REVIEW SHEET FOR MIDTERM 2: ADVANCED

MATH 196, SECTION 57 (VIPUL NAIK)

Please bring a copy (print or readable electronic) of this sheet to the review session.

There is also a basic review sheet that contains executive summaries of the lecture notes. You should review that on your own time.

I've kept the error-spotting exercises brief, because I intend to concentrate more on reviewing some of the techniques covered in the quizzes.

1. MATRIX MULTIPLICATION AND INVERSION

Error-spotting exercises ...

- (1) Suppose A and B are $n \times n$ matrices, with B invertible. Suppose r is a positive integer. Then, $(BAB^{-1})^r = B^r A^r (B^{-1})^r = B^r A^r B^{-r}$. Note that since A and B do not in general commute, we must write the terms in precisely this order.
- (2) Suppose A and B are $n \times n$ matrices and r is a positive integer such that $(AB)^r = 0$. Then, we can conclude that $(BA)^r = 0$ as follows: we can write $(BA)^r = (BA)^r BB^{-1} = BABA \dots BABB^{-1} = B(AB)^r B^{-1} = B(0)B^{-1} = 0$.
- (3) Suppose A and B are $n \times n$ matrices. Then, AB is nilpotent if and only if at least one of the matrices A or B is nilpotent. To see this, suppose r is a positive integer such that $(AB)^r = 0$. Then, we know that $(AB)^r = A^r B^r$, so $A^r B^r = 0$, forcing that either $A^r = 0$ or $B^r = 0$. The argument also works in reverse: if either of the matrices is nilpotent, there exists r such that one of the matrices A^r and B^r is 0. Thus, $A^r B^r = 0$, so $(AB)^r = 0$, so AB is nilpotent.
- (4) Suppose A and B are invertible $n \times n$ matrices. Then, the sum A + B is also an invertible $n \times n$ matrix, and $(A + B)^{-1} = A^{-1} + B^{-1}$.
- (5) Suppose A and B are invertible $n \times n$ matrices. Then, the product AB is also an invertible $n \times n$ matrix, and $(AB)^{-1} = A^{-1}B^{-1}$.
- (6) Suppose A and B are matrices with real entries, with A a single row matrix and B a single column matrix. Then, AB makes sense if and only if BA makes sense, and if so, we must have that AB = BA.
- (7) Suppose A is a $m \times n$ matrix and B is a $n \times p$ matrix. The product C = AB is a $m \times p$ matrix. For $1 \le i \le m$ and $1 \le k \le p$, the value c_{ik} is the product $a_{ij}b_{jk}$, with $1 \le j \le n$.

2. Geometry of linear transformations

Error-spotting exercises ... (this section is not too important, so we will probably do it last)

- (1) Suppose D is a 2×2 diagonal matrix and T is the linear transformation corresponding to D. Let's say the two diagonal entries of D are a and d. The necessary and sufficient condition for T to be area-preserving is that the total effect on the x and y directions add up to 1 (the ratio of change of areas). Thus, T is area-preserving if and only if a + d = 1.
- (2) The composite of the reflection maps about two lines through the origin that make an angle of θ with each other is the rotation map by the angle of θ . Moreover, the order of composition does not matter, i.e., the composite for both orders of composition is the same.
- (3) The composite of two rotations in \mathbb{R}^2 is always a rotation, even if the centers of rotation differ.
- (4) A bijective function $f : \mathbb{R}^n \to \mathbb{R}^n$ is an affine linear automorphism of \mathbb{R}^n if and only if it sends lines to lines.

