
REVIEW SHEET FOR FINAL: BASIC

MATH 195, SECTION 59 (VIPUL NAIK)

The document does not include material that was part of the midterm 1 and midterm 2 review sessions.
Please also bring copies of these review sheets to the review session on Monday.

You are expected to review this on your own time. We will concentrate on the advanced review sheet
during problem session.

1. Directional derivatives and gradient vectors

Words ...
(1) The directional derivative of a scalar function f of two variables along a unit vector u = ai + bj at a

point (x0, y0) is defined as the following limit of difference quotient, if the limit exists:

lim
h→0

f(x0 + ah, y0 + bh) − f(x0, y0)
h

(2) The directional derivative of a differentiable scalar function f of two variables along a unit vector
u = ai + bj at a point (x0, y0) is Du(f) = afx(x0, y0) + bfy(x0, y0).

(3) The gradient vector for a differentiable scalar function f of two variables at a point (x0, y0) is
∇f(x0, y0) = fx(x0, y0)i + fy(x0, y0)j.

(4) The directional derivative of f is the dot product of the gradient vector of ∇f and the unit vector
u.

(5) Suppose ∇f is nonzero. Then, if u makes an angle θ with ∇f , then Du(f) is |∇f | cos θ. The
directional derivative is maximum in the direction of the gradient vector, zero in directions orthogonal
to the gradient vector, and minimum in the direction opposite to the gradient vector.

(6) The level curves are orthogonal to the gradient vector.
(7) Similar formulas for gradient vector and directional derivative work in three dimensions.
(8) The level surfaces are orthogonal to the gradient vector for a function of three variables.
(9) For a surface given by F (x, y, z) = 0, if (x0, y0, z0) is a point on the surface, and Fx(x0, y0, z0),

Fy(x0, y0, z0), and Fz(x0, y0, z0) all exist and are nonzero, then the normal line is given by:

x − x0

Fx(x0, y0, z0)
=

y − y0

Fy(x0, y0, z0)
=

z − z0

Fz(x0, y0, z0)
The tangent plane is given by:

Fx(x0, y0, z0)(x − x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0

2. Max-min values

Words ...
(1) For a directional local minimum, the directional derivative (in the outward direction from the point)

is greater than or equal to zero. For a directional local maximum, the directional derivative (in the
outward direction from the point) is less than or equal to zero.

Note that even for strict directional local maximum or minimum, the possibility of the directional
derivative being zero cannot be ruled out.

(2) If a point is a point of directional local minimum from two opposite directions (i.e., it is a local
minimum along a line through the point, from both directions on the line) then the directional
derivative along the line, if it exists, must equal zero.
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(3) If a function of two variables is differentiable at a point of local minimum or local maximum, then
the directional derivative of the function is zero at the point in every direction. Equivalently, the
gradient vector of the function at the point is the zero vector. Equivalently, both the first partial
derivatives at the point are zero.

Points where the gradient vector is zero are termed critical points.
(4) If the directional derivatives along some directions are positive and the directional derivatives along

other directions are negative, the point is likely to be a saddle point. A saddle point is a point for
which the tangent plane to the surface that’s the graph of the function slides through the graph, i.e.,
it is not completely on one side.

(5) For a function f of two variables with continuous second partials, and a critical point (a, b) in the
domain (so fx(a, b) = fy(a, b) = 0) we compute the Hessian determinant:

D(a, b) = fxx(a, b)fyy(a, b) − [fxy(a, b)]2

If D(a, b) > 0 and fxx(a, b) > 0, the function has a local minimum at the point (a, b). If D(a, b) > 0
and fxx(a, b) < 0, the function has a local maximum at the point (a, b). If D(a, b) < 0, we get a
saddle point at the point. If D(a, b) = 0, the situation is inconclusive, i.e., the test is indecisive.

(6) For a closed bounded subset of Rn (and specifically R2) any continuous function with domain that
subset attains its absolute maximum and minimum values. These values are attained either at
interior points (in which case they are local extreme values and must be attained at critical points)
or at boundary points.

