
LAGRANGE MULTIPLIERS

MATH 195, SECTION 59 (VIPUL NAIK)

Corresponding material in the book: Section 14.8
What students should definitely get: The Lagrange multiplier condition (one constraint, two con-

straints and in principle more than two constraints), the application to finding absolute extreme values.
What students should hopefully get: Situations where Lagrange multipliers fail, the underlying logic

behind Lagrange multipliers, how to use Lagrange multipliers for piecewise smooth situations.

Executive summary

Words ...
(1) Two of the reasons why the derivative of a function may be zero: the function is constant around

the point, or the function has a local extreme value at the point.
Version for many variables: two of the reasons why the gradient vector of a function of many

variables may be zero: the function is constant around the point, or the function has a local extreme
value at the point.

Version for function restricted to a subset smooth around a point: two of the reasons why the
gradient vector may be orthogonal to the subset at the point: the function is constant on the subset
around the point, or the function has a local extreme value (relative to the subset) at the point.

(2) For a function f defined on a subset smoooth around a point (i.e., with a well defined tangent and
normal space), if f has a local extreme value at the point when restricted to the subset, then ∇f
lives in the normal direction to the subset (this includes the possibility of it being zero).

(3) For a codimension one subset of Rn defined by a condition g(x1, x2, . . . , xn) = k, if a point (a1, a2, . . . , an)
gives a local extreme value for a function f of n variables, and if ∇g is well defined and nonzero
at the point, then there exists a real number λ such that ∇f(a1, a2, . . . , an) = λ∇g(a1, a2, . . . , an).
Note that λ may be zero.

(4) Suppose a codimension r subset of Rn is given by r independent constraints g1(x1, x2, . . . , xn) = k1,
g2(x1, x2, . . . , xn) = k2, and so on till gr(x1, x2, . . . , xn) = kr. Suppose ∇gi are nonzero for all i at a
point (a1, a2, . . . , an) of local extreme value for a function f relative to this subset. Suppose further
that all the ∇gi are linearly independent. Then ∇f(a1, a2, . . . , an) is a linear combination of the
vectors ∇g1(a1, a2, . . . , an), ∇g2(a1, a2, . . . , an), . . . , ∇gr(a1, a2, . . . , an). In other words, there exist
real numbers λ1, λ2, . . . , λr such that:

∇f(a1, a2, . . . , an) = λ1∇g1(a1, a2, . . . , an) + λ2∇g2(a1, a2, . . . , an) + · · ·+ λr∇gr(a1, a2, . . . , an)

(5) The Lagrange condition may be violated at points of local extremum where ∇g is zero, or more
generally, where the ∇gi fail to be linearly independent. This may occur either because the tangent
and normal space are not well defined or because the functions fail to capture it well.

Actions ...
(1) Suppose we want to maximize and minimize f on the set g(x1, x2, . . . , xn) = k. Assume∇g(x1, x2, . . . , xn)

is defined everywhere on the set and never zero. Suppose ∇f is also defined. Then, all local maxima
and local minima are attained at points where ∇f = λ∇g for some real number λ. To find these,
we solve the system of n + 1 equations in the n + 1 variables x1, x2, . . . , xn, namely the n scalar
equations from the Lagrange condition and the equation g(x1, x2, . . . , xn) = k.

To find the actual extreme values, once we’ve collected all candidate points from the above proce-
dure, we evaluate the function at all these and find the largest and smallest value to find the absolute
maximum and minimum.
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(2) If there are points in the domain where ∇g takes the value 0, these may also be candidates for
local extreme values, and the function should additionally be evaluated at these as well to find the
absolute maximum and minimum.

(3) A similar procedure works for a subset given by r constraints. In this case, we have the equation:

∇f(a1, a2, . . . , an) = λ1∇g1(a1, a2, . . . , an) + λ2∇g2(a1, a2, . . . , an) + · · ·+ λr∇gr(a1, a2, . . . , an)

as well as the r equations g1(x1, x2, . . . , xn) = k1, g2(x1, x2, . . . , xn) = k2, and so on. In total, we
have n + r equations in n + r variables: the x1, x2, . . . , xn and the λ1, λ2, . . . , λr.

