DIAGNOSTIC IN-CLASS QUIZ: DUE WEDNESDAY OCTOBER 2: VECTORS (BASIC STUFF)

```
MATH 196, SECTION 57 (VIPUL NAIK)
```


Your name (print clearly in capital letters):

PLEASE DO NOT DISCUSS ANY QUESTIONS.

Many of you are familiar with vectors, either from Math 195 or some exposure to vectors in high school (or perhaps both). This quiz is to help gauge your level of understanding coming in. We will not get to start using the ideas in their full depth until a few weeks later.

For the benefit of those who haven't seen vectors at all, the definitions are briefly provided.
There are many ways of describing the vector in \mathbb{R}^{n} with coordinates $a_{1}, a_{2}, \ldots, a_{n}$. You may have seen the vector described using angled braces as $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$. In this linear algebra course, we will customarily write the vector as a column vector, i.e., the coordinates will be written in a vertical column. For instance, the vector $\langle 2,3,7\rangle$ will be written as the column vector $\left[\begin{array}{l}2 \\ 3 \\ 7\end{array}\right]$.

Two vectors in \mathbb{R}^{n} can be added with each other (note that both vectors need to be in the same \mathbb{R}^{n} in order to be added). The addition is coordinate-wise:

$$
\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\cdot \\
\cdot \\
\cdot \\
v_{n}
\end{array}\right]+\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\cdot \\
\cdot \\
\cdot \\
w_{n}
\end{array}\right]=\left[\begin{array}{c}
v_{1}+w_{1} \\
v_{2}+w_{2} \\
\cdot \\
\cdot \\
\cdot \\
v_{n}+w_{n}
\end{array}\right]
$$

Also, given any real number λ (called a scalar to distinguish from a vector) and a vector $\vec{v}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \cdot \\ \cdot \\ \cdot \\ v_{n}\end{array}\right]$, we can define:

$$
\lambda \vec{v}=\lambda\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\cdot \\
\cdot \\
\cdot \\
v_{n}
\end{array}\right]:=\left[\begin{array}{c}
\lambda v_{1} \\
\lambda v_{2} \\
\cdot \\
\cdot \\
\cdot \\
\lambda v_{n}
\end{array}\right]
$$

We can identify the set of n-dimensional vectors with the set of points in \mathbb{R}^{n}. The vector $\vec{v}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \cdot \\ \cdot \\ \cdot \\ v_{n}\end{array}\right]$ in this case corresponds to the point with coordinates $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$.
(1) Do not discuss this!: For a n-dimensional vector \vec{v}, the set of scalar multiples of \vec{v} is the set of vectors that can be expressed in the form $\lambda \vec{v}, \lambda \in \mathbb{R}$. Assume that \vec{v} is a nonzero vector. What can we say geometrically about the set of points in \mathbb{R}^{n} that correspond to the scalar multiples of \vec{v} ?
(A) It is a straight line in \mathbb{R}^{n} that passes through the origin.
(B) It is a straight line in \mathbb{R}^{n}. However, it need not pass through the origin.
(C) It is a straight half-line in \mathbb{R}^{n} with the endpoint at the origin.
(D) It is a straight half-line in \mathbb{R}^{n}, but the endpoint need not be at the origin.
(E) It is a line segment in \mathbb{R}^{n}.

Your answer:
(2) Do not discuss this!: Given two n-dimensional vectors \vec{v} and \vec{w}, the set of linear combinations of \vec{v} and \vec{w} is the set of all vectors that can be written in the form $\lambda \vec{v}+\mu \vec{w}$ where $\lambda, \mu \in \mathbb{R}$ (note that λ and μ can take arbitrary real values, and are allowed to be equal to each other). In other words, you can take scalar multiples, and you can then add these scalar multiples.

The set of linear combinations of \vec{v} and \vec{w} is sometimes also called the span of \vec{v} and \vec{w}.
What is the span of the vectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ in \mathbb{R}^{2} ?
(A) The zero vector only, because that is the only vector that can be expressed both as a multiple of $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and as a multiple of $\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
(B) The set of vectors that can be expressed as a scalar multiple either of $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ or of $\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
(C) The set of vectors that can be expressed as a scalar multiple of at least one of these three vectors: $\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(D) All vectors in the first quadrant of \mathbb{R}^{2}, including the bounding half-lines. In other words, the set of vectors of the form $\left[\begin{array}{l}x \\ y\end{array}\right]$ where $x \geq 0$ and $y \geq 0$.
(E) All vectors in \mathbb{R}^{2}.

Your answer:
(3) Do not discuss this!: Consider the transformation from \mathbb{R}^{2} to \mathbb{R}^{2} that interchanges the coordinates of a vector. Explicitly, the transformation is given as:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \mapsto\left[\begin{array}{l}
y \\
x
\end{array}\right]
$$

Which of the following describes the transformation geometrically, with \mathbb{R}^{2} viewed as the $x y$-plane?
(A) It is a reflection about the x-axis in \mathbb{R}^{2}, i.e., the axis for the first coordinate.
(B) It is a reflection about the y-axis in \mathbb{R}^{2}, i.e., the axis for the second coordinate.
(C) It is a reflection about the line $y=x$ in \mathbb{R}^{2}, i.e., the line of vectors where both coordinates are equal.
(D) It is a reflection about the line $y=-x$ in \mathbb{R}^{2}, i.e., the line of vectors where the coordinates are negatives of each other.

Your answer: \qquad