(7) Relation with level curves: Typically, local extreme values correspond to isolated single point level
curves. However, this is not always the case, and there are some counterexamples. To be more
precise, any isolated or strict local extreme value corresponds to a (locally) single point level curve.

Actions ...

(1) Strategy for finding local extreme values: First, find all the critical points by solving fx(a, b) = 0
and fy(a, b) = 0 as a pair of simultaneous equations. Next, use the second derivative test for each
critical point, and if feasible, try to figure out if this is a point of local maximum, or local minimum,
or a saddle point.

(2) To find absolute extreme values of a function on a closed bounded subset of R2, first find critical
points, then find critical points for a parameterization of the boundary, and then compute values
at all of these and see which is largest and smallest. If the list of critical points is finite, and we
need to find absolute maximum and minimum, it is not necessary to do the second derivative test to
figure out which points give local maximum, local minimum, or neither, we just need to evaluate at
all points and find the maximum/minimum.

(3) When the domain of the function is bounded but not closed, we must consider the possibility of
extreme values occurring as we approach boundary points not in the domain. If the domain is not
bounded, we must consider directions of approach to infinity.

3. Lagrange multipliers

Words ...

(1) Two of the reasons why the derivative of a function may be zero: the function is constant around
the point, or the function has a local extreme value at the point.

Version for many variables: two of the reasons why the gradient vector of a function of many
variables may be zero: the function is constant around the point, or the function has a local extreme
value at the point.

Version for function restricted to a subset smooth around a point: two of the reasons why the
gradient vector may be orthogonal to the subset at the point: the function is constant on the subset
around the point, or the function has a local extreme value (relative to the subset) at the point.

(2) For a function f defined on a subset smooth around a point (i.e., with a well defined tangent and
normal space), if f has a local extreme value at the point when restricted to the subset, then ∇f
lives in the normal direction to the subset (this includes the possibility of it being zero).
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(3) For a codimension one subset of Rn defined by a condition g(x1, x2, . . . , xn) = k, if a point (a1, a2, . . . , an)
gives a local extreme value for a function f of n variables, and if ∇g is well defined and nonzero
at the point, then there exists a real number λ such that ∇f(a1, a2, . . . , an) = λ∇g(a1, a2, . . . , an).
Note that λ may be zero.

(4) Suppose a codimension r subset of Rn is given by r independent constraints g1(x1, x2, . . . , xn) = k1,
g2(x1, x2, . . . , xn) = k2, and so on till gr(x1, x2, . . . , xn) = kr. Suppose ∇gi are nonzero for all i at a
point (a1, a2, . . . , an) of local extreme value for a function f relative to this subset. Suppose further
that all the ∇gi are linearly independent. Then ∇f(a1, a2, . . . , an) is a linear combination of the
vectors ∇g1(a1, a2, . . . , an), ∇g2(a1, a2, . . . , an), . . . , ∇gr(a1, a2, . . . , an). In other words, there exist
real numbers λ1, λ2, . . . , λr such that:

∇f(a1, a2, . . . , an) = λ1∇g1(a1, a2, . . . , an) + λ2∇g2(a1, a2, . . . , an) + · · · + λr∇gr(a1, a2, . . . , an)

(5) The Lagrange condition may be violated at points of local extremum where ∇g is zero, or more
generally, where the ∇gi fail to be linearly independent. This may occur either because the tangent
and normal space are not well defined or because the functions fail to capture it well.

Actions ...
(1) Suppose we want to maximize and minimize f on the set g(x1, x2, . . . , xn) = k. Assume ∇g(x1, x2, . . . , xn)

is defined everywhere on the set and never zero. Suppose ∇f is also defined. Then, all local maxima
and local minima are attained at points where ∇f = λ∇g for some real number λ. To find these,
we solve the system of n + 1 equations in the n + 1 variables x1, x2, . . . , xn, namely the n scalar
equations from the Lagrange condition and the equation g(x1, x2, . . . , xn) = k.

To find the actual extreme values, once we’ve collected all candidate points from the above proce-
dure, we evaluate the function at all these and find the largest and smallest value to find the absolute
maximum and minimum.