1. Lagrange multipliers: basic formulation with one constraint

1.1. The two key ideas. We summarize two key ideas behind Lagrange multipliers:

• If a scalar function is constant on a subset of Rn, its directional derivative along any direction tangent
to the subset at a point on the subset is zero. Thus, the gradient of the function at any point in the
subset (if nonzero) is orthogonal to the subset.

• Consider a scalar function and a subset of Rn. At any point in the subset where the function attains
a local extreme value relative to the subset, the directional derivative along any direction tangent
to the subset at the point is zero. Thus, the gradient of the function at the point (if nonzero) is
orthogonal to the subset.

Roughly speaking, we’re saying that there are two reasons (among many!) why the directional derivative
along all tangents at a point should be zero: one, the function is constant around the point, and the other,
the function attains a local extreme value at the point.

The key insight behind Lagrange multipliers is to combine these insights and ask: on a subset defined by
one function being constant, how do we find the local extreme values of another function? The idea is to
use the fact that both for the function that’s constant and the function that is attaining an extreme value,
the gradient is normal (orthogonal) to the subset. If the subset is given by a single constraint, then it has
codimension one, so the normal space is one-dimensional, and this forces the gradient vectors for the two
functions to be scalar multiples of each other (with suitable assumptions of being nonzero).

1.2. Getting started. We know that for a differentiable function f defined in an open domain in Rn, if
the function has a local extreme value at a point (a1, a2, . . . , an), then the directional derivative of f along
every direction in Rn is zero. More specifically, if f has a local extreme value along a particular line (both
directions on that line) then the directional derivative along that particular direction is zero.

Now, suppose we want to maximize f , not on an open domain in Rn, but on a subset of smaller dimension
that has a well defined tangent space at the point. Then, the key idea is that a necessary condition for a
point to have a local extreme value is that the directional derivative along all tangent directions to that
subset are zero. However, the directional derivative along non-tangential directions may well be nonzero.

In other words, the gradient of the function f does not have any component tangential to the subset.
Thus, the gradient of f , ∇f , is either zero or is a vector perpendicular to the tangent space at the point, i.e.,
a vecor in the normal space at the point.

We now turn to some specific cases for n = 2 and n = 3.

1.3. In two dimensions: setup. Suppose we have a function f in two variables, and a smooth curve γ.
We want to find the extreme values of f along the curve γ. Suppose f attains a local maximum at (x0, y0)
in the curve γ. This just means that f has a local maximum relative to the curve γ, i.e., if we take points
in the curve γ close to the point (x0, y0), then the f -value at those points in γ is less than or equal to the
value f(x0, y0).

This implies that if we move slightly along γ, or tangential to γ, then the directional derivative of f is
zero. The reason: the directional derivative along one direction on γ is less than or equal to zero, because
the function is smaller if we move a bit in that direction. Similarly, the directioal derivative along the reverse
direction is less than or equal to zero. Since these directional derivatives are negatives of each other, this
forces both of them to be zero.
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Thus, the directional derivative of f along the tangent direction to γ is zero. This means that the dot
product of the gradient of f and the unit tangent vector to γ is zero, so ∇f is either equal to zero or points
in a direction perpendicular to the tangent direction to γ.

1.4. γ as the level curve of g. We now continue with the same setup as above, now setting up γ as a level
curve of another differentiable function g, i.e., γ is defined as the set g(x, y) = k for some constant k. We
want to find the tangent and normal vectors at a point (x0, y0) to this curve.

Since g is not changing along γ, ∇g has a component of zero along γ at every point of γ. In particular, if
∇g is nonzero, it is along the normal direction to γ.

