
LINEAR DEPENDENCE, BASES, AND SUBSPACES

MATH 196, SECTION 57 (VIPUL NAIK)

Corresponding material in the book: Sections 3.2 and 3.3.

Executive summary

(1) A linear relation between a set of vectors is defined as a linear combination of these vectors that
is zero. The trivial linear relation refers to the trivial linear combination being zero. A nontrivial
linear relation is any linear relation other than the trivial one.

(2) The trivial linear relation exists between any set of vectors.
(3) A set of vectors is termed linearly dependent if there exists a nontrivial linear relation between them,

and linearly independent otherwise.
(4) Any set of vectors containing a linearly dependent subset is also linearly dependent. Any subset of

a linearly independent set of vectors is a linearly independent set of vectors.
(5) The following can be said of sets of small size:

• The empty set (the only possible set of size zero) is considered linearly independent.
• A set of size one is linearly dependent if the vector is the zero vector, and linearly independent

if the vector is a nonzero vector.
• A set of size two is linearly dependent if either one of the vectors is the zero vector or the two

vectors are scalar multiples of each other. It is linearly independent if both vectors are nonzero
and they are not scalar multiples of one another.

• For sets of size three or more, a necessary condition for linear independence is that no vector be
the zero vector and no two vectors be scalar multiplies of each other. However, this condition
is not sufficient, because we also have to be on the lookout for other kinds of linear relations.

(6) Given a nontrivial linear relation between a set of vectors, we can use the linear relation to write one
of the vectors (any vector with a nonzero coefficient in the linear relation) as a linear combination
of the other vectors.

(7) We can use the above to prune a spanning set as follows: given a set of vectors, if there exists
a nontrivial linear relation between the vectors, we can use that to write one vector as a linear
combination of the others, and then remove it from the set without affecting the span. The vector
thus removed is termed a redundant vector.

(8) A basis for a subspace of Rn is a linearly independent spanning set for that subspace. Any finite
spanning set can be pruned down (by repeatedly identifying linear relations and removing vectors)
to reach a basis.

(9) The size of a basis for a subspace of Rn depends only on the choice of subspace and is independent
of the choice of basis. This size is termed the dimension of the subspace.

(10) Given an ordered list of vectors, we call a vector in the list redundant if it is redundant relative to
the preceding vectors, i.e., if it is in the span of the preceding vectors, and irredundant otherwise.
The irredundant vectors in any given list of vectors form a basis for the subspace spanned by those
vectors.

(11) Which vectors we identify as redundant and irredundant depends on how the original list was ordered.
However, the number of irredundant vectors, insofar as it equals the dimension of the span, does not
depend on the ordering.

(12) If we write a matrix whose column vectors are a given list of vectors, the linear relations between
the vectors correspond to vectors in the kernel of the matrix. Injectivity of the linear transformation
given by the matrix is equivalent to linear independence of the vectors.
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(13) Redundant vector columns correspond to non-leading variables and irredundant vector columns
correspond to leading variables if we think of the matrix as a coefficient matrix. We can row-reduce
to find which variables are leading and non-leading, then look at the irredundant vector columns in
the original matrix.

(14) Rank-nullity theorem: The nullity of a linear transformation is defined as the dimension of the
kernel. The nullity is the number of non-leading variables. The rank is the number of leading
variables. So, the sum of the rank and the nullity is the number of columns in the matrix for the
linear transformation, aka the dimension of the domain. See Section 3.7 of the notes for more details.

(15) The problem of finding all the vectors orthogonal to a given set of vectors can be converted to solving
a linear system where the rows of the coefficient matrix are the given vectors.

1. Linear relation

1.1. Preliminaries. Previously, we have seen the concepts of linear combination, span, and spanning set.
We also saw the concept of the trivial linear combination: this is the linear combination where all the
coefficients we use are zero. The trivial linear combination gives rise to the zero vector.

We now move to a disturbing observation: it is possible that a nontrivial linear combination of vectors
give rise to the zero vector. For instance, consider the three vectors:

~v1 =
[
1
0

]
, ~v2 =

[
0
2

]
, ~v3 =

[
3
10

]
We note that:

~v3 = 3~v1 + 5~v2

Thus, we get that:

~0 = 3~v1 + 5~v2 + (−1)~v3

In other words, the zero vector arises as a nontrivial linear combination of these vectors.
We will now codify and study such situations.

