) → 0

We had noted at the time that both short exact sequences split, and therefore the middle

groups are isomorphic. However, in general, neither splitting is canonical (the splitting on

the Lie ring side is canonical for abelian L, as described in Section 5.4.5, but this is an

exceptional situation). Moreover, in general, there is no canonical isomorphism between the

middle groups.

Suppose now that A and G (and therefore also L) are powered over the set of all primes

less than or equal to c + 1. Note that in the case that c + 1 is composite, this is always

true, but it may also be true for specific choices of A and G even in the case that c + 1 is

prime. In this case, all the elements of H2(G;A) correspond to global class (c + 1) Lazard

Lie groups and all the elements of H2
Lie(L;A) correspond to global class (c + 1) Lazard Lie
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rings. Moreover, the global class (c + 1) Lazard correspondence induces an isomorphism

between these groups that defines a canonical isomorphism of the short exact sequences:

0 → Ext1Z(Gab;A) → H2(G;A) → Hom(M(G), A) → 0

↓ ↓ ↓

0 → Ext1Z(Lab;A) → H2
Lie(L;A) → Hom(M(L), A) → 0

Note that in this situation, both short exact sequences split, neither splits canonically

(unless c = 1), yet there is a canonical isomorphism between them.

Another way of framing this is that, wherever applicable, the global class (c+ 1) Lazard

correspondence refines the global class (c+ 1) Lazard correspondence up to isoclinism.
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CHAPTER 8

APPLICATIONS AND POSSIBLE EXTENSIONS

8.1 Applications and related results

The Lazard correspondence up to isoclinism can be used as an analytical framework for the

study of previous extensions of the Lazard correspondence. Some of these are discussed in

this section. For simplicity, we restrict our statements to the global Lazard correspondence

up to isoclinism.

8.1.1 Relation with past work of Glauberman

A special case of the Lie bracket-like map for groups, described in Section 7.6.2, was described

by Glauberman in Section 5 of his 2008 paper [20]. Theorem 5.1 of the paper demonstrated

that the map is alternating and bilinear when viewed as a map from the Lazard Lie ring of

the inner automorphsim group. Explicitly, the statement of Theorem 5.1 was as follows:

Theorem 8.1.1 (Theorem 5.1 of [20]). Suppose S has nilpotence class at most p and

Z = Z(S). Then the following assertions hold.

1. Both S/Z and S′ have nilpotence class at most p− 1.

2. Define addition (and bracket multiplication) on S/Z and S′ as in Theorem 2.1 (of

[20]). Then there exists an alternating bi-additive function f from (S/Z)× (S/Z) into

S′ such that, for all u, v in S,

f(uZ, vZ) = 0 if and only if uv = vu.

Moreover, the image of f generates S′ as an additive group.
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Part (1) of the theorem is straightforward, and is a special case of Lemma 7.7.1. Part

(2) of the Theorem describes the map ωLie
S described in Section 7.6.2. The statement of part

(2) follows indirectly from the discussion in Section 7.7 as follows. The commutator map

defines a map (S/Z) ∧ (S/Z) → S′ from the exterior square of S/Z as a group. The Lie

bracket map ωLie
S correspondingly defines a Lie ring map log(S/Z) ∧ log(S/Z) → log(S′).

Here, log(S/Z)∧ log(S/Z) denotes the exterior square of log(S/Z) as a Lie ring. Essentially,

this follows from Theorem 7.7.3 where L = log(S/Z) and G = S/Z and part of the work

done in the proof of Theorem 7.7.4.

The main way that our results are more general than Glauberman’s is that our results

establish the existence of a Lie ring that is a counterpart to the whole group (S in Glauber-

man’s theorem) whose Lie bracket map realizes the map log(S/Z) ∧ log(S/Z) → log(S′).

The crucial additional ingredient in our proof is the use of the surjectivity of the universal

coefficient theorem short exact sequence (described in Section 3.7.4, and applied in Theorem

7.7.4) to demonstrate the existence of an appropriate Lie ring extension.

8.1.2 Correspondences between subgroups and subrings

The Lazard correspondence up to isoclinism is a correspondence between some equivalence

classes up to isoclinism of groups and some equivalence classes up to isoclinism of Lie rings.

This fact immediately constrains the utility of the correspondence to the study of attributes

that are invariant under isoclinism. Explicitly, any attribute of a group that we wish to study

using the Lazard correspondence up to isoclinism should be an attribute that is invariant

under isoclinisms of groups. Keeping this in mind, we apply the Lazard correspondence up

to isoclinism to relate subgroups of the group and subrings of the Lie ring.

In Section 2.1.8, we described some aspects of the subgroup structure that are invariant

under isoclinism. In particular, we noted there that we have a correspondence between

subgroups containing the center for the two groups. We discussed the similar situation for

Lie rings in Section 2.2.5.
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In Section 6.6.8, we described how the global Lazard correspondence gives a correspon-

dence between some subgroups of the group and some subrings of the Lie ring. Explicitly,

the correspondence is between the global Lazard Lie subgroups of the group and the global

Lazard Lie subrings of the Lie ring.

The global Lazard correspondence up to isoclinism combines the above ideas to give a

correspondence between some subgroups of the group and some subrings of the Lie ring. We

now describe this correspondence.

Suppose c is a positive integer. Denote by πc the set of primes that are less than or equal

to c. Suppose G is a πc-powered group of class (c + 1) and L is a πc-powered Lie ring of

class (c + 1), and suppose G and L are in global class (c + 1) Lazard correspondence. We

have a correspondence:

πc-powered subgroups of G containing Z(G) ↔ πc-powered Lie subrings of L containing

Z(L)

Further, if a subgroup H of G and a subring M of L correspond to each other by the

correspondence above, then H and M are in global class c Lazard correspondence up to

isoclinism. Even in the case that H is a global Lazard Lie group or M is a global Lazard

Lie ring, H and M are not necessarily in global Lazard correspondence up to isomorphism.

The correspondence restricts to a correspondence between normal subgroups and ideals:

πc-powered normal subgroups of G containing Z(G) ↔ πc-powered ideals of L containing

Z(L)

We can generalize the correspondence somewhat. For any d ≤ c, denote by πd the set of

all primes less than or equal to d. We have a correspondence:

πd-powered subgroups of G of class at most (d+ 1) containing Z(G) ↔ πd-powered Lie

subrings of L of class at most (d+ 1) containing Z(L)

This also restricts to a correspondence between normal subgroups and ideals:
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πd-powered normal subgroups of G of class at most (d+ 1) containing Z(G) ↔ πd-powered

ideals of L of class at most (d+ 1) containing Z(L)

8.1.3 Correspondence between abelian subgroups and abelian subrings

In Section 2.1.10 (respectively, Section 2.2.7), we noted that for two groups (respectively,

two Lie rings) that are isoclinic, the abelian subgroups (respectively, abelian subrings) that

contain the center are in correspondence. We now state similar results describing a corre-

spondence between a group and a Lie ring that are in Lazard correspondence up to isoclinism.

Suppose c is a positive integer. Denote by πc the set of primes that are less than or equal to

c. Suppose a group G is in global class (c+ 1) Lazard correspondence up to isoclinism with

a Lie ring L. Then, the following hold:

• The Lazard correspondence up to isoclinism establishes a correspondence between

abelian subgroups of G containing Z(G) and abelian subrings of L containing Z(L).

• The Lazard correspondence up to isoclinism establishes a correspondence between the

abelian subgroups of G that are self-centralizing and the abelian subrings of L that are

self-centralizing.

• In the case that G and L are both finite, the Lazard correspondence up to isoclinism

establishes a correspondence between abelian subgroups of maximum order in G and

abelian subrings of maximum order in L.

• For each of the correspondences above, normal subgroups correspond with ideals.

• If G and L are both finite, then each of the correspondences above preserves index.

8.1.4 Normal subgroups that are global Lazard Lie groups

We begin with a lemma. We omit the proof because the lemma is straightforward.
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Lemma 8.1.2. The following are equivalent for a group G.

1. Any two elements of G that are conjugate to each other commute.

2. Every element of G is contained in an abelian normal subgroup of G.

3. The normal closure of every element of G is abelian.

4. G is a union of abelian normal subgroups.

5. For all x, y ∈ G, [[x, y], y] = 1, i.e., G satisfies a 2-Engel condition.

Groups that satisfy the equivalent conditions of the lemma are termed Levi groups or

2-Engel groups. We can now state the next lemma.

Lemma 8.1.3. Suppose G is a nilpotent group of nilpotency class two. Then, G is a

Levi group.

We can now state an important result relating the nilpotency class of a group and the

nilpotency class of normal closures of elements. The result follows from the above lemma

and induction on the nilpotency class.

Lemma 8.1.4. Suppose G is a nilpotent group of nilpotency class c + 1 where c ≥ 1.

Then, the normal closure of any element of G is a nilpotent group of nilpotency class at most

c. In other words, G is a union of normal subgroups each of which has nilpotency class at

most c.

Proof. We prove the claim by induction on c. The base case c = 1 follows from the preceding

lemma. We proceed to demonstrate the inductive step, assuming c ≥ 2.

Let x ∈ G and let H be the normal closure of x in G.
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Denote by x the image of x in G/Z(G). It is easy to verify that the normal closure of x

in G/Z(G) is the image of H in G/Z(G). Denote this by H. By assumption, G/Z(G) has

class c. Thus, by the inductive hypothesis, H has class at most c−1. Therefore, H has class

at most c.

The relevance of this result to the global Lazard correspondence is as follows.

Lemma 8.1.5. Suppose c is a positive integer, πc is the set of all primes less than or

equal to c, and G is a πc-powered group of nilpotency class at most (c + 1). Then, the

following hold:

1. Every element of G is contained in a normal subgroup of G that is a global class c

Lazard Lie group. Equivalently, G is a union of normal subgroups that are global class

c Lazard Lie groups.

2. G is a union of normal subgroups that are global class c Lazard Lie groups such that

all the subgroups contain the center of G.

Proof. Proof of (1): We will show that for every element g ∈ G, g is contained in global class

c Lazard Lie subgroup of G. By the preceding lemma (Lemma 8.1.4), the normal closure of

g in G is a group of nilpotency class c. Denote this normal closure as H. Then, by Theorem

4.3.3, the subgroup πc
√
H is a πc-powered normal subgroup of G. Thus, πc

√
H is a global

class c Lazard Lie group that is a normal subgroup of G.

Proof of (2): We can replace each of the normal subgroups obtained for part (1) by its

product with the center of G.

In Section 7.7, we showed that for a group G satisfying the hypotheses of the lemma

above, we can find a Lie ring L such that G is in global class (c+ 1) Lazard correspondence

up to isoclinism with L. In Section 8.1.2, we showed that the πc-powered normal subgroups

of G that contain the center Z(G) are in Lazard correspondence up to isoclinism with the
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πc-powered ideals of L that contain the center Z(L). In particular, this means that there is

a correspondence:

Normal subgroups of G containing the center that are global class c Lazard Lie groups ↔

Ideals of L containing the center that are global class c Lazard Lie rings

Note, however, that even though the objects on both sides of the correspondence are in

the domain of the global Lazard correspondence, the correspondence itself is only a global

Lazard correspondence up to isoclinism.

This raises the following question:

Given a πc powered group G of nilpotency class (c + 1), is it possible to choose

a πc-powered Lie ring L such that, under the above correspondence, each of

the corresponding objects are in global Lazard correspondence (not just up to

isoclinism)?

In general, the answer to this question is no. We can see examples even for 2-groups of

class two, such as the case where c = 2 and G = D8. Our conclusion can be deduced from

the discussion in Section 5.5.

8.1.5 Adjoint action

Many aspects of the relationship between inner automorphisms and inner derivations de-

scribed in Section 6.6.9 continue to be valid, with suitable modification, for the global Lazard

correspondence up to isoclinism (and also for the 3-local Lazard correspondence up to iso-

clinism). We will state our results for the global Lazard correspondence up to isoclinism,

and mention at the end why the results generalize to the 3-local Lazard correspondence up

to isoclinism.

Suppose c is a positive integer and πc is the set of all primes less than or equal to c.

Suppose G is a πc-powered group of class at most c + 1 and L is a πc-powered Lie ring of
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class at most c+ 1 such that G and L are in global class (c+ 1) Lazard correspondence up

to isoclinism.

The adjoint action of G on L is defined as follows:

Ad : G→ Aut(L)

For any u ∈ G, define Adu as follows. Denote by u the image of u in G/Z(G). Denote by

x an element of L such that the image of x in L/Z(L) corresponds to the element u under

the global class c Lazard correspondence between L/Z(L) and G/Z(G). We define Adu as

the following automorphism of L:

Adu = exp(adx)

where exp is understood to mean the actual power series of exp, with the addition and

multiplication happening inside EndZ(L), the ring of endomorphisms of the underlying ad-

ditive group of L. Explicitly:

Adu = 1 + adx +
ad2

x

2!
+ . . .

adc
x

c!

Or even more explicitly:

Adu(g) = g + [x, g] +
1

2!
[x, [x, g]] + · · ·+ 1

c!
[x, [x, . . . [x, g] . . . ]]

where the x appears c times in the last iterated Lie bracket.

It can easily be verified that Adu is an automorphism of L (this follows, for instance, by

noting that adx is a derivation of L satisfying the conditions of Proposition 2.5 in Alperin

and Glauberman’s paper [1]). It can also be verified that Aduv = Adu Adv, making Ad a

homomorphism. Note that both these verifications use only three elements at a time:

• The verification that Adu is an automorphism requires us to consider the effect of Adu
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on an arbitrary Lie product [g, h], and therefore involves three elements: x, g, and h.

• The verification that Aduv = Adu Adv requires us to consider an arbitrary element

g ∈ L and elements (say x and y) that correspond to u and v when considered modulo

the center. Therefore, this involves three elements.

Thus, the proofs generalize to the 3-local case.

8.1.6 Adjoint group and unitriangular matrix group

In Section 6.6.10, we noted that for a nilpotent associative ring N of class c, its associated

Lie ring and adjoint group 1 +N are both nilpotent. We further noted that if the additive

group of N is πc-powered where πc is the set of primes less than or equal to c, then N (as a

Lie ring) is in global class c Lazard correspondence with the adjoint group 1 +N .

The result has an analogue for the global class (c + 1) Lazard correspondence up to

isoclinism, as follows. Suppose N is a nilpotent associative ring of nilpotency class c+1 (i.e.,

all products of length c+ 2 or more are zero). Suppose further that the additive group of N

is πc-powered. Then, the Lie ring N and the adjoint group 1 +N are in global class (c+ 1)

Lazard correspondence up to isoclinism.