Thus, the upshot is that if (x0, y0) is a point of extreme value for f on the curve γ defined as g(x, y) = k,
then ∇g(x0, y0), if nonzero, is normal to the curve at the point, and ∇f(x0, y0), if nonzero, is normal to the
curve at the point. Thus, ∇f(x0, y0) is a scalar multiple of ∇g(x0, y0), i.e., there is a constant λ such that:

∇f(x0, y0) = λ∇g(x0, y0)

This constant λ is termed a Lagrange multiplier.

1.5. Case of n = 3. We quickly state the similar result for 3 variables. We want to find extreme values for
a function f(x, y, z) on the surface (codimension one subset) g(x, y, z) = k. Then, if ∇g is nonzero, it is in
the normal direction to the surface, and thus, at a point (x0, y0, z0) where f has a local extreme, ∇f is a
scalar multiple of ∇g, i.e., we have:

∇f(x0, y0, z0) = λ∇g(x0, y0, z0)

1.6. General statement. Suppose we have two functions f and g, both of n variables. In other words,
f(x1, x2, . . . , xn) is a function of n variables and g(x1, x2, . . . , xn) is also a function of n variables. Suppose
further that k is a real number, and suppose that ∇g is nonzero everywhere on the codimension one subset
g(x1, x2, . . . , xn) = k. Suppose (a1, a2, . . . , an) is a point satisfying g(a1, a2, . . . , an) = k, and such that f
has a local extreme value at (a1, a2, . . . , an) when restricted to the subset g(x1, x2, . . . , xn) = k. Then, there
exists a scalar λ such that:

(∇f)(a1, a2, . . . , an) = λ∇g(a1, a2, . . . , an)

In other words, the directional derivative of f is a scalar multiple of the directional derivative of g at the
point. Another way of thinking of this is that the directional derivative of f has no component tangential
to the subset g(x1, x2, . . . , xn) = k.

Note that if f has a local extreme value at the point (a1, a2, . . . , an) with respect to the whole space (and
not just the codimension one subset g(x1, x2, . . . , xn) = k) then in fact ∇f(a1, a2, . . . , an) is the zero vector,
so λ = 0 in this case. This is a much stronger condition.

2. Lagrange multipliers: multiple constraints

The Lagrange multiplier applications we have seen so far concentrate on codimension one subsets, i.e.,
subsets that are given as solutions to g(x, y) = k for a single constraint g. However, the ideas generalize a little
further to multiple constraints. The key difference is that the normal space is more than one-dimensional.

2.1. Arithmetic of dimension and codimension. Here’s a quick recall of the arithmetic of dimension
and codimension. If a subset of Rn is specified in a top-down fashion by r independent scalar equality
constraints, then the subset has codimension r and dimension n − r. The way to think of this is that we
start with the whole n-dimensional space and each new constraint reduces the dimension by 1, provided it
is independent of all the previous constraints.

Let’s recall what this means for tangent and normal spaces. If the subset is sufficiently smooth around a
point in the subset, then we can define the tangent space to the subset about the point. The tangent space
is a flat (linear) space at the point, and it has the same dimension as the subset, which in our case is n− r.
The normal space is a space of dimension r orthogonal to the tangent space at the point, i.e., every vector
in the normal space is orthogonal to every vector in the tangent space.
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We now turn to a new aspect: actually describing the normal space. We know that for a function given
by g(x1, x2, . . . , xn) = k, then the normal vector (unique up to scaling) at a point (a1, a2, . . . , an) is given
by ∇g(a1, a2, . . . , an), if that vector is nonzero.

Suppose we consider the subset of Rn satisfying this collection of r constraints, where all the functions gi

are differentiable functions:

g1(x1, x2, . . . , xn) = k1

g2(x1, x2, . . . , xn) = k2

· = ·
gr(x1, x2, . . . , xn) = kr

Then, at a point (a1, a2, . . . , an) in the subset, each of the gradient vectors∇g1(a1, a2, . . . , an), ∇g2(a1, a2, . . . , an),
. . . , ∇gr(a1, a2, . . . , an), if nonzero, is orthogonal to the subset at the point (a1, a2, . . . , an). If the constraints
are all independent at the point, then we get a bunch of linearly independent (whatever that means) vectors
that span (whatever that means) the normal space.

