
TAKE-HOME CLASS QUIZ: DUE WEDNESDAY NOVEMBER 20: IMAGE AND
KERNEL: APPLICATIONS TO CALCULUS

MATH 196, SECTION 57 (VIPUL NAIK)

Your name (print clearly in capital letters):
PLEASE FEEL FREE TO DISCUSS ALL QUESTIONS.
The goal of this quiz is to use the setting of calculus to practice our skill of understanding linear transfor-

mations, specifically their injectivity, surjectivity, bijectivity, kernel and image. It builds on the November 8
quiz, but goes further. Please refer back to the November 8 quiz for the definitions of vector space, subspace,
and linear transformation.

Please read these questions very carefully. For the first few questions, the interpretation of the question
in the language of calculus is provided. Please refer to that if the linear algebra-based description is unclear.

(1) Let R[x] denote the vector space of all polynomials in one variable with real coefficients, with the
usual addition and scalar multiplication of polynomials. There is an obvious linear transformation
from R[x] to C∞(R) that sends any polynomial to the function it describes, e.g., the polynomial
x2 + 1 gets sent to the function x 7→ x2 + 1. What can you say about this map R[x] → C∞(R)?

Please note: We are not talking here about whether the polynomial functions themselves are
injective or surjective as functions from R to R. Rather, we are talking about whether the mapping
from the set of polynomials (which itself is a vector space over the reals) to the set of infinitely
differentiable functions (which itself is another vector space).
(A) The map is neither injective nor surjective, i.e., different polynomials may define the same

function, and not every infinitely differentiable function can be expressed using a polynomial.
(B) The map is injective but not surjective, i.e., different polynomials always define different func-

tions, and not every infinitely differentiable function can be expressed using a polynomial.
(C) The map is surjective but not injective, i.e., different polynomials may define the same function,

and every infinitely differentiable function can be expressed using a polynomial.
(D) The map is bijective, i.e., different polynomials always define different functions, and every

infinitely differentiable function can be expressed using a polynomial.

Your answer:

(2) Denote by R[[x]] the vector space of all formal power series in one variable with real coefficients,
with coefficient-wise addition and scalar multiplication. Explicitly, an element a ∈ R[[x]] is of the
form:

a =
∞∑

i=0

aix
i = a0 + a1x + a2x

2 + . . .

where ai ∈ R for i ∈ N0. Addition is coefficient-wise, i.e., if:

a =
∞∑

i=0

aix
i, b =

∞∑
i=0

bix
i

Then we have:

a + b =
∞∑

i=0

(ai + bi)xi

and for any real number λ, we have:
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λa =
∞∑

i=0

(λai)xi

Note that a formal power series may have any radius of convergence. The radius of convergence
could range from being 0 (which means that the formal power series converges only at the point
{0}) to being ∞ (which means that the formal power series converges on all of R). In other words,
a formal power series need not define an actual function on R.

Aside: If you remember sequences and series from single-variable calculus, you will recall that the
radius of convergence is the reciprocal of the exponential growth rate of coefficients. In particular,
if the coefficients grow superexponentially, the radius of convergence is zero. On the other hand,
if the coefficients decay superexponentially, the radius of convergence is ∞. If the coefficients have
exponential growth, the radius of convergence is less than 1. If the coefficients have exponential decay,
the radius of convergence is greater than 1. Finally, if the coefficients grow or decay subexponentially,
the radius of convergence is 1.

Note that R[x] can be viewed as a subspace of R[[x]] by thinking of each polynomial as a formal
power series where there are only finitely many nonzero coefficients.

Let Ω be the subset of R[[x]] comprising those formal power series that converge globally, i.e., the
radius of convergence is ∞. Note that Ω is a subspace of R[[x]].

What is the relation between R[x] and Ω?
Note that by proper subspace we mean a subspace that is not equal to the whole space.

(A) R[x] = Ω, i.e., a power series is globally convergent if and only if it is a polynomial (i.e., it has
only finitely many nonzero coefficients).

(B) R[x] is a proper subspace of Ω, i.e., every polynomial is a globally convergent power series, but
there exist globally convergent power series that are not polynomials.

(C) Ω is a proper subspace of R[x], i.e., every globally convergent power series is a polynomial, but
there are polynomials that are not globally convergent power series.