We can therefore also obtain an analogue of the result described in Section 6.6.11. Ex-

plicitly, this says the following: if the additive group of a commutative associative unital ring

R is πc-powered, then NT (c + 2, R), viewed as a Lie ring, is in global class (c + 1) Lazard

correspondence up to isoclinism with the group UT (c+ 2, R).

8.2 Possible extensions

8.2.1 Relaxing the πc-powered assumption on the whole group

It is possible to reframe the existence result of the global class (c+1) Lazard correspondence in

a manner that replaces the assumption that the group itself is πc-powered by the assumption
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that the inner automorphism group and derived subgroup are πc-powered. Similarly, we can

replace the assumption that the Lie ring itself is πc-powered by the assumption that the

inner derivation Lie ring and derived subring are both πc-powered. We can ahow both

results either by making modifications to the proofs or by first passing from the group to an

isoclinic group that is πc-powered.

Note that we do need to make the assumption of πc-powering for both the inner auto-

morphism group and the derived subgroup. If we assume only that the inner automorphism

group is πc-powered, it does follow from that that the derived subgroup is πc-divisible, but

the derived subgroup need not be πc-torsion-free and therefore need not be πc-powered. For

instance, for c ≥ 2, consider the group G = UT (c + 2,Q)/Z, where the subgroup Z being

factored out is inside the central subgroup Q. G is a global class (c + 1) group and Inn(G)

is πc-powered (in fact, it is rationally powered), but G′ is not πc-powered (in fact, it is not

powered over any prime, because it contains Q/Z as a subgroup).

8.2.2 3-local Lazard correspondence up to isoclinism: proof of existence

In Section 7.7, we defined the Lazard correspondence up to isoclinism in the 3-local setting,

but we proved existence only in the global setting. We expect the results to hold in the

3-local setting. Explicitly, we expect the following results described in the outline to hold:

• For a Lie ring L, if both Inn(L) and L′ are (3-local) Lazard Lie rings, then we can find

a group G such that L is in (3-local) Lazard correspondence up to isoclinism with G.

• For a group G, if both Inn(G) and G′ are (3-local) Lazard Lie groups, then we can find

a Lie ring L such that L is in Lazard correspondence up to isoclinism with G.

We believe that proofs analogous to those presented in Section 7.7 of this thesis can be

used to show the above. However, executing these proofs would require us to define a number

of intermediate objects more generally, making the exercise of generalizing the proofs more

difficult.
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8.2.3 More results about primes appearing in denominators

The literature on the Baker-Campbell-Hausdorff formula and the Lazard correspondence

includes a number of bounds on primes that appear in denominators in these formulas.

Some of the relevant literature is discussed below.

• Theorem C of Easterfield’s paper [11] provides bounds on the exponents of primes

appearing in formulas for commutators between powers of elements. The paper does

not explicitly discuss the Lazard correspondence or the Baker-Campbell-Hausdorff for-

mula, but the results are closely related, and the relationship is elucidated further by

Glauberman in his paper [19] on partial extensions of the Lazard correspondence.

• The paper [9], a paper describing a computationally effective version of the Lazard

correspondence, provides bounds on the exponents of primes in denominators for the

formula. The bounds for the inverse Baker-Campbell-Hausdorff formula are in Section

6 of the paper.

• Thomas Weigel’s doctoral dissertation [48] contains strong bounds on the primes that

appear in the denominators for formulas for Md and h2,d where d ≤ 2c − 2. These

results are related to the results we describe in the Appendix, Section B.1.3.

8.2.4 Potential extension to a Lazard correspondence up to n-isoclinism

In the Appendix, Section A.5, we describe the notions of isologism and homologism for

groups. Similar concepts can be defined for Lie rings (and in fact, for more general varieties

of algebras). The corresponding generalization of the Schur multiplier is an abelian group

termed the Baer invariant. The paper [31] by Leedham-Green and McKay is an important

source of results about isologisms.

A particular form of isologism of interest to us is n-isoclinism for a positive integer n. The

concepts of n-isoclinism and n-homoclinism are described in the Appendix, Section A.5.7 and
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also in [24] (for groups) and [40] (for Lie rings). Recall that an isoclinism between groups is

an equivalence between their commutator structures. The commutator structure is precisely

the structure that becomes trivial in all abelian groups. Thus, we can think of isoclinism

as “equivalence modulo the subvariety of abelian groups.” In a similar vein, n-isoclinism

is an equivalence between the (n + 1)-fold commutator structures, and we can think of it

as “equivalence modulo the subvariety of groups of nilpotency class n.” The corresponding

generalization of the Schur multiplier is an abelian group termed the n-nilpotent multiplier.

The n-nilpotent multiplier of a group G is denoted M (n)(G), and we use similar notation

for Lie rings. Note that the Schur multiplier is the n-nilpotent multiplier for the case n = 1.

It may be possible to generalize the “global class (c + 1) Lazard correspondence up to

isoclinism” to a “global class (c + n) Lazard correspondence up to n-isoclinism” for some

values of n > 1. Weigel’s results, alluded to in Section 8.2.3, suggest that it may be possible

to define the notion for some values of n > 1 (dependent on c).

However, there are important parts of the theory developed in Sections 3.6 and 3.7 that do

not generalize in the expected manner. For instance, the paper [31] by Leedham-Green and

McKay suggests that the approach that we have used in this thesis cannot be used to show

existence. In particular, instead of the universal coefficient theorem short exact sequence

described in Section 3.6.4, we obtain a long exact sequence. Specifically, the analogue of

right exactness (the surjectivity of the right map) fails. For a more detailed discussion of

the failure of surjectivity, see Section 2 of the paper by Leedham-Green and McKay.

8.2.5 Glauberman’s partial extension

In his 2007 paper [19], George Glauberman described a generalization of the Lazard corre-

spondence. His Theorem A and Theorem B are restated below.

Theorem 8.2.1 (Theorem A of [19]). Suppose p is a prime and S is a finite p-group.

Then [x, y] (in the Lie bracket sense) is well defined whenever x and y are elements of
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(possibly different) normal subgroups of S of nilpotence class at most p− 1.

In addition, suppose A and B are normal subgroups of S of nilpotence class at most

p− 1. Define + and [ , ] on A and B as in the Lazard correspondence. Then:

(i) for each u in A and v in B, the elements [u, v] and [v, u] lie in A∩B, and [v, u] = [u, v]−1.

(ii) for each u, u′ in A and v in B,

[u+ u′, v] = [u, v] + [u′, v] and [[u, u′], v] = [[u, v], u′] + [u, [u′, v]]

Theorem 8.2.2 (Theorem B of [19]). Suppose S is a finite p-group generated by a set S

of normal subgroups N of S having nilpotence class at most p−1. Let U be the set-theoretic

union of the elements of S. For each N in S, define + on N by Lazard’s definition. For each

u, v ∈ U, define [u, v] as in Theorem A.

Let E = End(S) be the set of all mappings φ from U to U such that, for each N in S,

φ maps N into N and induces an endomorphism of N under +.

Define addition and multiplication on E by

(φ+ φ′)(x) = φ(x) + φ′(x) and (φφ′)(x) = φ(φ′(x))

For each v ∈ U, define a mapping ad v on U by

(ad v)(u) = [u, v]

Then:

(i) ad v lies in E for each v in U.

(ii) for each N in S and each v, w ∈ N , ad(v + w) = ad v + adw.

(iii) for v, w ∈ U:
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[ad v, adw] = ad[w, v] = − ad[v, w]

ad v = adw ⇐⇒ v ≡ w (mod Z(S))

(iv) The additive subgroup L(S) of E spanned by mappings ad v for v in U is a Lie subring

of E, and

(v) for L(S) as in part (iv), each element φ of L(S) satisfies

φ([u, v]) = [φ(u), v] + [u, φ(v)] ∀u, v ∈ U

In the special case that S is a finite p-group of nilpotency class p, the existence of a

collection S satisfying the hypotheses of the theorems is guaranteed by Lemma 8.1.5. We

can also deduce that L(S) is isomorphic to the Lazard Lie ring log(Inn(S)), regardless of the

choice of S. We also know that in this case there exists a Lie ring N that is in global class

p Lazard correspondence up to isoclinism with S, and therefore, that Inn(N) ∼= L(S).

Thus, in the case that S is a finite p-group of nilpotency class greater than p but admitting

such a collection of normal subgroups S, the Lie ring L(S) can be thought of as our attempt

to define log(Inn(S)), even though the latter does not exist.1 This raises the question of

whether we can define a generalization of the Lazard correspondence up to isoclinism that

would guarantee the existence of a Lie ring N such that we can think of S and N as being

related via that appropriate generalization, and such that Inn(N) ∼= L(S).

1. In private correspondence, George Glauberman shared an example of a finite p-group S of class greater
than p for which the isomorphism type of L(S) is dependent on the choice of S, i.e., different choices of S
may yield different isomorphism types for L(S). The example has not yet been published.
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8.2.6 Possible generalization of the Kirillov orbit method

The Kirillov orbit method is a method used to compute the degrees of the irreducible rep-

resentations of a finite Lazard Lie group. The following is the procedure for computing the

degrees of irreducible representations of a finite group G:

• Denote by L the Lazard Lie ring corresponding to G.

• Denote by L̂ the Pontryagin dual to L, viewed only as an additive group. Note that L̂

is isomorphic to L, but there is no natural isomorphism.

• The natural action of G on L (called the adjoint representation, and described in

Section 6.6.9) induces a natural action of G on L̂ (called the coadjoint representation).

The orbits under this action correspond to the irreducible representations. Moreover,

the size of any orbit is the square of the degree of the irreducible representation to

which it corresponds. Note that this is combinatorially consistent with the fact that

the sum of squares of the degrees of irreducible representations of G equals the order

of G (because the order of G equals the order of L, and this in turns equals the order

of L̂).

For a detailed discussion of the method, see the papers [21], [7], and [33].

In the Appendix, Section B.3, we show that if two finite groups are isoclinic, they have

the same proportions of degrees of irreducible representations, and in particular, if they have

the same order, then they have the same multiset of degrees of irreducible representations,

and therefore they have isomorphic group algebras over the field of complex numbers.

In particular, suppose G1 and G2 are isoclinic and both are finite p-groups of the same

order that are Lazard Lie groups. Denote by L1 the Lazard Lie ring of G1 and denote by

L̂1 the Pontryagin dual to L1. In order to find the degrees of irreducible representations of

G1, we consider its coadjoint representation (action on L̂1). Note that this action factors

through the group G1/Z(G1) ∼= Inn(G1). In particular, since G2 is isoclinic to G1, we can
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also view the coadjoint action as an action of G2 on L̂1. Moreover, the sizes of the orbits

here are the squares of the degrees of irreducible representations of G1, and hence also of

G2.

This has an important implication, namely, that if our goal behind using the Kirillov orbit

method is solely to find the degrees of the irreducible representations rather than determine

the actual irreducible representations, then we can use the Lazard Lie ring of any isoclinic

group. This suggests that we might be able to generalize the method to the situation of the

Lazard correspondence up to isoclinism.

In Section 8.1.5, we noted that if G and L are in global class (c+1) Lazard correspondence

up to isoclinism, then we can define an adjoint action of G on L. We can use this to obtain

a coadjoint action of G on the Pontryagin dual L̂.

This leads to the following conjecture.

Conjecture 8.2.3 (Kirillov orbit method for correspondence up to isoclinism). Suppose

p is a prime number, G is a finite p-group of nilpotency class p, and L is a finite p-Lie ring

of nilpotency class p such that G and L are in global class p Lazard correspondence up to

isoclinism, and such that G and L have the same order. Consider the coadjoint action of G

on the Pontryagin dual L̂ described above. The sizes of the orbits for this coadjoint action

are the squares of the degrees of irreducible representations.

Note that, even if the conjecture were true, the method would be weaker than the actual

Kirillov orbit method, because the actual Kirillov orbit method can be used to find explicitly

the characters of the irreducible representations. However, this method can only provide

the degrees of the irreducible representations. It cannot reveal the characters themselves

because the characters are not invariant under isoclinism. In fact, this method can only

reveal isoclinism-invariant information.
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8.2.7 Other possibilities: the use of multiplicative Lie rings

In [17], Graham Ellis defined multiplicative Lie rings, which have been further considered in

[4]. The theory of multiplicative Lie rings is powerful enough to encapsulate both the theory

of groups and the theory of Lie rings. This theory is, however, relatively non-standard

and not sufficiently well-developed in the literature, so we do not use this framework in the

document. It would be a potentially interesting exercise to reformulate the results and proofs

presented here in the language of multiplicative Lie rings.
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APPENDIX A

BACKGROUND MATERIAL

A.1 Background definitions and basic theory

A.1.1 Rings and associativity

A ring is an abelian group R (with the abelian group operation denoted additively) equipped

with a Z-bilinear operation R × R → R called the ring multiplication. Here, “Z-bilinear”

is equivalent to the left and right distributivity laws. The multiplication operation of a

ring may be denoted by an explicit multiplicative symbol such as ∗ or · but it will often be

denoted by concatenation (also known as juxtaposition), i.e., we will denote by ab the image

of (a, b).

An associative ring is a ring where the multiplication is associative. With the notation

above, R is associative if the following holds:

(ab)c = a(bc) ∀ a, b, c ∈ R

Note that we do not assume associativity as part of the definition of ring. Thus, our

definition of ring includes associative rings, Lie rings, and other kinds of rings. The use of

concatenation can be misleading in the non-associative case, because the string abc has two

differing interpretations: (ab)c versus a(bc). When considering products of length more than

two in a non-associative ring, we must take care to use parentheses to clarify the order of

operations.

Note that when we use the term “commutative unital ring” we are by default referring

to rings that are both commutative and associative and where the ring multiplication has

an identity element, that we denote as 1.
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A.1.2 Algebras over a commutative unital ring

Suppose R is a commutative (associative) unital ring. An algebra over R, also called a

R-algebra, is a R-module A equipped with a R-bilinear operation A × A → A called the

multiplication or product. Note that any algebra over R is naturally also a ring. If the

multiplication of A is associative, we say that A is an associative algebra over R. We can in

fact define a ring as a Z-algebra.

A.1.3 Structure constants and multilinear identities

Suppose R is a commutative (associative) unital ring and A, B, C are R-modules, with

f : A×B → C a R-bilinear map. Suppose (ai), (bj), (ck) form generating sets for A, B, and

C as R-modules. We can find values λk
ij ∈ R, called the structure constants of f , such that

the following holds for all i, j:

f(ai, bj) =
∑
k

λk
ijck

Note that the structure constants need not be uniquely determined by the knowledge of

f and the generating sets. However, in the case that C is a free R-module and the (ck) form

a freely generating set for C, the structure constants are uniquely determined by f and the

choice of generating sets. The converse is always true: if we are given the structure constants

and the generating sets, f is uniquely determined.

The typical case where we talk of structure constants is where A, B, and C are all free

R-modules and each of the generating sets is a freely generating set. In this case, every

possible tuple of values for λk
ij can be realized via a bilinear map. A further special case

of this is where R is a field. In this case, all R-modules are free (explicitly, they are vector

spaces over the field, and each generating set is a basis for the corresponding vector space).

In particular, given an algebra A over a commutative unital ring R such that the additive

group of A is a free R-module, we can describe A by choosing a freely generating set for it
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and then using structure constants for the multiplication of A. In this case, we will call the

structure constants for the multiplication of A the structure constants of A.

A.1.4 Lie rings and Lie algebras

A Lie ring is defined as an abelian group L equipped with a Z-bilinear map [ , ] : L×L→ L

called the Lie bracket satisfying the following conditions:

• Alternating property: [x, x] = 0 for all x ∈ L. It also follows from this that [x, y] =

−[y, x] for all x, y ∈ L. The latter condition is termed skew symmetry. The proof of

the implication uses that [ , ] is Z-bilinear. Explicitly, the proof uses Z-bilinearity to

show that [x, y] + [y, x] = [x+ y, x+ y]− [x, x]− [y, y], and we then note that the right

side is zero by the alternating property.

The converse implication does not hold, i.e., skew symmetry does not imply the alter-

nating property, although it does so if L is 2-torsion-free. Explicitly, [x, y] = −[y, x]

for all x, y implies that [x, x] = −[x, x] for all x, so 2[x, x] = 0. In the case that L is

torsion-free, this implies that [x, x] = 0.

• Jacobi identity: There are two versions, both of which are equivalent under skew sym-

metry (and hence under the alternating property):

– Left normed Jacobi identity: [[x, y], z]+ [[y, z], x]+ [[z, x], y] = 0 for all x, y, z ∈ L.

– Right normed Jacobi identity: [x, [y, z]]+[y, [z, x]]+[z, [x, y]] = 0 for all x, y, z ∈ L.

Let R be a commutative (associative) unital ring. A Lie algebra over R is a R-module L

equipped with a R-bilinear map [ , ] : L × L → L called the Lie bracket satisfying the two

conditions above, namely, the alternating property and the Jacobi identity.

Note in particular that any R-Lie algebra can naturally be viewed as a Lie ring. A Lie

ring can be defined as a Z-Lie algebra.

The following additional definitions are useful:
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• Subring of a Lie ring: A subset S of a Lie ring is termed a subring (or Lie subring) if

it is an additive subgroup of L and is closed under the Lie bracket, i.e., [x, y] ∈ S for

all x, y ∈ S.

• Ideal of a Lie ring: A subset I of a Lie ring L is termed an ideal if I is an additive

subgroup of L and [x, y] ∈ I for all x ∈ I, y ∈ L.

Any ideal is a subring, but a subring need not be an ideal.

• Homomorphism of Lie rings: Given Lie ring L1 and L2, a homomorphism from L1 to

L2 is a set map ϕ : L1 → L2 that is a homomorphism between L1 and L2 as groups

and such that ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ L.

• Quotient Lie ring: Given a Lie ring L and an ideal I of L, the quotient group L/I

naturally inherits the structure of a Lie ring from L.

We can also define corresponding notions of subalgebra of a Lie algebra, ideal of a Lie

algebra, homomorphism of Lie algebras, and quotient Lie algebra, all in the context of a

R-Lie algebra for a commutative (associative) unital ring R.

There are analogues in Lie rings (and also in R-Lie algebras) of the four isomorphism

theorems for groups.

A.1.5 The relationship between Lie rings and Lie algebras

Most of the basic ideas and definitions associated with Lie rings (that we can think of as

Z-Lie algebras) generalize to R-Lie algebras for any commutative (associative) unital ring

R. In the Appendix, we discuss how the definitions for Lie rings relate to corresponding

definitions for R-Lie algebras. However, all the definitions and results in the main document

are framed in terms of Lie rings.

Many of the results in the main document generalize to Lie algebras. However, to cor-

rectly generalize the main results (which are about correspondences between groups and
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Lie rings) we need to develop a concept of a group powered over an arbitrary commutative

(associative) unital ring.

A.1.6 Verification of multilinear identities: associativity and the Jacobi

identity

Suppose R is a commutative unital ring andM is a R-module. We use the term R-multilinear

identity for an identity of the form:

F (x1, x2, . . . , xn) = 0

where F : M × M × · · · × M → M is R-linear in each coordinate. We say that the

identity holds in M if the above holds for all x1, x2, . . . , xn ∈ M , i.e., F is identically the

zero function.

For any commutative unital ring R and any R-algebra A, associativity of A is a R-

multilinear identity (that may or may not hold for A). Similarly, the left-normed Jacobi

identity for A is a R-multilinear identity (that may or may not hold for A).

For any R-multilinear identity being considered on a R-module M , the following are true:

• It suffices to verify the identity on a generating set for M as a R-module, i.e., it suffices

to verify the identity for each xi varying arbitrarily over a generating set for M as a

R-module.

• In the case that M is a free R-module and the multilinear operation F is built from a

R-bilinear operation f : M ×M → M , the multilinear identity reduces to a polyno-

mial condition in terms of the structure constants for f (this will be clearer from the

examples below).

Suppose R is a commutative unital ring and A is a R-algebra with multiplication ∗, i.e.,

A is a R-module and ∗ : A×A→ A is a R-bilinear map. The associator of ∗ is a R-trilinear
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function a : A× A× A→ A defined as:

a(x, y, z) := ((x ∗ y) ∗ z)− (x ∗ (y ∗ z))

∗ is associative if and only if a is the zero function. In order to verify that a is the zero

function, it suffices to choose a generating set S for A as a R-module and then verify that

a(x, y, z) = 0 for all x, y, z ∈ S.

In the case that A is a free R-module with freely generating set ei, i ∈ I and structure

constants λk
ij for the multiplication, the associativity condition can be written as follows, for

all i, j, k, l ∈ I:

∑
m∈I

λm
ijλ

l
mk =

∑
m∈I

λl
imλ

m
jk

Suppose R is a commutative unital ring and L is a R-algebra with multiplication denoted

by a bracket [ , ]. The left-normed and right-normed Jacobi identities respectively mean

that the following R-trilinear functions are zero everywhere:

Jl(x, y, z) = [[x, y], z] + [[y, z], x] + [[z, x], y]

Jr(x, y, z) = [x, [y, z]] + [y, [z, x]] + [z, [x, y]]

In order to verify either of these identities, it suffices to verify it on a generating set for

L as a R-module. Explicitly, if S generates L as a R-module, then Jl(x, y, z) = 0 for all

x, y, z ∈ L if and only if Jl(x, y, z) = 0 for all x, y, z ∈ S. Similarly, Jr(x, y, z) = 0 for all

x, y, z ∈ L if and only if Jr(x, y, z) = 0 for all x, y, z ∈ S.

In the case that L is free as a R-module, the left-normed and right-normed Jacobi iden-

tities can be verified in terms of the structure constants. Explicitly, if ei, i ∈ I form a freely
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generating set for L, and λk
ij denote the structure constants, then the following hold:

• The left-normed Jacobi identity is equivalent to the condition that:

∑
m∈I

(λm
ijλ

l
mk + λm

jkλ
l
mi + λm

kiλ
l
mj) = 0

• The right-normed Jacobi identity is equivalent to the condition that:

∑
m∈I

(λl
imλ

m
jk + λl

jmλ
m
ki + λl

kmλ
m
ij ) = 0

A.1.7 Derivation of a ring and of an algebra

We define derivations for rings, and also for algebras for commutative unital rings.

Definition (Derivation). Suppose A is a ring with multiplication denoted by ∗. A set

map d : A→ A is termed a derivation of A if it satisfies both these conditions:

• d is an endomorphism of the additive group of A.

• d satisfies the following condition, called the Leibniz condition:

d(x ∗ y) = (d(x) ∗ y) + (x ∗ d(y)) ∀ x, y ∈ R

Note that we typically do not use parentheses for the inputs to derivations if they are

single letters, so the above is often written as:

d(x ∗ y) = (dx ∗ y) + (x ∗ dy) ∀ x, y ∈ R

The set of derivations of a ring forms a Lie ring, where the addition is pointwise, and
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the Lie bracket is defined as [d1, d2] = d1 ◦ d2 − d2 ◦ d1 (with ◦ denoting composition of set

maps). For a ring A, we will denote the Lie ring of derivations of A by Der(A).

We now consider the definition of derivation for an algebra over a commutative unital

ring.

Definition (Derivation of an algebra). Suppose R is a commutative unital ring and A

is a R-algebra. A set map d : A → A is termed a derivation of A as a R-algebra if d is a

R-module endomorphism of A and satisfies the Leibniz condition (stated in the preceding

definition).

The set of derivations of a R-algebra forms a R-Lie algebra.

A.1.8 Derivation of a Lie ring and of a Lie algebra

Suppose L is a Lie ring. For any x ∈ L, consider the set map adx : L → L given by

adx(y) = [x, y]. adx is termed the left adjoint map, or simply the adjoint map corresponding

to x.

It follows from the distributivity of the Lie bracket that adx is an additive group endo-

morphism, and the Jacobi identity along with skew symmetry give us that adx satisfies the

Leibniz condition. Similarly, if L is a Lie algebra over a commutative unital ring R, then

adx is a derivation in the R-algebra sense.

The derivations of the form adx are termed inner derivations of L. We can easily verify

that two elements x, y ∈ L satisfy adx = ady if and only if adx−y = 0, and the set of values

z ∈ L for which adz = 0 is precisely the center of L (defined as the set {z ∈ L | [z, y] =

0 ∀ y ∈ L}). We obtain the following:

• The inner derivations of L form an ideal inside Der(L). We will denote this ideal by

Inn(L).
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• The set map x 7→ adx defines a Lie ring homomorphism from L to Der(L) with image

Inn(L) and kernel Z(L). Thus, by the first isomorphism theorem, L/Z(L) is canonically

isomorphic to Inn(L).

A.2 Abstract nonsense

A.2.1 Basic category theory: categories, functors, and natural

transformations

We define here three foundational ideas of category theory: categories, functors, and natural

transformations.

Definition of category

A category C is the following data:

• Objects: A collection Ob C of objects.1

• Morphisms: For any objects A,B ∈ Ob C, a collection C(A,B) of morphisms. Every

element in C(A,B) is termed a morphism from A (i.e., with source or domain A) to B

(i.e., with target or co-domain B). The morphism sets for different pairs of objects are

disjoint. Note that f ∈ C(A,B) is also written as f : A → B. The collection C(A,B)

is sometimes also denoted HomC(A,B) or simply Hom(A,B).

• Identity morphism: For every object A ∈ Ob C, a distinguished morphism idA ∈

C(A,A). This is called the identity morphism of A.

• Composition rule: For A,B,C ∈ Ob C, a map, called composition of morphisms, from

C(B,C)× C(A,B) to C(A,C). This map is denoted by ◦.

1. There are some set theory paradoxes due to which we are using the term “collection” rather than “set”
here.
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satisfying the following compatibility conditions:

• Associativity of composition: ForA,B,C,D ∈ Ob C, with f ∈ C(A,B), g ∈ C(B,C), h ∈

C(C,D), we have h ◦ (g ◦ f) = (h ◦ g) ◦ f .

• Identity behaves as an identity: For A,B ∈ Ob C, with f ∈ C(A,B), we have f ◦ idA =

idB ◦f = f .

We will also use the following terms:

• For A ∈ Ob C, an endomorphism of A is defined as an element of C(A,A). The

endomorphisms of A form a monoid under composition, denoted EndC(A). The identity

morphism IdA is the identity element of this monoid.

• For A,B ∈ Ob C, an isomorphism from A to B is defined as an element f ∈ C(A,B)

such that there exists an element g ∈ C(B,A) for which g ◦ f = IdA and f ◦ g = IdB .

• For A ∈ Ob C, an automorphism of A is defined an an endomorphism of A that is also

an isomorphism. The automorphisms of A form a group under composition, denoted

AutC(A). The identity morphism IdA is the identity element of this group. AutC(A)

is the subgroup of EndC(A) comprising all the elements with two-sided inverses.

The categories that we will consider in this document include:

• The category of groups, where the morphisms are group homomorphisms. The notions

of endomorphism, isomorphism, and automorphism in this case coincide with our usual

notions. Similarly, we consider the category of Lie rings where the morphisms are Lie

ring homomorphisms. Note that these are the default category structures on group

and Lie rings respectively.

• The category of groups with homoclinisms, described in Section 2.1 (specifically, Sec-

tion 2.1.4). The isomorphisms in this category are isoclinisms of groups. Similarly, we

consider the category of Lie rings with homoclinisms in Section 2.2.
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• The category of short exact sequences of groups, described in Section 3.1. Similarly,

we consider the category of short exact sequences of Lie rings in Section 3.2.

• The category of central extensions of a group, described in Section 3.1.6. Similarly, we

consider the category of central extensions of a Lie ring in Section 3.2.5.

• The category of central extensions of a group with homoclinisms, described in Section

3.4.3. Similarly, we consider the category of central extensions of a Lie ring with

homoclinisms in Section 3.5.5.

• The category of π-powered groups for a prime set π, described in Section 4.1. Similarly,

the category of π-powered Lie rings for a prime set π, described in Section 4.2.

Definition of functor

Suppose C,D are categories. A functor (also called covariant functor) F from C to D com-

prises the following data:

• Object level mapping: A mapping F : Ob C → ObD.

• Morphism level mapping: For any A,B ∈ C, a mapping F : C(A,B) → D(FA,FB).

satisfying the following conditions:

• It preserves the identity morphism: For any A ∈ C, F(idA) = idF(A).

• It preserves composition: For any A,B,C ∈ C, and f ∈ C(A,B), g ∈ C(B,C), we have

F(g ◦ f) = Fg ◦ Ff .