1.2. Linear relation and nontrivial linear relation. Suppose ~v1, ~v2, . . . , ~vr are vectors. A linear relation
between ~v1, ~v2, . . . , ~vr involves a choice of (possibly equal, possibly distinct, and possibly some zero) real
numbers a1, a2, . . . , ar such that:

a1 ~v1 + a2 ~v2 + · · ·+ ar ~vr = ~0
The linear relation is termed a trivial linear relation if all of a1, a2, . . . , ar are 0. Note that for any

collection of vectors, the trivial linear relation between them exists. Thus, the trivial linear relation is not
all that interesting, but it is included for completeness’ sake.

The more interesting phenomenon is that of a nontrivial linear relation. Note here that nontriviality
requires that at least one of the coefficients be nonzero, but it does not require that all coefficients be
nonzero.

The existence of nontrivial linear relations is not a given; there may be sets of vectors with no nontrivial
linear relation. Let’s introduce some terminology first, then explore the meaning of the ideas.

1.3. Linear dependence and linear independence. Consider a non-empty set of vectors. We say that
the set of vectors is linearly dependent if there exists a nontrivial linear relation between the vectors. A
non-empty set of vectors is called linearly independent if it is not linearly dependent, i.e., there exists no
nontrivial linear relation between the vectors in the set.

We begin with this observation: If a subset of a set of vectors is linearly dependent, then the whole set of
vectors is also linearly dependent. The justification is that a nontrivial linear relation within a subset gives
a nontrivial linear relation in the whole set by extending to zero coefficients for the remaining vectors. For
instance, suppose ~v1, ~v2, ~v3, and ~v4 are vectors and suppose we have a linear relation between ~v1, ~v2, and ~v3:

3~v1 + 4~v2 + 6~v3 = ~0
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Then, we also have a linear relation between the four vectors ~v1, ~v2, ~v3, and ~v4:

3~v1 + 4~v2 + 6~v3 + 0~v4 = ~0
An obvious corollary of this is that any subset of a linearly independent set is linearly independent.

1.4. Sets of size zero. By convention, the empty set is considered linearly independent.

1.5. Sets of size one: linear dependence and independence. A set of size one is:
• linearly dependent if the vector is the zero vector
• linearly independent if the vector is a nonzero vector

In particular, this means that any set of vectors that contains the zero vector must be linearly dependent.

1.6. Sets of size two: linear dependence and independence. A set of size two is:
• linearly dependent if either one of the vectors is zero or both vectors are nonzero but the vectors are

scalar multiples of each other, i.e., they are in the same line.
• linearly independent if both vectors are nonzero and they are not scalar multiples of each other.

Pictorially, this means that the vectors point in different directions.
A corollary is that if we have a set of two or more vectors and two vectors in the set are scalar multiples

of each other, then the set of vectors is linearly dependent.

1.7. Sets of size more than two. For sets of size more than two, linear relations could be fairly elaborate.
For instance, a linear relation involving three vectors may occur even if no individual vector is a multiple
of any other. Such a linear relation relies on one vector being “in the plane” of the other two vectors. For
instance, if one vector is the average of the other two vectors, that creates a linear relation. Explicitly,
consider the case of three vectors:

~v1 =

1
2
3

 , ~v2 =

3
4
5

 , ~v3 =

5
6
7


Notice that the middle vector is the average of the first and third vector. Thus, we get the linear relation:

~v2 =
~v1 + ~v3

2
We can rearrange this as a linear relation:

~0 =
1
2

~v1 − ~v2 +
1
2

~v3

Note that this is not the only linear relation possible. Any multiple of this also defines a linear relation,
albeit, an equivalent linear relation. For instance, we also have the following linear relation:

~0 = ~v1 − 2~v2 + ~v3

1.8. Rewriting a linear relation as one vector in terms of the others. Given a nontrivial linear
relation between vectors, we can rewrite that relation in the form of expressing one vector as a linear
combination of the other vectors. Here’s the reasoning:

• We can find a vector that is being “used” nontrivially, i.e., the coefficient in front of that vector is
nonzero.

• We can move that vector to the other side of the equality.
• Divide both sides by its coefficient.

For instance, consider the linear relation:

3~v1 + 7~v2 + 0~v3 + 9~v4 = ~0
Note that the coefficient on ~v3 is 0. So, we cannot use this linear relation to write ~v3 in terms of the other

vectors. However, we can write ~v1 in terms of the other vectors, or we can write ~v2 in terms of the other
vectors, or we can write ~v4 in terms of the other vectors. Let’s take the example of ~v2.
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We have:

3~v1 + 7~v2 + 9~v4 = ~0

We can isolate the vector ~v2:

3~v1 + 9~v4 = −7~v2

We can now divide both sides by −7 to get:

−3
7

~v1 +
−9
7

~v4 = ~v2

or, written the other way around:

~v2 =
−3
7

~v1 +
−9
7

~v4

2. Span, basis, and redundancy

2.1. Span and basis: definitions. Suppose V is a vector subspace of Rn. Let’s recall what this means:
V contains the zero vector, and it is closed under addition and scalar multiplication.

Recall that a subset S of V is termed a spanning set for V if the span of S is V , i.e., if every vector in V ,
and no vector outside V , can be expressed as a linear combination of the vectors in S.

A basis for V is a spanning set for V that is linearly independent. Note that any linearly independent set
is a basis for the subspace that it spans.

2.2. Pruning our spanning set. As before, suppose V is a vector subspace of Rn and S is a spanning set
for V . Suppose that S is not a basis for V , because S is not linearly independent. In other words, there is
at least one nontrivial linear relation between the elements of S.

Pick one nontrivial linear relation between the elements of S. As described in an earlier section, we can
use this relation to write one vector as a linear combination of the others. Once we have achieved this, we
can “remove” this vector without affecting the span, because it is redundant relative to the other vectors. In
other words, removing a redundant vector (a vector in S that is a linear combination of the other vectors
in S) does not affect the span of S. This is because for any vector in the span of S that can be expressed
as a linear combination using the redundant vector, the redundant vector can be replaced by the linear
combination of the other vectors that it is.

Explicitly, suppose we have a relation of the form:

~v1 + 2~v2 − ~v3 = ~0

We use this to write ~v3 in terms of ~v1 and ~v2:

~v3 = ~v1 + 2~v2

Now, consider an arbitrary vector ~v expressible in terms of these:

~v = a1 ~v1 + a2 ~v2 + a3 ~v3

Using the expression above, replace ~v3 by ~v1 + 2~v2 to get:

~v = a1 ~v1 + a2 ~v2 + a3(~v1 + 2~v2)

This simplifies to:

~v = (a1 + a3)~v1 + (a2 + 2a3)~v2

In other words, getting rid of ~v3 doesn’t affect the span: if something can be written as a linear combination
using ~v3, it can also be written as a linear combination without using ~v3. So, we can get rid of ~v3.
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2.3. We can get rid of vectors only one at a time! In the example above, we noted that it is possible
to get rid of the vector ~v3 based on the linear relation that nontrivially uses ~v1, ~v2, ~v3. Thus, ~v3 is redundant
relative to ~v1 and ~v2, so we can remove ~v3 from our spanning set.

We could have similarly argued that ~v2 is redundant relative to ~v1 and ~v3, and therefore, that ~v2 can be
removed while preserving the span.

We could also have similarly argued that ~v1 is redundant relative to ~v2 and ~v3, and therefore, that ~v1 can
be removed while preserving the span.

In other words, we could remove any of the vectors ~v1, ~v2, ~v3 that are involved in a nontrivial linear
relation.

However, we cannot remove them together. The reason is that once one of the vectors is removed, that
destroys the linear relation as well, so the other two vectors are no longer redundant based on this particular
linear relation (they may still be redundant due to other linear relations). In a sense, every time we use a
linear relation to remove one redundant vector, we have “used up” the linear relation and it cannot be used
to remove any other vectors.

This suggests something: it is not so much an issue of which vectors are redundant, but rather a question
of how many. At the core is the idea of dimension as a size measure. We now turn to that idea.

2.4. Repeated pruning, and getting down to a basis. As before, suppose V is a vector subspace of
Rn and S is a finite spanning set for V . Our goal is to find a subset of S that is a basis for V .

