TAKE-HOME CLASS QUIZ: DUE WEDNESDAY NOVEMBER 27: SIMILARITY OF LINEAR TRANSFORMATIONS

MATH 196, SECTION 57 (VIPUL NAIK)

Your name (print clearly in capital letters):

PLEASE FEEL FREE TO DISCUSS ALL QUESTIONS.

This quiz corresponds to material discussed in the lecture notes titled **Coordinates**. It also corresponds to Section 3.4 of the text.

Recall that $n \times n$ matrices A and B are termed *similar* if there exists an invertible $n \times n$ matrix S such that $A = SBS^{-1}$. The relation of matrices being similar is an *equivalence relation* (please refer to the notes for an explanation of the terminology).

For these questions, assume n > 1, because a lot of phenomena are much simpler in the case n = 1 and you may be misled if you look only at that case. In other words, just because an equality is true for 1×1 matrices, do not assume it is always true. On the other hand, if you can find *counterexamples* to a statement for 1×1 matrices, you can probably use that to construct counterexamples for all sizes of matrices by using scalar matrices.

- (1) Which of the following can we say about two (possibly equal, possibly distinct) similar $n \times n$ matrices A and B? Please see Options (D) and (E) before answering.
 - (A) A is invertible if and only if B is invertible.
 - (B) A is nilpotent if and only if B is nilpotent.
 - (C) A is idempotent if and only if B is idempotent.
 - (D) All of the above.
 - (E) None of the above.

Your answer:

- (2) Which of the following can we say about two (possibly equal, possibly distinct) similar $n \times n$ matrices A and B? Please see Options (D) and (E) before answering.
 - (A) A is scalar if and only if B is scalar.
 - (B) A is diagonal if and only if B is diagonal.
 - (C) A is upper triangular if and only if B is upper triangular.
 - (D) All of the above.
 - (E) None of the above.

Your answer: _

- (3) Suppose A_1, A_2, B_1, B_2 are $n \times n$ matrices such that A_1 is similar to B_1 and A_2 is similar to B_2 . Which of the following is *definitely* true? Please see Options (D) and (E) before answering.
 - (A) $A_1 + A_2$ is similar to $B_1 + B_2$.
 - (B) $A_1 A_2$ is similar to $B_1 B_2$.
 - (C) A_1A_2 is similar to B_1B_2 .
 - (D) All of the above.
 - (E) None of the above.

Your answer: ____

- (4) Suppose A_1, A_2, B_1, B_2 are $n \times n$ matrices such that A_1 is similar to B_1 and A_2 is similar to B_2 . Which of the following is *definitely* true? Please see Options (D) and (E) before answering.
 - (A) $A_1 + B_1$ is similar to $A_2 + B_2$.
 - (B) $A_1 B_1$ is similar to $A_2 B_2$.

- (C) A_1B_1 is similar to A_2B_2 .
- (D) All of the above.
- (E) None of the above.

Your answer: _

- (5) Suppose A and B are both $n \times n$ matrices (but they are not given to be similar). Which of the following holds?
 - (A) A is similar to B if and only if -A is similar to -B.
 - (B) If A is similar to B, then -A is similar to -B. However, -A being similar to -B does not imply that A is similar to B.
 - (C) If -A is similar to -B, then A is similar to B. However, A being similar to B does not imply that -A is similar to -B.
 - (D) A being similar to B does not imply that -A is similar to -B. Also, -A being similar to -B does not imply that A is similar to B.

Your answer:

- (6) Suppose A and B are both $n \times n$ matrices (but they are not given to be similar). Which of the following holds?
 - (A) A is similar to B if and only if 2A is similar to 2B.
 - (B) If A is similar to B, then 2A is similar to 2B. However, 2A being similar to 2B does not imply that A is similar to B.
 - (C) If 2A is similar to 2B, then A is similar to B. However, A being similar to B does not imply that 2A is similar to 2B.
 - (D) A being similar to B does not imply that 2A is similar to 2B. Also, 2A being similar to 2B does not imply that A is similar to B.

