
DOUBLE INTEGRALS AND ITERATED INTEGRALS

MATH 195, SECTION 59 (VIPUL NAIK)

Corresponding material in the book: Section 15.2, 15.3. Note: We are omitting the question types
from the book that require three-dimensional visualization, i.e., those that require sketching figures in three
dimensions to compute volumes.

What students should definitely get: The procedure for computing double integrals over rectangles
using iterated integrals, the procedure for computing double integrals over other regions using iterated
integrals, the idea of Fubini’s theorem and its use in interchanging the order of integration. Use of symmetry
and inequality-based bounding/estimation techniques.

What students should hopefully get: Relation between single and double integrals, dealing with
piecewise cases, breaking up domain into smaller pieces when direct integration over entire domain is infea-
sible.

Note: The lecture notes contain only a few examples. For more examples, please refer to worked examples
in Sections 15.2 and 15.3.

Executive summary

Words ...
(1) The double integral of a function f of two variables, over a domain D in R2, is denoted

∫ ∫
D

f(x, y) dA
and measures an infinite analogue of the sum of f -values at all points in D.

(2) Fubini’s theorem for rectangles states that if F is a function of two variables on a rectangle R =
[a, b]× [p, q], such that F is continuous except possibly at the union of finitely many smooth curves,
then the integral equals either of these iterated integrals:∫ ∫

R

F (x, y) dA =
∫ b

a

∫ q

p

F (x, y) dy dx =
∫ q

p

∫ b

a

F (x, y) dx dy

(3) For a function f defined on a closed connected bounded domain D with a smooth boundary, we can
make sense of

∫ ∫
D

f(x, y) dA as being
∫ ∫

R
F (x, y) dA where R is a rectangular region containing D

and F is a function that equals f on D and is 0 on the rest of R.
(4) Suppose D is a Type I region, i.e., its intersection with every vertical line is either empty or a point

or a line segment. Then, we can describe D as a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x), where g1 and g2 are
continuous functions. The integral

∫ ∫
D

f(x, y) dA becomes:∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx

(5) Suppose D is a Type II region, i.e., its intersection with every horizontal line is either empty or a
point or a line segment. Then, we can describe D as p ≤ y ≤ q, g1(y) ≤ x ≤ g2(y), where g1 and g2

are continuous functions. The integral
∫ ∫

D
f(x, y) dA becomes:∫ q

p

∫ g2(y)

g1(y)

f(x, y) dx dy

(6) The double integral of f + g over D is the sum of the double integral of f over D and the double
integral of g over D. Similarly, scalars can be pulled out of double integrals.

(7) The integral of the function 1 over a domain is the area of the domain.
(8) If f(x, y) ≥ 0 on a domain D, the integral of f over D is also ≥ 0.
(9) If f(x, y) ≥ g(x, y) on a domain D, the integral of f over D is ≥ the integral of g over D.
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(10) If m ≤ f(x, y) ≤ M over a domain D, then
∫ ∫

D
f(x, y) dA is betweem mA and MA where A is the

area of D.
(11) If f(x, y) is odd in x and the domain of integration is symmetric about the y-axis, the integral is

zero. If f(x, y) is odd in y and the domain is symmetric about the x-axis, the integral is zero.
Actions ...
(1) To compute a double integral, compute it as an iterated integral. For a rectangle, we can choose

either order of integration, as long as the integration is feasible. For other types of regions, we need
to first determine whether the region is Type I or Type II, and break it up into pieces of those types.

(2) For a multiplicatively separable function over a rectangular region (or for a sum of such multiplica-
tively separable functions), things are particularly easy.

(3) Sometimes, an integral cannot be computed using a particular order of integration – we might get
stuck on the inner or the outer stage. However, it may be computable using the other order of
integration.

(4) We can often use symmetry-based techniques to argue that certain parts of the integrand integrate
to zero.

(5) Even in cases where the integral cannot be computed, we can bound it between limits using maximum
or minimum values of function and/or using bigger or smaller regions on which the integral can be
computed.

1. Double integral and iterated integral

1.1. What’s a double integral? We will study the theory of double integrals (Section 16.1 of the book) a
little later in the course. For now, we provide an intuitive idea of a double integral. Suppose f is a function
of two variables (x, y). The double integral of f over a subset D of R2 on which f is defined is the total
contribution of the f -values at all points in the domain. One way of thinking of it is as follows: we divide
D up into a lot of small regions, we pick a point in each region, multiply the f -value at that point with the
area of the region and add up. This total gives the integral of f over the region D.

The notation for the double integral of a function f over a region D is:∫ ∫
D

f(x, y) dA

The dA here represents an area element or area differential, and is the two-dimensional analogue of dx in
one dimension. A detailed exploration of the meaning is possible, but beyond our current scope.

The double integral does integration over a region in the same way that the ordinary (single) integral
does integration over an interval. The region over which integration is being done is termed the region of
integration or domain of integration and the function being integrated is termed the integrand.

For a function with nonnegative values, the double integral over a region can also be interpreted as a
volume. We will see this interpretation a little later here.

1.2. Linearity. The double integral of a sum of two functions is the sum of their double integrals:∫ ∫
D

[f(x, y) + g(x, y)] dA =
∫ ∫

D

f(x, y) dA +
∫ ∫

D

g(x, y) dA

Also, scalars can be pulled out of double integrals:∫ ∫
D

cf(x, y) dA = c

∫ ∫
D

f(x, y) dA

1.3. What’s an iterated integral? An iterated integral is an expression that involves an integral inside
another integral (and possibly even more integrals. For instance:∫ b

a

(∫ q(x)

p(x)

f(x, y) dy

)
dx

What this means is:
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• We first compute the inner integral by integrating with respect to y, treating x as a constant. If
F (x, y) is an antiderivative, then the definite integral is F (x, q(x))− F (x, p(x)).

• The final answer computed above now depends only on x, the variable y has been integrated over
and thus discarded. We now integrate this function of x between the limits a and b.

A special case of this kind of iterated integral is one where the limits for the inner function do not depend
on the outer variable, i.e., an integration of the form:∫ b

a

(∫ q

p

F (x, y) dy

)
dx

Note that we could also consider an iterated integral where the inner variable of integration is x and the
outer variable of integration is y.

When things are reasonably clear, we can drop the parenthesization for iterated integrals, so the above
can be written as: ∫ b

a

∫ q

p

F (x, y) dy dx

1.4. Fubini’s theorem relating double and iterated integrals on rectangles. Consider the filled
rectangle R = [a, b] × [p, q] in the xy-plane. This is a rectangle with vertices (a, p), (b, p), (a, q), and (b, q).
The region can be described as {(x, y) : x ∈ [a, b], y ∈ [p, q]}. Fubini’s theorem for rectangles says that if F
is a continuous function of two variables defined on this filled rectangle, then:∫ ∫

R

F (x, y)dA =
∫ b

a

∫ q

p

F (x, y) dy dx =
∫ q

p

∫ b

a

F (x, y) dx dy

In other words, the double integral equals the iterated integral computed in either order.
The assumption of continuity can be weakened somewhat: we only need to assume that f is bounded

on R, and the set of points where it is discontinuous is contained in a union of a finite number of smooth
curves. This generalization will help us deduce an important corollary for functions whose domains are not
rectangular.

1.5. Intuitive explanation of Fubini’s theorem. Recall that the double integral of a function F (x, y)
can be thought of as follows: F (x, y) denotes the value at point (x, y), and the double integral is the total
contribution of all points. For instance, F (x, y) could denote the pressure at the point (x, y), and the double
integral over the rectangle/region is the total force exerted on the region.

Iterated integration serves to break this integration up by slicing horizontally or vertically. Let’s be more
specific:

• The iterated integral
∫ b

a

(∫ q

p
F (x, y) dy

)
dx can be interpreted as follows: the inner integral

∫ q

p
F (x, y) dy

is integrating along a vertical slice for a fixed value of x (i.e., along a line parallel to the y-axis). The
outer integral is then adding up the contributions of all the vertical slices.

• The iterated integral
∫ q

p

(∫ b

a
F (x, y) dx

)
dy can be interpreted as follows: the inner integral

∫ b

a
F (x, y) dx

is integrating along a horizontal slice for a fixed value of y (i.e., along a line parallel to the x-axis).
The outer integral is then adding up the contributions of all the horizontal slices.

That all these values are the same is some infinite version of the idea that addition is commutative and
associative, i.e., we can regroup summations by collecting all things with one common coordinate and then
adding up over that coordinate.

1.6. The special case of multiplicatively separable functions. A case worth noting is where F (x, y)
is of the form F (x, y) = f(x)g(y), i.e., we can separate it as the product of a function purely of x and a
function purely of y.

Using the notation established above, if f is continuous on [a, b] and g is continuous on [p, q], then F is
continuous on R = [a, b]× [p, q] and:
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∫ ∫
R

F (x, y) dA =

(∫ b

a

f(x) dx

)(∫ q

p

g(y) dy

)
This is a corollary of Fubini’s theorem, and can be deduced by using either of the iterated integrals.
In particular, this means that if F can be written as a sum of multiplicatively separable functions, then

its integral is a sum of the products of integrals of these functions. In fancy notation, if f = 〈f1, f2, . . . , fn〉
and g = 〈g1, g2, . . . , gn〉, with all the fis continuous on [a, b] and all the gis continuous on [p, q], and if
F (x, y) =

∑n
i=1 fi(x)gi(y), then:∫ ∫

R

F (x, y) dA =
n∑

i=1

[(∫ b

a

fi(x) dx

)(∫ q

p

gi(y) dy

)]
Note also that when calculating the integral of a multiplicatively separable function, if either of the

integrals of the pieces is zero, the other one does not need to be computed and the product is zero. We will
see related ideas a little later when we cover symmetry.

1.7. A concept of antiderivative. Suppose G is a function with the property that Gxy = F , i.e., F is the
mixed second-order partial derivative of G. Then, the integral of F over a rectangle [a, b]× [p, q] is:

G(b, q)−G(a, q)−G(b, p) + G(a, p)
Basically, the top right and bottom left values get added and the bottom right and top left values get

subtracted.
This is sort of like an antiderivative. But the approach is rarely used for explicit computations and we

usually try to find definite integrals.

2. Double integrals over regions other than rectangles

2.1. Defining such a double integral using a rectangle. Suppose D is a closed bounded region in the
plane. In particular, this means that D can be enclosed inside a rectangular region. Suppose R is such a
rectangular region. Then, we define the double integral

∫ ∫
D

f(x, y) dA as
∫ ∫

R
F (x, y) dA where F (x, y) is

defined as:

F (x, y) := { f(x, y), (x, y) ∈ D
0, (x, y) /∈ D

In other words, we integrate the function that’s f on D and 0 outside. Note that F need not be continuous,
even if f is. So, we might be skeptical of applying results such as Fubini’s theorem to F . If, however, the
boundary of D is a piecewise smooth curve, then by the slightly more general formulation of Fubini’s theorem,
it turns out that the continuity of f within D allows us to apply Fubini’s theorem to F . This is great news
because it means that we can compute double integrals as iterated integrals.

2.2. Type I and Type II regions. For simplicity, we assume that the regions we are dealing with are all
connected, closed, bounded regions and their boundary curves are piecewise smooth.

We call a region D in the xy-plane a Type I region if its intersection with every line parallel to the y-axis
is either empty, or a point, or a line segment, i.e., the intersection is always connected. Such a region can
be described as the region enclosed by the graphs of two continuous functions y = g1(x) and y = g2(x),
with g1(x) ≤ g2(x), for x in an interval [a, b]. The function g2 is simply the y-coordinate value of the upper
endpoint of the line segment and the function g1 is the y-coordinate value of the lower endpoint of the line
segnment. In other words:

D = {(x, y) : a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}
We can compute double integrals over Type I regions using iterated integration. To integrate f(x, y) over

the Type I region of the kind given above:∫ ∫
D

f(x, y) dA =
∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx
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A Type II region is a region whose intersection with every horizontal line is either empty or a point or a
line segment. Such a region can be described as the region enclosed by the the graphs of continuous functions
with x expressed in terms of y, i.e., something of the form:

D = {(x, y) : p ≤ y ≤ q, g1(y) ≤ x ≤ g2(y)}
To integrate over the Type II region of the kind given above, we can do the integration:∫ ∫

D

f(x, y) dA =
∫ q

p

∫ g2(y)

g1(y)

f(x, y) dx dy

Note that both these results follow from the general version of Fubini’s theorem for rectangles, using the
trick of transitioning to F (x, y) from f(x, y).