Suppose C,D are categories. A contravariant functor F : C → D is defined by the

following data:

• A mapping F : Ob C → ObD.
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• For every A,B ∈ Ob C, a mapping F : C(A,B) → D(FB,FA).

satisfying the following conditions:

• It preserves the identity map: For any A ∈ Ob C, F(idA) = idFA.

• It preserves composition, albeit reversing the order of composition: For any A,B,C ∈

Ob C, and f ∈ C(A,B), g ∈ C(B,C), we have F(g ◦ f) = Ff ◦ Fg.

We use the following terminology for functors. As above, let F : C → D be a functor.

• F is faithful if the induced set map C(A,B) → D(FA,FB) is injective for all A,B ∈

Ob C.

• F is full if the induced set map C(A,B) → D(FA,FB) is surjective for all A,B ∈ Ob C.

• F is essentially surjective on objects if every object of D is isomorphic in D to some

object in the image of F .

• F is an equivalence of categories if it is full, faithful, and essentially surjective on

objects. An equivalence of categories preserves many of the features we care about.

In particular, it preserves the existence of initial objects and terminal objects, the

nature of homomorphism sets, and the isomorphism types of endomorphism monoids

and automorphism groups.

• F is an isomorphism of categories if it is full, faithful, and bijective on objects.

We will use functors in one important way. For each of the correspondences between

suitably chosen groups and Lie rings, we will first identify full subcategories of the category of

groups and the category of Lie rings respectively. Here, full subcategory means a subcategory

where the inclusion functor into the whole category is a full functor. In other words, the full

subcategory may not contain all the objects of the big category, but given two objects of

the big category, it contains all the morphisms between them. Our correspondence will then
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explicitly describe functors exp and log between these full subcategories, where exp is from

Lie rings to groups and log is from groups to Lie rings. The functors exp and log will turn

out to be two-sided inverses of each other, and the full subcategories will therefore turn out

to be isomorphic.

Section 1.3 describes all the details for the abelian Lie correspondence. Similar ideas

apply to the Baer correspondence (described in Section 5.1.8), Malcev correspondence, global

Lazard correspondence, and Lazard correspondence.

We also use the idea of equivalence of categories when relating two alternate descriptions

of the category of central extensions of a group where the morphisms are homomorphisms of

central extensions. There are two alternative definitions of this category, and these definitions

do not define isomorphic categories. However, they do define equivalent categories. In fact,

there is a forgetful functor from one category (that stores the short exact sequence) to the

other category (that simply stores the quotient map of the short exact sequence) that serves

as the equivalence of categories. For more details, see Section 3.1.6.

Apart from the above fairly foundational uses of functors, we do not use functors explic-

itly.

However, many of the constructions we use throughout the document are functorial,

although we do not explicitly use that fact. Some examples are below.

• The exterior square of a group, described in Section 3.4.1, defines a functor from the

category of groups to itself. In other words, given any homomorphism ϕ : G1 → G2 of

groups, there is an induced homomorphism ϕ ∧ ϕ : G1 ∧G1 → G2 ∧G2 satisfying the

conditions for being a functor.

• The Schur multiplier of a group, described in Section 3.4.1, defines a functor from the

category of groups to itself (or, alternatively, to the category of abelian groups).

• The exterior square of a Lie ring, described in Section 3.5.1, defines a functor from the

category of Lie rings to itself.
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• The Schur multiplier of a Lie ring, described in Section 3.5.1, defines a functor from

the category of Lie rings to the category of abelian groups.

• There are a number of free and forgetful functors we see. We discuss these a little later

in the Appendix.

Definition of natural transformation

Given two functors F ,G : C → D, a natural transformation η from F to G associates to

each A ∈ Ob C a morphism ηA : FA → GA such that for every morphism f ∈ C(A,B) for

A,B ∈ Ob C, we have:

ηB ◦ F(f) = G(f) ◦ ηA

Equivalently, the following diagram commutes:

F(A)
F(f)
→ F(B)

ηA ↓ ηB ↓

G(A)
G(f)
→ G(B)

We call η a natural isomorphism if ηA is an isomorphism in D for each A ∈ Ob C.

We can also define an analogous concept of natural transformation between contravariant

functors.

In our main proofs, we often use the term canonical. The definition of canonical trans-

formation is similar to that of natural transformation, except that we impose the above

condition only when f is an isomorphism. In other words, natural means that the trans-

formation behaves well (in the sense of giving a commutative diagram) for all morphisms,

whereas canonical means that the transformation behaves well for isomorphisms. A canonical

isomorphism is a canonical transformation that is an isomorphism in every instance.

It turns out that most of the canonical constructions that we use in our main proofs
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are also natural. This is not hard to prove, but we do not demonstrate it because it is not

necessary for our main proofs. We list below some important instances of this.

• In Section 3.4.1, we define the following short exact sequence associated with any group

G:

0 →M(G) → G ∧G→ [G,G] → 1

All the groups appearing in the short exact sequence are functorial in G, and all the

morphisms appearing in the short exact sequence are natural in G, i.e., they define nat-

ural transformation between the functors. Thus, we can view the short exact sequence

itself as functorial in G, i.e., we can define a functor from the category of groups to the

category of short exact sequences of groups that sends a group G to the above short

exact sequence.

A similar observation applies to the corresponding short exact sequence for Lie rings

described in Section 3.5.1.

• In Section 3.6.4, we define the following short exact sequence associated with a group

G and an abelian group A:

0 → Ext1Z(G;A) → H2(G;A) → Hom(M(G), A) → 0

All the groups appearing in the short exact sequence are contravariant functors of G

(holding A constant) and (covariant) functors of A (holding G constant). Further, the

morphisms of the short exact sequence are natural transformations with respect to

both G and A: they are natural transformations between the contravariant functors

of G (holding A constant) and also between the covariant functors of A (holding G

constant).
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A similar observation applies to the corresponding short exact sequence for Lie ring

extensions described in Section 3.7.4.

• In Section 3.3.4, we consider the following short exact sequence associated with a group

G and an abelian group A:

0 → B2(G;A) → Z2(G;A) → H2(G;A) → 0

All the groups appearing in the short exact sequence are contravariant functors of G

(holding A constant) and (covariant) functors of A (holding G constant). Further, the

morphisms of the short exact sequence are natural transformations with respect to

both G and A: they are natural transformations between the contravariant functors

of G (holding A constant) and also between the covariant functors of A (holding G

constant).

A.2.2 Initial objects, terminal objects, and zero objects

Suppose C is a category. We define the following:

• An initial object of C is an object A of C such that for every object B of C, there is

a unique morphism from A to B, i.e., there is a unique element of C(A,B). Any two

initial objects must be isomorphic and have a unique isomorphism between them. A

category may or may not have an initial object. For a category that has initial objects,

we therefore abuse notation by talking of the initial object of the category.

• A terminal object of C is an object A of C such that for every object B of C, there is

a unique morphism from B to A, i.e., there is a unique element of C(B,A). Any two

terminal objects must be isomorphic and have a unique isomorphism between them.

A category may or may not have a terminal object. For a category that has terminal

objects, we therefore abuse notation by talking of the terminal object of the category.
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• A zero object of C is an object that is both an initial object and a terminal object. A

category may or may not have a zero object. Any two zero objects must be isomorphic

and have a unique isomorphism between them.

Note that even if a category has an initial object and a terminal object, it may lack

a zero object because the initial objects and terminal objects are not isomorphic. For

instance, for the category of commutative unital rings, the initial object is Z and the

terminal object is the zero ring, so there is no zero object. For a category that has

terminal objects, we therefore abuse notation by talking of the terminal object of the

category.

For a category that has a zero object, we can define, between any two objects of the

category, a morphism called the zero morphism. This is the morphism that is obtained

by composing the map from the source object to the zero object and the map from

the zero object to the target object. For instance, for the category of groups, the zero

object is the trivial group, and the corresponding notion of zero morphism is the trivial

homomorphism between any two groups.

The discussion in Sections 3.4.1 and 3.5.1 is motivated by the goal of finding an initial

object in a category, namely, the category of central extensions of a particular group (or Lie

ring) with the morphisms being homoclinisms of central extensions. We show that initial

objects do exist for these categories, and these initial objects play an important role in the

study of the categories.

A.2.3 Left and right adjoint functors

Suppose C,D are categories and F : C → D and G : D → C are covariant functors. We say

that F is left adjoint to G, or equivalently, that G is right adjoint to F , if there is a family

of bijections:
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D(FA,B) ∼= C(A,GB)

for all A ∈ Ob C and B ∈ ObD, such that the bijection is natural (in the sense of being

a natural transformation) in both the variables A and B. The use of the word “adjoint”

here is in analogy with the idea of adjoint linear transformations with respect to an inner

product.

A.2.4 Universal algebra

Universal algebra is a branch of mathematics that provides a unifying framework for the

study of algebraic structures. Universal algebra is fairly general and it is ill-suited to proving

deep facts about specific structures (such as advanced results in group theory or in ring

theory). Nonetheless, basic vocabulary from universal algebra is useful in the study of

specific algebraic structures.

The first concept we define is the concept of signature. A signature is a function from

a fixed set (that we call the operator domain) to N0 (the set of nonnegative integers). The

elements of the operator domain are the operators and the signature sends each operator to

a nonnegative integer that is its arity. An algebra of a given signature is defined to be a set

equipped with operations as follows: for each operator in the operator domain, there is a

n-ary operation from the set to itself where n equals the arity of the operator. Note that a

0-ary operation is understood to mean a constant function.

An identity refers to a formal equality of two formal expressions that are constructed

using operators in the operator domain, where the expressions make sense given what we

know about the arities of the operations. An algebra is said to satisfy the identity if that

identity holds for all choices of elements in that algebra.

Given a signature and a collection of identities, the collection of all algebras of the

signature satisfying all the identities in the collection will be called a variety of algebras.
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For instance, consider the signature with operator domain Ω = {∗} where the arity of ∗

is 2. We will use infix notation to denote ∗, i.e., ∗(x, y) will be denoted as x ∗ y. An algebra

with this signature is equivalent to a set with a binary operation, also called a magma.2

Then, associativity of ∗ is an identity. Explicitly, it is the identity:

(a ∗ b) ∗ c = a ∗ (b ∗ c)

The collection of all magmas that satisfy the identity of associativity is a variety of

algebras. Algebras of this type are termed semigroups, and the variety of algebras is termed

the variety of semigroups.

Groups also form a variety of algebras. The variety of groups has an operator domain

with three operations:

• An operation ∗ of arity 2, called the group multiplication or product (denoted using

infix notation)

• An operation e of arity 0, called the identity element or neutral element.3

• An operation −1 of arity 1, called the inverse map (denoted using postfix superscript

notation).

The identities that need to be universally satisfied are:

(a ∗ b) ∗ c = a ∗ (b ∗ c) (Associativity)

a ∗ e = e ∗ a = a (Identity element)

a ∗ a−1 = a−1 ∗ a = a (Inverse map)

2. Historically, the term “groupoid” was used but that term now has a somewhat different meaning.

3. We use 1 to denote the identity element in this document, but it is more helpful to use the letter e
here for pedagogical reasons.
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The following notions can readily be defined in the context of algebras of a given signature:

• Subalgebra refers to a subset of the underlying set of the algebra that is closed under

all the operations defined for the algebra structure.

• Homomorphism of algebras (between algebras of the same signature) refers to a set

map between the algebras that commutes with all the algebra operations.

• Based on the definition of homomorphism, we can define isomorphism, endomorphism,

and automorphism.

• Direct product of algebras (where all the algebras have the same signature) is defined

as follows: we take the Cartesian product of the underlying sets, and define each of

the operations coordinate-wise.

An important theorem about varieties of algebras is Birkhoff’s theorem. The theorem

states that a collection of algebras is a variety of algebras if and only if it is closed under

taking subalgebras, homomorphic images, and direct products. One direction of the proof is

easy: any variety of algebras is closed under taking subalgebras, homomorphic images, and

direct products. The reverse direction is hard, and we omit the proof.

The following are some examples of varieties of algebras that we consider in this docu-

ment:

• The variety of groups.

• The variety of Lie rings.

• The variety of abelian groups.

• The variety of associative rings.

• For a fixed commutative unital ring R, the variety of R-Lie algebras.

• For a fixed commutative unital ring R, the variety of associative R-algebras.
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• For a fixed commutative unital ring R, the variety of R-modules.

• For a set π of primes, the variety of π-powered groups, described in Section 4.1.

• For a set π of primes, the variety of π-powered Lie rings, described in Section 4.2.

• The variety of groups of nilpotency class c, for some fixed positive integer c.

• The variety of Lie rings of nilpotency class c, for some fixed positive integer c.

• The variety of π-powered groups of nilpotency class c.

• The variety of π-powered Lie rings of nilpotency class c.

A.2.5 Universal algebra and category theory combined: free and forgetful

functors

Every variety of algebras can naturally be interpreted as a category. The objects of the

category are the algebras of the variety. The morphisms of the category are homomorphisms

between the algebras of the variety. Note that the definition of homomorphism uses only the

signature and not the identities.

The following are some immediate observations about the category corresponding to a

particular variety of algebras:

• The notions of isomorphism, endomorphism, and automorphism defined in universal

algebra coincide with the corresponding notions for the category.

• The terminal object has an underlying set of size one, and all the operations are defined

in the unique manner possible.

• The category does have an initial object. If the variety has no 0-ary operations, the

initial object of the variety has an empty underlying set. If the varety has 0-ary

operations, the initial object has a nonempty underlying set.
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• In general, the initial object and terminal object need not coincide, and therefore the

zero object need not exist. Some varieties where they do coincide are the variety

of groups, variety of Lie rings, variety of abelian groups, variety of R-modules for a

commutative unital ring R, and variety of R-Lie algebras for a commutative unital ring

R. A variety where they do not coincide is the variety of commutative unital rings.

The initial object for this variety is Z and the terminal object is the zero ring.

Suppose V1 and V2 are two varieties of algebras such that the operator domain of V2 is a

subset of the operator domain of V1, with the operators having the same arities, and every

identity true in V2 is also true in V1. Formally, we say that the variety V2 is a reduct of V1.

In this case, there is a natural forgetful functor from the category corresponding to V1

to the category corresponding to V2. This functor is faithful: for any algebras A and B

of V1, the set map HomV1
(A,B) → HomV2

(A,B) is injective. However, the functor is not

necessarily full because the set map above need not be surjective. The functor also need not

be essentially surjective: it is not necessary that every isomorphism type of algebra in V2

must arise from an isomorphism type of algebra in V1.