For a function f on Rn, if (a1, a2, . . . , an) is a point in the (n− r)-dimensional subset where f attains an
extreme value, then the directional derivative of f along any direction tangent to the subset is zero. Thus,
the gradient vector ∇f is in the normal space. So, we can find constants λ1, λ2, . . . , λr such that:

(∇f)(a1, a2, . . . , an) = λ1∇g1(a1, a2, . . . , an) + λ2∇g2(a1, a2, . . . , an) + · · ·+ λr∇gr(a1, a2, . . . , an)

Unfortunately, a deeper understanding of the ideas here requires a rudimentary understanding of linear
algebra, which very few of you have had.

2.2. Curves in R3. Consider the case n = 3 and r = 2, i.e., we have a curve in R3 given by a pair of
independent scalar equality constraints. Let’s say the constraints are as follows:

g1(x, y, z) = k1

g2(x, y, z) = k2

Suppose further that ∇g1 is not the zero vector anywhere on the curve and ∇g2 is also not the zero
vector anywhere on the curve. Suppose further that ∇g1 and ∇g2 are linearly independent everywhere on
the curve, i.e., it is never the case that the vectors are scalar multiples of each other.1

Then, at a point (x0, y0, z0) on the curve, the normal space is spanned by the vectors ∇g1(x0, y0, z0) and
∇g2(x0, y0, z0). If (x0, y0, z0) is a point of local extreme for a function f relative to the curve, then the theory
of Lagrange multipliers tells us that:

∇f(x0, y0, z0) = λ1∇g1(x0, y0, z0) + λ2∇g2(x0, y0, z0)

3. Using Lagrange multipliers

3.1. Finding critical points: equation setup in codimension one. We consider optimization for a
codimension one subset in Rn, of a function f(x1, x2, . . . , xn) on the subset of Rn given by the equation
g(x1, x2, . . . , xn) = k, with ∇g not a zero vector anywhere on the subset. Then, we need to solve the
equation:

∇f(x1, x2, . . . , xn) = λ∇g(x1, x2, . . . , xn)
g(x1, x2, . . . , xn) = k

1For two vectors, linear independence just means that neither is a scalar multiple of the other. The situation is considerably
more complicated for more than two vectors.
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The first of these is a vector equation. In particular, when we consider it coordinate-wise, we get n scalar
equations. Counting the second equation as well, we get a total of n + 1 scalar equations. There are n + 1
variables: x1, x2, . . . , xn and λ. We thus have a system of n + 1 equations in n + 1 variables. The solution
space is thus expected to be zero-dimensional, i.e., we expect that the set of solutions is a discrete collection
of isolated points. These are the critical points.

3.2. Finding critical points: equation setup in codimension r. In the codimension r setup in Rn

discussed earlier, we get the following equations:

∇f(x1, x2, . . . , xn) = λ1∇g1(x1, x2, . . . , xn) + λ2∇g2(x1, x2, . . . , xn) + · · ·+ λr∇gr(x1, x2, . . . , xn)
g1(x1, x2, . . . , xn) = k1

g2(x1, x2, . . . , xn) = k2

· = ·
gr(x1, x2, . . . , xn) = kr

The first equation is n scalar equations, so we have a total of n + r scalar equations. The number of
variables is also n + r: the n variables x1, x2, . . . , xn, and the r variables λ1, λ2, . . . , λr. The number of
equations equals the number of variables, so we expect the solution set to be a bunch of isolated points.

3.3. Absolute maxima and minima. After we have computed all the critical points, we need to figure
out which of them give rise to local maxima, which of them give rise to local minima, which of them give
neither, and what the absolute maximum and minimum are. For local maxima and minima, we need an
analogue of the second derivative test, which is too hard to develop and conceptually justify here. So, we
simply avoid that question and only concentrate on finding the absolute maxima/minima.