2.3. Convex regions. A convex region is a region with the property that for any two points in the region,
the line segment joining those two points lies completely inside the region. Convex regions are both Type
I and Type II. In particular, this means we can use either of the integration methods to compute integrals
over convex regions.

Circular disks, triangular regions, and rectangular regions are all examples of convex regions. A heart-
shaped region is not a convex region.

2.4. Breaking up a region into Type I and Type II regions. If a region D is closed, connected, and
bounded with a smooth bounding curve, and f is a continuous function of D, it may still happen that D
is neither Type I nor Type II. There are still some ways out. The first is to partition D into finitely many
pieces (chambers) such that:

• Each piece is Type I or Type II
• The intersection of any two of the pieces is one-dimensional and hence the restriction of the double

integral over that intersection is zero.
• The double integral on D is now the sum of the values of double integrals on each piece, and each

of the individual double integrals can be computed as an iterated integral by Fubini’s theorem.
This is a two-dimensional analogue of chopping up an interval into sub-intervals using a partition. Here,

instead of sub-intervals, we use subregions.
In the one-dimensional case, the slight overlap (isolated points) between the partitioned pieces does not

result in any double-counting, i.e., the integral on the whole interval is the sum of the integrals on the parts.
In the two-dimensional cases, the slight overlap at boundary curves (which are one-dimensional) does not
result in any double-counting, because the boundary curves are infinitesimal/negligible.

3. In practice: computing iterated and double integrals

3.1. Theory versus practice: the one-variable nightmare. Let’s recall the situation in one variable
first and then we’ll discuss how the situation changes with more variables. We know that any continuous
function in one variable is integrable. This knowledge does not always translate to actually being able to
find expressions for the integrals. There are three levels of difficulty:

• First, there are many functions expressible in terms of elementary functions but which do not have
antiderivatives expressible in terms of elementary functions. To give names to the antiderivatives,
we need to invent new branches of mathematics. For instance, logarithms were invented to integrate
1/x, and trigonometry was invented to integrate 1/(x2 + 1). But there’s a lot more work to do –
some functions slip through the cracks and integrating them requires us to invent more branches of
mathematics.

Examples of elementarily expressible functions that do not have elementarily expressible an-
tiderivatives are e−x2

, sin(x2), (sinx)/x, (ex − 1)/x, 1/
√

x4 + 1, and many others.
• Second, the procedure for integrating a function does not break down into a bunch of deterministic

rules. This is in sharp contrast with differentiation, where if we know how to differentiate a bunch
of functions, we know how to differentiate all functions generated from them using the processes
of pointwise combination, composition, inverses, and piecewise combination. For integration, all we
have are heuristics. Thus, even if a neat antiderivative does exist, it can be hard to find.
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• Third, even if we are able to find antiderivatives, computing their values between limits can be
difficult. Even to integrate a rational function, we need ln and arctan and computing the values of
these is hard.

Each of these challenges continues to operate in many variables. With multiple variables, there is some
further bad news and some mitigating good news. We turn to these.

3.2. The further bad news. The inner-most step of an iterated integral is something like:∫ b

a

f(x, y) dx

Here, we are treating y as a constant temporarily while doing this integration. However, we cannot put
an actual value on y – it’s an unknown known for now, and in fact, when we have completed this integration
and are willing to move on outward, it will become a variable again. Thus, this integration really is not
integrating a plain vanilla function but rather trying to do a large number of integrations – one for each
fixed value of y – simultaneously by getting a generic expression.

Now, it may turn out that there is no uniform general expression for y. Consider the example:∫ 3

2

dx

x2 + sin y

When sin y > 0, the integral becomes:

1√
sin y

[
arctan(x/

√
sin y)

]3
2

When sin y = 0, the integral becomes:

[−1/x]32 = (1/2)− (1/3) = 1/6
When sin y < 0, the integral becomes:

1
2
√
− sin y

[
ln((x−

√
− sin y)/(x +

√
− sin y))

]3
2

So, even though the original function had a single piece description, the new function we get after inte-
grating has a piecewise description.

