TAKE-HOME CLASS QUIZ: DUE WEDNESDAY OCTOBER 30: LINEAR TRANSFORMATIONS AND FINITE STATE AUTOMATA

MATH 196, SECTION 57 (VIPUL NAIK)

Your name (print clearly in capital letters):

PLEASE FEEL FREE TO DISCUSS ALL QUESTIONS.

The purpose of this quiz is to explore in greater depth particular types of matrices, the corresponding linear transformations, and the relationship between operations on sets and similar operations on vector spaces. The material covered in the quiz will also prove to be a fertile source of examples and counterexamples for later content: in the future, when you are asked to come up with matrices that satisfy some very loosely stated conditions, the matrices of the type described here can be a place to begin your search.

Let n be a natural number greater than 1. Suppose $f:\{0,1,2, \ldots, n\} \rightarrow\{0,1,2, \ldots, n\}$ is a function satisfying $f(0)=0$. Let T_{f} denote the linear transformation from \mathbb{R}^{n} to \mathbb{R}^{n} satisfying the following for all $i \in\{1,2, \ldots, n\}$:

$$
T_{f}\left(\vec{e}_{i}\right)=\left\{\begin{aligned}
\vec{e}_{f(i)}, & f(i) \neq 0 \\
\overrightarrow{0}, & f(i)=0
\end{aligned}\right.
$$

Let M_{f} denote the matrix for the linear transformation $T_{f} . M_{f}$ can be described explicitly as follows: the $i^{\text {th }}$ column of M_{f} is $\overrightarrow{0}$ if $f(i)=0$ and is $\vec{e}_{f(i)}$ if $f(i) \neq 0$.

Note that if $f, g:\{0,1,2, \ldots, n\} \rightarrow\{0,1,2, \ldots, n\}$ are functions with $f(0)=g(0)=0$, then $M_{f \circ g}=M_{f} M_{g}$ and $T_{f \circ g}=T_{f} \circ T_{g}$.

We will also use the following terminology:

- A $n \times n$ matrix A is termed idempotent if $A^{2}=A$.
- A $n \times n$ matrix A is termed nilpotent if there exists a positive integer r such that $A^{r}=0$.
- A $n \times n$ matrix A is termed a permutation matrix if every row contains one 1 and all other entries 0 , and every column contains one 1 and all other entries 0 .
(1) What condition on a function $f:\{0,1,2, \ldots, n\} \rightarrow\{0,1,2, \ldots, n\}$ (satisfying $f(0)=0)$ is equivalent to requiring M_{f} to be idempotent?
(A) $(f(x))^{2}=x$ for all $x \in\{0,1,2, \ldots, n\}$
(B) $f\left(x^{2}\right)=x$ for all $x \in\{0,1,2, \ldots, n\}$
(C) $(f(x))^{2}=f(x)$ for all $x \in\{0,1,2, \ldots, n\}$
(D) $f(f(x))=x$ for all $x \in\{0,1,2, \ldots, n\}$
(E) $f(f(x))=f(x)$ for all $x \in\{0,1,2, \ldots, n\}$

Your answer: \qquad
(2) What condition on a function $f:\{0,1,2, \ldots, n\} \rightarrow\{0,1,2, \ldots, n\}$ (satisfying $f(0)=0)$ is equivalent to requiring M_{f} to be nilpotent?
(A) Composing f enough times with itself gives the identity function (i.e., the function that sends everything to itself).
(B) Composing f enough times with itself gives the function that sends everything to 0 .
(C) Composing f enough times with itself gives the function that sends everything to 1 .
(D) Multiplying f enough times with itself gives the identity function (i.e., the function that sends everything to itself).
(E) Multiplying f enough times with itself gives the function that sends everything to 0 .

