
SEMINAR TALK

VIPUL NAIK

0.1. Lazard correspondence. Say time: 2 minutes
The global Lazard correspondence is a correspondence:
Some groups (p-groups of class less than p) ↔ Some Lie rings (p-Lie rings of class less than p)
Put arrow-marked exp and log
The group and Lie ring have the same underlying set, and there are formulas for the group operations in

terms of the Lie ring operations (and vice versa) that are inverses of each other.

• Baker-Campbell-Hausdorff formula: group multiplication in terms of Lie ring operations
• Inverse Baker-Campbell-Hausdorff formulas: Lie ring addition and Lie bracket in terms of group

multiplication

Baker-Campbell-Hausdorff formula:

xy + x + y +
1
2
[x, y] +

1
12

([x, [x, y]]− [y, [x, y]]) + . . .

Say, don’t write: Note that the formula involves division by some numbers. The weight c term in the
formula involves division by a number all of whose prime divisors are less than or equal to c. In other words,
the larger the class we have, the larger the primes we need to divide by (loosely speaking).

TIME OR INTEREST PERMITTING ONLY:
Write: πc = the set of primes less than or equal to c.
πc-powered group = group where every element has a unique pth root for all p ∈ πc

0.2. Isoclinism. Say time: 2 minutes
For any group G, the commutator map in G descends to a map of sets:

ωG : Inn(G)× Inn(G) → G′

An isoclinism from G1 to G2 is a pair of isomorphisms (ζ, ϕ) where ζ is an isomorphism from Inn(G1) to
Inn(G2) and ϕ is an isomorphism from G′

1 to G′
2, satisfying the condition that:

(1) ϕ(ωG1(x, y)) = ωG2(ζ(x), ζ(y))

Pictorially:

Inn(G1)× Inn(G1)
ζ×ζ→ Inn(G2)× Inn(G2)

↓ωG1 ↓ωG2

G′
1

ϕ→ G′
2

Abelian ⇐⇒ Isoclinic to the trivial group
Say, don’t write: Note that both the inner automorphism group and the derived subgroup are quantitative

measurements of the “non-abelianness” of the group. The notion of isoclinism can thus properly be thought
of as saying “equivalent modulo the subvariety of abelian groups.” In particular, a group is abelian if and
only if it is isoclinic to the trivial group.
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0.3. Global Lazard correspondence up to isoclinism. Write + say together time: 3 minutes
Global Lazard correspondence up to isoclinism from a Lie ring L to a group G is a pair of isomorphisms

(ζ, ϕ) where ζ is an isomorphism from Inn(L) to log(Inn(G)) and ϕ is an isomorphism from L′ to log(G′)
such that:

ϕ(ωL(x, y)) = ωLie
G (ζ(x), ζ(y))

This is equivalent to the requirement that:

ϕ(ωGroup
L (x, y)) = ωG(ζ(x), ζ(y))

(make the diagrams, discuss)
It’s a correspondence:
Equivalence classes up to isoclinism of p-groups of class at most p ↔ Equivalence classes up to isoclinism

of p-Lie rings of class at most p

0.4. Key difficulty: showing existence. Write + say time: 2 minutes
We’ll apply ideas from group extension theory and Lie ring extension theory to:

0 → Z(L) → L → L/Z(L) → 0
and

0 → Z(G) → G → G/Z(G) → 1
Key idea (say, don’t write, rest of this section): We begin by viewing L as an extension with central subring

Z(L) and quotient ring L/Z(L) ∼= Inn(L). We obtain the corresponding Lie bracket map Inn(L)× Inn(L) →
L′. We then obtain a desired commutator map exp(Inn(L))× exp(Inn(L)) → exp(L′) by using the formula
describing the commutator map in terms of the Lie bracket map. Finally, we demonstrate the existence of
a group G that realizes this commutator map.

We will show that equivalence classes of groups up to isoclinism can be described by storing the commu-
tator structure in an abstract fashion, without reference to an actual group in that equivalence class.

This will be useful to the final step of our proof of existence established above: instead of directly trying
to construct the groups in the equivalence class up to isoclinism, we construct the commutator structure. In
the notation above, we construct the desired commutator map exp(Inn(L))× exp(Inn(L)) → exp(L′).

