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Decision Tree Complexity
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Decision Tree Model aka Query Model

boolean function f : {0,1}N → {0,1}

• Input: x = (x1, . . . , xN) ∈ {0,1}N

• Access: (adaptive) queries xi
?
= 1

• Cost: #queries

• Goal: determine f(x)

Decision Tree Complexity

D(f) := #queries on worst input
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Evasiveness

f ∈ {0,1}N → {0,1} is evasive, if

D(f) = N

A sequence Pn of boolean functions is said to

be eventually evasive if Pn is evasive for all

sufficiently large n

Note: n and N may be different
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Graph Properties
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Graph Properties as Boolean Functions

Graph Property Pn: collection of n-vertex la-

beled graphs invariant under relabeling

N =
(n

2

)

n-vertex graph ←→ string in {0,1}N

graph property ←→ f : {0,1}N → {0,1}

invariant under relabeling of [n]

Examples: planarity, 3-colorability,

complete graphs, connectedness,

Eulerian graphs, perfect graphs

Trivial Graph Properties: all graphs or no graphs
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Monotone Graph Properties

• Monotone (Decreasing) Graph Property:

closed under edge deletion.

• Examples: planarity, 3-colorability,

{empty graph}, trivial graph properties

• Non-monotone Examples: perfect graphs,

Eulerian graphs, cycles
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Forbidden Subgraph Property

H - a fixed graph

QH
n := the class of all n-vertex graphs

that do not contain H as a (not necessarily in-

duced) subgraph.

QH
n is monotone (decreasing)
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Evasiveness Conjecture
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Evasiveness Conjecture

aka Aanderaa-Rosenberg-Karp Conjecture for

Monotone Graph Properties

For any n, any non-trivial monotone prop-

erty Pn of n-vertex graphs must be evasive,

i.e., D(Pn) =
(
n
2

)

.

• Aanderaa - Rosenberg Conjecture 1973:

D(Pn) = Ω(n2).

• (Theorem) Rivest and Vuillemin 1978:

D(Pn) ≥ n2/16

• Kahn, Saks, and Sturtevant 1984:

(KSS Theorem)

D(Pn) =
(
n
2

)

when n is a prime power

(conceptual breakthrough: topological

approach)

10



KSS Approach

• monotone property : simplicial complex

• group actions on simplicial complex

• Oliver’s Theorem:

group actions → fixed points

• fixed point → invariant subgraph
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Results via KSS topological approach

• Yao 1988: evasiveness in bipartite graphs

with fixed partition

• Triesch 1996: bipartite properties (among

all graphs)

• Chakrabarti, Khot, and Shi 2002:

- more tools for Forbidden Subgraph

- D(QH
n ) =

(
n
2

)

−O(n)

- forbidden minor : eventually evasive
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Our Results
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Our Results

• Conditional Results: We confirm under widely

accepted number theoretic hypotheses, the

eventual evasiveness of

(a) every forbidden subgraph property

(b) any monotone property of sparse graphs

. sparse: ≤ n3/2−ǫ edges

• Unconditional Results

(a) forbidden sub: D(QH
n ) =

(
n
2

)

−O(1)

. improves CKS bound:
(
n
2

)

−O(n)

(b) any monotone property of sparse graphs

. sparse: ≤ cn logn

• Unconditional Corollary: forbidden topolog-

ical subgraph eventually evasive

(generalizes CKS: forbidden minor)
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Number Theoretic Dependencies

Chowla’s Conjecture 1944:

on smallest Dirichlet Prime

(∃p < d1+o(1))(p ≡ a mod d)

Generalized Riemann Hypothesis 1884:

for Dirichlet L-functions

(∃p < d2+o(1))(p ≡ a mod d)

Vinogradov’s Theorem 1937:

odd Goldbach Conjecture

k odd⇒ k = p1 + p2 + p3

Haselgrove’s Strengthening 1954:

of Vinogradov’s Theorem

p1 ≈ p2 ≈ p3

Weil’s Character Sum Estimates 1941:

for characters of finite field

pseudorandomness of dth power residues
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Our Methods

• use KSS topological approach

• use full power of Oliver’s Theorem

• new group actions

via number theory (results/conjectures)

• invariant graphs analysed

via Weil’s character sum estimates

• forbidden subgraph: use CKS reduction of

Euler characteristic
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Some Preliminaries
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Abstract Simplicial Complex.

Let X = {x1, . . . , xm}.

Let ∆ ⊆ 2X such that:

(f ∈∆)(f ′ ⊆ f)⇒ f ′ ∈∆.

∆ : abstract simplicial complex

f ∈∆ : face of ∆.

(Dimension) dim(∆) := max{(|f |−1) : f ∈∆}.