3. Image and kernel

3.1. Injectivity, surjectivity, and bijectivity. Error-spotting exercises ...

- (1) Suppose $f_1, f_2, f_3 : A \to A$ are set maps. Suppose the composite $f_1 \circ f_2 \circ f_3$ is bijective. Then, f_1 must be injective (because it's the one done first, so it cannot create any collision), f_2 must be bijective, and f_3 must be surjective (because it's the one done last, so it must hit everything).
- (2) Suppose $f : \mathbb{R} \to \mathbb{R}$ is a polynomial of degree equal to the natural number $n \ge 3$. If n is even, f is surjective but not injective (e.g., $f(x) = x^4$). If n is odd, f is injective but not surjective (e.g., $f(x) = x^3$).
- (3) Suppose f is a function from \mathbb{R} to \mathbb{R} . Suppose that the restriction of f to \mathbb{Z} maps \mathbb{Z} to inside \mathbb{Z} (i.e., f takes integer values at integer inputs). Let $g : \mathbb{Z} \to \mathbb{Z}$ be the function obtained by restricting f to \mathbb{Z} . Then:
 - (a) f is injective if and only if g is injective.
 - (b) f is surjective if and only if g is surjective.
 - (c) f is bijective if and only if g is bijective.

3.2. Linear transformation and rank. Error-spotting exercises ...

- (1) If T_1 and T_2 are linear transformations from \mathbb{R}^2 to \mathbb{R}^2 , then the kernel of $T_1 + T_2$ equals the intersection of the kernels of T_1 and T_2 . Here's a proof. Suppose a vector \vec{u} is in the kernel of T_1 as well as the kernel of T_2 . Then, $T_1(\vec{u}) = T_2(\vec{u}) = 0$. Thus, $(T_1 + T_2)(\vec{u}) = T_1(\vec{u}) + T_2(\vec{u}) = 0 + 0 = 0$. In particular, this means that if both T_1 and T_2 are invertible, then $T_1 + T_2$ is invertible.
- (2) Suppose $T_1 : \mathbb{R}^a \to \mathbb{R}^b$ and $T_2 : \mathbb{R}^b \to \mathbb{R}^c$ are linear transformations. Then, the composite $T_1 \circ T_2$ is a linear transformation from \mathbb{R}^a to \mathbb{R}^c . In terms of matrices, the matrix for T_1 is an $a \times b$ matrix and the matrix for T_2 is a $b \times c$ matrix. So the matrix for $T_1 \circ T_2$ is an $a \times c$ matrix, and is given by the matrix product of those two matrices.

Suppose the kernel of T_1 has dimension m and the kernel of T_2 has dimension n. A vector is in the kernel of $T_1 \circ T_2$ if and only if it is in the kernel of either T_1 or T_2 . Thus, the dimension of the kernel of $T_1 \circ T_2$ is the maximum of the dimensions of the kernels of T_1 and T_2 , which is max $\{m, n\}$.

- (3) Suppose $T : \mathbb{R}^m \to \mathbb{R}^n$ is a linear transformation with matrix A. Then A is a $m \times n$ matrix and the following are true:
 - (a) The rows of A form a spanning set for the image of T.
 - (b) The columns of A form a spanning set for the kernel of T.
- (4) Consider the linear transformation:

$$\nu = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto \begin{bmatrix} (y+z)/2 \\ (z+x)/2 \\ (x+y)/2 \end{bmatrix}$$

The kernel of T is precisely those vectors where x = -y = z, i.e., each coordinate is the negative of the next one. The image of T is the set where x = y = z.

3.3. The linear operation of differentiation. Error-spotting exercises ...

We will get to this only if we have enough time, since we will not see these topics outside the MCQs on the test.

- (1) Denote by $C(\mathbb{R})$ the vector space of all continuous functions with the usual addition and scalar multiplication of functions. Denote by $C^1(\mathbb{R})$ the vector space of all continuously differentiable functions with the usual addition and scalar multiplication of functions. Differentiation defines a linear transformation from $C(\mathbb{R})$ to $C^1(\mathbb{R})$. The image of this linear transformation is precisely the set of constant functions.
- (2) For every positive integer k, denote by $C^k(\mathbb{R})$ the subspace of $C(\mathbb{R})$ comprising those polynomials that are at least k times continuously differentiable. Then, $C^k(\mathbb{R}) \subseteq C^{k+1}(\mathbb{R})$ and the union of all the spaces $C^k(\mathbb{R})$ for k varying over the positive integers is the space $C^{\infty}(\mathbb{R})$ of infinitely differentiable functions.
- (3) The set of polynomials of degree at most k form a vector subspace of $C^{k}(\mathbb{R})$ but not of $C^{k+1}(\mathbb{R})$.