
REVIEW SHEET FOR MIDTERM 2: ADVANCED

MATH 196, SECTION 57 (VIPUL NAIK)

Please bring a copy (print or readable electronic) of this sheet to the review session.
There is also a basic review sheet that contains executive summaries of the lecture notes. You should

review that on your own time.
I’ve kept the error-spotting exercises brief, because I intend to concentrate more on reviewing some of the

techniques covered in the quizzes.

1. Matrix multiplication and inversion

Error-spotting exercises ...
(1) Suppose A and B are n × n matrices, with B invertible. Suppose r is a positive integer. Then,

(BAB−1)r = BrAr(B−1)r = BrArB−r. Note that since A and B do not in general commute, we
must write the terms in precisely this order.

(2) Suppose A and B are n× n matrices and r is a positive integer such that (AB)r = 0. Then, we can
conclude that (BA)r = 0 as follows: we can write (BA)r = (BA)rBB−1 = BABA . . . BABB−1 =
B(AB)rB−1 = B(0)B−1 = 0.

(3) Suppose A and B are n×n matrices. Then, AB is nilpotent if and only if at least one of the matrices
A or B is nilpotent. To see this, suppose r is a positive integer such that (AB)r = 0. Then, we know
that (AB)r = ArBr, so ArBr = 0, forcing that either Ar = 0 or Br = 0. The argument also works
in reverse: if either of the matrices is nilpotent, there exists r such that one of the matrices Ar and
Br is 0. Thus, ArBr = 0, so (AB)r = 0, so AB is nilpotent.

(4) Suppose A and B are invertible n × n matrices. Then, the sum A + B is also an invertible n × n
matrix, and (A + B)−1 = A−1 + B−1.

(5) Suppose A and B are invertible n × n matrices. Then, the product AB is also an invertible n × n
matrix, and (AB)−1 = A−1B−1.

(6) Suppose A and B are matrices with real entries, with A a single row matrix and B a single column
matrix. Then, AB makes sense if and only if BA makes sense, and if so, we must have that AB = BA.

(7) Suppose A is a m× n matrix and B is a n× p matrix. The product C = AB is a m× p matrix. For
1 ≤ i ≤ m and 1 ≤ k ≤ p, the value cik is the product aijbjk, with 1 ≤ j ≤ n.

2. Geometry of linear transformations

Error-spotting exercises ... (this section is not too important, so we will probably do it last)
(1) Suppose D is a 2× 2 diagonal matrix and T is the linear transformation corresponding to D. Let’s

say the two diagonal entries of D are a and d. The necessary and sufficient condition for T to be
area-preserving is that the total effect on the x and y directions add up to 1 (the ratio of change of
areas). Thus, T is area-preserving if and only if a + d = 1.

(2) The composite of the reflection maps about two lines through the origin that make an angle of θ
with each other is the rotation map by the angle of θ. Moreover, the order of composition does not
matter, i.e., the composite for both orders of composition is the same.

(3) The composite of two rotations in R2 is always a rotation, even if the centers of rotation differ.
(4) A bijective function f : Rn → Rn is an affine linear automorphism of Rn if and only if it sends lines

to lines.

3. Image and kernel

3.1. Injectivity, surjectivity, and bijectivity. Error-spotting exercises ...
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(1) Suppose f1, f2, f3 : A → A are set maps. Suppose the composite f1 ◦ f2 ◦ f3 is bijective. Then,
f1 must be injective (because it’s the one done first, so it cannot create any collision), f2 must be
bijective, and f3 must be surjective (because it’s the one done last, so it must hit everything).

(2) Suppose f : R → R is a polynomial of degree equal to the natural number n ≥ 3. If n is even, f
is surjective but not injective (e.g., f(x) = x4). If n is odd, f is injective but not surjective (e.g.,
f(x) = x3).

(3) Suppose f is a function from R to R. Suppose that the restriction of f to Z maps Z to inside Z (i.e.,
f takes integer values at integer inputs). Let g : Z → Z be the function obtained by restricting f to
Z. Then:
(a) f is injective if and only if g is injective.
(b) f is surjective if and only if g is surjective.
(c) f is bijective if and only if g is bijective.

3.2. Linear transformation and rank. Error-spotting exercises ...
(1) If T1 and T2 are linear transformations from R2 to R2, then the kernel of T1+T2 equals the intersection

of the kernels of T1 and T2. Here’s a proof. Suppose a vector ~u is in the kernel of T1 as well as the
kernel of T2. Then, T1(~u) = T2(~u) = 0. Thus, (T1 + T2)(~u) = T1(~u) + T2(~u) = 0 + 0 = 0.

In particular, this means that if both T1 and T2 are invertible, then T1 + T2 is invertible.
(2) Suppose T1 : Ra → Rb and T2 : Rb → Rc are linear transformations. Then, the composite T1 ◦ T2 is

a linear transformation from Ra to Rc. In terms of matrices, the matrix for T1 is an a × b matrix
and the matrix for T2 is a b× c matrix. So the matrix for T1 ◦ T2 is an a× c matrix, and is given by
the matrix product of those two matrices.

Suppose the kernel of T1 has dimension m and the kernel of T2 has dimension n. A vector is in
the kernel of T1 ◦ T2 if and only if it is in the kernel of either T1 or T2. Thus, the dimension of the
kernel of T1 ◦T2 is the maximum of the dimensions of the kernels of T1 and T2, which is max{m,n}.

(3) Suppose T : Rm → Rn is a linear transformation with matrix A. Then A is a m× n matrix and the
following are true:
(a) The rows of A form a spanning set for the image of T .
(b) The columns of A form a spanning set for the kernel of T .

(4) Consider the linear transformation:

ν =

x
y
z

 7→
(y + z)/2

(z + x)/2
(x + y)/2


The kernel of T is precisely those vectors where x = −y = z, i.e., each coordinate is the negative

of the next one. The image of T is the set where x = y = z.

3.3. The linear operation of differentiation. Error-spotting exercises ...
We will get to this only if we have enough time, since we will not see these topics outside the MCQs on

the test.
(1) Denote by C(R) the vector space of all continuous functions with the usual addition and scalar

multiplication of functions. Denote by C1(R) the vector space of all continuously differentiable
functions with the usual addition and scalar multiplication of functions. Differentiation defines a
linear transformation from C(R) to C1(R). The image of this linear transformation is precisely the
set of constant functions.

(2) For every positive integer k, denote by Ck(R) the subspace of C(R) comprising those polynomials
that are at least k times continuously differentiable. Then, Ck(R) ⊆ Ck+1(R) and the union of all the
spaces Ck(R) for k varying over the positive integers is the space C∞(R) of infinitely differentiable
functions.

(3) The set of polynomials of degree at most k form a vector subspace of Ck(R) but not of Ck+1(R).
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