(2) If there are points in the domain where ∇g takes the value 0, these may also be candidates for
local extreme values, and the function should additionally be evaluated at these as well to find the
absolute maximum and minimum.

(3) A similar procedure works for a subset given by r constraints. In this case, we have the equation:

∇f(a1, a2, . . . , an) = λ1∇g1(a1, a2, . . . , an) + λ2∇g2(a1, a2, . . . , an) + · · · + λr∇gr(a1, a2, . . . , an)

as well as the r equations g1(x1, x2, . . . , xn) = k1, g2(x1, x2, . . . , xn) = k2, and so on. In total, we
have n + r equations in n + r variables: the x1, x2, . . . , xn and the λ1, λ2, . . . , λr.

4. Max-min values: examples

(1) Additively separable, critical points: For an additively separable function F (x, y) := f(x) + g(y), the
critical points of F are the points whose x-coordinate gives a critical point for f and y-coordinate
gives a critical point for g.

(2) Additively separable, local extreme values: The local maxima occur at points whose x-coordinate
gives a local maximum for f and y-coordinates gives a local maximum for g. Similarly for local
minima. If one coordinate gives a local maximum and the other coordinate gives a local minimum,
we get a saddle point.

(3) Additively separable, absolute extreme values: If the domain is a rectangular region, rectangular strip,
or the whole plane, then the absolute maximum occurs at the point for which each coordinate gives
the absolute maximum for that coordinate, and analogously for absolute minimum. This does not
work for non-rectangular regions in general.

(4) Multiplicatively separable, critical points: For a multiplicatively separable function F (x, y) := f(x)g(y)
with f , g, differentiable, there are four kinds of critical points (x0, y0): (1) f ′(x0) = g′(y0) = 0, (2)
f(x0) = f ′(x0) = 0, (3) g(y0) = g′(y0) = 0, (4) f(x0) = g(y0) = 0.

(5) Multiplicatively separable, local extreme values: At a critical point of Type (1), the nature of local
extreme value for F depends on the signs of f and g and on the nature of local extreme values for
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each. See the table. Critical points of Type (4) alone do not give local extreme values. The situation
with critical points of Types (2) and (3) is more ambiguous and too complicated for discussion.

(6) Multiplicatively separable, absolute extreme values: Often, these don’t exist, if one function takes
arbitrarily large magnitude values and the other one takes nonzero values (details based on sign).
If both functions are everywhere positive, and we are on a rectangular region, then the absolute
maximum/minimum for the product occur at points whose coordinates give respective absolute
maximum/minimum for f and g. (See notes)

(7) For a continuous quasiconvex function on a convex domain, the maximum must occur at one of the
extreme points, in particular on the boundary. If the function is strictly quasiconvex, the maximum
can occur only at a boundary point.

(8) For a continuous quasiconvex function on a convex domain, the minimum must occur on a convex
subset. If the function is strictly quasiconvex, it must occur at a unique point.

(9) Linear functions are quasiconvex but not strictly so. The negative of a linear function is also quasi-
convex. The maximum and minimum for linear functions on convex domains must occur at extreme
points.

(10) To find maxima/minima on the boundary, we can use the method of Lagrange multipliers.
See also: tables, discussion for linear, quadratic, and homogeneous functions (hard to summarize). Below

is a copy of the table for the multiplicatively separable case.
The setup here is that we have a function F (x, y) := f(x)g(y) and a point (x0, y0) in the domain such x0

is a critical point for f and y0 is a critical point for g. Visit the lecture notes for more detailed context.
f(x0) sign g(y0) sign f(x0) (local max/min) g(y0) (local max/min) F (x0, y0) (local max/min/saddle)
positive positive local max local max local max
positive positive local max local min saddle point
positive positive local min local max saddle point
positive positive local min local min local min
positive negative local max local max saddle point
positive negative local max local min local min
positive negative local min local max local max
positive negative local min local min saddle point
negative positive local max local max saddle point
negative positive local max local min local max
negative positive local min local max local min
negative positive local min local min saddle point
negative negative local max local max local min
negative negative local max local min saddle point
negative negative local min local max saddle point
negative negative local min local min local max
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