DIAGNOSTIC IN-CLASS QUIZ: DUE MONDAY NOVEMBER 25: SUBSPACE, BASIS, AND DIMENSION

MATH 196, SECTION 57 (VIPUL NAIK)

Your name (print clearly in capital letters):

PLEASE DO NOT DISCUSS $A N Y$ QUESTIONS.

This quiz covers material related to the Linear dependence, bases and subspaces notes corresponding to Sections 3.2 and 3.3 of the text.

Keep in mind the following facts. Suppose $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a linear transformation. Suppose A is the matrix for T, so that $T(\vec{x})=A \vec{x}$ for all $\vec{x} \in \mathbb{R}^{m}$. Then, A is a $n \times m$ matrix. Further, the following are true:

- The dimension of the image of T equals the rank of A.
- The dimension of the kernel of T, called the nullity of A, is m minus the rank of A.
(1) Do not discuss this!: Suppose $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a linear transformation. What is the best we can say about the dimension of the image of T ?
(A) It is at least 0 and at $\operatorname{most} \min \{m, n\}$. However, we cannot be more specific based on the given information.
(B) It is at least 0 and at most $\max \{m, n\}$. However, we cannot be more specific based on the given information.
(C) It is at least $\min \{m, n\}$ and at $\operatorname{most} \max \{m, n\}$. However, we cannot be more specific based on the given information.
(D) It is at least $\min \{m, n\}$ and at most $m+n$. However, we cannot be more specific based on the given information.
(E) It is at least $\max \{m, n\}$ and at most $m+n$. However, we cannot be more specific based on the given information.

Your answer:
(2) Do not discuss this!: Suppose $T_{1}, T_{2}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ are linear transformations. Suppose the images of T_{1} and T_{2} have dimensions d_{1} and d_{2} respectively. What can we say about the dimension of the image of $T_{1}+T_{2}$? Assume that both m and n are larger than $d_{1}+d_{2}$.
(A) It is precisely $\left|d_{2}-d_{1}\right|$.
(B) It is precisely $\min \left\{d_{1}, d_{2}\right\}$.
(C) It is precisely $\max \left\{d_{1}, d_{2}\right\}$.
(D) It is precisely $d_{1}+d_{2}$.
(E) Based on the information, it could be any integer r with $\left|d_{2}-d_{1}\right| \leq r \leq d_{1}+d_{2}$.

Your answer:
(3) Do not discuss this!: Suppose V_{1} and V_{2} are subspaces of \mathbb{R}^{n}. We define the sum $V_{1}+V_{2}$ as the subset of \mathbb{R}^{n} comprising all vectors that can be expressed as a sum of a vector in V_{1} and a vector in V_{2}. Define $V_{1} \cup V_{2}$ as the set-theoretic union of V_{1} and V_{2}, i.e., the set of all vectors that are either in V_{1} or in V_{2}. What can we say about these?
(A) $V_{1} \cup V_{2}=V_{1}+V_{2}$ and it is a subspace of \mathbb{R}^{n}.
(B) $V_{1} \cup V_{2}$ is contained in $V_{1}+V_{2}$ and both are subspaces of \mathbb{R}^{n}.
(C) $V_{1} \cup V_{2}$ is contained in $V_{1}+V_{2}$, and $V_{1}+V_{2}$ is a subspace of \mathbb{R}^{n}. $V_{1} \cup V_{2}$ is generally not a subspace of \mathbb{R}^{n} (though it might be in special cases).
(D) $V_{1} \cup V_{2}$ contains $V_{1}+V_{2}$, and both are subspaces of \mathbb{R}^{n}.
(E) $V_{1} \cup V_{2}$ contains $V_{1}+V_{2}$, and $V_{1} \cup V_{2}$ is a subspace of \mathbb{R}^{n}. $V_{1}+V_{2}$ is generally not a subspace of \mathbb{R}^{n} (though it might be in special cases).
Your answer: \qquad