There is also a natural free functor from the category corresponding to V2 to the category

corresponding to V1. This functor sends any algebra of V2 to the algebra of V1 “generated”

by it, with all the identities of V1. The free functor is left adjoint to the forgetful functor.

Below are some cases of interest:

1. V2 is the variety with no operations and no identities, so that the corresponding cate-

gory is the category of sets. In this case, the forgetful functor simply sends an algebra

to its underlying set. The free functor sends a set to the free algebra of the variety V1

generated by the set.

2. The varieties V1 and V2 have the same operator domain, so the only difference is that

V1 may have more identities than V2. In this case, we say that V1 is a subvariety

of V2, and the forgetful functor from the category for V1 to the category for V2 is a
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full functor in this case. An example is the case where V1 is the variety of groups of

nilpotency class c (for some positive integer c) and V2 is the variety of all groups.

3. Cases other than (2) where the forgetful functor is still full, i.e., every homomorphism

in V2 between two algebras of V1 defines a homomorphism in V1. For instance, the

forgetful functor from the variety of groups to the variety of semigroups that “forgets”

the identity element and inverse map is full: any homomorphism of semigroups between

two groups is also a homomorphism of groups. Similarly, for a prime set π, the forgetful

functor from the variety of π-powered groups to the variety of groups is a full functor:

any homomorphism of groups between two π-powered groups is also a homomorphism

of π-powered groups.

A.3 Foundational results for manipulations in nilpotent groups

A.3.1 Central series and nilpotency for groups and Lie rings

Suppose G is a group. A subgroup series:

G = K1 ≥ K2 ≥ . . . Kc ≥ Kc+1 = 1

is termed a central series if it satisfies the following conditions:

1. It is a normal series:4 every Ki is normal in G.

2. For every i, Ki/Ki+1 is contained in the center of G/Ki+1.

Equivalently, it should satisfy the condition that for every i:

[G,Ki] ⊆ Ki+1

4. Some people use the term “normal series” for a series where each term is normal in its predecessor,
and use the term “strongly normal series” for a series satisfying the condition stated here.

432



Note that the notation above uses a descending series, but the series may also be described

as an ascending series.

G is termed a nilpotent group if it has a central series. The nilpotency class of G is

defined as the smallest c for which there exists a central series of length c (matching the

above notation). We say that G is a group of nilpotency class (at most) c if the nilpotency

class of G is less than or equal to c. We often drop the “(at most)” qualifier for nilpotency

class and simply say “G is a group of nilpotency class c” to mean that G is a nilpotent group

and its nilpotency class is at most c.

There is an ascending series termed the upper central series and a descending series

termed the lower central series. Both of these can be defined for all groups. For each series,

it reaches the other end in finitely many steps if and only if the group is nilpotent, and if so,

its length is the nilpotency class of the group.

The upper central series of G is an ascending series (Zi(G))i∈N0
of subgroups of G defined

as follows:

• Z0(G) is the trivial subgroup of G.

• For i > 0, Zi(G) is defined as the unique subgroup of G such that Zi(G)/Zi−1(G) =

Z(G/Zi−1(G)), where Z(G/Zi−1(G)) denotes the center of G/Zi−1(G). In particular,

Z1(G) = Z(G) is the center of G. The subgroup Z2(G) is termed the second center of

G, and so on.

The upper central series reaches the whole group G in finitely many steps if and only if

G is nilpotent. Further, if G has nilpotency class c, then Zc(G) = G. More explicitly, if the

nilpotency class of G is precisely c, then Zc(G) = G and Zi(G) 6= G for i < c. In fact, the

upper central series is the fastest ascending central series possible.5

5. Technically, although we can define the upper central series for a non-nilpotent group, and this definition
is useful, the upper central series is not a central series if the group is non-nilpotent.
We can also define a transfinite upper central series, where we define Zα(G) for all ordinals α. However, we
do not need to use the transfinite upper central series here, so we will not define it.
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The lower central series of G is a descending series of subgroups γi(G), i ∈ N, defined as

follows:

• γ1(G) = G

• For i ∈ N, γi+1(G) = [G, γi(G)] = [γi(G), G] is the commutator of the subgroups G

and γi(G).

The lower central series reaches the trivial subgroup in finitely many steps if and only if

G is nilpotent. Further, if G has nilpotency class c, then γc+1(G) = 1. More explicitly, if

the nilpotency class of G is precisely c, then γc+1(G) = 1 and γi+1(G) 6= 1 for i < c. In fact,

the lower central series is the fastest descending central series possible.6

A.3.2 Witt’s identity and the three subgroup lemma

Witt’s identity (stated here with the right action convention) applies to any elements a, b, c

in any group G. It says that:

[[a, b−1], c]b · [[b, c−1], a]c · [[c, a−1], b]a = 1

The three subgroup lemma follows directly from Witt’s identity:

Lemma A.3.1 (Three subgroup lemma). Suppose G is a group and A, B, and C are

subgroups of G. Then, any two of these three statements implies the third:

• [[A,B], C] = 1

6. Technically, although we can define the lower central series for a non-nilpotent group, and this definition
is useful, the lower central series is not a central series if the group is non-nilpotent.
The subgroup γ2(G), also denoted G′, is the derived subgroup of G, and is sometimes also referred to as the
commutator subgroup of G (note that the term “commutator subgroup” may also be used for a commutator
of two subgroups). The quotient group G/γ2(G) = G/G′ is denoted Gab and is termed the abelianization of
G.
We can also define a transfinite lower central series, where we define γα(G) for all ordinals α. However, we
do not need to use the transfinite lower central series here, so we will not define it.
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• [[B,C], A] = 1

• [[C,A], B] = 1

A.3.3 Commutator of element with products, and commutator as a

homomorphism

The following computational result regarding the commutator of an element and a product

is useful. The result has somewhat different explicit formulations depending on whether we

use

With the left action convention, where we denote by xg the element xgx−1 and where

we denote by [x, y] the commutator xyx−1y−1, the result states that:

• [x, yz] = [x, y](y[x, z])

• [xy, z] = (x[y, z])[x, z]

With the right action convention, where we denote by gx the element x−1gx and where

we denote by [x, y] the commutator x−1y−1xy,the result states that:

• [x, yz] = [x, z][x, y]z

• [xy, z] = ([x, z]y)[y, z]

Lemma A.3.2. 1. Independent of the action convention: Suppose G is a group of

nilpotency class two. For any fixed x ∈ G, the commutator maps y 7→ [x, y] and

y 7→ [y, x] are endomorphisms of G. Note that since the image of both endomorphisms

is inside [G,G], they can be viewed as homomorphisms to [G,G].

2. Formulation specific to the left action convention: Suppose G is a group, H is a sub-

group of G, and x is an element of G such that [x,H] ⊆ CG(H), or equivalently,
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[[x, h1], h2] = 1 for all h1, h2 ∈ H. Then, the map y 7→ [x, y] is a homomorphism

from H to G. Note that with the right action convention, the map may become an

anti-homomorphism, and the corresponding statement for the right action convention

would use y 7→ [y, x].

3. Independent of the action convention: Suppose G is a group of nilpotency class c.

Consider the set map:

T : G×G× · · · ×G→ G

where G occurs c times on the left, given by:

T (x1, x2, . . . , xc) := [[. . . [[x1, x2], x3], . . . , xc−1], xc]

Choose any i with 1 ≤ i ≤ c and fix the values of xj , j 6= i. Then, T , viewed solely

as a function of xi, defines an endomorphism of G. The image of T is inside γc(G), so

viewed this way, T defines a homomorphism from G to γc(G). In fact, T descends to

a homomorphism from G/Zc−1(G) to γc(G).

We will use the left action convention for our proofs, including proofs of the statements

that are independent of the action convention.

Proof. Proof of (1): Showing that the map y 7→ [x, y] is an endomorphism is equivalent to

showing that [x, yz] = [x, y][x, z]. This in turn follows from the identity [x, yz] = [x, y](y[x, z])

and the assumption of class two allowing us to deduce that [x, z] = y[x, z]. The proof for

the other map is similar.

Proof of (2): This is similar to (1). Explicitly, we want to show that for y, z ∈ H, we have

[x, yz] = [x, y][x, z]. This follows from the identity [x, yz] = [x, y](y[x, z]) combined with the

fact that, since z ∈ H, [x, z] ∈ CG(H) by assumption, so [x, z] commutes with y.
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Proof of (3): We prove the statement by induction on c. The base case c = 2 follows

from (1). Suppose now that the statement is true for all smaller classes, and we want to

prove it for class c.

By the inductive hypothesis, the map:

Tc−1 : (x1, x2, . . . , xc−1) 7→ [. . . [x1, x2], . . . , xc−1] mod γc(G)

satisfies all the hypotheses: it is a homomorphism in each coordinate holding the other

coordinates fixed. Further, the image of the map is in γc−1(G)/γc(G).

Now, note that the commutator map:

γc−1(G)×G→ γc(G)

satisfies the condition that the image is in the center of G. In particular, by (2), we

obtain that the commutator map is a homomorphism with respect to both coordinates. The

map descends to the following map which is also a homomorphism in both coordinates:

U : γc−1(G)/γc(G)×G→ γc(G)

We now see that:

T (x1, x2, . . . , xc) = U(Tc−1(x1, x2, . . . , xc−1), xc)

The fact that both Tc−1 and U are homomorphisms in each of their coordinates gives us

that T is a homomorphism in each coordinate.

The proof of the statement that T descends to a map from G/Zc−1(G) follows from the

three subgroup lemma, discussed in Section A.3.2.
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A.3.4 Strongly central series

A descending series of subgroups:

G = G1 ≥ G2 ≥ G3 ≥ · · · ≥ Gn = 1 = Gn+1 = Gn+2 = . . .

is termed a strongly central series if [Gi, Gj ] ≤ Gi+j for any positive integers i and j.

Lemma A.3.3. For any group G and any positive integers i and j, we have that

[γi(G), γj(G)] ≤ γi+j(G). In particular, the lower central series of a nilpotent group is

a strongly central series.

Proof. This follows from the three subgroup lemma and proof by induction.

A.4 The use of grading

A.4.1 Graded ring

Suppose G is an abelian group with the group operation denoted additively. Suppose R

is a commutative (associative) unital ring. A G-graded R-algebra is a R-algebra A whose

additive group has a direct sum decomposition as a sum of R-submodules indexed by the

group elements:

A =
⊕
g∈G

Ag

such that for all g, h ∈ G, we have:

AgAh ⊆ Ag+h

An element of A that lies inside Ag for some g ∈ G is termed a homogeneous element.
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A G-graded ring is a G-graded Z-algebra.

The following cases are of particular interest:

• A Z-graded R-algebra is a R-algebra graded over the group of integers Z.

• A N0-graded R-algebra is a Z-graded R-algebra A where Ai = 0 for all i < 0.

• A N-graded R-algebra a Z-graded R-algebra A where Ai = 0 for all i ≤ 0.

Generally, the term graded R-algebra is used for a N0-graded R-algebra, and the term

graded ring is used for a N0-graded Z-algebra. We will follow this convention for the rest of

the appendix and in the main document.

A.4.2 Verification of multilinear identities for graded rings

A R-multilinear identity holds in a graded R-algebra A if and only if it holds in the case where

all inputs are homogeneous elements. This is because the set of homogeneous elements forms

a generating set for A as aR-module, and multilinear identities can be verified on a generating

set, as described in Section A.1.6. In particular, this applies to verifying associativity and

the Jacobi identity.

A.4.3 Associated graded Lie algebra for a Lie algebra

Suppose L is a Lie algebra over a commuative (associative) unital ring R. The associated

graded R-Lie algebra for L is a graded R-Lie algebra defined as follows. The underlying

R-module is:

∞⊕
i=1

γi(L)/γi+1(L)

where the ith component is the direct summand γi(L)/γi+1(L), where γi(L) and γi+1(L)

are the ith and (i+1)th members respectively of the lower central series of L. We now define

the Lie bracket on the associated graded R-Lie algebra.
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First, note that the Lie bracket restricts to the following R-bilinear maps:

γi(L)× γj(L) → γi+j(L)

γi+1(L)× γj(L) → γi+j+1(L)

γi(L)× γj+1(L) → γi+j+1(L)

As a result, we get a canonical R-bilinear map:

γi(L)/γi+1(L)× γj(L)/γj+1(L) → γi+j(L)/γi+j+1(L)

The Lie bracket on the associated graded R-Lie algebra of L is defined as the Lie bracket

whose restriction to the bracket of the ith graded component and the jth graded component

is the above map for all i and j. In order to show that this is a Lie bracket, we need to

verify the Jacobi identity. Due to the multilinearity of the Jacobi identity, it suffices to verify

it in the case that all three inputs are homogeneous (as explained in the preceding section,

Section A.4.2), and in that case, it follows from the Jacobi identity in the original R-Lie

algebra L.

Note in particular that if L is a nilpotent R-Lie algebra of nilpotency class at most c,

then the direct sum above is the finite direct sum:

c⊕
i=1

γi(L)/γi+1(L)

For the case that R = Z, we are thinking of L simply as a Lie ring, and the corresponding

associated graded Z-Lie algebra will be called the associated graded Lie ring. Note that for

any commutative unital ring R and any R-Lie algebra L, the following coincide:

• The associated graded Lie ring of L, viewed as a Lie ring (ignoring its structure as a
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R-Lie algebra).

• The underlying Lie ring for the associated graded R-Lie algebra of L.

The definition of associated graded Lie ring can also be generalized to any strongly central

series of a (nilpotent) Lie ring. Strongly central series for Lie rings are defined analogously

to the definition for groups in Section A.3.4. In the context of this more general definition,

the usual associated graded Lie ring is the associated graded Lie ring for the lower central

series.

A.4.4 Associated graded Lie ring for a group

Suppose G is a group. The associated graded Lie ring for G is a graded Lie ring defined as

follows. The additive group is:

∞⊕
i=1

γi(G)/γi+1(G)

where the ith component is the direct summand γi(G)/γi+1(G).

First, note that the Lie bracket restricts to the following Z-bilinear maps:

γi(G)× γj(G) → γi+j(G)

γi+1(G)× γj(G) → γi+j+1(G)

γi(G)× γj+1(G) → γi+j+1(G)

As a result, we get a canonical Z-bilinear map:

γi(G)/γi+1(G)× γj(G)/γj+1(G) → γi+j(G)/γi+j+1(G)
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The Lie bracket on the associated graded Lie ring of G is defined as the Lie bracket whose

restriction to the bracket of the ith graded component and the jth graded component is the

above map for all i and j. In order to show that this is a Lie bracket, we need to verify the

Jacobi identity. Due to the multilinearity of the Jacobi identity, it suffices to verify it in the

case that all three inputs are homogeneous (as explained in the preceding section, Section

A.4.2). The Jacobi identity in the homogeneous case follows from Witt’s identity, described

in Section A.3.2.

