DIAGNOSTIC IN-CLASS QUIZ: DUE MONDAY NOVEMBER 25: SUBSPACE, BASIS, AND DIMENSION

MATH 196, SECTION 57 (VIPUL NAIK)

Your name (print clearly in capital letters):

PLEASE DO NOT DISCUSS ANY QUESTIONS.

This quiz covers material related to the Linear dependence, bases and subspaces notes corresponding to Sections 3.2 and 3.3 of the text.

Keep in mind the following facts. Suppose $T : \mathbb{R}^m \to \mathbb{R}^n$ is a linear transformation. Suppose A is the matrix for T, so that $T(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^m$. Then, A is a $n \times m$ matrix. Further, the following are true:

- The dimension of the image of T equals the rank of A.
- The dimension of the kernel of T, called the *nullity* of A, is m minus the rank of A.
- (1) Do not discuss this! Suppose $T : \mathbb{R}^m \to \mathbb{R}^n$ is a linear transformation. What is the best we can say about the dimension of the image of T?
 - (A) It is at least 0 and at most $\min\{m, n\}$. However, we cannot be more specific based on the given information.
 - (B) It is at least 0 and at most $\max\{m, n\}$. However, we cannot be more specific based on the given information.
 - (C) It is at least $\min\{m, n\}$ and at most $\max\{m, n\}$. However, we cannot be more specific based on the given information.
 - (D) It is at least $\min\{m, n\}$ and at most m + n. However, we cannot be more specific based on the given information.
 - (E) It is at least $\max\{m, n\}$ and at most m + n. However, we cannot be more specific based on the given information.

Your answer:

- (2) Do not discuss this!: Suppose $T_1, T_2 : \mathbb{R}^m \to \mathbb{R}^n$ are linear transformations. Suppose the images of T_1 and T_2 have dimensions d_1 and d_2 respectively. What can we say about the dimension of the image of $T_1 + T_2$? Assume that both m and n are larger than $d_1 + d_2$.
 - (A) It is precisely $|d_2 d_1|$.
 - (B) It is precisely $\min\{d_1, d_2\}$.
 - (C) It is precisely $\max\{d_1, d_2\}$.
 - (D) It is precisely $d_1 + d_2$.
 - (E) Based on the information, it could be any integer r with $|d_2 d_1| \le r \le d_1 + d_2$.

Your answer: _

- (3) Do not discuss this!: Suppose V_1 and V_2 are subspaces of \mathbb{R}^n . We define the sum $V_1 + V_2$ as the subset of \mathbb{R}^n comprising all vectors that can be expressed as a sum of a vector in V_1 and a vector in V_2 . Define $V_1 \cup V_2$ as the set-theoretic union of V_1 and V_2 , i.e., the set of all vectors that are either in V_1 or in V_2 . What can we say about these?
 - (A) $V_1 \cup V_2 = V_1 + V_2$ and it is a subspace of \mathbb{R}^n .
 - (B) $V_1 \cup V_2$ is contained in $V_1 + V_2$ and both are subspaces of \mathbb{R}^n .
 - (C) $V_1 \cup V_2$ is contained in $V_1 + V_2$, and $V_1 + V_2$ is a subspace of \mathbb{R}^n . $V_1 \cup V_2$ is generally not a subspace of \mathbb{R}^n (though it might be in special cases).
 - (D) $V_1 \cup V_2$ contains $V_1 + V_2$, and both are subspaces of \mathbb{R}^n .
 - (E) V₁ ∪ V₂ contains V₁ + V₂, and V₁ ∪ V₂ is a subspace of ℝⁿ. V₁ + V₂ is generally not a subspace of ℝⁿ (though it might be in special cases).
 Your answer: