DIAGNOSTIC IN-CLASS QUIZ: DUE FRIDAY OCTOBER 25: MATRIX MULTIPLICATION (BASIC)

MATH 196, SECTION 57 (VIPUL NAIK)

Your name (print clearly in capital letters):

PLEASE DO NOT DISCUSS ANY QUESTIONS

This quiz tests for basic comprehension of the setup for matrix multiplication. It corresponds to the material from Sections 1-6 (excluding Section 4) of the Matrix multiplication and inversion notes, and also to Section 2.3 of the book.
(1) Do not discuss this!: Suppose A and B are (not necessarily square) matrices. Then, which of the following describes correctly the relationship between the existence and value of the (alleged) matrix product $A B$ and the existence and value of the (alleged) matrix product $B A$?
(A) $A B$ is defined if and only if $B A$ is defined, and if so, they are equal.
(B) $A B$ is defined if and only if $B A$ is defined, but they need not be equal.
(C) If $A B$ and $B A$ are both defined, then $A B=B A$. However, it is possible for one of $A B$ and $B A$ to be defined and the other to not be defined.
(D) It is possible for only one of $A B$ and $B A$ to be defined. It is also possible for both $A B$ and $B A$ to be defined, but to not be equal to each other.

Your answer:
(2) Do not discuss this!: Suppose A and B are matrices such that both $A B$ and $B A$ are defined. Which of the following correctly describes what we know about $A B$ and $B A$?
(A) Both $A B$ and $B A$ are square matrices and have the same dimensions, i.e., in both $A B$ and $B A$, the number of rows equals the number of columns, and further, the number of rows of $A B$ equals the number of rows of $B A$.
(B) Both $A B$ and $B A$ are square matrices (the number of rows equals the number of columns) but they may not have the same dimensions: the number of rows in $A B$ need not equal the number of rows in $B A$.
(C) $A B$ and $B A$ need not be square matrices but both must have the same dimensions: the number of rows in $A B$ equals the number of rows in $B A$, and the number of columns in $A B$ equals the number of columns in $B A$.
(D) $A B$ and $B A$ need not be square matrices and they need not have the same row count or the same column count, i.e., the number of rows in $A B$ need not equal the number of rows in $B A$, and the number of columns in $A B$ need not equal the number of columns in $B A$.

Your answer:
(3) Do not discuss this!: Suppose A and B are matrices such that both $A B$ and $A+B$ are defined. Which of the following correctly describes what we know about A and B ?
(A) Both A and B are square matrices and have the same dimensions, i.e., in both A and B, the number of rows equals the number of columns, and further, the number of rows of A equals the number of rows of B.
(B) Both A and B are square matrices (the number of rows equals the number of columns) but they may not have the same dimensions: the number of rows in A need not equal the number of rows in B.
(C) A and B need not be square matrices but both must have the same dimensions: the number of rows in A equals the number of rows in B, and the number of columns in A equals the number of columns in B.
(D) A and B need not be square matrices and they need not have the same row count or the same column count, i.e., the number of rows in A need not equal the number of rows in B, and the number of columns in A need not equal the number of columns in B.
Your answer: \qquad
(4) Do not discuss this!: Suppose A is a $p \times q$ matrix and B is a $q \times r$ matrix. The product matrix $A B$ is a $p \times r$ matrix. Using the convention of matrices as linear transformations via their action by multiplication on column vectors, what is the appropriate interpretation of the matrix product in terms of composing linear transformations?
(A) A corresponds to a linear transformation T_{A} from \mathbb{R}^{p} to \mathbb{R}^{q}, and B corresponds to a linear transformation T_{B} from \mathbb{R}^{q} to \mathbb{R}^{r}. The product $A B$ therefore corresponds to a linear transformation from \mathbb{R}^{p} to \mathbb{R}^{r} that is the composite of the two linear transformations, with T_{A} applied first (to the domain) and then T_{B} (T_{B} being applied to the intermediate space obtained after applying T_{A}).
(B) A corresponds to a linear transformation T_{A} from \mathbb{R}^{p} to \mathbb{R}^{q}, and B corresponds to a linear transformation T_{B} from \mathbb{R}^{q} to \mathbb{R}^{r}. The product $A B$ therefore corresponds to a linear transformation from \mathbb{R}^{p} to \mathbb{R}^{r} that is the composite of the two linear transformations, with T_{B} applied first (to the domain) and then T_{A} (T_{A} being applied to the intermediate space obtained after applying T_{B}).
(C) A corresponds to a linear transformation T_{A} from \mathbb{R}^{q} to \mathbb{R}^{p}, and B corresponds to a linear transformation T_{B} from \mathbb{R}^{r} to \mathbb{R}^{q}. The product $A B$ therefore corresponds to a linear transformation from \mathbb{R}^{r} to \mathbb{R}^{p} that is the composite of the two linear transformations, with T_{A} applied first (to the domain) and then T_{B} (T_{B} being applied to the intermediate space obtained after applying T_{A}).
(D) A corresponds to a linear transformation T_{A} from \mathbb{R}^{q} to \mathbb{R}^{p}, and B corresponds to a linear transformation T_{B} from \mathbb{R}^{r} to \mathbb{R}^{q}. The product $A B$ therefore corresponds to a linear transformation from \mathbb{R}^{r} to \mathbb{R}^{p} that is the composite of the two linear transformations, with T_{B} applied first (to the domain) and then T_{A} (T_{A} being applied to the intermediate space obtained after applying T_{B}).
Your answer:
(5) Do not discuss this!: Suppose A, B, and C are matrices. Which of the following is true?
(A) If $A B C$ is defined, then so are $B C A$ and $C A B$.
(B) If $A B C$ and $B C A$ are both defined, then so is $C A B$. However, it is possible to have a situation where $A B C$ is defined but $B C A$ and $C A B$ are not defined.
(C) It is possible to have a situation where $A B C$ and $B C A$ are both defined but $C A B$ is not defined.

Your answer:

