Decision Tree Complexity, Solvable Groups, and the Distribution of Prime Numbers

Joint Work 2010

László Babai

Raghav Kulkarni (speaker)
Vipul Naik University of Chicago, Chicago, IL, USA

Anandam Banerjee
Northeastern University, Boston, MA, USA

Decision Tree Complexity

Decision Tree Model aka Query Model boolean function $f:\{0,1\}^{N} \rightarrow\{0,1\}$

- Input: $x=\left(x_{1}, \ldots, x_{N}\right) \in\{0,1\}^{N}$
- Access: (adaptive) queries $x_{i} \stackrel{?}{=} 1$
- Cost: \#queries
- Goal: determine $f(x)$

Decision Tree Complexity

$D(f):=$ \#queries on worst input

Evasiveness

$$
f \in\{0,1\}^{N} \rightarrow\{0,1\} \text { is evasive, if }
$$

$$
D(f)=N
$$

A sequence P_{n} of boolean functions is said to be eventually evasive if P_{n} is evasive for all sufficiently large n

Note: n and N may be different

Graph Properties

Graph Properties as Boolean Functions
Graph Property P_{n} : collection of n-vertex labeled graphs invariant under relabeling

$$
N=\binom{n}{2}
$$

n-vertex graph \longleftrightarrow string in $\{0,1\}^{N}$ graph property $\longleftrightarrow f:\{0,1\}^{N} \rightarrow\{0,1\}$ invariant under relabeling of $[n$]

Examples: planarity, 3-colorability, complete graphs, connectedness, Eulerian graphs, perfect graphs

Trivial Graph Properties: all graphs or no graphs

Monotone Graph Properties

- Monotone (Decreasing) Graph Property: closed under edge deletion.
- Examples: planarity, 3-colorability, \{empty graph\}, trivial graph properties
- Non-monotone Examples: perfect graphs, Eulerian graphs, cycles

Forbidden Subgraph Property H - a fixed graph
$Q_{n}^{H}:=$ the class of all n-vertex graphs that do not contain H as a (not necessarily induced) subgraph.
Q_{n}^{H} is monotone (decreasing)

Evasiveness Conjecture

Evasiveness Conjecture
aka Aanderaa-Rosenberg-Karp Conjecture for Monotone Graph Properties

For any n, any non-trivial monotone property P_{n} of n-vertex graphs must be evasive, i.e., $D\left(P_{n}\right)=\binom{n}{2}$.

- Aanderaa - Rosenberg Conjecture 1973: $D\left(P_{n}\right)=\Omega\left(n^{2}\right)$.
- (Theorem) Rivest and Vuillemin 1978: $D\left(P_{n}\right) \geq n^{2} / 16$
- Kahn, Saks, and Sturtevant 1984:
(KSS Theorem)
$D\left(P_{n}\right)=\binom{n}{2}$ when n is a prime power
(conceptual breakthrough: topological approach)

KSS Approach

- monotone property : simplicial complex
- group actions on simplicial complex
- Oliver's Theorem: group actions \rightarrow fixed points
- fixed point \rightarrow invariant subgraph

Results via KSS topological approach

- Yao 1988: evasiveness in bipartite graphs with fixed partition
- Triesch 1996: bipartite properties (among all graphs)
- Chakrabarti, Khot, and Shi 2002:
- more tools for Forbidden Subgraph
- $D\left(Q_{n}^{H}\right)=\binom{n}{2}-O(n)$
- forbidden minor : eventually evasive

Our Results

Our Results

- Conditional Results: We confirm under widely accepted number theoretic hypotheses, the eventual evasiveness of
(a) every forbidden subgraph property
(b) any monotone property of sparse graphs
- sparse: $\leq n^{3 / 2-\epsilon}$ edges
- Unconditional Results
(a) forbidden sub: $D\left(Q_{n}^{H}\right)=\binom{n}{2}-O(1)$ improves CKS bound: $\binom{n}{2}-O(n)$
(b) any monotone property of sparse graphs sparse: $\leq c n \log n$
- Unconditional Corollary: forbidden topological subgraph eventually evasive (generalizes CKS: forbidden minor)

Number Theoretic Dependencies

Chowla's Conjecture 1944:
on smallest Dirichlet Prime

$$
\left(\exists p<d^{1+o(1)}\right)(p \equiv a \quad \bmod d)
$$

Generalized Riemann Hypothesis 1884:
for Dirichlet L-functions

$$
\left(\exists p<d^{2+o(1)}\right)(p \equiv a \quad \bmod d)
$$

Vinogradov's Theorem 1937:
odd Goldbach Conjecture

$$
k \text { odd } \Rightarrow k=p_{1}+p_{2}+p_{3}
$$

Haselgrove's Strengthening 1954:
of Vinogradov's Theorem

$$
p_{1} \approx p_{2} \approx p_{3}
$$

Weil's Character Sum Estimates 1941:
for characters of finite field
pseudorandomness of $d^{\text {th }}$ power residues

Our Methods

- use KSS topological approach
- use full power of Oliver's Theorem
- new group actions
via number theory (results/conjectures)
- invariant graphs analysed via Weil's character sum estimates
- forbidden subgraph: use CKS reduction of Euler characteristic

Some Preliminaries

Abstract Simplicial Complex.