(D) R[x] and Ω are incomparable, i.e., there exist polynomials that are not globally convergent
power series and there exist globally convergent power series that are not polynomials.

Your answer:

(3) The Taylor series operator can be viewed as a linear transformation from C∞(R) to R[[x]]. This
operator sends any infinitely differentiable function to its Taylor series centered at 0. Explicitly, the
operator is:

f 7→
∞∑

k=0

f (k)(0)
k!

xk

What can we say about the kernel of this linear transformation?
(A) The kernel is the set of functions f satisfying f(0) = 0
(B) The kernel is the set of functions f satisfying f ′(0) = 0
(C) The kernel is the set of functions f such that f and all its derivatives take the value 0 at 0.
(D) The kernel is the set of polynomial functions.
(E) The kernel is the set of functions that have globally convergent power series.

Your answer:

(4) Which of the following is the best explanation for why we put the +C when performing indefinite
integration?
(A) The kernel of differentiation is a zero-dimensional space (namely, the zero function only), hence

the fibers (inverse images or pre-images) for differentiation are all zero-dimensional spaces, i.e.,
single functions.

(B) The kernel of differentiation is a one-dimensional space (namely, the vector space of con-
stant functions), hence the fibers (inverse images or pre-images) for differentiation are all one-
dimensional spaces, i.e., lines that are translates of the space of constant functions.
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(C) The image of differentiation is a zero-dimensional space (namely, the zero function only), hence
the fibers (inverse images or pre-images) for differentiation are all zero-dimensional spaces, i.e.,
single functions.

(D) The image of differentiation is a one-dimensional space (namely, the vector space of con-
stant functions), hence the fibers (inverse images or pre-images) for differentiation are all one-
dimensional spaces, i.e., lines that are translates of the space of constant functions.

Your answer:

(5) When finding all functions f on R such that f ′′(x) = g(x) for some known continuous function g
on R, we get a general description of the form G(x) + C1x + C2 where C1, C2, are arbitrary real
numbers. Which of the following is the best explanation for this?
(A) The kernel of the operation of differentiating twice is precisely the set of constant functions.
(B) The kernel of the operation of differentiating twice is precisely the set of nonconstant linear

functions.
(C) The kernel of the operation of differentiating twice is the union of the set of constant functions

and the set of nonconstant linear functions.
(D) The image of the operation of differentiating twice is precisely the set of constant functions.
(E) The image of the operation of differentiating twice is precisely the set of nonconstant linear

functions.

Your answer:

(6) Consider a second-order homogeneous linear differential equation of the form:

y′′ + p1(x)y′ + p2(x)y = 0

where x is the independent variable, y is the dependent variable, and p1 and p2 are known
functions. We are trying to find global solutions, i.e., functions defined on all of R. One way of
thinking of this is to consider the linear transformation L that sends a function y of x to L(y) =
y′′+ p1(x)y′+ p2(x)y, a new function of x. Which of the following best describes what we are trying
to do?
(A) L is a linear transformation C2(R) → C(R), and the solution space we are interested in is the

kernel of L.
(B) L is a linear transformation C2(R) → C(R), and the solution space we are interested in is the

image of L.
(C) L is a linear transformation C(R) → C2(R), and the solution space we are interested in is the

kernel of L.
(D) L is a linear transformation C(R) → C2(R), and the solution space we are interested in is the

image of L.

Your answer:

(7) Consider a second-order non-homogeneous linear differential equation of the form:

y′′ + p1(x)y′ + p2(x)y = q(x)

where x is the independent variable, y is the dependent variable, and p1, p2, and q are known
functions. We are trying to find global solutions, i.e., functions defined on all of R. One way of
thinking of this is to consider the linear transformation L that sends a function y of x to L(y) =
y′′+ p1(x)y′+ p2(x)y, a new function of x. Which of the following best describes what we are trying
to do?
(A) We are trying to find the inverse image under L of q(x), and we know this is a translate of the

solution space of the corresponding homogeneous linear differential equation (the one from the
preceding question).
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(B) We are trying to find the image under L of p1(x), and we know this is a translate of the solution
space of the corresponding homogeneous linear differential equation (the one from the preceding
question).

Your answer:
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