Below, we provide a few more details about how we store the commutator structure abstractly. This
discussion may be accessible only to people familiar either with group cohomology or with some other type
of cohomology theory that is structurally similar. Note also that the group G that we use here is not the
same as the group G used above.

0.5. Option bifurcation. Say + write time: 2 minutes
We could either:
• go over the Baer correspondence up to isoclinism (the case c = 1 and c + 1 = 2) in detail. The

advantage here is that we could delve deeply into examples and understand everything explicitly, or
• go over the general case, but we will have to hand-wave quite a bit and will not be able to cover

examples.

1. First option: the Baer correspondence up to isoclinism

1.1. The case c = 1: the Baer correspondence up to isoclinism. For now, G and A are abelian groups
(A also viewed as an abelian Lie ring by abuse of notation), and L is an abelian Lie ring.

The short exact sequence classifying extensions of abelian groups is:

(2) 0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G, A) → 0

(explain in detail each of the maps and what it means)
Say some version of this: The map:
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Ext1Z(G;A) → H2(G;A)
can be interpreted as follows. The underlying set of the group on the left is canonically identified with

the set of all abelian group extensions with subgroup A and quotient group G. The group on the right is the
group whose elements are all the central extensions with central subgroup A and quotient group G. Every
abelian group extension is a central extension, and there is therefore a canonical injective set map from
Ext1Z(G;A) to H2(G;A).

The map:

H2(G;A) → Hom(G ∧G, A)
can be described as follows. For any group extension E, the commutator map E ×E → E descends to a

set map:

ωE,G : G×G → A

Our earlier definition of ωE,G defined it as a map to [E,E], but [E,E] lies in the image of A (under the
inclusion of A in E), so it can be viewed as a map to A.

Note that the image of the map is in A because G is abelian. Further, ωE,G is bilinear, because the image
of the map is central. It thus defines a group homomorphism G ∧G → A.

The homomorphism above can also be described in terms of the how it operates at the level of 2-cocycles
(this description requires understanding the explicit description of the second cohomology group using the
bar resolution, as given in Section ??). Explicitly, the map:

H2(G;A) → Hom(G ∧G, A)
arises from a homomorphism:

Z2(G;A) → Hom(G ∧G, A)
given by:

f 7→ Skew(f)
where Skew(f) is the map (x, y) 7→ f(x, y)− f(y, x).
Intuitively, this is because the commutator of two elements represents the distance between their products

in both possible orders, i.e., [x, y] is the quotient (xy)/(yx). Whether we use left or right quotients does not
matter because the group has class two.

Based on the discussion in Section ??, the homomorphism:

H2(G;A) → Hom(G ∧G, A)
Write: Similarly for Lie rings:

(3) 0 → Ext1Z(L;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0

The short exact sequence splits canonically, and we get a canonical isomorphism:

H2
Lie(L;A) ∼= Ext1Z(L;A)⊕Hom(L ∧ L,A)

Say: We can describe the splitting either by specifying the projection H2
Lie(L;A) → Ext1Z(L;A) or by

specifying the inclusion Hom(L ∧ L,A) → H2
Lie(L;A). We do both.

The projection:

H2
Lie(L;A) → Ext1Z(L;A)

is defined as follows. For any extension Lie ring M , map it to the extension Lie ring that is abelian as
a Lie ring and has the same additive group as M . In other words, keep the additive structure intact, but
“forget” the Lie bracket.

The inclusion:
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Hom(L ∧ L,A) → H2
Lie(L;A)

is defined as follows. Given a bilinear map b : L× L → A, define the extension Lie ring as a Lie ring M
whose additive group is L⊕A, and where the Lie bracket is:

[(x1, y1), (x2, y2)] = [0, b(x1, x2)]
In other words, we use the direct sum for the additive structure, and use the bilinear map to define the

Lie bracket.
In light of this, we can think of the direct sum decomposition as follows:

H2
Lie(L;A) ∼= Ext1Z(L;A)⊕Hom(L ∧ L,A)

The projection onto the first component stores the additive structure of the Lie ring, while destroying,
or forgetting, the Lie bracket. The projection onto the second component preserves the Lie bracket while
replacing the additive structure with a direct sum of L and A. Note also that the latter projection is
equivalent to passing to the associated graded Lie ring.

1.2. Baer correspondence up to isoclinism for extensions. Write: We have demonstrated the exis-
tence of canonical isomorphisms between the left groups and between the right groups in the two short exact
sequences:

0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G, A) → 0
↓ ↓

0 → Ext1Z(L;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0

Say: As described in Sections ?? and ??, both short exact sequences split. Therefore, it is possible to
find an isomorphism H2(G;A) → H2

Lie(L;A) that establishes an isomorphism of the short exact sequences.
Do: Mark canonical, non-canonical isomorphisms.
Say: Note, however, that the middle isomorphism is not canonical. In fact, choosing a middle isomor-

phism is equivalent to choosing a splitting of the top sequence. This is because the bottom sequence splits
canonically, as we just described.

When we have the actual Baer correspondence, that gives us a canonical middle isomorphism, or equiva-
lently, a canonical splitting of the universal coefficient theorem short exact sequence.

(can also explain this in the context of the BCH formula if necessary).

1.3. Cocycle-level description of the Baer correspondence. Suppose G and A are abelian groups (we
will soon restrict to the case that one or both of G and A is 2-powered). Consider the following two short
exact sequences. The first is the short exact sequence relating the coboundary, cocycle and cohomology
groups, originally described in Section ??:

0 → B2(G;A) → Z2(G;A) → H2(G;A) → 0
The second is the universal coefficient theorem short exact sequence, originally described in Section ??

and described specifically for abelian G in Section ??:

0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G, A) → 0
The first short exact sequence need not split. An example where it does not split was discussed in Section

??. The second short exact sequence does always split but the splitting need not be canonical (see Section
??).

The right parts of these short exact sequences give surjective homomorphisms, which we can compose:

Z2(G;A) → H2(G;A) → Hom(G ∧G, A)
As we discussed in Section ??, the composite of these maps is the skew map. Explicitly, the composite is

the map f 7→ Skew(f), that sends a function f to the function:

Skew(f) = (x, y) 7→ f(x, y)− f(y, x)
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Note that the function Skew(f) is a Z-bilinear map G×G to A, which can be interpreted as a homomor-
phism G ∧G → A.

Now, suppose that G and A are both 2-powered abelian groups.1

In that case, there is a canonical splitting of the composite map, given as follows:

f 7→ 1
2
f

In other words, a Z-bilinear map f : G × G → A is sent to 1
2f : G × G → A. Note that any Z-bilinear

map is a 2-cocycle (in general, any n-linear map is a n-cocycle) so this works.
In particular, both the short exact sequences split, and we get canonical direct sum decompositions:

Z2(G;A) ∼= B2(G;A)⊕H2(G;A), splitting is H2(G;A) → Z2(G;A)

H2(G;A) ∼= Ext1Z(G;A)⊕Hom(G ∧G, A), splitting is Hom(G ∧G, A) → H2(G;A)

Note that the first short exact sequence need not split for all G and A (see the discussion in Section ??)
and the existence of a splitting is itself a piece of information. The second short exact sequence does split
for all G and A, but the splitting is not in general canonical, as discussed in Section ??, so the case where
G and A are both 2-powered is special in that we obtain a canonical splitting.

The splitting map Hom(G∧G, A) → H2(G;A) is the same as the one arising from the Baer correspondence.
Explicitly, as noted in Section ??, specifying the splitting map Hom(G ∧G, A) → H2(G;A) is equivalent to
specifying an isomorphism of H2(G;A) and H2

Lie(L;A) such that the diagram below commutes:

0 → Ext1Z(G;A) → H2(G;A) → Hom(G ∧G, A) → 0
↓ ↓ ↓

0 → Ext1Z(L;A) → H2
Lie(L;A) → Hom(L ∧ L,A) → 0

This isomorphism can be described in an alternative way. Let E be an extension group corresponding
to an element of H2(G;A). Let N = log(E) via the Baer correspondence. We can relate two short exact
sequences via a log functor.

0 → A → E → G → 1
↓log ↓log ↓log

0 → A → N → L → 0

Note that we abuse notation again, using the same letter A for A as a group and as a Lie ring.
Then, the element of H2

Lie(L;A) that corresponds to the second row is the same as the image of the
element of H2(G;A) under the isomorphism described earlier.

1.4. A setting where the Baer correspondence works only up to isoclinism. In the case that G and
A are odd-order abelian groups, the original Baer correspondence works. To obtain finite examples where
the Baer correspondence works only up to isoclinism, we need to look at 2-groups. Further, our examples
must be cases where the quotient Hom(G ∧ G, A) is nontrivial, so that there is at least some non-abelian
extension.2

The smallest sized example is: A = Z2 is the cyclic group of order 2 and G = V4 is the Klein four-group,
isomorphic to Z2 × Z2.

The short exact sequences discussed in Sections ?? and ??, along with the canonical isomorphisms dis-
cussed in Section ??, give the following:

1The assumption can be modified to requiring that any one of G and A be 2-powered, in which case we will need to use one of
the generalizations of the Baer correspondence described in Section ??, but we do not describe it here since it is not necessary
for our purpose.
2The abelian extensions can be put in correspondence based on the correspondence between abelian groups and abelian Lie
rings, which, although not strictly part of the Baer correspondence as have defined it, falls under the generalization (1) of it
described in Section ??
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0 → Ext1(V4; Z2) → H2(V4; Z2) → Hom(V4 ∧ V4, Z2) → 0
↓ ↓

0 → Ext1(V4; Z2) → H2
Lie(V4; Z2) → Hom(V4 ∧ V4, Z2) → 0

Recall that both short exact sequences split, and, as per the discussion in Section ??, the Lie ring short
exact sequence splits canonically (with the splitting separating out the addition and Lie bracket parts).

It turns out that:
• Ext1(V4; Z2) is itself isomorphic to V4, the Klein four-group.
• ( V4 ∧ V4) is isomorphic to Z2, and thus, Hom(H2(V4; Z), Z2) is isomorphic to Z2.
• Thus, both of the second cohomology groups (the group and Lie ring side) are isomorphic to the

elementary abelian group of order eight.
On the group side, we have the following eight extensions (eight being the order of the cohomology group):

(a) Elementary abelian group of order eight (1 time).
(b) Z4 ⊕ Z2 (3 times).
(c) D8 (3 times).
(d) Q8 (1 time).

(a) and (b) together form the image of Ext1 (total size 4) while (c) and (d) form the non-identity coset
of that image.

On the Lie ring side, the eight extensions (eight being the order of the cohomology group) are:
(a) Abelian Lie ring, additive group elementary abelian of order eight (1 time)
(b) Abelian Lie ring, additive group direct product of Z4 and Z2 (3 times).
(c) The niltriangular matrix Lie ring (3×3 strictly upper triangular matrices) over the field of two elements.

(1 time)
(d) The semidirect product of Z4 and Z2 as Lie rings. (3 times).

(a) and (b) together form the image of Ext1 (total size 4) while (c) and (d) form the non-identity coset
of that image.

Note that there is no canonical bijection between the set of eight group extensions and the set of eight
Lie ring extensions, but we can naturally correspond the images of Ext1 in both. The problem arises when
attempting an element-to-element identification of the non-identity cosets in the two cases. In other words,
we have a correspondence at a coset level:

{The four non-abelian Lie ring extensions} ↔ {D8, D8, D8, Q8}
But there is no clear-cut way of making sense of which Lie ring extension to correspond to which group.

This is an example of a situation where the Baer correspondence up to isoclinism does not seem to have any
natural refinement to a correspondence up to isomorphism.

Note that in this case, it so happens that we can use an automorphism-invariance criterion and get a unique
automorphism-invariant bijection. This would map the niltriangular matrix Lie ring to the quaternion group
and the semidirect product of Z4 and Z2 to the dihedral group. However, this does not give a meaningful
bijection at the level of elements. For instance, one feature that holds in all generalizations described so far
for the Baer correspondence is that the correspondence restricts to isomorphism between cyclic subgroups
and cyclic subrings. In particular, the multiset of the orders of the elements in the group must match the
multiset of the orders of the elements in the additive group of the Lie ring. However, the multiset of the
orders of the elements of D8 does not match the multiset of the orders of elements in any abelian group of
order 8. The same is true of Q8.

2. Second option: going over the general case, but in a handwavy fashion

2.1. Universal coefficient theorem: technical details. Say + write time: 2 minutes
Central extensions with central subgroup A and quotient group G:

0 → Ext1Z(Gab, A) → H2(G;A) → Hom(M(G), A) → 0
It splits, but not canonically:
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H2(G;A) ∼= Ext1Z(Gab, A)⊕Hom(M(G), A)
The map:

H2(G;A) → Hom(M(G), A)
classifies extensions up to “isoclinism of extensions.”
Surjectivity is key.
Say, don’t write: Surjectivity tells us: every homomorphism from M(G) to A can be “realized” via an

equivalence class up to isoclinism of extensions.
We can do something similar on the Lie ring side.