(Euler Characteristic)

χ(∆) :=
∑

f∈∆,f 6=∅

(−1)|f |−1.
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Monotone Property and Abstract Complex

[n] := {1,2, . . . , n}.

([n]

2

)

:= {{i, j} : (i 6= j ∈ [n])}.

Gn - n-vertex (labeled) graphs.

G ∈ Gn ⇒ E(G) ⊆
([n]

2

)

.

Pn - monotone (decreasing) graph property

∆Pn := {E(G) : G ∈ Pn}

dim(Pn) := dim(∆Pn)

dim = maximum possible #edges - 1
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Oliver’s Fixed Point Theorem 1976

Oliver’s Condition on Group Γ:

(∃ Γ2,Γ1)(Γ2 � Γ1 � Γ)

∃ primes p, q such that

• |Γ/Γ1| = qβ

• Γ1/Γ2 is cyclic

• |Γ2| = pα

all such groups are solvable; p = q permitted

Oliver’s Theorem 1976:

∆ - contractible, non-empty

Γ - satisfies Oliver’s Condition

⇒ Γ action on ∆ must have

a non-empty Γ-invariant face
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Kahn, Saks, and Sturtevant’s Approach

Evasiveness ← Topology + Group Actions

• Pn not evasive⇒∆Pn contractible

(⇒ χ(Pn) = 1)

• Graph Property: Γ ≤ Sn⇒ Γ acts on ∆Pn.

• use Oliver’s Fixed Point Theorem
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KSS Theorem

Theorem (KSS 1984): If n = pα, then any non-

evasive monotone graph property Pn satisfied

by at least one graph is satisfied by Kn, and

hence by all graphs.

Key use of prime power: There exists a group

Γ ≤ Sn such that:

(a) Γ satisfies Oliver’s Condition

(b) Γ is transitive on
(
[n]
2

)

Γ acts on the non-empty contractible simpli-

cial complex ∆Pn and via Oliver, ∆Pn has a

non-empty Γ-invariant face

Since Γ is transitive on
(
[n]
2

)

, this Γ-invariant

face must be Kn. Thus, Kn ∈∆Pn
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KSS Group Construction for n = pα

Γ := F
+
pα ⋊ F

×
pα : affine group over Fpα

Explicitly

• identify [n] with Fpα

• Γ := {γ : x 7→ ax + b | a ∈ F
×
pα & b ∈ F

+
pα}

• Γ - cyclic extension of a p-group

(thus Γ satisfies Oliver’s Condition)

• Γ - transitive on
(
[n]
2

)
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Our Approach to Sparse Graphs
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Evasiveness and Dimension

A Restatement of Evasiveness Conjecture:

(Pn 6= ∅)(Pn not evasive)⇒ dim(Pn) =
(n

2

)

−1.

Our Sparse Graph Results:

(Pn 6= ∅)(Pn not evasive)⇒ dim(Pn) ≥ m(n)

in other words ...

any non-trivial monotone property of graphs

with at most m(n) edges is evasive

stronger number theory ⇒ larger m(n)
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Dimension Lower Bound

trivial bound via KSS : Ω(n)

We show

• Ω(n logn) unconditionally

• Ω(n5/4−ǫ) under GRH

• Ω(n3/2−ǫ) under Chowla’s Conjecture

still far from quadratic
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This translates to ...

property of graphs with at most m edges ≡

property fails for any graph having > m edges

any non-trivial monotone property of graphs

with at most m edges is eventually evasive

where

• m = cn logn unconditionally

• m = n5/4−ǫ under GRH

• m = n3/2−ǫ under Chowla’s Conjecture
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Our Approach to Sparse Graphs:

Construct Γ ≤ Sn such that:

• Γ satisfies Oliver’s Condition

• size of the orbit of any edge under Γ

is as large as possible

KSS 84

Evasiveness ← Topology + Group Actions

Our new component

Group Actions ← Analytic Number Theory
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Forbidden Subrgraph
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CKS Approach to Forbidden Subgraph

Chakrabarti, Khot, and Shi 2002:

• use KSS + Oliver

• construct new group actions

specific to Forbidden Subgraph

• invariant graph trivially contains

a large clique
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Our New Components to CKS Approach

• metabelian group actions

to force large clique non-trivially

• Paley graphs

• Weil’s character sum estimates

• use distribution of prime numbers

(known/conjectured) to glue the pieces
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Paley-type Graphs & Metabelian Groups

Construction of Graph P(q, d)

• V = Fq q odd prime power

d even d | q − 1

• i ∼ j ⇐⇒ (i− j)d = 1 (over Fq)

Γ(q, d) := order qd subgroup of F
+
q ⋊ F×q
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Main Observations

• orbit of any (unordered) pair {i, j} ∈
(
[q]
2

)

under Γ(q, d) action is isomorphic to P(q, d)

• if q−1
d ≤ q1/2h then P(q, d) contains a clique

on h vertices

Paley-type graphs pseudorandom

proof goes via standard application of Weil’s

Character Sum Estimates
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More Details : Sparse Graphs

(mostly skipping ...)
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A Prime-Partition of k.

Goldbach Conjecture:

k - even integer ⇒ k = p1 + p2

pi prime.

Vinogradov’s Theorem:

k - large odd integers

⇒ k = p1 + p2 + p3

Haselgrove’s Strengthening: pi = Ω(k)

Corollary: k large even integer

⇒ k = p1 + p2 + p3 + p4,

pi = Ω(k)
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Partition of {1,2, . . . , n}

Let n = pαk p prime

|S| = n.

1                              2                                                                           k

.....................

pα

[n] = Fpα
.
∪ . . .

.
∪ Fpα

︸ ︷︷ ︸

k
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Our Basic Group Construction

Γ acts on [n] such that

• within each block Γ simulates action of

affine group over Fpα : x 7→ ax + b

• k = p1 + p2 + p3 where

pi ≈ pj (Vinogradov + Haselgrove)

H := Zp1 × Zp2 × Zp3

• Γ permutes blocks according to H ≤ Sk

k
︷ ︸︸ ︷

00 . . .0︸ ︷︷ ︸
p1

00 . . .0︸ ︷︷ ︸
p2

00 . . .0︸ ︷︷ ︸
p3

• Γ satisfies Oliver’s Condition (not obvious)
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Description of Γ

n = pαk H ≤ Sk

Γ := (F+
pα × · · · × F

+
pα

︸ ︷︷ ︸

k

) ⋊ (F×pα ×H)
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Orbit of an Edge

Two types of edges

• intra-cluster : orbit Kpα

• inter-cluster : orbit Kpα,pα

intra-cluster edge orbits ↔ H-orbits on [k]

inter-cluster edge orbits↔ H-orbits on
(
[k]
2

)

1                              2                                                                           k

.....................

pα
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Orbit Size Lower Bounds

k = p1 + p2 + p3 pi ≈ pj p1 ≤ p2 ≤ p3

• intra-cluster edge -

|intra-cluster orbit| ≥
(pα

2

)

× p1

• inter-cluster edge -

|inter-cluster orbit| ≥ (pα)2 × p1

• any edge -

|any orbit| = Ω(pα × pα × p1)
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Choice of pα

pα := largest prime power dividing n

• pα = Ω(logn)

• n ∼ 3pαp1

• |any orbit| = Ω(n logn)

(thanks to Vinogradov’s Theorem)

this proves unconditionally ...

there exists a constant c such that

any monotone property of graphs

with ≤ cn logn edges is evasive
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Another Partition of n

We want to write

n = pk + r

such that

p, r prime.

p = Θ(n1/4)

n

4
≤ r ≤

n

2

(∃q)(q prime)(q | r − 1)(q = Θ(n1/4−ǫ))
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GRH and Dirichlet Primes

For a fixed D and a such that gcd(a, D) = 1

there are infinitely many primes

of the form p ≡ a mod D.

Under GRH:

If D = O(n1/2−ǫ), then

for any a such that gcd(a, D) = 1,

there exists a prime p ≡ a mod D

such that n
2 ≤ p ≤ n.
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GRH ⇒ desired partition

Choose some prime p = Θ(n1/4).

Choose another prime q = Θ(n1/4−ǫ).

We need to find a prime r such that

r ≡ n mod p & r ≡ 1 mod q

Equivalently,

for some a such that gcd(a, pq) = 1

we want to find n
4 ≤ r ≤ n

2 such that

r ≡ a mod pq.

Since pq = O(n1/2−ǫ),

GRH ⇒ such r exists.
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Choosing Γ

Γ := Γ[pk] × Γr

where

Γr := F
+
r ⋊ Zq

Γ[pk] - as constructed previously

using prime partition of k.

With this delicate choice of parameters, Γ sat-

isfies Oliver’s Condition and one can show:

(Pn 6= ∅)(Pn not evasive)⇒ dim(Pn) = Ω(n5/4−ǫ)
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Possible Directions

• first try to resolve the following:

(under number theoretic conjectures)

(Pn 6= ∅)(Pn not evasive)⇒ dim(Pn) = Ω(n2)

• prove evasivenes conjecture or

strong dimension lower bounds

on sets of positive density

• unconditional result for Forbidden Subgraph
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Thanks !
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