Let $X=\left\{x_{1}, \ldots, x_{m}\right\}$.
Let $\Delta \subseteq 2^{X}$ such that:

$$
(f \in \Delta)\left(f^{\prime} \subseteq f\right) \Rightarrow f^{\prime} \in \Delta
$$

Δ : abstract simplicial complex
$f \in \Delta$: face of Δ.
(Dimension) $\operatorname{dim}(\Delta):=\max \{(|f|-1): f \in \Delta\}$. (Euler Characteristic)

$$
\chi(\Delta):=\sum_{f \in \Delta, f \neq \emptyset}(-1)^{|f|-1}
$$

Monotone Property and Abstract Complex

$$
\begin{gathered}
{[n]:=\{1,2, \ldots, n\} .} \\
\binom{[n]}{2}:=\{\{i, j\}:(i \neq j \in[n])\} . \\
\frac{\mathcal{G}_{n}-n \text {-vertex (labeled) graphs. }}{G \in \mathcal{G}_{n} \Rightarrow E(G) \subseteq\binom{[n]}{2} .}
\end{gathered}
$$

$$
\frac{P_{n} \text { - monotone (decreasing) graph property }}{\Delta^{P_{n}}:=\left\{E(G): G \in P_{n}\right\}} \begin{gathered}
\operatorname{dim}\left(P_{n}\right):=\operatorname{dim}\left(\Delta^{P_{n}}\right)
\end{gathered}
$$

$\operatorname{dim}=$ maximum possible \#edges - 1

Oliver's Fixed Point Theorem 1976

Oliver's Condition on Group Γ :

$$
\left(\exists \Gamma_{2}, \Gamma_{1}\right)\left(\Gamma_{2} \triangleleft \Gamma_{1} \triangleleft \Gamma\right)
$$

\exists primes p, q such that

- $\left|\Gamma / \Gamma_{1}\right|=q^{\beta}$
- Γ_{1} / Γ_{2} is cyclic
- $\left|\Gamma_{2}\right|=p^{\alpha}$
all such groups are solvable; $p=q$ permitted
Oliver's Theorem 1976:
Δ - contractible, non-empty
Γ - satisfies Oliver's Condition
$\Rightarrow \Gamma$ action on Δ must have
a non-empty Γ-invariant face

Kahn, Saks, and Sturtevant's Approach

Evasiveness \leftarrow Topology + Group Actions

- $P_{n} \underline{\text { not evasive }} \Rightarrow \Delta^{P_{n}}$ contractible $\left(\Rightarrow \chi\left(P_{n}\right)=1\right)$
- Graph Property: $\Gamma \leq S_{n} \Rightarrow \Gamma$ acts on $\Delta^{P_{n}}$.
- use Oliver's Fixed Point Theorem

KSS Theorem

Theorem (KSS 1984): If $n=p^{\alpha}$, then any nonevasive monotone graph property P_{n} satisfied by at least one graph is satisfied by K_{n}, and hence by all graphs.

Key use of prime power: There exists a group $\Gamma \leq S_{n}$ such that:
(a) 「 satisfies Oliver's Condition
(b) Γ is transitive on $\binom{[n]}{2}$
Γ acts on the non-empty contractible simplicial complex $\Delta^{P_{n}}$ and via Oliver, $\Delta^{P_{n}}$ has a non-empty Γ-invariant face

Since Γ is transitive on $\binom{[n]}{2}$, this Γ-invariant face must be K_{n}. Thus, $K_{n} \in \Delta^{P_{n}}$

KSS Group Construction for $n=p^{\alpha}$ $\Gamma:=\mathbb{F}_{p^{\alpha}}^{+} \rtimes \mathbb{F}_{p^{\alpha}}^{\times}$: affine group over $\mathbb{F}_{p^{\alpha}}$ Explicitly

- identify $[n]$ with $\mathbb{F}_{p^{\alpha}}$
- $\Gamma:=\left\{\gamma: x \mapsto a x+b \mid a \in \mathbb{F}_{p^{\alpha}}^{\times} \& b \in \mathbb{F}_{p^{\alpha}}^{+}\right\}$
- 「 - cyclic extension of a p-group
(thus Γ satisfies Oliver's Condition)
- Γ - transitive on $\binom{[n]}{2}$

Our Approach to Sparse Graphs

Evasiveness and Dimension

A Restatement of Evasiveness Conjecture:
$\left(P_{n} \neq \emptyset\right)\left(P_{n}\right.$ not evasive $) \Rightarrow \operatorname{dim}\left(P_{n}\right)=\binom{n}{2}-1$.