This will occur only rarely, and not in the routine examples that we will see. Also, although it complicates
matters, it does not make the task any more impossible. To perform the outer integration for the resultant
piecewise function, we simply break the domain (for the outer integration) into the various pieces and perform
the integration separately in each piece.

3.3. More bad news for non-rectangular regions. Another piece of bad news, that applies particularly
to non-rectangular regions, is that complications could arise not only from the nature of the integrand, but
also from the shape of the region. For Type I or Type II regions, the nature of the bounding functions
that determine how the inner variable varies in terms of the outer variable determine the expression to be
integrated on the outside. Thus, even for very easy functions f(x, y), the actual integration procedure may
become difficult because of the complexity arising from the shape of the region.

3.4. The good news: use Fubini’s to change order of integration. The good news is that sometimes,
an integral is impossible to do when written as an iterated integral with a particular ordering of x and y,
but can be done if the ordering of x and y were reversed. Luckily, by Fubini’s theorem, the answers have
the same value.

Let’s consider a couple of examples.
Our first example is the function xy on the interval [0, 1] × [0, 1]. The domain is a square region with

vertices (0, 0), (0, 1), (1, 0) and (1, 1). Note that the function is undefined at the bottom left vertex (0, 0).
It takes the value 1 on the lower edge, 0 on the left edge, 1 on the right edge, and is equal to the function x
on the top edge. Note that everywhere in the square where it is defined, the function takes a value in [0, 1].
We want to integrate it over the square.
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We could set up the integral as an iterated integral in either of these two ways:∫ 1

0

∫ 1

0

xy dy dx,

∫ 1

0

∫ 1

0

xy dx dy

Let’s consider the first formulation of the integral:∫ 1

0

∫ 1

0

xy dy dx

The inner integral is: ∫ 1

0

xy dy

This simplifies to: [
xy

lnx

]1
0

=
x− 1
lnx

The new integral that we need to compute is thus:∫ 1

0

x− 1
lnx

dx

The indefinite integral of the integrand is not possible to compute. So we’re basically stuck.
On the other hand, if we use the other formulation (FIXED ERROR BELOW!:∫ 1

0

∫ 1

0

xy dx dy

The inner integral is: ∫ 1

0

xy dx

This simplifies to: [
xy+1

y + 1

]1
0

=
1

y + 1
We can now integrate this: ∫ 1

0

1
y + 1

dy = [ln(y + 1)]10 = ln 2

Note that in this example, integrating in the wrong order got us into problems at the outer stage, not at
the inner stage. In some cases, integrating in the wrong order can prevent us from getting started. Here is
an example: ∫ 1

0

∫ 1

x

exp(−y2) dy dx

This is the integral of the function exp(−y2) over the triangular region for the triangle with vertices (0, 0),
(1, 1), and (0, 1), i.e., the upper left half triangle in the unit square [0, 1]× [0, 1]. Unfortunately, as written
here, the inner integral cannot be computed in elementary terms.

Note that the region here is both a Type I and a Type II region. This means that it can be sliced
either vertically or horizontally. If we slice horizontally instead, then for any fixed y, the constraint on x is
0 ≤ x ≤ y, and we get: ∫ 1

0

∫ y

0

exp(−y2) dx dy

The inner integral is now:
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∫ y

0

exp(−y2) dx = y exp(−y2)

The outer integral now becomes:∫ 1

0

y exp(−y2) dy =
[
−1
2

exp(−y2)
]1
0

=
1
2

(
1− 1

e

)
This is similar to Example 3 in the book.

3.5. Integrating polynomials. Polynomials are very easy to integrate over rectangular regions because
every polynomial is a sum of monomials, every monomial is multiplicatively separable as a product of power
functions, and each power function can be integrated.

For instance, to integrate the polynomial xy + 2x5y3 over the interval [1, 3]× [4, 6], we do:∫ 3

1

x dx

∫ 6

4

y dy + 2
∫ 3

1

x5 dx

∫ 6

4

y3 dy

In other words, it is a sum of products of integrals of power functions of one variable. The rest is just
straightforward arithmetic.