The definition of associated graded Lie ring can also be generalized to any strongly central

series of a (nilpotent) Lie ring. Strongly central series were defined for groups in Section

A.3.4. In the context of this more general definition, the usual associated graded Lie ring is

the associated graded Lie ring for the lower central series.

A.4.5 Associated graded Lie ring as a functor

The associated graded Lie ring is functorial both for groups and for Lie rings. Explicitly, we

can define a functor from the category of groups to the category of Lie rings such that its

mapping on objects sends a group to its associated graded Lie ring. Similarly, we can define

a functor from the category of Lie rings to itself such that its mapping on objects sends a

Lie ring to its associated graded Lie ring.

We can think of taking the associated graded Lie ring as “flattening” the structure of the

original object (the group or the Lie ring) thereby forgetting some aspects of the cohomology.

Note, however, that taking the associated graded Lie ring does preserve the order and the

nilpotency class. We discover that the following are true:

• If a group and Lie ring are in global class c Lazard correspondence, they define the

same associated graded Lie ring.

• If two nilpotent groups are isoclinic to each other, then their associated graded Lie

rings are isoclinic to each other. We can actually make a slightly stronger statement:
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if two groups are isoclinic as central extensions with the same base and same quotient

group, then their associated graded Lie rings are isomorphic. Here, “isoclinic as central

extensions” is being used in the sense of Sections 3.6.2 and 3.6.3.

• If two Lie rings are isoclinic to each other, then their associated graded Lie rings are

isoclinic to each other. We can actually make a slightly stronger statement: if two

Lie rings are isoclinic as central extensions with the same base and same quotient Lie

rings, then their associated graded Lie rings are isomorphic. Here, “isoclinic as central

extensions” is being used in the sense of Sections 3.7.2 and 3.7.3.

• If a group and Lie ring are in global class c+1 Lazard correspondence up to isoclinism,

then their associated graded Lie rings are isoclinic. We can make a slightly stronger

statement: if a group and Lie ring are in global class (c+1) Lazard correspondence up to

isoclinism as central extensions (as described in Section 7.7.5), then their corresponding

associated graded Lie rings are isomorphic.

In the case of class two, the associated graded Lie ring offers an essentially complete

classification of the equivalence type up to isoclinism for the extension. This is because

the “flattening” it does forgets only the abelian part of the group structure, and not the

commutator structure. For higher class, however, although the associated graded Lie ring

is invariant under taking isoclinisms of extensions, it is not a complete invariant, because

passing to the associated graded Lie ring “flattens” out part of the commutator structure as

well.

A.5 Homologism theory for arbitrary varieties

The material discussed in this section of the Appendix is used in Section 8.2.4 when discussing

a potential extension of the Lazard correspondence up to isoclinism. It is not used elsewhere

in the document, although it may help provide better perspective on the material elsewhere

in the document as well.
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For basic background material on varieties of algebras, see the Appendix, Sections A.2.4

and A.2.5.

The terms and concepts alluded to in this section can be found in the paper [31] by

Leedham-Green and McKay. The concepts of n-isoclinism and n-homoclinism are also de-

scribed in [24] (for groups) and [40] (for Lie rings).

A.5.1 Word maps: definition for an arbitrary variety of algebras

Suppose V is a variety of algebras. A word in n letters in V is defined as an element of

the free algebra (with respect to the variety V) in terms of the n letters. A word can be

represented using an expression in terms of the n letters and the operations of the variety.

Two expressions describe the same word if they are formally equal, i.e., their equality can be

dedued from the formal identities of the variety. We will often abuse notation by conflating

the concepts of the word with a formal expression used to describe the word.

Given a word w in n letters for the variety V , and an algebra A in V , w defines a set map

An → A as follows. Denote by F the free algebra on the n letters, and denote the letters

by g1, g2, . . . , gn. Then, for any tuple (x1, x2, . . . , xn) ∈ An, we can consider the unique

homomorphism ϕ : F → A such that ϕ(gi) = xi. The image ϕ(w) is the image of the tuple

(x1, x2, . . . , xn) under the word map. Abusing notation, we will use w to denote the word

itself, the expression describing the word, and the word map, i.e., the image of the tuple

(x1, x2, . . . , xn) will be denoted w(x1, x2, . . . , xn).

For some varieties, such as the variety of groups, there is a concept of a reduced word ex-

pression. Any element of the free group on n letters has a unique reduced expression, and the

equality of two words can be determined by converting both of them to their corresponding

reduced expressions and then checking for literal equality.

For the variety of groups, words involve group multiplication and inverse map operations,

and a word in reduced form is an expression written as a product of the letters and their

inverses, with no letter and its inverse occurring adjacent to one another. For instance, the
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following is an example word in two letters g1 and g2:

w(g1, g2) := g1g2g1g
2
2g
−1
1

We say that a group G satisfies a word w in n letters (with respect to the variety of

groups) if the image of the word map corresponding to w is the trivial subgroup of G, i.e.,

w(x1, x2, . . . , xn) = 1 for all x1, x2, . . . , xn ∈ G.

The concept generalizes to any variety of algebras with zero, i.e., a variety of algebra with a

distinguished 0-ary operation called the zero element. Given a variety V with zero, an algebra

A is said to satisfy a word w in n letters with respect to the variety V if w(x1, x2, . . . , xn) is

the zero element of A for all x1, x2, . . . , xn ∈ A. For the variety of groups, the zero element

is the identity element.

A.5.2 Word maps and subvarieties of the variety of groups

To specify a subvariety of the variety of groups, we need to specify a set of identities that

define the subvariety. Note that the set of identities we choose need not be an exhaustive

list of identities satisfied in the subvariety, but it needs to be sufficient to generate all other

identities satisfied in the subvariety.

An identity in the variety of groups has the form:

w1(x1, x2, . . . , xn) = w2(x1, x2, . . . , xn)

We can define a new word:

w(x1, x2, . . . , xn) := w1(x1, x2, . . . , xn)(w2(x1, x2, . . . , xn))−1

The identity can therefore be rewritten as:

w(x1, x2, . . . , xn) = 1
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Thus, any subvariety of the variety of groups can be described using a set of words, and

a group is in the subvariety if and only if all the words are satisfied in the group.

A.5.3 Some examples of subvarieties of the variety of groups

The following are examples of subvarieties, each of which can be defined using one word. Note

that for all these definitions, it does not matter whether we use the left or right convention

for the commutator: both define the same variety.

• The variety of abelian groups: This can be defined using the commutator word w(x1, x2) =

[x1, x2].

• The variety of groups of nilpotency class at most c: This can be defined using the

iterated commutator word w(x1, x2, . . . , xc, xc+1) = [[. . . [x1, x2], . . . , xc], xc+1].

• The variety of groups of derived length at most `: This can be defined using an

iterated balanced commutator of length 2`. For instance, when ` = 2, the commutator

is [[x1, x2], [x3, x4]].

A.5.4 Verbal and marginal subgroup corresponding to a subvariety

Suppose V is a subvariety of the variety of groups. For a group G, the V-verbal subgroup of

G is defined as the subgroup generated by the images of the word maps in G for all words

that are satisfied in the subvariety V . Equivalently, it is the smallest normal subgroup of G

for which the quotient group is in V .

Suppose C is a set of words that generates the variety V , i.e., V is precisely the subvariety

of the variety of groups comprising those groups that satisfy all the words in C. Then, the

V-verbal subgroup of G is the subgroup of G generated by the union of the images of the

word maps for all words in C.

The V-marginal subgroup of G is defined as follows. It is the set of elements x in G such
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that for every word w satisfied in V , the following is true. Let n be the number of letters

used in w. Then, we want:

w(g1, g2, . . . , gi, . . . , gn) = w(g1, g2, . . . , xgi, . . . , gn) = w(g1, g2, . . . , gix, . . . , gn) ∀ g1, g2, . . . , gn ∈

G, ∀ i ∈ {1, 2, . . . , n}

In other words, the marginal subgroup is the set of elements that do not affect the

evaluation of any of the words that would become trivial in the variety.

Suppose C is a set of words that generates the variety V , i.e., V is precisely the subvariety

of the variety of groups comprising those groups that satisfy all the words in C. Then, we can

define the V-marginal subgroup as the set of elements of G that satisfy the above condition

for the words in C alone.

Some examples of verbal and marginal subgroups are below.

• Consider the variety of abelian groups. The verbal subgroup of a groupG corresponding

to this variety is the derived subgroup G′, and the marginal subgroup is the center

Z(G).

• Consider the variety of groups of nilpotency class at most c. The verbal subgroup of

a group G corresponding to this variety is the lower central series member subgroup

γc+1(G). The marginal subgroup is the upper central series member Zc(G).

A.5.5 Homologism for a subvariety of the variety of groups

Suppose V is a subvariety of the variety of groups. For any group G, denote by V ∗(G) the

V-marginal subgroup and by V (G) the V-verbal subgroup.

For any word w satisfied in the variety V , suppose w uses nw letters. w defines a word

map:

βw,G : Gnw → G

By the definitions of marginal and verbal subgroup, the map descends to a set map:
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ωw,G : (G/V ∗(G))nw → V (G)

A homologism of groupsG1 andG2 with respect to V is a pair (ζ, ϕ) where ζ : G1/V
∗(G1) →

G2/V
∗(G2), ϕ : V (G1) → V (G2) are homomorphisms, and for every w satisfied in the vari-

ety V , we have:

ωw,G2(ζ(x1), ζ(x2), . . . , ζ(xnw)) = ϕ(ωw,G1(x1, x2, . . . , xnw)) ∀ (x1, x2, . . . , xn) ∈ (G1/V ∗(G1))nw

As with all the other definitions, it suffices to check this condition on a set of words that

generates the variety rather than on all words satisfied in the variety.

A homologism is termed an isologism if both its component homomorphisms are isomor-

phisms, or equivalently, if there is an inverse map to it that is also a homologism.

For any subvariety V of the variety of groups, we can define the category of groups

with V-homologisms. The objects of this category are groups and the morphisms are V-

homologisms, with composition of homologisms defined via composition of the corresponding

homomorphisms. The isomorphisms in this category are precisely the V-isologisms. Further,

a group is isomorphic to the trivial group in this category if and only if it is in the subvariety

V . Thus, the category of groups with V-homologisms can be thought of as going “modulo”

the subvariety V , in so far as the “kernel” is precisely V .

A.5.6 Relation between homologism categories for subvarieties

Consider two subvarieties V1 and V2 of the variety of groups. We can consider the category of

groups with V1-homologisms as well as the category of groups with V2-homologisms. Suppose

V1 is a subvariety within V2 (in other words, a group being in V1 is a stronger condition than

the group being in V2).
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We might naively expect that there is a natural forgetful functor of some sort from the

category of groups to V1-homologisms and the category of groups with V2-homologisms.

This, however, is not true. In Section 2.1.5, we discussed the situation in the case that V1 is

the subvariety comprising only the trivial group (so that V1-homologisms can be identified

with ordinary homomorphisms) and V2 is the subvariety of abelian groups (so that V2-

homologisms are the same as homoclinisms). Using the same logic as we had used in Section

2.1.5, we obtain that a V1-homologism gives rise to a V2-homologism if and only if it sends the

V2-marginal subgroup to within itself. In particular, any surjective V1-homologism induces

a V2-homologism. Therefore, every V1-isologism induces a V2-isologism.

A.5.7 n-homoclinism and n-isoclinism

Suppose n is a positive integer. A n-homoclinism is defined as a homologism with respect

to the subvariety of the variety of groups comprising groups of nilpotency class at most n.

The subvariety is defined by the word w(x1, x2, . . . , xn, xn+1) = [[. . . [x1, x2], . . . , xn], xn+1].

The category of groups with n-homoclinisms is the category where the objects are groups

and the homomorphisms are n-homoclinisms. A n-isoclinism is defined as an isomorphism

in this category.

The concepts of n-isoclinism and c-homoclinism are also described in [24] (for groups)

and [40] (for Lie rings).

A.5.8 Baer invariant and nilpotent multiplier

The Schur multiplier and exterior square are both defined based on the commutator struc-

ture, and their definitions can be viewed as arising from the choice of the subvariety of abelian

groups and the notion of homoclinism. There exist generalizations of these to arbitrary sub-

varieties of the variety of nilpotent groups. The generalization of the Schur multiplier is

termed the Baer invariant. Explicitly, for a subvariety V of the variety of groups, and any

group G (not necessarily in V), the Baer invariant of G for the subvariety V is an abelian
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group denoted VM(G). The definition is similar to that for the Schur multiplier in Section

3.4, but now using the word maps arising from words that define the subvariety V instead

of the commutator word. Alternatively, it can be defined by generalizing Hopf’s formula

(described in Section 3.6.9) as follows. Interested readers are encouraged to read the paper

[31] by Leedham-Green and McKay and the paper [24] by Hekster.

In the case that V is the subvariety comprising all the groups of nilpotency class at most

n (where n is a fixed positive integer), the corresponding Baer invariant is termed the n-

nilpotent multiplier and is denoted M (n)(G). In particular, the Schur multiplier M(G) is

the group M (1)(G), i.e., it is the 1-nilpotent multiplier.

We can deduce a formula for the n-nilpotent multiplier similar to Hopf’s formula described

in Section 3.6.9, and in fact, many sources use that formula as the definition of the n-nilpotent

multiplier. Write G as a quotient F/R where F is a free group. Then:

M (n)(G) = (R ∩ γn+1(F ))/γn+1(R,F )

Note that although it is not immediately obvious by looking at the expression, we can

see via the three subgroup lemma that M (n)(G) as defined above is an abelian group, as

expected.