Our Sparse Graph Results:
$\left(P_{n} \neq \emptyset\right)\left(P_{n}\right.$ not evasive $) \Rightarrow \operatorname{dim}\left(P_{n}\right) \geq m(n)$
in other words ...
any non-trivial monotone property of graphs with at most $m(n)$ edges is evasive stronger number theory \Rightarrow larger $m(n)$

Dimension Lower Bound
trivial bound via KSS : $\Omega(n)$

We show

- $\Omega(n \log n)$ unconditionally
- $\Omega\left(n^{5 / 4-\epsilon}\right)$ under GRH
- $\Omega\left(n^{3 / 2-\epsilon}\right)$ under Chowla's Conjecture
still far from quadratic

This translates to ...
property of graphs with at most m edges \equiv property fails for any graph having $>m$ edges
any non-trivial monotone property of graphs with at most m edges is eventually evasive where

- $m=c n \log n \underline{\text { unconditionally }}$
- $m=n^{5 / 4-\epsilon}$ under GRH
- $m=n^{3 / 2-\epsilon}$ under Chowla's Conjecture

Our Approach to Sparse Graphs:

Construct $\Gamma \leq S_{n}$ such that:

- 「 satisfies Oliver's Condition
- size of the orbit of any edge under Γ is as large as possible

KSS 84
Evasiveness \leftarrow Topology + Group Actions

Our new component
Group Actions \leftarrow Analytic Number Theory

Forbidden Subrgraph

CKS Approach to Forbidden Subgraph Chakrabarti, Khot, and Shi 2002:

- use KSS + Oliver
- construct new group actions specific to Forbidden Subgraph
- invariant graph trivially contains a large clique

Our New Components to CKS Approach

- metabelian group actions to force large clique non-trivially
- Paley graphs
- Weil's character sum estimates
- use distribution of prime numbers
(known/conjectured) to glue the pieces

Paley-type Graphs \& Metabelian Groups Construction of Graph $P(q, d)$

- $V=\mathbb{F}_{q} \quad q$ odd prime power d even $\quad d \mid q-1$
- $i \sim j \Longleftrightarrow(i-j)^{d}=1\left(\right.$ over $\left.\mathbb{F}_{q}\right)$
$\Gamma(q, d):=$ order $q d$ subgroup of $\mathbb{F}_{q}^{+} \rtimes \mathbb{F}_{q}^{\times}$

Main Observations

- orbit of any (unordered) pair $\{i, j\} \in\binom{[q]}{2}$ under $\Gamma(q, d)$ action is isomorphic to $P(q, d)$
- if $\frac{q-1}{d} \leq q^{1 / 2 h}$ then $P(q, d)$ contains a clique on h vertices

Paley-type graphs pseudorandom proof goes via standard application of Weil's Character Sum Estimates

More Details : Sparse Graphs (mostly skipping ...)

A Prime-Partition of k.

Goldbach Conjecture:
k - even integer $\Rightarrow k=p_{1}+p_{2}$
p_{i} prime.

Vinogradov's Theorem:
k - large odd integers
$\Rightarrow k=p_{1}+p_{2}+p_{3}$
Haselgrove's Strengthening: $p_{i}=\Omega(k)$

Corollary: k large even integer
$\Rightarrow k=p_{1}+p_{2}+p_{3}+p_{4}$,
$p_{i}=\Omega(k)$

Partition of $\{1,2, \ldots, n\}$
Let $n=p^{\alpha} k \quad p$ prime
$|S|=n$.

1
2

k

$$
[n]=\underbrace{\mathbb{F}_{p^{\alpha}} \dot{\cup} \ldots \dot{\cup} \mathbb{F}_{p^{\alpha}}}_{k}
$$

Our Basic Group Construction
Γ acts on［n］such that
－within each block 「 simulates action of affine group over $\mathbb{F}_{p^{\alpha}}: x \mapsto a x+b$
－$k=p_{1}+p_{2}+p_{3}$ where $p_{i} \approx p_{j}$（Vinogradov + Haselgrove）

$$
H:=\mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}} \times \mathbb{Z}_{p_{3}}
$$

－「 permutes blocks according to $H \leq S_{k}$

－「 satisfies Oliver＇s Condition（not obvious）

Description of Γ

$$
\begin{gathered}
n=p^{\alpha} k \quad H \leq S_{k} \\
\Gamma:=(\underbrace{\mathbb{F}_{p^{\alpha}}^{+} \times \cdots \times \mathbb{F}_{p^{\alpha}}^{+}}_{k}) \rtimes\left(\mathbb{F}_{p^{\alpha}}^{\times} \times H\right)
\end{gathered}
$$

Orbit of an Edge

Two types of edges

- intra-cluster : orbit $K_{p^{\alpha}}$
- inter-cluster : orbit $K_{p^{\alpha}, p^{\alpha}}$

> intra-cluster edge orbits $\leftrightarrow H$-orbits on $[k]$ inter-cluster edge orbits $\leftrightarrow H$-orbits on $\binom{[k]}{2}$

1
2

k

Orbit Size Lower Bounds

$k=p_{1}+p_{2}+p_{3} \quad p_{i} \approx p_{j} \quad p_{1} \leq p_{2} \leq p_{3}$

- intra-cluster edge -

$$
\text { |intra-cluster orbit } \left\lvert\, \geq\binom{ p^{\alpha}}{2} \times p_{1}\right.
$$

- inter-cluster edge -
|inter-cluster orbit $\mid \geq\left(p^{\alpha}\right)^{2} \times p_{1}$
- any edge -

$$
\text { |any orbit } \mid=\Omega\left(p^{\alpha} \times p^{\alpha} \times p_{1}\right)
$$

Choice of p^{α}

$$
p^{\alpha}:=\text { largest prime power dividing } n
$$

- $p^{\alpha}=\Omega(\log n)$
- $n \sim 3 p^{\alpha} p_{1}$
- |any orbit $\mid=\Omega(n \log n)$
> (thanks to Vinogradov's Theorem) this proves unconditionally ...

there exists a constant c such that any monotone property of graphs with $\leq c n \log n$ edges is evasive

Another Partition of \mathbf{n}

We want to write

$$
n=p k+r
$$

such that

$$
\begin{gathered}
p, r \text { prime } \\
p=\Theta\left(n^{1 / 4}\right) \\
\frac{n}{4} \leq r \leq \frac{n}{2} \\
(\exists q)(q \text { prime })(q \mid r-1)\left(q=\Theta\left(n^{1 / 4-\epsilon}\right)\right)
\end{gathered}
$$

GRH and Dirichlet Primes

For a fixed D and a such that $\operatorname{gcd}(a, D)=1$ there are infinitely many primes of the form $p \equiv a \bmod D$.

Under GRH:

If $D=O\left(n^{1 / 2-\epsilon}\right)$, then
for any a such that $\operatorname{gcd}(a, D)=1$, there exists a prime $p \equiv a \bmod D$
such that $\frac{n}{2} \leq p \leq n$.

GRH \Rightarrow desired partition

Choose some prime $p=\Theta\left(n^{1 / 4}\right)$.
Choose another prime $q=\Theta\left(n^{1 / 4-\epsilon}\right)$.
We need to find a prime r such that

$$
r \equiv n \bmod p \& r \equiv 1 \bmod q
$$

Equivalently,
for some a such that $\operatorname{gcd}(a, p q)=1$ we want to find $\frac{n}{4} \leq r \leq \frac{n}{2}$ such that

$$
r \equiv a \bmod p q .
$$

Since $p q=O\left(n^{1 / 2-\epsilon}\right)$,
$\mathrm{GRH} \Rightarrow$ such r exists.

Choosing 「

$$
\Gamma:=\Gamma_{[p k]} \times \Gamma_{r}
$$

where

$$
\Gamma_{r}:=\mathbb{F}_{r}^{+} \rtimes \mathbb{Z}_{q}
$$

$\Gamma_{[p k]}$ - as constructed previously using prime partition of k.

With this delicate choice of parameters, 「 satisfies Oliver's Condition and one can show:
$\left(P_{n} \neq \emptyset\right)\left(P_{n}\right.$ not evasive $) \Rightarrow \operatorname{dim}\left(P_{n}\right)=\Omega\left(n^{5 / 4-\epsilon}\right)$

- first try to resolve the following:
(under number theoretic conjectures)
$\left(P_{n} \neq \emptyset\right)\left(P_{n}\right.$ not evasive $) \Rightarrow \operatorname{dim}\left(P_{n}\right)=\Omega\left(n^{2}\right)$
- prove evasivenes conjecture or strong dimension lower bounds on sets of positive density
- unconditional result for Forbidden Subgraph

Thanks !

