DIAGNOSTIC IN-CLASS QUIZ: DUE WEDNESDAY NOVEMBER 6: IMAGE AND KERNEL (BASIC)

MATH 196, SECTION 57 (VIPUL NAIK)

Your name (print clearly in capital letters): ____

PLEASE DO NOT DISCUSS ANY QUESTIONS.

The questions here test for a very rudimentary understanding of the ideas covered in the lectures notes titled Image and kernel of a linear transformation. The corresponding section of the book is Section 3.1.

- (1) Do not discuss this! For a linear transformation $T : \mathbb{R}^m \to \mathbb{R}^n$, the kernel of T is defined as the set of vectors $\vec{x} \in \mathbb{R}^m$ satisfying the condition that $T(\vec{x}) = \vec{0}$. Which of the following correctly describes the type of subset of \mathbb{R}^m that the kernel must be? Note that, as usual, we identify a set of vectors with the set of corresponding points.
 - (A) The kernel is a line segment in \mathbb{R}^m .
 - (B) The kernel is a linear subspace of \mathbb{R}^m , i.e., it passes through the origin and, for any two points in the kernel, the line joining them is completely inside the kernel.
 - (C) The kernel is an affine linear subspace of \mathbb{R}^m but it need not be linear, i.e., it is non-empty and the line joining any two points in it is also in it, but it need not contain the origin.
 - (D) The kernel is a curve in \mathbb{R}^m with a parametric description.

- (2) Do not discuss this!: For a linear transformation $T : \mathbb{R}^m \to \mathbb{R}^n$, the kernel of T is defined as the set of vectors $\vec{x} \in \mathbb{R}^m$ satisfying the condition that $T(\vec{x}) = \vec{0}$. Given a vector $\vec{y} \in \mathbb{R}^n$, the set of solutions to $T(\vec{x}) = \vec{y}$ is either empty, or it bears some relation with the kernel. What relation does it bear to the kernel if it is nonempty?
 - (A) The solution set is an affine linear subspace of \mathbb{R}^m (see definition in Option (C) of Q1) that is a translate of the kernel, i.e., there is a vector \vec{v} such that the vectors in the solution set are precisely the vectors expressible as (\vec{v} plus a vector in the kernel).
 - (B) The solution set coincides precisely with the kernel.
 - (C) The solution set comprises a single point (i.e., a single vector) that is not in the kernel.

Your answer:

(3) Do not discuss this!: Given a linear transformation $T : \mathbb{R}^m \to \mathbb{R}^n$, recall that we say that T is injective if for every $\vec{y} \in \mathbb{R}^n$, there exists at most one $\vec{x} \in \mathbb{R}^m$ satisfying $T(\vec{x}) = \vec{y}$. Another way of formulating this is that if A is the $n \times m$ matrix for T, then the linear system $A\vec{x} = \vec{y}$ has at most one solution for \vec{x} for each fixed value of \vec{y} . We had earlier worked out that this condition is equivalent to full column rank (recall: all the variables need to be leading variables), which in this case means rank m.

What is the relationship between the injectivity of T and the kernel of T?

- (A) T is injective if and only if the kernel of T is empty.
- (B) If T is injective, then the kernel of T is empty. However, the converse is not in general true.
- (C) T is injective if and only if the kernel of T comprises only the zero vector.
- (D) If T is injective, then the kernel of T comprises only the zero vector. However, the converse is not in general true.
- (E) If the kernel of T comprises only the zero vector, then T is injective. However, the converse is not in general true.

Your answer:

Your answer: _

- (4) Do not discuss this! For a linear transformation $T : \mathbb{R}^m \to \mathbb{R}^n$, the image of T is defined as the set of vectors $\vec{y} \in \mathbb{R}^n$ satisfying the condition that there exists a vector $\vec{x} \in \mathbb{R}^m$ satisfying $T(\vec{x}) = \vec{y}$. In other words, the image of T equals the range of T as a function. Which of the following correctly describes the type of subset of \mathbb{R}^n that the image must be? Note that, as usual, we identify a set of vectors with the set of corresponding points.
 - (A) The image is a line segment in \mathbb{R}^n .
 - (B) The image is a linear subspace of \mathbb{R}^n , i.e., it passes through the origin and, for any two points in the image, the line joining them is completely inside the image.
 - (C) The image is an affine linear subspace of \mathbb{R}^n but it need not be linear, i.e., it is non-empty and the line joining any two points in it is also in it, but it need not contain the origin.
 - (D) The image is a curve in \mathbb{R}^n with a parametric description.

Your answer: _____

- (5) Do not discuss this!: Given a linear transformation $T : \mathbb{R}^m \to \mathbb{R}^n$, recall that we say that T is surjective if for every $\vec{y} \in \mathbb{R}^n$, there exists at least one $\vec{x} \in \mathbb{R}^m$ satisfying $T(\vec{x}) = \vec{y}$. Another way of formulating this is that if A is the $n \times m$ matrix for T, then the linear system $A\vec{x} = \vec{y}$ has at least one solution for \vec{x} for each fixed value of \vec{y} . We had earlier worked out that this condition is equivalent to full row rank (recall: we need all rows in the rref to be nonzero in order to avoid the potential for inconsistency), which in this case means rank n.
 - What is the relationship between the surjectivity of T and the image of T?
 - (A) T is surjective if and only if the image of T is empty.
 - (B) T is surjective if and only if the image of T comprises only the zero vector.
 - (C) T is surjective if and only if the image of T is all of \mathbb{R}^n .

Your answer: _____