If S is already linearly independent, that implies in particular that it is a basis for V , and we are done.
If S is not already linearly independent, there exists a nontrivial linear relation in S. Then, by the method

discussed in the preceding section, we can get rid of one element of S and get a smaller subset that still
spans V .

If this new subset is linearly independent, then we have a basis. Otherwise, repeat the process: find a
nontrivial linear relation within this smaller spanning set, and use that to get rid of another vector.

The starting set S was finite, so we can perform the process only finitely many times. Thus, after a finite
number of steps, we will get to a subset of S that is linearly independent, and hence a basis for V .

In the coming section, we will discuss various computational approaches to this pruning process. Under-
standing the process conceptually, however, is important for a number of reasons that shall become clear
later.

2.5. Basis and dimension. Recall that we had defined the dimension of a vector space as the minimum
possible size of a spanning set for the vector space.

The following are equivalent for a subset S of Rn:

• S is a linearly independent set.
• S is a basis for the subspace that it spans.
• The size of S equals the minimum possible size of a spanning set for the span of S.
• The size of S equals the dimension of the span of S.

Now, given a subspace V of Rn, there are many different possibilities we can choose for a basis of V . For
instance, if V has a basis comprising the vectors ~v1 and ~v2, we could choose another basis comprising the
vectors ~v1 and ~v1 + ~v2. Even for one-dimensional spaces, we have many different choices for a basis of size
one: any nonzero vector in the space will do.

Although there are many different possibilities for the basis, the size of the basis is an invariant of the
subspace, namely, it is the dimension. The specific vectors used can differ, but the number needed is
determined.

The concept of dimension can be understood in other related ways. For instance, the dimension is
the number of independent parameters we need in a parametric description of the space. The natural
parameterization of the subspace is by specifying a basis and using the coefficients for an arbitrary linear
combination as the parameters. For instance, if ~v1 and ~v2 form a basis for a subspace V of Rn, then any
vector ~v ∈ V can be written as:

~v = a1~v1 + a2~v2, a1, a2 ∈ R
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We can think of the coefficients a1, a2 (which we will later call the coordinates, but that’s for next time)
as the parameters in a parametric description of V . Different choices of these give different vectors in V ,
and as we consider all the different possible choices, we cover everything in V .

Note: We have not proved all parts of the statement above. Specifically, it is not prima facie clear why
every basis should have the minimum possible size. In other words, we have not ruled out the prima facie
possibility that there is a basis of size two and also a basis of size three. The abstract proof that any two
bases must have the same size follows from a result called the “exchange lemma” that essentially involves a
gradual replacement of the vectors in one basis by the vectors in the other. The proof uses the same sort of
reasoning as our pruning idea. There are also other concrete proofs that rely on facts you have already seen
about linear transformations and matrices.

Another way of framing this is that the dimension is something intrinsic to the subspace rather than
dependent on how we parameterize it. It is an intrinsic geometric invariant of the subspace, having to do
with the innards of the underlying linear structure.

3. Finding a basis based on a spanning set

3.1. Redundant vectors in order. The method above gives an abstract way of concluding that any
spanning set can be trimmed down to a basis. The version stated above, however, is not a practical approach.
The problem is that we don’t yet know how to find a nontrivial linear relation. Or at least, we know it ...
but not consciously. Let’s make it conscious.

First, let’s introduce a new, more computationally relevant notion of the redundancy of a vector. Consider
an ordered list of vectors. In other words, we are given the vectors in a particular order. A vector in this list
is termed redundant if it is redundant relative to the vectors that appear before it. Intuitively, we can think
of it as follows: we are looking at our vectors one by one, reading from left to right along our list. Each
time, we throw in the new vector, and potentially expand the span. In fact, one of these two cases occurs:

• The vector is redundant relative to the set of the preceding vectors, and therefore, it contributes
nothing new to the span. Therefore, we do not actually need to add it in.

• The vector is irredundant relative to the set of the preceding vectors, and therefore, it adds a new
dimension (literally and figuratively) to the span.

If we can, by inspection, determine whether a given vector is redundant relative to the vectors that appear
before it, we can use that to determine the span. Basically, each time we encouter a redundant vector, we
don’t add it.

Thus, the sub-list comprising those vectors that are irredundant in the original ordered list gives a basis
for the span of the original list.

For instance, suppose we have a sequence of vectors:

~v1, ~v2, ~v3, ~v4, ~v5, ~v6, ~v7

Let’s say that ~v1 is the zero vector. Then, it is redundant, so we don’t add in. Let’s say ~v2 is nonzero. So
it is irredundant relative to what’s appeared before (which is nothing), so we have so far built:

~v2

Now, let’s say ~v3 is a scalar multiple of ~v2. In that case, ~v3 is redundant and will not be added. Let’s say
~v4 is again a scalar multiple of ~v2. Then, ~v4 is also redundant, and should not be added. Suppose now that
~v5 is not a scalar multiple of ~v2. Then, ~v5 is irredundant relative to the vectors that have appeared so far,
so it deserves to be added:

~v2, ~v5

We now consider the sixth vector ~v6. Suppose it is expressible as a linear combination of ~v2 and ~v5. Then,
it is redundant, and should not be included. Now, let’s say ~v7 is not a linear combination of ~v2 and ~v5. Then,
~v7 is irredundant relative to the preceding vectors, so we get:

~v2, ~v5, ~v7
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This forms a basis for the span of the original list of seven vectors. Thus, the original list of seven vectors
spans a three-dimensional space, with the above as one possible basis.

Note that which vectors we identity as redundant and which vectors we identity as irredundant depends
heavily on the manner in which we sequence our vectors originally. Consider the alternative arrangement of
the original sequence:

~v4, ~v1, ~v3, ~v2, ~v7, ~v5, ~v6

The irredundant vectors here are:

~v4, ~v7, ~v5

Note that, because we ordered our original list differently, the list of irredundant vectors differs, so we get
a different basis. But the number of irredundant vectors, i.e., the size of the basis, is the same. After all,
this is the dimension of the space, and as such, is a geometric invariant of the space.

3.2. The matrix and linear transformation formulation. The problem we want to explicitly solve is
the following:

Given a collection of m vectors in Rn, find which of the vectors are redundant and which
are irredundant, and use the irredundant vectors to construct a basis for the spanning set
for that collection of vectors.

Consider the n×m matrix A for a linear transformation T : Rm → Rn. We know that the columns of A
are the images of the standard basis vectors under T , and thus, the columns of A form a spanning set for
the image of T .

The problem that we are trying to solve is therefore equivalent to the following problem:

Given a linear transformation T : Rm → Rn with matrix A, consider the columns of A,
which coincide with the images of the standard basis vectors. Find the irredundant vectors
there, and use those to get a basis for the image of T .

3.3. Linear relations form the kernel. We make the following observation regarding linear relations:

Linear relations between the column vectors of a matrix A correspond to vectors in the kernel
of the linear transformation given by A.

Let’s understand this. Suppose A is the matrix for a linear transformation T : Rm → Rn, so that A is a
n×m matrix. The columns of A are the vectors T (~e1), T (~e2), . . . , T ( ~em). These also form a spanning set
for the image of T .

Now, suppose there is a linear relation between the vectors, namely a relation of the form:

x1T (~e1) + x2T (~e2) + · · ·+ xmT ( ~em) = ~0

Then, this is equivalent to saying that:

T (x1 ~e1 + x2 ~e2 + · · ·+ xm ~em) = ~0

or equivalently:

T




x1

x2

·
·
·

xm



 = ~0

In other words, the vector:
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~x =


x1

x2

·
·
·

xm


is in the kernel of T .
All these steps can be done in reverse, i.e., if a vector ~x is in the kernel of T , then its coordinates define

a linear relation between T (~e1), T (~e2), . . . , T ( ~em).

3.4. Special case of injective linear transformations. Consider a linear transformation T : Rm → Rn

with matrix A, which is a n×m matrix. The following are equivalent:
• T is an injective linear transformation.
• If you think of solving the linear system with coefficient matrix A, all variables are leading variables.
• A has full column rank m.
• The kernel of T is zero-dimensional, i.e., it comprises only the zero vector.
• The images of the standard basis vectors are linearly independent.
• The images of the standard basis vectors form a basis for the image.
• The image of T is m-dimensional.

In particular, all these imply that m ≤ n.