Your answer: \qquad
(3) What condition on a function $f:\{0,1,2, \ldots, n\} \rightarrow\{0,1,2, \ldots, n\}$ (satisfying $f(0)=0)$ is equivalent to requiring M_{f} to be a permutation matrix?
(A) Composing f enough times with itself gives the identity function (i.e., the function that sends everything to itself).
(B) Composing f enough times with itself gives the function that sends everything to 0 .
(C) Composing f enough times with itself gives the function that sends everything to 1.
(D) Multiplying f enough times with itself gives the identity function (i.e., the function that sends everything to itself).
(E) Multiplying f enough times with itself gives the function that sends everything to 0 .

Your answer:
(4) Consider a function $f:\{0,1,2, \ldots, n\} \rightarrow\{0,1,2, \ldots, n\}$ with the property that $f(0)=0$ and, for each $i \in\{1,2, \ldots, n\}, f(i)$ is either i or 0 . Note that the behavior may be different for different values of i (so some of them may go to themselves, and others may go to 0). What can we say M_{f} must be?
(A) M_{f} must be the identity matrix.
(B) M_{f} must be the zero matrix.
(C) M_{f} must be an idempotent matrix.
(D) M_{f} must be a nilpotent matrix.
(E) M_{f} must be a permutation matrix.

Your answer: \qquad
(5) Which of the following pairs of candidates for $f, g:\{0,1,2\} \rightarrow\{0,1,2\}$ satisfies the condition that $M_{f} M_{g}=0$ but $M_{g} M_{f} \neq 0$?
(A) $f(0)=0, f(1)=1, f(2)=2$, whereas $g(0)=0, g(1)=2, g(2)=1$
(B) $f(0)=0, f(1)=0, f(2)=1$, whereas $g(0)=0, g(1)=2, g(2)=0$
(C) $f(0)=0, f(1)=1, f(2)=0$, whereas $g(0)=0, g(1)=0, g(2)=2$
(D) $f(0)=0, f(1)=0, f(2)=1$, whereas $g(0)=0, g(1)=1, g(2)=0$
(E) $f(0)=0, f(1)=1, f(2)=0$, whereas $g(0)=0, g(1)=0, g(2)=1$

Your answer: \qquad
(6) Which of the following pairs of candidates for $f, g:\{0,1,2\} \rightarrow\{0,1,2\}$ satisfies the condition that M_{f} and M_{g} are both nilpotent but $M_{f} M_{g}$ is not nilpotent?
(A) $f(0)=0, f(1)=1, f(2)=2$, whereas $g(0)=0, g(1)=2, g(2)=1$
(B) $f(0)=0, f(1)=0, f(2)=1$, whereas $g(0)=0, g(1)=2, g(2)=0$
(C) $f(0)=0, f(1)=1, f(2)=0$, whereas $g(0)=0, g(1)=0, g(2)=2$
(D) $f(0)=0, f(1)=0, f(2)=1$, whereas $g(0)=0, g(1)=1, g(2)=0$
(E) $f(0)=0, f(1)=1, f(2)=0$, whereas $g(0)=0, g(1)=0, g(2)=1$

Your answer: \qquad
(7) Which of the following pairs of candidates for $f, g:\{0,1,2\} \rightarrow\{0,1,2\}$ satisfies the condition that neither M_{f} and M_{g} is nilpotent but $M_{f} M_{g}$ is nilpotent?
(A) $f(0)=0, f(1)=1, f(2)=2$, whereas $g(0)=0, g(1)=2, g(2)=1$
(B) $f(0)=0, f(1)=0, f(2)=1$, whereas $g(0)=0, g(1)=2, g(2)=0$
(C) $f(0)=0, f(1)=1, f(2)=0$, whereas $g(0)=0, g(1)=0, g(2)=2$
(D) $f(0)=0, f(1)=0, f(2)=1$, whereas $g(0)=0, g(1)=1, g(2)=0$
(E) $f(0)=0, f(1)=1, f(2)=0$, whereas $g(0)=0, g(1)=0, g(2)=1$

Your answer: \qquad