Your answer: _

- (7) Suppose A and B are both invertible $n \times n$ matrices (but they are not given to be similar). Which of the following holds?
 - (A) A is similar to B if and only if A^{-1} is similar to B^{-1} .
 - (B) If A is similar to B, then A^{-1} is similar to B^{-1} . However, A^{-1} being similar to B^{-1} does not imply that A is similar to B.
 - (C) If A^{-1} is similar to B^{-1} , then A is similar to B. However, A being similar to B does not imply that A^{-1} is similar to B^{-1}
 - (D) A being similar to B does not imply that A^{-1} is similar to B^{-1} . Also, A^{-1} being similar to B^{-1} does not imply that A is similar to B.

Your answer:

- (8) Suppose A and B are both $n \times n$ matrices (but they are not given to be similar). Which of the following holds?
 - (A) A is similar to B if and only if A^2 is similar to B^2 .
 - (B) If A is similar to B, then A^2 is similar to B^2 . However, A^2 being similar to B^2 does not imply that A is similar to B.
 - (C) If A^2 is similar to B^2 , then A is similar to B. However, A being similar to B does not imply that A^2 is similar to B^2 .
 - (D) A being similar to B does not imply that A^2 is similar to B^2 . Also, A^2 being similar to B^2 does not imply that A is similar to B.

Your answer:

(9) Suppose A and B are $n \times n$ matrices (but they are not given to be similar and they are not given to be invertible). We say that A and B are quasi-similar (not a standard term!) if there exist $n \times n$

matrices C and D such that A = CD and B = DC. What can we say is the relation between being similar and being quasi-similar?

- (A) A and B are similar if and only if they are quasi-similar.
- (B) If A and B are similar, they are quasi-similar. However, the converse is not necessarily true: A and B may be quasi-similar but not similar.
- (C) If A and B are quasi-similar, they are similar. However, the converse is not necessarily true: A and B may be similar but not quasi-similar.
- (D) Neither implies the other. A and B may be similar but not quasi-similar. Also, A and B may be quasi-similar but not similar.

Your answer:

- (10) With the notion of quasi-similar as defined in the preceding question, what can we say about the relation between being similar and being quasi-similar for $n \times n$ matrices A and B that are both given to be *invertible*?
 - (A) A and B are similar if and only if they are quasi-similar.
 - (B) If A and B are similar, they are quasi-similar. However, the converse is not necessarily true: A and B may be quasi-similar but not similar.
 - (C) If A and B are quasi-similar, they are similar. However, the converse is not necessarily true: A and B may be similar but not quasi-similar.
 - (D) Neither implies the other. A and B may be similar but not quasi-similar. Also, A and B may be quasi-similar but not similar.

Your answer: _

- (11) Suppose A and B are two $n \times n$ matrices. Which of the following best describes the relation between similarity and having the same rank?
 - (A) A and B are similar if and only if they have the same rank.
 - (B) If A and B are similar, then they have the same rank. However, it is possible for A and B to have the same rank but not be similar.
 - (C) If A and B have the same rank, then they are similar. However, it is possible for A and B to be similar but not have the same rank.
 - (D) A and B may be similar but have different ranks. Also, A and B may have the same rank but not be similar.

Your answer:

- (12) Suppose A and B are two $n \times n$ matrices. Which of the following best describes the relation between quasi-similarity and having the same rank?
 - (A) A and B are quasi-similar if and only if they have the same rank.
 - (B) If A and B are quasi-similar, then they have the same rank. However, it is possible for A and B to have the same rank but not be quasi-similar.
 - (C) If A and B have the same rank, then they are quasi-similar. However, it is possible for A and B to be quasi-similar but not have the same rank.
 - (D) A and B may be quasi-similar but have different ranks. Also, A and B may have the same rank but not be quasi-similar.

Your answer: _