Here, γn+1(F ) denotes the (n + 1)th member of the lower central series of F , whereas

γn+1(R,F ) is the (n + 1)th member of the series given by γ1(R,F ) = R and γi+1(R,F ) =

[F, γi(R,F )]. Note that in the case n = 1, this givees us the formula we are already familiar

with:

M(G) = (R ∩ [F, F ])/[R,F ]

Note in particular that if G = F/γc+1(F ) for some positive integer c (i.e., G is a free

class c nilpotent group), we get:
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M (n)(G) = γmax{c,n}+1(F )/γc+n+1(F )
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APPENDIX B

SUPPLEMENTARY PROOFS

B.1 Some computational proofs related to the

Baker-Campbell-Hausdorff formula

B.1.1 Baker-Campbell-Hausdorff formula: class two: full derivation

In this case, we work with non-commuting variables x1, x2 such that x3
1 = x2

1x2 = x1x2x1 =

x1x
2
2 = x2x

2
1 = x2x1x2 = x2

2x1 = x3
2 = 0. Thus:

exp(x1) = 1 + x1 +
x2

1
2

exp(x2) = 1 + x2 +
x2

2
2

We thus get:

exp(x1) exp(x2) =

(
1 + x1 +

x2
1
2

)(
1 + x2 +

x2
2
2

)
= 1 + x1 +

x2
1
2 + x2 + x1x2 +

x2
1x2
2 +

x2
2
2 +

x1x
2
2

2 +
x2

1x
2
2

4

We drop all products of degree three or more and rearrange the remaining terms to get:

exp(x1) exp(x2) = 1 + x1 + x2 +
x2

1
2

+ x1x2 +
x2

2
2

We thus get:

w = exp(x1) exp(x2)− 1 = x1 + x2 +
x2

1
2

+ x1x2 +
x2

2
2

Finally, we compute log(1 + w). We have:

log(1 + w) = w − w2

2
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We note that w2 is the same as the square of its linear part because the square of the

degree two part, as well as products of the degree two and the linear part, are degree three

or more and hence zero. Thus:

log(1 + w) = x1 + x2 +
x2

1
2 + x1x2 +

x2
2
2 − (x1 + x2)

2/2

Simplifying, we get:

log(1 + w) = x1 + x2 +
x2

1+2x1x2+x2
2−(x1+x2)2

2

Now note that:

(x1 + x2)
2 = x2

1 + x1x2 + x2x1 + x2
2

Plugging this in, we get:

log(1 + w) = x1 + x2 +
x2

1+2x1x2+x2
2−(x2

1+x1x2+x2x1+x2
2)

2

Simplifying, we get:

log(1 + w) = x1 + x2 + x1x2−x2x1
2

Rewrite x1x2 − x2x1 = [x1, x2] and we get the formula:

x1 + x2 + 1
2 [x1, x2]

B.1.2 Baker-Campbell-Hausdorff formula: class three: full derivation

Before proceeding to work out the formula in class three, we obtain a more concise description

of w in terms of x1 and x2, thus saving steps on the initial computation. If we are working

in class c, then:

w =
∑

k,l≥0,0<k+l≤c

xk
1x

l
2

k!l!
=

c∑
n=1

1

n!

n∑
k=0

(
n

k

)
xk

1x
n−k
2

We now deduce the class three Baker-Campbell-Hausdorff formula:

w = exp(x1) exp(x2)−1 = (x1 +x2)+ 1
2!(x

2
1 +2x1x2 +x2

2)+ 1
3!(x

3
1 +3x2

1x2 +3x1x
2
2 +x3

2)

Since the class is three, we have w4 = 0, hence we get:

log(1 +w) = w− w2

2 + w3

3 = (x1 + x2) + 1
2!(x

2
1 + 2x1x2 + x2

2) + 1
3!(x

3
1 + 3x2

1x2 + 3x1x
2
2 +

x3
2)−

1
2((x1 + x2) + 1

2!(x
2
1 + 2x1x2 + x2

2) + 1
3!(x

3
1 + 3x2

1x2 + 3x1x
2
2 + x3

2))
2 + 1

3((x1 + x2) +
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1
2!(x

2
1 + 2x1x2 + x2

2) + 1
3!(x

3
1 + 3x2

1x2 + 3x1x
2
2 + x3

2))
3

The calculations for the degree one and degree two parts proceed exactly as they did in

the class two case covered in the preceding section. We thus concentrate on the degree three

part:

Degree three part = 1
6(x3

1 +3x2
1x2 +3x1x

2
2 +x3

2)−
1
4(x1 +x2)(x

2
1 +2x1x2 +x2

2)−
1
4(x2

1 +

2x1x2 + x2
2) + 1

3(x1 + x2)
3

Instead of simplifying directly, we adopt the following procedure. We rewrite:

x2
1 + 2x1x2 + x2

2 = (x1 + x2)
2 + [x1, x2]

We similarly rewrite:

x3
1 + 3x2

1x2 + 3x1x
2
2 + x3

2 = (x1 + x2)
3 + 2x1[x1, x2] + [x1, x2]x1 + 2[x1, x2]x2 + x2[x1, x2]

This can be further rewritten as:

x3
1+3x2

1x2+3x1x
2
2+x3

2 = (x1+x2)
3+3x1[x1, x2]+3[x1, x2]x2−[x1, [x1, x2]]+[x2, [x1, x2]]

Now, we plug these into the expression

Degree three part = 1
6((x1+x2)

3+3x1[x1, x2]+3[x1, x2]x2−[x1, [x1, x2]]+[x2, [x1, x2]])−
1
4(x1 + x2)((x1 + x2)

2 + [x1, x2])− 1
4((x1 + x2)

2 + [x1, x2])(x1 + x2) + 1
3(x1 + x2)

3

We rearrange to obtain:

Degree three part =
(

1
6 −

1
4 −

1
4 + 1

3

)
(x1+x2)

3+1
2(x1[x1, x2]+[x1, x2]x2)−1

6([x1, [x1, x2]]−

[x2, [x1, x2]])− 1
4(x1 + x2)[x1, x2]− 1

4([x1, x2](x1 + x2))

The (x1 + x2)
3 term has zero coefficient and disappears, and we are left with:

Degree three part = 1
2(x1[x1, x2]+[x1, x2]x2)−1

6([x1, [x1, x2]]−[x2, [x1, x2]])−1
4x1[x1, x2]−

1
4x2[x1, x2]− 1

4 [x1, x2]x1 − 1
4 [x1, x2]x2

We now use that x2[x1, x2] = [x1, x2]x2 + [x2, [x1, x2]] and [x1, x2]x1 = x1[x1, x2] −

[x1, [x1, x2]] to get:

Degree three part = 1
2(x1[x1, x2]+[x1, x2]x2)−1

6([x1, [x1, x2]]−[x2, [x1, x2]])−1
4x1[x1, x2]−

1
4 [x1, x2]x2 − 1

4 [x2, [x1, x2]]− 1
4x1[x1, x2] + 1

4 [x1, [x1, x2]]− 1
4 [x1, x2]x2

Combining coefficients, we find that the coefficients on x1[x1, x2] and [x1, x2]x2 are zero,

and we are left with:
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Degree three part = −1
6([x1, [x1, x2]]− [x2, [x1, x2]]) + 1

4([x1, [x1, x2]]− [x2, [x1, x2]])

We simplify 1/4− 1/6 = 1/12 to get:

Degree three part = 1
12([x1, [x1, x2]]− [x2, [x1, x2]])

Plug this back in to the formula, and get the overall formula:

x1 + x2 + 1
2 [x1, x2] + 1

12([x1, [x1, x2]]− [x2, [x1, x2]])

B.1.3 Bounds on prime power divisors of the denominator

For a prime p and a natural number c, define f(p, c) as follows. Consider the class c Baker-

Campbell-Hausdorff formula. f(p, c) is defined as the largest positive integer k such that pk

appears as a divisor of the denominator for one of the coefficients for the formula.

It turns out that:

f(p, c) ≤
⌊
c− 1

p− 1

⌋
This was proved in Lazard’s original paper ([30]). The proof sketch for the associative

version of the formula is below. The result for the Lie version of the formula follows from

Khukhro’s text [29], Theorem 5.39 (see more generally the discussion in Sections 5.3 and 9.9

of the text).

Consider the ring of formal power series over Q in the two non-commuting variables x1

and x2.

Consider a p-adic valuation on Q, i.e., a valuation vp : Q \ {0} → Z that sends a rational

number a/b to the integer k such that a/(bpk) in reduced form has no divisor of p for either

the numerator or the denominator.

Extend the valuation to a value 1/(p−1) on the formal variables x1, x2. The valuation can

then be extended to the whole ring. We then use multiplicativity to compute the valuation

at various terms, for n ≤ c:

vp(x
n
1/n!) = c/(p− 1)− vp(n!) ≥ 1/(p− 1)
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where we have used that vp(n!) ≤ b(n− 1)/(p− 1)c. Then, vp(expx1 − 1) ≥ 1/(p − 1).

Denote w = exp(x1) exp(x2) − 1. It is easy to see that vp(w) ≥ 1/(p − 1). The Baker-

Campbell-Hausdorff formula is obtained by expanding

log(1 + w)

Note that vp(w
n/n) = nvp(w) − vp(c) ≥ n/(p − 1) − vp(n!) ≥ 1/(p − 1). That is,

vp(log(1 + w)) ≥ 1/(p− 1). For coefficients in degree n with n ≤ c, we obtain:

vp(coefficient in degree n) ≥ 1/(p− 1)− n/(p− 1) = −(n− 1)/(p− 1)

Since the above holds for all n ≤ c, we obtain that all the coefficients in degree ≤ c

have prime power divisors of the denominator less than or equal to (c − 1)/(p − 1). Thus,

f(p, c) ≤ (c− 1)/(p− 1). Since f(p, c) is an integer, we obtain that:

f(p, c) ≤
⌊
c− 1

p− 1

⌋

B.1.4 Finding the explicit formula Mc+1 for c = 2

In Section 7.1.1, we described the general approach for computing a formulaMc+1 to describe

the group commutator in terms of the Lie bracket for the class (c+1) Lazard correspondence.

The case c = 1 (and hence c + 1 = 2) was discussed in detail in Section 5.1 (Lemma 5.1.2

says this explicitly). We consider the case c = 2, so that c + 1 = 3. In other words, we are

considering the class 3 Lazard correspondence.

We mimic the general procedure of Section 7.1.1.

The class three Baker-Campbell-Hausdorff formula gives us that:
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xy = x+ y +
1

2
[x, y] +

1

12
([x, [x, y]]− [y, [x, y]])

yx = y + x+
1

2
[y, x] +

1

12
([y, [y, x]]− [x, [y, x]])

We will denote the degree i part as ti, as in the discussion of the Baker-Campbell-

Hausdorff formula. In other words, we have:

xy = t1(x, y) + t2(x, y) + t3(x, y)

yx = t1(y, x) + t2(y, x) + t3(y, x)

Here:

t1(x, y) = t1(y, x) = x+ y = y + x

t2(x, y) = −t2(y, x) =
1

2
[x, y]

t3(x, y) = t3(y, x) =
1

12
([x, [x, y]]− [y, [x, y]]) =

1

12
([y, [y, x]]− [x, [y, x]])

Thus:

[x, y]Group = (xy)(−(yx))

becomes:
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t1(x, y) + t2(x, y) + t3(x, y)− (t1(y, x) + t2(y, x) + t3(y, x))+

t2(xy,−(yx)) + t3(xy,−(yx))

Based on the relationships above, this simplifies to:

[x, y]Group = 2t2(x, y) + t2(xy,−(yx)) + t3(xy,−(yx)) (∗)

We now expand each of the other terms. We have:

t2(xy,−(yx)) = 1
2 [t1(x, y) + t2(x, y) + t3(x, y),−(t1(y, x) + t2(y, x) + t3(y, x))]

Expanding this out, we obtain:

t2(xy,−(yx)) = 1
2 [t1(x, y),−t2(y, x)] + 1

2 [t2(x, y),−t1(y, x)]

= [t1(x, y), t2(x, y)] = 1
2 [x+ y, [x, y]] (∗∗)

On the other hand:

t3(xy,−(yx)) = t3(t1(x, y) + t2(x, y) + t3(x, y),−(t1(y, x) + t2(y, x) + t3(y, x))

= t3(t1(x, y),−t1(y, x)) = 0 (∗ ∗ ∗)

Plugging (**) and (***) into (*), we obtain that:

[x, y]Group = 2t2(x, y) + 1
2 [x+ y, [x, y]]

This simplifies to:

[x, y]Group = [x, y] +
1

2
[x+ y, [x, y]]

Thus, we get:

M3(x, y) = [x, y] +
1

2
[x+ y, [x, y]]

Note that the formula would look somewhat different if we used the right action con-

vention for the group commutator. Explicitly, the formula with the right action convention,

which would be the formula for the group commutator x−1y−1xy, would be:

x−1y−1xy = [x, y]− 1

2
[x+ y, [x, y]]
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B.1.5 Finding the explicit formula Mc+1 for c = 3

The steps here are very similar to the steps for the preceding example, so we go over the

steps very briefly. We have:

xy = t1(x, y) + t2(x, y) + t3(x, y) + t4(x, y)

yx = t1(y, x) + t2(y, x) + t3(y, x) + t4(y, x)

Here:

t1(x, y) = t1(y, x) = x+ y = y + x

t2(x, y) = −t2(y, x) =
1

2
[x, y]

t3(x, y) = t3(y, x) =
1

12
([x, [x, y]]− [y, [x, y]]) =

1

12
([y, [y, x]]− [x, [y, x]])

t4(x, y) = −t4(y, x) = − 1

24
[y, [x, [x, y]]]

Based on the above relationships, we get:

[x, y]Group = (xy)(−(yx)) = 2(t2(x, y) + t4(x, y)) + t2(xy,−(yx)) + t3(xy,−(yx)) +

t4(xy,−(yx))

The last expression t4(xy,−(yx)) is 0 based on general reasons. We thus get:

[x, y]Group = 2(t2(x, y) + t4(x, y)) + t2(xy,−(yx)) + t3(xy,−(yx))

We simplify the pieces separately. We have:

t2(xy,−(yx)) = 1
2 [t1(x, y) + t2(x, y) + t3(x, y) + t4(x, y),−(t1(y, x) + t2(y, x) + t3(y, x) +

459



t4(y, x))]

Note that any pair involving t4 becomes zero, so this becomes:

t2(xy,−(yx)) = 1
2 [t1(x, y) + t2(x, y) + t3(x, y),−t1(x, y) + t2(x, y)− t3(x, y)]

Note that [t1(x, y), t3(x, y)] and [t3(x, y), t1(x, y)] cancel. Also, the products [ti(x, y), tj(x, y)]

are zero for i + j ≥ 5, and also for i = j. Thus, the only products that survive are

