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1. Directional derivatives and gradient vectors

Error-spotting exercises ...
(1) Partials don’t tell the whole story: Consider the function f(x, y) := (xy)1/5. We note that f takes

the value 0 identically both on the x-axis and the y-axis, thus, fx(0, 0) = 0 and fy(0, 0) = 0. Hence,
the gradient of f at (0, 0) is the zero vector.

(2) Directional derivatives don’t tell the whole story either: Let

f(x, y) :=
{

0 if y ≤ 0 or y ≥ x4

1 if 0 < y < x4

We note that on any line approaching (0, 0), f becomes constant at 0 close enough to (0, 0).
Hence, the directional derivative of f in every direction is 0. Thus, the gradient vector of f is 0.

(3) Orthogonal to nothing: Consider the function f(x, y) := sin(xy) at the point (π, 1/2). At this point,
we have fx(x, y) = y cos(xy) = (1/2) cos(π/2) = 0. Thus, the gradient of f is in the y-direction, so
the tangent line to the level curve of f for this function is parallel to the x-axis.

(4) Zero gradient, level curve not smooth?: Consider the function f(x, y) := (x−y)3. At the point (1, 1),
both fx(x, y) and fy(x, y) take the value 0, so the gradient vector is 0. Thus, the level curve of f
passing through the point (1, 1) does not have a well defined normal direction at (1, 1).

(5) Misquare: The maximum magnitude of directional derivative for a function f with a nonzero gradient
at a point occurs in the direction of the gradient vector ∇f , and its value is ∇f · ∇f = |∇f |2.

(6) False addition: The directional derivative along the direction of the vector a + b is the sum of the
directional derivatives along the direction of a and the direction of b.

2. Max-min values

Error-spotting exercises ...
(1) Separate versus joint: Suppose F is a function of two variables denoted x and y, and (x0, y0) is a

point in the interior of the domain of F . If F has a local maximum at (x0, y0) with respect to both
the x- and the y-directions, then F must have a local maximum.

(2) Saddled with wrong ideas: Suppose F is a function of two variables denoted x and y, and (x0, y0) is a
point in the interior of the domain of F . If F has a saddle point at (x0, y0), then that means it must
have a local maximum from one of the x- and y-directions and a local minimum from the other.

(3) Hessian as second derivative: The second derivative test for a function f of two variables says the
following: define the Hessian determinant D(a, b) at a point as fxx(a, b)fyy(a, b) − [fxy(a, b)]2. If
D(a, b) > 0, this means that f has a local minimum at (a, b). If D(a, b) < 0, this means that f has
a local maximum at (a, b). If D(a, b) = 0, the second derivative test is inconclusive.

3. Lagrange multipliers

Error-spotting exercises ...
(1) Local maximum, minimum: To determine whether a point on a level curve of g satisfying the Lagrange

condition on f (i.e., ∇f = λ∇g) gives a local maximum or a local minimum for f , we simply need
to check whether λ > 0 or λ < 0. If λ > 0, we have a local minimum, and if λ < 0, we have a local
maximum.
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(2) Hessian confusion: Consider a function f of two variables. Let D denote the Hessian determinant.
To maximize f along the constraint curve g(x, y) = k, we first find points on the constraint curve
where ∇f = λ∇g for some suitable choice of λ, i.e., points satisfying the Lagrange condition. At
any such point, if D < 0, then we have neither a local maximum nor a local minimum with respect
to the curve. If D > 0 and fxx > 0, then we have a local minimum with respect to the curve. If
D > 0 and fxx < 0, then we have a local maximum with respect to the curve.

4. Max-min values: examples

Error-spotting exercises ...
(1) Absolute maximum folly, thinking in the box: Suppose F (x, y) := f(x) + g(y) and we want to

maximize F over the domain |x| + |y| ≤ 1. We note that in the domain |x| + |y| ≤ 1, we have the
constraints −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1. Thus, to find the absolute maximum for F , we do the
following: maximize f on the interval [−1, 1] (say at x0 with value a), maximize g on the interval
[−1, 1] (say at y0 with value b), and then take the combined point (x0, y0) and get value a + b.

(2) Critical missed types: Suppose F (x, y) := f(x)g(y). Then, (x0, y0) gives a critical point for F if and
only if x0 gives a critical point for f and y0 gives a critical point for g.

(3) Ignoring the signs of a pessimistic world: Suppose F (x, y) := f(x)g(y). If f attains a local maximum
value at x0 and g attains a local maximum value at y0, then F attains a local maximum value at
(x0, y0).

(4) Maximum, minimum: Suppose f is a continuous quasiconvex function defined on the set |x|+|y| ≤ 1.
We know by the definition of quasiconvex that f must attain both its absolute maximum and its
absolute minimum at one of its extreme points, i.e., at one of the points (1, 0), (0, 1), (−1, 0), and
(0,−1).

(5) Pointy circles: Suppose f is a strictly convex function defined on the circular disk x2 +y2 ≤ 1. Then,
f can attain its absolute maximum only at one of the four extreme points: (1, 0), (0, 1), (−1, 0), and
(0,−1).
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