3.5. Back to finding the irredundant vectors. Recall that when we perform row reductions on the
coefficient matrix of a linear system, we do not change the solution set. This is exactly why we can use row
reduction to solve systems of linear equations, and hence, also find the kernel.

In particular, this means that when we row reduce a matrix, we do not change the pattern of linear
relations between the vectors. This means that the information about which columns are redundant and
which columns are irredundant does not change upon row reduction.

For a matrix in reduced row-echelon form, the columns corresponding to the leading variables are irre-
dundant and the columns corresponding to the non-leading variables are redundant. The leading variable
columns are irredundant relative to the preceding columns because each leading variable columns uses a new
row for the first time. The non-leading variable columns are redundant because they use only the existing
rows for which standard basis vectors already exist in preceding leading variables. Consider, for instance:[

1 2 7 0 4
0 0 0 1 6

]
The first and fourth variable here are leading variables. The second, third, and fifth variable are non-

leading variables. The column vectors are:[
1
0

]
,

[
2
0

]
,

[
7
0

]
,

[
0
1

]
,

[
4
6

]
• The first column vector corresponds to a leading variable and is irredundant. In fact, it is the first

standard basis vector.
• The second column vector corresponds to a non-leading variable and is redundant: Note that it does

not use any new rows. It uses only the first row, for which we already have the standard basis vector.
In fact,the second column vector is explicitly twice the first column vector.

• The third column vector corresponds to a non-leading varable and is redundant: The reasoning is
similar to that for the second column vector. Explicitly, this third column vector is 7 times the first
column vector.

• The fourth column vector corresponds to a leading variable and is irredundant: Note that it is the
first vector to use the second row. Hence, it is not redundant relative to the preceding vectors.

• The fifth column vector corresponds to a non-leading variable and is redundant: It uses both rows, but
we already have standard basis vectors for both rows from earlier. Hence, it is a linear combination

8



of those. Explicitly, it is 4 times the first column vector plus 6 times the fourth column vector. Thus,
it is redundant.

The detailed example above hopefully illustrates quite clearly the general statement that the column
vectors corresponding to leading variables are irredundant whereas the column vectors corresponding to
non-leading variables are redundant. Note that all this is being said for a matrix that is already in reduced
row-echelon form. But we already noted that the linear relations between the columns are invariant under
row reductions. So whatever we conclude after converting to rref about which columns are redundant and
irredundant also applies to the original matrix.

Thus, the following algorithm works:
• Convert the matrix to reduced row-echelon form. Actually, it suffices to convert the matrix to row-

echelon form because all we really need to do is identify which variables are leading variables and
which variables are non-leading variables.

• The columns in the original matrix corresponding to the leading variables are the irredundant vectors,
and form a basis for the image. Please note that the actual column vectors we use are the column
vectors of the original matrix, not of the rref.

3.6. Procedural note regarding the kernel. We had earlier seen a procedure to find a spanning set for
the kernel of a linear transformation. It turns out that the spanning set obtained that way, providing one
vector for each non-leading variable, is actually linearly independent, and hence, gives a basis for the kernel.
The dimension of the kernel is thus equal to the number of non-leading variables, or equivalently, equals the
total number of columns minus the rank.

3.7. Rank and nullity. We define the nullity of a linear transformation T : Rm → Rn as the dimension of
the kernel of T . We will return a while later to the concept of nullity in more gory detail. For now, we state
a few simple facts about rank and nullity that will hopefully clarify much of what will come later.

Suppose A is the matrix of T , so A is a n×m matrix. The following are true:
• The nullity of A is the dimension of the kernel of T .
• The rank of A is the dimension of the image of T .
• The sum of the rank of A and the nullity of A is m.
• The nullity of A is at most m.
• The rank of A is at most min{m,n}.
• The nullity of A is 0 (or equivalently, the rank of A is m, so full column rank) if and only if T is

injective. See the preceding section on injective transformations for more on this. Note that this
forces m ≤ n.

• The rank of A is n (so full row rank) if and only if T is surjective.

3.8. Finding all the vectors orthogonal to a given set of a vectors. Suppose we are given a bunch of
vectors in Rn. We want to find all the vectors in Rn whose dot product with any vector in this collection is
zero. This process is relatively straightforward: set up a matrix whose rows are the given vectors, and find
the kernel of the linear transformation given by that matrix.
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