[t1(x, y), t2(x, y)] and [t2(x, y),−t1(x, y)], and we obtain:

t2(xy,−(yx)) = 1
2 [x+ y, [x, y]] (∗∗)

We now simplify t3(xy,−(yx)):

t3(xy,−(yx)) = 1
12 [xy, [xy,−(yx)]]− 1

12 [−(yx), [xy,−(yx)]]

The product [xy,−(yx)] on the inside simplifies to [x + y, [x, y]] based on the above

calculations. Thus, we get:

t3(xy,−(yx)) = 1
12 [xy + yx, [x+ y, [x, y]]

We know that xy + yx = 2t1(x, y) + 2t3(x, y). Thus:

t3(xy,−(yx)) = 1
12 [2t1(x, y), [x+ y, [x, y]]] + 1

12 [2t3(x, y), [x+ y, [x, y]]]

The second term is zero because the degree is six. Simplifying the first term, we get:

t3(xy,−(yx)) = 1
6 [x+ y, [x+ y, [x, y]]] (∗ ∗ ∗)

Plugging (**) and (***) into the original formula (*), we obtain:

[x, y]Group = [x, y]− 1
12 [y, [x, [x, y]]] + 1

2 [x+ y, [x, y]] + 1
6 [x+ y, [x+ y, [x, y]]]

Rearranging, we obtain:

[x, y]Group = [x, y] + 1
2 [x+ y, [x, y]] + 1

6 [x+ y, [x+ y, [x, y]]]− 1
12 [y, [x, [x, y]]]

B.1.6 Computing the second inverse Baker-Campbell-Hausdorff formula in

the case c = 2, and an illustration of why it involves only strictly

smaller primes

We will use the case c = 2 to illuminate the discussion in Section 7.1.2, specifically the proof

of Lemma 7.1.2.
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We have:

M3(x, y) = [x, y] + 1
2 [x+ y, [x, y]]

Our goal is to find the expression for h2,3(x, y). In the class two case, the group commu-

tator and Lie bracket coincide, so we know that:

M2(x, y) = [x, y], h2,2(x, y) = [x, y]Group

Following the notation of Lemma 7.1.2, we have that:

(h2,2 ◦M2)(x, y) = [x, y]

Note that this case is remarkable because the equality holds exactly, rather than just

modulo Ac+1. In particular, this means that the degree (c+1) expression χc+1(x, y) defined

in Lemma 7.1.2 as the expression such that:

(h2,2 ◦M2)(x, y) = [x, y]Lie + χc+1(x, y) (mod Ac+2)

turns out to be zero, i.e., χc+1(x, y) = 0.

We also have that:

M3(x, y) = M2(x, y) + ξc+1(x, y)

where ξc+1(x, y) = 1
2 [x+ y, [x, y]]. Thus, we obtain that:

(h2,2 ◦M3)(x, y) = [x, y]Lie + χc+1(x, y) + ξc+1(x, y)

or more explicity:

(h2,2 ◦M3)(x, y) = [x, y]Lie +
1

2
[x+ y, [x, y]]

It therefore follows that:

h2,3(x, y) =
[x, y]√

[xy, [x, y]]
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B.2 Some results involving local nilpotency class

B.2.1 3-local class three implies global class three for Lie rings

We prove that nilpotency class three is 3-local.

Lemma B.2.1. Suppose L is a Lie ring with the property that for any subset of L of

size at most three, the Lie subring generated by that subset is a subring of nilpotency class

at most three. In other words, L has 3-local nilpotency class at most three. Then, L is a

nilpotent Lie ring and its nilpotency class is at most three.

Proof. The map (w, x, y, z) 7→ [w, [x, [y, z]]] is alternating and multi-linear, and hence skew-

symmetric, in all pairs of inputs. The “alternating” condition follows from the 3-local class

three condition: whenever two inputs are the same, the product is a degree four product in

a subring generated by three elements, hence it must equal zero. In particular, this means

that the sign of the expression [w, [x, [y, z]]] is reversed under any odd permutation of the

inputs and is preserved under any even permutation of the inputs.

We will show that for all w, x, y, z ∈ L, the Lie bracket [w, [x, [y, z]]] equals 0. The

elements w, x, y, and z are fixed but arbitrary for the duration of this proof.

In particular, we obtain that [w, [x, [y, z]]] = [w, [y, [z, x]]] = [w, [z, [x, y]]] for all w, x, y, z ∈

L. Combining with the Jacobi identity, we obtain that for all w, x, y, z ∈ L, we have that:

3[w, [x, [y, z]]] = 0 (†)

We also obtain that

[w, [x, [y, z]]] = [[y, z], [w, x]] (∗)

The proof is as follows: Use the Jacobi identity to get [w, [x, [y, z]]] + [x, [[y, z], w]] +
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[[y, z], [w, x]] = 0. Now, the middle term [x, [[y, z], w]] is the negative of [x, [w, [y, z]]], which

by the alternating condition we know to be the negative of [w, [x, [y, z]]]. So, the mid-

dle term equals [w, [x, [y, z]]]. Thus, the Jacobi identity expression gives 2[w, [x, [y, z]]] +

[[y, z], [w, x]] = 0. Combine with (†) to obtain that [w, [x, [y, z]]] = [[y, z], [w, x]].

Similarly, we obtain that:

[y, [z, [w, x]]] = [[w, x], [y, z]] (∗∗)

Combine (*), (**), and the fact that [w, [x, [y, z]]] = [y, [z, [w, x]]] because of the alter-

nating nature of the map, and obtain that:

[[y, z], [w, x]] = [[w, x], [y, z]] (∗ ∗ ∗)

On the other hand, we have, by the alternating nature of the Lie bracket, that:

[[y, z], [w, x]] = −[[w, x], [y, z]] (∗ ∗ ∗∗)

Combining (***) and (****), we obtain that:

2[[y, z], [w, x]] = 0

Combining with (*), we obtain that:

2[w, [x, [y, z]]] = 0

Combining with (†), we obtain that:

[w, [x, [y, z]]] = 0

as desired.
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B.3 Proofs related to isoclinism

We begin with the proof of Theorem 2.1.4. The theorem is restated below.

Suppose G1 and G2 are isoclinic groups. Suppose c is a positive integer. Let m1

be the number of conjugacy classes in G1 of size c (so that the total number of

elements in such conjugacy classes is m1c). Let m2 be the number of conjugacy

classes in G2 of size c (so that the total number of elements in such conjugacy

classes is m2c). Then, m1 is nonzero if and only if m2 is nonzero, and if so,

m1/m2 = |G1|/|G2|.

In particular, if G1 and G2 additionally have the same order, then they have

precisely the same multiset of conjugacy class sizes.

Proof. Let W be the group identified with Inn(G1) ∼= Inn(G2), and T be the group identified

with G′1
∼= G′2. Denote by α1 : G1 → W and α2 : G2 → W the respective quotient maps.

Denote by ω : W ×W → T the group commutator map. Note that the map ω is the same

for both groups – that’s precisely the point of their being isoclinic.

For w ∈ W , the centralizer in G1 of any element in α−1
1 (w) is precisely α−1

1 (C(w)) where

C(w) = {u ∈ W | ω(u,w) is the identity element of T}

Thus, the size of the conjugacy class in G1 of any element in α−1
1 (w) is the index of the

subgroup C(w) in W .

From this, it follows that the set of elements of G1 with conjugacy class size c is α−1
1 (S)

where S is the set of w ∈ W for which the index of the subgroup C(w) = {u ∈ W |

ω(u,w) is the identity element of T} in W is c.

Thus, we get the equality of the following two expressions for the number of elements of

G1 in conjugacy classes of size c:

m1c = |S||Z(G1)|
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Analogously, we have:

m2c = |S||Z(G2)|

The crucial thing to note is that the subset S of W is the same in both cases.

Taking the quotient, we get that m1 is nonzero if and only if m2 is nonzero, and if so:

m1
m2

=
|Z(G1)|
|Z(G2)|

Since [G1 : Z(G1)] = |W | = [G2 : Z(G2)], we have |Z(G1)|/|Z(G2)| = |G1|/|G2|, so we

obtain:

m1
m2

=
|G1|
|G2|

We now turn to the proof of the result on irreducible representations. We need some

preliminary definitions.

Definition (Projective general linear group). Suppose K is a field and d is a positive

integer. The projective general linear group of degree d over K, denoted PGLd(K), is defined

as the quotient group of the general linear group GLd(K) by the subgroup of scalar matrices

in GLd(K). The subgroup of scalar matrices in GLd(K) is precisely the center of GLd(K).

Hence, PGLd(K) is isomorphic to the inner automorphism group of GLd(K).

Definition (Projective representation). Suppose G is a group and K is a field. A pro-

jective representation of G over K of degree d is a homomorphism from G to the projective

general linear group PGLd(K) for some positive integer d. The value d here is termed the

degree of the projective representation.
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A projective representation ρ : G → PGLd(K) is said to have a linear lift θ : G →

GLd(K) if π ◦θ = ρ, where π : GLd(K) → PGLd(K) is the natural quotient map. The term

“linear lift” here refers to the fact that θ is a linear representation that serves as a “lift” of

ρ.

A projective representation may or may not admit a linear lift. The next lemma describes

the nature of the set of linear lifts assuming that a linear lift exists.

Lemma B.3.1. Suppose G is a finite group and ρ : G → PGLd(C) is a projective

representation. Suppose θ : G → GLd(C) a linear representation of G that is a lift of ρ. In

other words, if π : GLd(C) → PGLd(C) is the natural quotient map, then we want that

ρ = π ◦ θ. We know that the set of one-dimensional representations of G (identified as the

Pontryagin dual of G/G′) acts naturally on the set of irreducible representations of G. The

claim is that the stabilizer of θ is precisely the set of one-dimensional representations of G

whose kernel contains the subgroup generated by G′ and all the elements g of G on which

the trace of θ(g) takes a nonzero value.

Proof. One direction (one-dimensional representation whose kernel contains G′ and the el-

ements with nonzero trace values for θ must be in the stabilizer of θ): If a one-dimensional

representation β has a kernel containing all the points where θ has a nonzero-valued char-

acter, then that means that for any g ∈ G, either θ(g) has trace zero or β(g) is the identity.

Thus, in all cases, we have that β(g)θ(g) and θ(g) have the same trace. Thus, βθ and θ have

the same character, hence, by basic character theory, are equivalent as representations.

Reverse direction (one-dimensional representation that stabilizes θ must have kernel con-

taining G′ and the elements with nonzero trace values): Let β be a one-dimensional repre-

sentation of G that stabilizes θ. Note that the kernel of any one-dimensional representation

already contains G′, so G′ is contained in the kernel of β. Thus, we only need to show it
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contains all the elements at which the trace of θ is nonzero. Suppose g ∈ G is an element at

which θ(g) has nonzero trace, and β is a one-dimensional representation in the stabilizer of

θ. Then βθ and θ are equivalent representations, hence they have the same character. Thus,

β(g)θ(g) and θ(g) have the same trace. By assumption, θ(g) has nonzero trace, so this forces

the complex number β(g) to equal 1, so g is in the kernel of β, as desired.

We can now turn to the proof of Theorem 2.1.5, the main theorem about irreducible

representations.

Suppose G1 and G2 are isoclinic finite groups. Suppose d is a positive integer.

Let m1 denote the number of equivalence classes of irreducible representations of

G1 over C that have degree d. Let m2 denote the number of equivalence classes of

irreducible representations of G2 over C that have degree d. Then, m1 is nonzero

if and only if m2 is nonzero, and if so, m1/m2 = |G1|/|G2|.

In particular, if G1 and G2 additionally have the same order, then they have

precisely the same multiset of degrees of irreducible representations.

Proof. Let W be the group identified with Inn(G1) ∼= Inn(G2), and T be the group identified

with G′1
∼= G′2. Denote by α1 : G1 → W and α2 : G2 → W the respective quotient maps.

ω : W ×W → T the group commutator map, which is the same for both groups.

We have short exact sequences:

1 → Z(G1) → G1 → W → 1

and

1 → Z(G2) → G2 → W → 1

We will show the following:
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1. For any irreducible projective representation ρ : W → PGLd(C), there exists a linear

representation of G1 that descends to ρ if and only if there exists a linear representation

of G2 that descends to ρ.

2. Further, if so, the ratio of the number of linear representations of G1 that descend to

ρ equals the number of linear representations of G2 that descend to ρ is |G1|/|G2|.

Note that once we have (1) and (2), the result will follow: first, simply list all the

projective representations of W of degree d that lift to linear representations in the groups

G1 and/or G2. For each, the number of lifts in the two groups is in the proportion |G1| : |G2|,

so the overall proportion is also |G1| : |G2|.

Proof of (1): This follows from Isaacs, Theorem 11.13, and the observation that the

condition Isaacs specifies for the representation to lift is satisfied for G1 if and only if it is

satisfied for G2.

Proof of (2): If a projective representation lifts to G1, then the set of lifts has a transitive

action on it of the set of one-dimensional linear representations of G1, which is the Pontryagin

dual of G1/G
′
1. By the fundamental theorem of group actions, the size of the set of lifts

equals the index of the stabilizer in this Pontryagin dual of any lift. So the question is: what

is the necessary and sufficient condition for a one-dimensional representation χ of G1/G
′
1 to

fix a linear lift of ρ to G1?

The notion of whether the trace is zero is a well-defined notion for ρ, even though the

outputs are in PGLd(C) rather than being matrices themselves. Let N (ρ) be the subgroup

of W generated by W ′ and all those elements of W for which the trace of the image under ρ

is nonzero. By the preceding lemma (Lemma B.3.1), the stabilizer of any lift of ρ is precisely

the set of one-dimensional representations of G1 whose kernel contains α−1
1 (N (ρ)). Another

way of putting it is that it is the Pontryagin dual of G1/α
−1
1 (N (ρ)), viewed as a subgroup

of the Pontryagin dual of G1/G
′
1.

The number of linear lifts is therefore:

468



|G1/G
′
1|

|G1/α
−1
1 (N (ρ))|

By the third isomorphism theorem of basic group theory, this is the same as:

|α−1
1 (N (ρ))/G′1|

This simplifies to:

|N (ρ)||Z(G1)|
|G′1|

Similarly, the number of lifts of ρ to G2 is:

|N (ρ)||Z(G2)|
|G′2|

Note the crucial fact that N (ρ) is the same in both cases.

Taking the quotient, we get |Z(G1)|/|Z(G2)|, which is the same as |G1/G2| because the

groups have isomorphic inner automorphism groups. This completes the proof of (2), and

hence of the original statement.
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