As was the case with our earlier discussion of maxima/minima, we simplify matters and only consider the
case where the space g(x1, x2, . . . , xn) = k is a closed bounded set. Fortunately, since g is assumed to be
continuous, the set g(x1, x2, . . . , xn) = k is automatically a closed subset. Boundedness is something we can
check for separately. Once we have established this, we can use the extreme value theorem, and conclude
that the absolute maximum/minimum are attained. The strategy for finding them is as follows in a closed
bounded subset without any boundary:

Set up equations using Lagrange multipliers (as discussed above) and solve to find all crit-
ical points, that are candidates for the absolute maximum/minimum. Then, compare the
function values at all these points. The smallest among these gives the absolute minimum,
and the largest among these gives the absolute maximum.

Note that the situation becomes a little more complicated for a closed bounded subset that has a boundary,
because the boundary is a smaller dimension subset. In this case, we need to separately find critical points
relative to the boundary. Fortunately, this does not happen for typical subsets defined by conditions of the
form g(x1, x2, . . . , xn) = k.

3.4. Piecewise smooth curves, curves where the gradient vector becomes zero. Recall that a
necessary condition for the Lagrange condition for codimension one to hold at a point of local extremum is
that ∇g be nonzero, i.e., the gradient of g have a well defined direction. If ∇g = 0, the Lagrange condition
may be violated at a local extreme value.

Similarly, for the Lagrange condition to hold in higher codimension, what we need is that ∇gi be nonzero
for each i, and further, that all the ∇gi be linearly independent (whatever that means). Since the higher
codimension case requires some knowledge of linear algebra, we’ll skip it for now and stick to the codimension
one case.

In the codimension one case, the condition ∇g = 0 could arise for either of two reasons. First, there is
no well defined normal direction to the codimension one subset at the point. This may happen because of a
sharp cusp-like appearance or sudden direction change near the point, like the vertex of a cone. Second, the
normal direction may be well defined but the function g may simply have been chosen poorly. For instance,
consider g(x, y) = (x− y)3 in two dimensions. The level curves for this are lines parallel to y = x. For each
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such line, there is a well defined normal direction. However, for the line y = x itself, although a normal
direction does exist, ∇g takes the value zero.

To handle these kinds of situations we add in the following caveat to the Lagrange method:
In addition to testing all points where the Lagrange condition holds, also test all points
where ∇g = 0 (if such points exist), when trying to find absolute maximum and minimum.

The technique does not work if we end up with infinitely many points satisfying ∇g = 0. In this case, an
alternative approach might work.

Find a new function h and a constant l such that the set g(x1, x2, . . . , xn) = k is the same as
the set h(x1, x2, . . . , xn) = l, but such that ∇h is never zero on the set h(x1, x2, . . . , xn) = l.

This technique allows us to deal with piecewise smooth curves and the analogous surfaces. In the examples
we gave of g(x, y) = (x − y)3, the set g(x, y) = 0 can also be described as the set h(x, y) = 0 where
h(x, y) = x−y. The function h has the advantage over g that its gradient is never zero, so it always provides
a nonzero vector in the normal direction.

3.5. An application to a polygon. Suppose we want to find the maximum and minimum of a differentiable
function f of two variables on a triangle with three vertices (here, triangle refers only to the boundary, not
the interior region). The triangle is piecewise linear, and on the interior of any side, all normal vectors point
in the same direction. The points we need to test are as follows:

• The three vertices of the triangles
• The solutions to the Lagrange condition on each side: Note that on any fixed side, all normal vectors

can be taken to be the same, so we just need to solve ∇f = λ times a constant vector, along with
the equation constraining the point to be on the line for that side of the triangle and the inequality
constraining it to be between the vertices.

After finding a hopefully finite list of points, we evaluate the function at each of them and determine the
local extreme values.
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