DIAGNOSTIC IN-CLASS QUIZ: DUE FRIDAY OCTOBER 18: LINEAR TRANSFORMATIONS

MATH 196, SECTION 57 (VIPUL NAIK)

Your name (print clearly in capital letters):

PLEASE DO NOT DISCUSS ANY QUESTIONS.

The quiz covers basics related to linear transformations (notes titled Linear transformations, corresponding section in the book Section 2.1). Explicitly, the quiz covers:

- Representation of a linear transformation using a matrix, and identifying the domain and co-domain in terms of the row and column counts of the matrix.
- Relationship between injectivity, surjectivity, rank, row count, and column count.
- Relationship between the entries of the matrix and the images of the standard basis vectors under the corresponding linear transformation.

The questions are fairly easy if you understand the material. But it's important that you be able to answer them, otherwise what we study later will not make much sense.
(1) Do not discuss this!: Which of the following correctly describes a $m \times n$ matrix?
(A) There are m rows, and each row gives a vector with m coordinates. There are n columns, and each column gives a vector with n coordinates.
(B) There are m rows, and each row gives a vector with n coordinates. There are n columns, and each column gives a vector with m coordinates.
(C) There are n rows, and each row gives a vector with m coordinates. There are m columns, and each column gives a vector with n coordinates.
(D) There are n rows, and each row gives a vector with n coordinates. There are m columns, and each column gives a vector with m coordinates.

Your answer: \qquad
(2) Do not discuss this!: For a $p \times q$ matrix A, we can define a linear transformation T_{A} by $T_{A}(\vec{x}):=A \vec{x}$. What type of linear transformation is T_{A} ?
(A) T_{A} is a linear transformation from \mathbb{R}^{p} to \mathbb{R}^{q}
(B) T_{A} is a linear trnasformation from \mathbb{R}^{q} to \mathbb{R}^{p}
(C) T_{A} is a linear transformation from $\mathbb{R}^{\max \{p, q\}}$ to $\mathbb{R}^{\min \{p, q\}}$
(D) T_{A} is a linear transformation from $\mathbb{R}^{\min \{p, q\}}$ to $\mathbb{R}^{\max \{p, q\}}$

Your answer:
(3) Do not discuss this!: With the same notation as for the preceding question, which of the following is true?
(A) If $p<q, T_{A}$ must be injective
(B) If $p>q, T_{A}$ must be injective
(C) If $p=q, T_{A}$ must be injective
(D) If $p<q, T_{A}$ cannot be injective
(E) If $p>q, T_{A}$ cannot be injective

Your answer:
(4) Do not discuss this!: With the same notation as for the previous two questions, which of the following is true?
(A) If $p<q, T_{A}$ must be surjective
(B) If $p>q, T_{A}$ must be surjective
(C) If $p=q, T_{A}$ must be surjective
(D) If $p<q, T_{A}$ cannot be surjective
(E) If $p>q, T_{A}$ cannot be surjective

Your answer:
(5) Do not discuss this!: With the same notation as for the last three questions, which of the following is true?
(A) The rows of A are the images under T_{A} of the standard basis vectors of \mathbb{R}^{p}.
(B) The columns of A are the images under T_{A} of the standard basis vectors of \mathbb{R}^{p}.
(C) The rows of A are the images under T_{A} of the standard basis vectors of \mathbb{R}^{q}.
(D) The columns of A are the images under T_{A} of the standard basis vectors of \mathbb{R}^{q}.

Your answer:

