
REVIEW SHEET FOR FINAL: ADVANCED

MATH 196, SECTION 57 (VIPUL NAIK)

To maximize efficiency, please bring a copy (print or readable electronic) of this review sheet
to the Saturday review sesssion.

Please come to the session only if you know the meanings of these:

• Subspace
• Linear transformation
• Linear combination
• Linear relation
• Span
• Spanning set
• Linear dependence
• Linear independence
• Basis
• Dimension
• Kernel
• Image
• Rank
• Nullity
• Injectivity
• Surjectivity
• Bijectivity
• Transpose of a matrix

Please go through the basic review sheet, book, or lecture notes, if any of these terms trip you up.

1. Linear dependence, bases and subspaces

Error-spotting exercises ...

(1) Half-truth: Consider R as a vector space. Then, Z, the set of integers, is a subspace of R because it
is closed under addition and contains the zero vector.

(2) Something doesn’t add up: Consider R2 as a vector space. Then, the set comprising the vectors
~e1, ~e2, ~e1 + ~e2 and their scalar multiples is a subspace because it contains the zero vector, is closed
under addition (after all, ~e1+~e2 = ~e1+~e2) and is closed under scalar multiplication (by assumption).

(3) Too non-slanted, too uncrooked: Suppose U is a vector subspace of Rn. Then, we can obtain a basis
for U as follows: start with the standard basis for Rn. Now, pick the vectors from this that are also
inside U . These form a basis for U . For instance, if U is the span of ~e2 and ~e3 in R4, this procedure
works.

(4) Telepathic basis: Suppose U1 and U2 are vector subspaces of Rn. Suppose we are given a basis S1

for U1 and a basis S2 for U2. Then, S1 ∩ S2 is a basis for the vector space U1 ∩ U2 and S1 ∪ S2 is a
basis for the vector space U1 ∪ U2.

(5) Too trivial to be true: If a collection of vectors in Rn satisfies the trivial linear relation, it is termed
linearly independent. If, however, it does not satisfy the trivial linear relation, it is termed linearly
dependent.

(6) Throwing out the baby with the bathwater: Suppose S is a set of vectors in Rn that spans a subspace
V of Rn, and there is a nontrivial linear relation between the vectors of S that uses four of the
vectors in S nontrivially (i.e., it has nonzero coefficients for four of the vectors in S). This means
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that we can throw out any of those four vectors and still span V . Thus, we can reduce the size of S
by 4 and still get a spanning set for V .

2. Coordinates (in focus: similarity of linear transformations)

Error-spotting exercises ...
(1) Same similar: Suppose A1 and B1 are similar n× n matrices, and A2 and B2 are also similar n× n

matrices. Then, A1A2 and B1B2 are similar n× n matrices. Here is the proof: since A1 and B1 are
similar, there exists a matrix S such that A1 = SB1S

−1. Since A2 and B2 are similar, there exists
a matrix S such that A2 = SB2S

−1. Then, A1A2 = (SB1S
−1)(SB2S

−1) = S(B1B2)S−1. Thus,
A1A2 and B1B2 are similar.

(2) Shallow roots: Suppose A and B are n × n matrices and r is a positive integer. Is it the case that
Ar being similar to Br implies that A is similar to B? Well, this depends on whether r is odd or
even. If r is even, then A and B need not be similar. We can get counterexamples even using 1× 1
matrices: [1] and [−1] have the same square, but are different.

On the other hand, if r is odd, then Ar and Br being similar implies that A and B are similar.
Here is the proof. If Ar and Br are similar, this implies that there exists an invertible n× n matrix
S such that Ar = SBrS−1 = (SBS−1)r. So, Ar = (SBS−1)r. Since r is odd, we can cancel it
from the exponent (note that we do not have the ± issue that we have with even r) and we get that
A = SBS−1, so that A and B are similar.

(3) One-sided scaling: Any two scalar matrices are similar because they represent the same linear trans-
formation viewed at different scalings.

(4) One-sided relabeling: Interchanging the roles of the standard basis vectors ~e1 and ~e2 shows that the
matrices: [

1 0
0 2

]
,

[
0 1
2 0

]
are similar to one another.

3. Abstract vector spaces (in focus: function spaces)

Error-spotting exercises ...
(1) Too big to compare: Consider differentiation. We can think of this as a linear transformation from

C1(R) (the vector space of all continously differentiable functions on all of R) to C(R) (the vector
space of all continuous functions on R). Here is an explanation for why the map is surjective: we
know that the kernel of this linear transformation is the vector space of constant functions, which is
1-dimensional. By the rank-nullity theorem, we know that (rank) + (nullity) = dimension of domain.
Since the nullity is 1, and the domain is infinite-dimensional, the rank is infinite. This equals the
dimension of the co-domain. Since the rank equals the dimension of the co-domain, that means that
the image is the whole co-domain, so the differentiation linear transformation is surjective.

(2) Answer not in the answer key: We can view differentiation as a linear transformation from R(x),
the vector space of all rational functions in one variable, to R(x). This linear transformation is not
injective, because its kernel is the space of constant functions, which is one-dimensional. The linear
transformation is surjective, because we know how to integrate any rational function.

(3) (Can’t think of a witty name): Consider the vector space of all rational functions that can be written
in the form r(x)/p(x) where p is a fixed polynomial of degree n. This vector space is n-dimensional.
A basis for this is given by the rational functions of the form 1/(x− α) for all roots α of p, as well
as rational functions of the form 1/q(x) for all irreducible quadratic factors of p.

(4) Off by one errors: Consider differentiation as a linear transformation from Pn to Pn, where Pn is
the vector space of all polynomials of degree less than or equal to n. Pn is a n-dimensional space.
The linear transformation we obtain is bijective from Pn to Pn. This is because the derivative of any
such polynomial is such a polynomial, and every such polynomial is the derivative of a polynomial.
Explicitly, if we write a matrix for the linear transformation of differentiation, the matrix is a square
matrix and has full rank n.
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4. Ordinary least squares regression

Error-spotting exercises ...

(1) Explaining the past versus predicting the future, aka it’s hard to make predictions, especially about
the future: Suppose we are trying to fit a linear function of one variable using some data points
(input-output pairs). If we use only two data points, then we can get a unique line through it, with
an error vector of zero. In other words, we get a perfect fit with zero error.

Suppose that instead we use three data points. Due to measurement error, it is likely that there
will be no line that perfectly fits all the three data points. We can still get a fit that minimizes error.
However, notice that the magnitude of the error vector is now bigger: the error vector was earlier a
zero vector, but now it is (probably) a nonzero vector.

A similar argument can be used to show that the more data points we have, the larger the mag-
nitude of the error vector for our best fit. In fact, this is true even when we make an adjustment for
the number of coordinates (the error vector with four data points will not just have bigger length in
expectation than the error vector with three data points, but the ratio of lengths will be expected
to be more than

√
4/
√

3, i.e., each coordinate of the error vector is getting bigger in expectation.
So, this means that, for a given functional form, the greater the number of data points we decide

to use, the worse the fit we will obtain. Therefore, to obtain a good fit, we should choose as few data
points as possible, though still enough to uniquely determine the function. In the linear case, this
ideal number is 2. Less is too little. More is too confusing, because of the possible inconsistencies
that arise.

(2) Off by one errors: Consider trying to fit a function of one variable, with n data points (i.e., n input-
output pairs) where we attempt to fit it using a polynomial of degree (at most) m. Then, the design
matrix for the regression (i.e., the coefficient matrix of the linear system) is a m×n matrix, because
there are m parameters and n input-output pairs.

(3) The best route to success is to avoid listening to negative feedback: When choosing the design matrix
of a linear regression, i.e., choosing the inputs of the input-output pairs, we should attempt to make
the design matrix a square matrix of full rank. This is because we want full column rank in order to
uniquely determine the parameters, and we need full row rank in order to make sure that a solution
exists.

(4) Portrait versus landscape: Suppose we are trying to find the parameter vector ~β given the design
matrix X. In other words, we are trying to solve the equation below, with ~ε chosen to be the vector
of minimum length for which the system is consistent:

X~β = ~y − ~ε

We know that the vector ~ε is orthogonal to the image of X. Therefore, it is orthogonal to all the
rows of the matrix X. In other words, X~ε = ~0.

Thus, if we multiply both equations on the left by X, we obtain:

X2~β = X~y

We can solve this system to find the best fit parameter vector ~β.

5. Extra topic covered in the quizzes: Linear dynamical systems

Error-spotting exercises ...

(1) Get unreal!: Suppose A is a n × n matrix and ~x is a nonzero vector in Rn. Suppose there exists a
positive integer r such that Ar~x is the zero vector in Rn. Since ~x is a nonzero vector, this forces Ar

to be the zero matrix. Hence, A is nilpotent.
Conversely, if A is nilpotent, then Ar = 0. Thus, there exists a nonzero vector ~x such that Ar~x is

the zero vector.
The upshot: a n×n matrix A is nilpotent if and only if there exists a nonzero vector ~x ∈ Rn and

a positive integer r such that Ar~x is the zero vector.
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(2) Just because you can return doesn’t mean you will: Suppose A is a n× n matrix and ~x is a nonzero
vector in Rn. Suppose there exists a positive integer r such that Ar~x = ~x. Since Ar sends a nonzero
vector to itself, it must be the identity matrix. Thus, Ar = In. So, A(Ar−1) = (Ar−1)A = In. Thus,
Ar−1 equals A−1, so in particular, A is invertible.

Conversely, consider the case that A is an invertible n×n matrix. This means that we can recover
the vector ~x from knowledge of the vector A~x. This means that if we apply A enough times to A~x,
we get ~x. So, there exists s such that As(A~x) = As+1(~x) = ~x. Set r = s + 1, and we have that
Ar~x = ~x.

The upshot: a n × n matrix A is invertible if and only if it has the property that there exists a
nonzero vector ~x ∈ Rn and a positive integer r such that Ar~x = ~x.

(3) You can’t see all the wonders of the world in a short life: Let T be the rotation about the origin in
R2 by a fixed angle θ. Starting with any nonzero vector ~x, consider the sequence:

~x, T (~x), T (T (~x)), . . .
When we rotate a vector, we preserve its length. Thus, the range of this sequence is the circle

centered at the origin of radius equal to the length of ~x.

For the following error-spotting exercises, use this (error-free) definition: Given a linear trans-
formation T : Rn → Rn, a (possibly zero, possibly nonzero) real number λ, and a nonzero vector
~x ∈ Rn, we say that ~x is an eigenvector of T with eigenvalue λ if T (~x) = λ~x.

(4) What we can’t achieve alone, we can do together: Consider the case n = 2 and define T to be the
linear transformation with matrix: [

0 1
1 0

]
Note that T sends ~e1 to ~e2 and sends ~e2 to ~e1. In other words, T interchanges the two standard

basis vectors. Since T does not preserve the lines of any of the standard basis vectors, neither of
them is an eigenvector for T . Note that any vector would be a linear combination of the standard
basis vectors, so T has no eigenvector.

(5) Compatibility issues: For any linear transformation T : Rn → Rn, the set of eigenvectors of T , along
with the zero vector, form a subspace of Rn. Here’s the proof. Note that:
• The zero vector is in the set by definition (although the zero vector is not considered an eigen-

vector, our definition here deliberately adds the zero vector in).
• Suppose vectors ~u and ~v are both eigenvectors for T . This means that there exists a real number

λ such that T (~u) = λ~u and T (~v) = λ~v, then T (~u + ~v) = λ~u + λ~v which becomes λ(~u + ~v).
• Suppose ~v is an eigenvector for T with eigenvalue λ. Then, for any real number a, T (a~v) =

aT (~v) = a(λ~v) = λ(a~v), so a~v is also an eigenvector for T . Moreover, it has the same eigenvalue.
(6) Don’t be Procrustean!: Consider the linear transformation T : R2 → R2 with matrix:[

1 0
0 2

]
The eigenvectors for this are ~e1 (with eigenvalue 1) and ~e2 (with eigenvalue 2). Note that there

are no more eigenvectors. For instance, ~e1 + ~e2 is not an eigenvector because its image is ~e1 + 2~e2,
which is not a multiple of it.

(7) A missed match: Consider the linear transformation T : R3 → R3 with matrix:2 0 0
0 3 0
0 0 2


The matrix is diagonal, so the eigenvectors for this linear transformation are precisely the standard

basis vectors ~e1, ~e2, ~e3.
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(8) Zero’s legit: Consider the linear transformation T : R3 → R3 with matrix:0 1 0
0 0 1
0 0 0


This sends ~e3 to ~e2, sends ~e2 to ~e1, and sends ~e1 to the vector zero. Note that none of the

standard basis vectors goes to itself, or for that matter, to a multiple of itself. In other words, T has
no eigenvectors.
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