2.2. Boils down to isomorphism of Schur multipliers. Say + write time: 1 minute
Schur multiplier M(G) “classifies” equivalence classes up to isoclinism of extensions of G.
Schur multiplier M(L) “classifies” equivalence classes up to isoclinism of extensions of L.
We show that if G and L are in global Lazard correspondence, then M(G) ∼= M(L) canonically.
This allows us to prove results for groups that are extensions of groups in Lazard correspondence, i.e., πc

2.3. Optional extra: explain about the exterior square and Schur multiplier. Write header: Ex-
terior square

Say, don’t write: Recall how we define exterior square of a vector space. We have a concept of alternating
bilinear maps from the vector space. The exterior square is an object such that homomorphisms from it
correspond to alternating bilinear maps from the vector space.

Write: Exterior square of G is the “freest” group G∧G generated by formal symbols x∧y, x, y ∈ G, such
that for any central extension E of G, if we consider the map:

ωE,G : G×G → [E,E]
(slight variant of the ωE described above)

this extends to a group homomorphism:

ΩE,G : G ∧G → [E,E]
If there’s time: Originally introduced by Miller (1952), later described by Brown and Loday (1987) and

Graham Ellis (1987).
There is an explicit presentation with generators and relations.
Say (don’t write): There is a similar definition of the exterior square of a Lie ring. Note that the exterior

square of a Lie ring as a Lie ring is not the same as its exterior square as an abelian group. It is a quotient
of that, however.

Write: There’s a canonical short exact sequence (central extension):

0 → M(G) → G ∧G → [G, G] → 1
Right map, on a generating set:

x ∧ y 7→ [x, y]
M(G) = Schur multiplier of G
Say (don’t write): We can think of M(G) as the formal products of expressions of the form x ∧ y that,

when we evaluate in G, become trivial. This has the flavor of looking at central extensions. Indeed:
Write:

0 → M(G) → G ∧G → [G, G] → 1
↓ ↓

0 → A → E → G → 1
Do: make dashed arrow M(G) → A. This is the map β : M(G) → A, same as the element of

Hom(M(G), A) that appears in the universal coefficient theorem short exact sequence.
Write: Let B be the image of β and β′ : M(G) → B be the restriction. We have a map:
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0 → M(G) → G ∧G → [G, G] → 1
↓β′ ↓ΩE,G ↓id

0 → B → [E,E] → [G, G] → 1
Say or write: Knowing the map M(G) → B determines the map ΩE,G. Latter classifies extensions up to

isoclinism, hence so does the former.
Say: Analogous results hold for the Lie ring. The key aspect we need to prove is that the Schur multiplier,

which classifies extensions up to isoclinism, is the same for the group and the Lie ring, if the group and the
Lie ring are in Lazard correspondence. This will allow us to draw conclusions about the central extension
groups and Lie rings, that has class one more than the original group and Lie ring. We will in fact show
that the short exact sequences:

Write:

0 → M(L) → L ∧ L → [L,L] → 0
and

0 → M(G) → G ∧G → [G, G] → 1
are in Lazard correspondence up to (canonical) isomorphism.
Say: Why this is plausible: Note that if G has class c, G ∧ G has class at most b(c + 1)/2c, so if G is in

the domain of the Lazard correspondence, so is G ∧G.
Why this is nontrivial: The intermediate formulas that we would use to calculate G∧G and L∧L are inside

groups and Lie rings that are not in Lazard correspondence (e.g., if we use the Hopf formula). We need to
show that despite this, the subgroups that end up getting used in the formula are in Lazard correspondence.

2.4. The finite case. Global Lazard correspondence:
finite p-groups of class ≤ p− 1 ↔ finite p-Lie rings of class ≤ p− 1 (write below: additive group is a finite

p-group)
Global Lazard correspondence up to isoclinism:
equivalence classes up to isoclinism of finite p-group of class ≤ p ↔ equivalence classes up to isoclinism

of finite p-Lie rings of class ≤ p
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