To integrate a polynomial over a non-rectangular region is a little trickier, and may not be feasible for all
regions. First, note that we can still additively separate the polynomial as a sum of monomials, so it suffices
to integrate each monomial, i.e., each expression of the form xayb. However, because the region is no longer
rectangular, we cannot use multiplicative separability.

Here’s an example. Consider integrating x2y2 on the circular disk x2 + y2 ≤ 1. This is both Type I and
Type II. If we go for horizontal slicing, then for x ∈ [−1, 1], we have −

√
1− x2 ≤ y ≤

√
1− x2. The integral

thus becomes: ∫ 1

−1

∫ √
1−x2

−
√

1−x2
x2y2 dy dx

The inner integral becomes x2y3/3 which between limits is 2x2(1− x2)3/2/3. This needs to be integrated
on [−1, 1]. Note how, even though we started only with polynomials, the integrand for the outer integration
involves fractional powers. The fractional powers are arising from the shape of the domain of integration.

It is possible to complete the question in the case of circular disks, but this is best done using double
integrals in polar coordinates, covered in Section 16.4 of the book. We will, however, not cover this topic
formally as part of the syllabus, although I will explain it in class and give a few examples.

3.6. Integrating rational functions. We first consider integrating rational functions over rectangular
regions. If the denominator of the rational function is of the form cxayb (i.e., it is a monomial) then the
rational function is a sum of multiplicatively separable functions and can be integrated using the same idea
discussed above for polynomials.

More generally, if the denominator of the rational function can be factorized as the product of a polynomial
in x and a polynomial in y, we can use the multiplicatively separable approach.

For instance, for the rational function:

x2 + y2 − 2xy + 3
x2y2 + 2x2 + y2 + 2

The denominator can be factored as (x2 + 1)(y2 + 2) and hence the rational function can be written as:

x2

x2 + 1
1

y2 + 1
+

1
x2 + 1

y2

y2 + 2
− 2

x

x2 + 1
y

y2 + 2
+ 3

1
x2 + 1

1
y2 + 2

This is a multiplicatively separable form, and can be integrated over a rectangular region. Note: We are
assuming knowledge of how to integrate rational functions of one variable, something you saw in one variable
calculus.

In other cases, it is not completely obvious how to do the integration, so we just try iterated integration
and see how it works out. For instance, consider:
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∫ 2

1

∫ 2

1

1
x + y

dy dx

The inner integral is ln(x + 2)− ln(x + 1). The outer integral thus becomes:∫ 2

1

ln(x + 2)− ln(x + 1) dx

After some integration by parts (we skip steps) this becomes:

[(x + 2) ln(x + 2)− (x + 1) ln(x + 1)]21 = 4 ln 4− 3 ln 3− 3 ln 3 + 2 ln 2 = 10 ln 2− 6 ln 3
In fact, it is possible to give a sketch for why this kind of integration procedure will work for a wide

variety of (all?) rational functions.

3.7. Exponential and trigonometric functions. Again, for these, one thing to look for is multiplicative
separability, or expressibility as a sum of multiplicatively separable functions, and hope that each of the
constituent functions of one variable can be integrated.

Consider f(x, y) = sin(x + y). We want to calculate:∫ b

a

∫ q

p

sin(x + y) dy dx

We could do this directly, integrating first with respect to y, to get − cos(x + q) + cos(x + p) and then
integrating with respect to x to get − sin(b + q) + sin(a + q) + sin(b + p)− sin(a + p).

Alternatively, we could rewrite sin(x + y) = sinx cos y + cos x sin y and integrate by additively and then
multiplicatively splitting, to get:

(cos a− cos b)(sin q − sin p) + (sin b− sin a)(cos p− cos q)
It’s possible to work out that both of these are the same. (Note: This is easier to see if we use the

“antiderivative” concept mentioned earlier: the antiderivative by iterated integration is − sin(x + y) and the
antiderivative by multiplicative separation is − cos x sin y − sinx cos y which becomes the same thing.

For exponential functions, note that exp(f(x)+ g(y)) = exp(f(x)) exp(g(y)) and is hence multiplicatively
separable.

4. Area and volume interpretations

To make this course simpler, we will refrain from complicated volume computations for the surfaces that
are graphs of functions, but we will go over the theoretical facts just in case you need them for the future.

4.1. Double integral equals volume. Consider a function z = f(x, y) on a closed connected bounded
domain D such that z ≥ 0 for all (x, y) ∈ D. Then, the integral

∫ ∫
D

f(x, y) dA equals the volume of the
region between the surface z = f(x, y), the xy-plane. On the sides, this region is bounded by line segments
joining points in the boundary of D and the corresponding points on the graph of the surface above them.

The three-dimensional region can also be described as follows: it is the union of all the line segments
obtained by joining each point (x, y, 0) with the point (x, y, f(x, y)) where (x, y) ∈ D.

The fact that the double integral value equals the volume is the three-dimensional analogue of the fact
that the single integral value equals the area under the graph of the function.

4.2. Interpretation of slicing and iterated integration. We can now interpret the horizontal and
vertical slicing.

Computing the integral along a horizontal slice, i.e., a line parallel to the xy-plane, correspondings to
computing the area of the intersection of the region with a plane parallel to the xz-plane through that line.
Specifically, computing the integral: ∫ b

a

f(x, y0) dx
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means computing the area of the intersection of the region with the plane y = y0, or equivalently,
computing the area under the graph of the function x 7→ f(x, y0) between x = a and x = b.

The outer part of the integration then integrates this area function along the other axis, to give the total
volume.

If we perform the integration in the other order, we are computing the areas of intersection with planes
parallel to the yz-plane, and then integrating this area function along the x-axis.

Note that all this fits in with the cross sectional method of determining volume as the integral of the areas
of the cross sections along planes as we move along an axis perpendicular to these planes.

5. Properties of double integrals

5.1. Inequalities that can be used for estimation. These inequalities are a lot like those of single
integrals:

• If f(x, y) ≥ 0 on a domain D, then
∫ ∫

D
f(x, y) dA ≥ 0.

• If f(x, y) ≥ g(x, y) on a domain D, then
∫ ∫

D
f(x, y) dA ≥

∫ ∫
D

g(x, y) dA.
• If D1 ⊆ D2, and f is a nonnegative function defined on D2, then

∫ ∫
D1

f(x, y) dA ≤
∫ ∫

D2
f(x, y) dA:

This last one is important because it means that to calculate integrals over an irregularly shaped
region, we can bound from above and below by calculating integrals over a region contained inside
it and over a region containing it.

• If D = D1∪D2 and D1∩D2 is one-dimensional, then
∫ ∫

D
f(x, y)dA =

∫ ∫
D1

f(x, y) dA+
∫ ∫

D2
f(x, y) dA

(this was already discussed earlier).
• The integral of the function 1 over a domain D is the area of D.
• If f(x, y) on a domain D is bounded from above and below by M and m respectively, and D has

area A, then the integral of f(x, y) over D is between mA and MA.

5.2. Symmetry-based ideas. These all build on the corresponding symmetry-based ideas for functions of
one variable:

• If f is odd in the variable x, and the domain of integration is symmetric about the y-axis, then
the integral is zero: If we do integration using horizontal slices, we see that each horizontal slice
integrates to zero, so the overall integral is zero.

Note that for a multiplicatively separable function, what matters is that the part depending on x
be odd, and the part depending on y does not matter.

• If f is odd in the variable y, and the domain of integration is symmetric about the x-axis, then the
integral is zero: If we do integration using vertical slices, we see that each vertical slice integrates to
zero, so the overall integral is zero.

Note that for a multiplicatively separable function, what matters is that the part depending on y
be odd, and the part depending on x does not matter.

Often, a given function can be expressed as a sum of functions some of which are odd in x or in y, and
hence, using symmetry of domain, can be declared to be zero. Others may need to be computed.

Consider, for instance, the case f(x, y) = x3y2 + ln(x2 + x + 1) sin(y3), being integrated over the circular
disk x2 + y2 ≤ 1. Note that f as given is not odd in either variable. However, it is the sum of the functions
x3y2 (which is odd in x) and ln(x2 + x + 1) sin(y3) (which is odd in y). Moreover, the domain is symmetric
about both axes. Thus, the integral for both these functions is zero, hence the overall integral for f is zero.
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