TAKE-HOME CLASS QUIZ: DUE MONDAY MARCH 11: MAX-MIN VALUES: TWO-VARIABLE VERSION

MATH 195, SECTION 59 (VIPUL NAIK)

Your name (print clearly in capital letters):
YOU ARE FREE TO DISCUSS ALL QUESTIONS, BUT PLEASE ONLY ENTER FINAL ANSWER OPTIONS THAT YOU PERSONALLY ENDORSE. PLEASE DO NOT ENGAGE IN GROUPTHINK.
(1) Suppose $F(x, y):=f(x)+g(y)$, i.e., F is additively separable. Suppose f and g are differentiable functions of one variable, defined for all real numbers. What can we say about the critical points of F in its domain \mathbb{R}^{2} ?
(A) F has a critical point at $\left(x_{0}, y_{0}\right)$ iff x_{0} is a critical point for f or y_{0} is a critical point for g.
(B) F has a critical point at $\left(x_{0}, y_{0}\right)$ iff x_{0} is a critical point for f and y_{0} is a critical point for g.
(C) F has a critical point at $\left(x_{0}, y_{0}\right)$ iff $x_{0}+y_{0}$ is a critical point for $f+g$, i.e., the function $x \mapsto f(x)+g(x)$.
(D) F has a critical point at $\left(x_{0}, y_{0}\right)$ iff $x_{0} y_{0}$ is a critical point for $f g$, i.e., the function $x \mapsto f(x) g(x)$.
(E) None of the above.

Your answer:
(2) Suppose $F(x, y):=f(x) g(y)$ is a multiplicatively separable function. Suppose f and g are both differentiable functions of one variable defined for all real inputs. Consider a point $\left(x_{0}, y_{0}\right)$ in the domain of F, which is \mathbb{R}^{2}. Which of the following is true?
(A) F has a critical point at $\left(x_{0}, y_{0}\right)$ if and only if x_{0} is a critical point for f and y_{0} is a critical point for g.
(B) If x_{0} is a critical point for f and y_{0} is a critical point for g, then $\left(x_{0}, y_{0}\right)$ is a critical point for F. However, the converse is not necessarily true, i.e., $\left(x_{0}, y_{0}\right)$ may be a critical point for F even without x_{0} being a critical point for f and y_{0} being a critical point for g.
(C) If $\left(x_{0}, y_{0}\right)$ is a critical point for F, then x_{0} must be a critical point for f and y_{0} must be a critical point for g. However, the converse is not necessarily true.
(D) $\left(x_{0}, y_{0}\right)$ is a critical point for F if and only if at least one of these is true: x_{0} is a critical point for f and y_{0} is a critical point for g.
(E) None of the above.

Your answer:
(3) Consider a homogeneous polynomial $a x^{2}+b x y+c y^{2}$ of degree two in two variables x and y. Assume that at least one of the numbers a, b, and c is nonzero. What can we say about the local extreme values of this polynomial on \mathbb{R}^{2} ?
(A) If $b^{2}-4 a c<0$, then the function has no local extreme values and its value is unbounded from both above and below. If $b^{2}-4 a c=0$, the function has local extreme value 0 and this is attained on a line through the origin. If $b^{2}-4 a c>0$, the function has local extreme value 0 and this is attained only at the origin.
(B) If $b^{2}-4 a c<0$, then the function has no local extreme values and its value is unbounded from both above and below. If $b^{2}-4 a c>0$, the function has local extreme value 0 and this is attained on a line through the origin. If $b^{2}-4 a c=0$, the function has local extreme value 0 and this is attained only at the origin.
(C) If $b^{2}-4 a c>0$, then the function has no local extreme values and its value is unbounded from both above and below. If $b^{2}-4 a c=0$, the function has local extreme value 0 and this is attained on a line through the origin. If $b^{2}-4 a c<0$, the function has local extreme value 0 and this is attained only at the origin.
(D) If $b^{2}-4 a c>0$, then the function has no local extreme values and its value is unbounded from both above and below. If $b^{2}-4 a c<0$, the function has local extreme value 0 and this is attained on a line through the origin. If $b^{2}-4 a c=0$, the function has local extreme value 0 and this is attained only at the origin.
(E) If $b^{2}-4 a c=0$, then the function has no local extreme values and its value is unbounded from both above and below. If $b^{2}-4 a c<0$, the function has local extreme value 0 and this is attained on a line through the origin. If $b^{2}-4 a c>0$, the function has local extreme value 0 and this is attained only at the origin.
Your answer:
A subset of \mathbb{R}^{n} is termed convex if the line segment joining any two points in the subset is completely within the subset. A function f of two variables defined on a closed convex domain is termed quasiconvex if given any two points P and Q in the domain, the maximum of f restricted to the line segment joining P and Q is attained at one (possibly both) of the endpoints P or Q.

There are many examples of quasiconvex functions, including linear functions (which are quasiconvex but not strictly quasiconvex) and all convex functions.
(4) What can we say about the maximum of a continuous quasiconvex function defined on the circular disk $x^{2}+y^{2} \leq 1$?
(A) It must be attained at the center of the disk, i.e., the origin $(0,0)$.
(B) It must be attained somewhere in the interior of the disk, but we cannot be more specific with the given information.
(C) It must be attained somewhere on the boundary circle $x^{2}+y^{2}=1$. However, we cannot be more specific than that with the given information.
(D) It must be attained at one of the four points $(1,0),(0,1),(-1,0)$, and $(0,-1)$.
(E) It could be attained at any point. We cannot be specific at all.

Your answer: \qquad
(5) What can we say about the maximum of a continuous quasiconvex function defined on the square region $|x|+|y| \leq 1$? This is the region bounded by the square with vertices $(1,0),(0,1),(-1,0)$, and $(0,-1)$.
(A) It must be attained at the center of the square, i.e., the origin $(0,0)$.
(B) It must be attained somewhere in the interior of the square, but we cannot be more specific with the given information.
(C) It must be attained somewhere on the boundary square $|x|+|y| \leq 1$. However, we cannot be more specific than that with the given information.
(D) It must be attained at one of the four points $(1,0),(0,1),(-1,0)$, and $(0,-1)$.
(E) It could be attained at any point. We cannot be specific at all.

Your answer:
(6) Suppose $F(x, y):=f(x)+g(y)$, i.e., F is additively separable. Suppose f and g are continuous functions of one variable, defined for all real numbers. Which of the following statements about local extrema of F is false?
(A) If f has a local minimum at x_{0} and g has a local minimum at y_{0}, then F has a local minimum at $\left(x_{0}, y_{0}\right)$.
(B) If f has a local minimum at x_{0} and g has a local maximum at y_{0}, then F has a saddle point at $\left(x_{0}, y_{0}\right)$.
(C) If f has a local maximum at x_{0} and g has a local minimum at y_{0}, then F has a saddle point at $\left(x_{0}, y_{0}\right)$.
(D) If f has a local maximum at x_{0} and g has a local maximum at y_{0}, then F has a local maximum at $\left(x_{0}, y_{0}\right)$.
(E) None of the above, i.e., they are all true.

Your answer:
(7) Suppose $F(x, y):=f(x) g(y)$ is a multiplicatively separable function. Suppose f and g are both continuous functions of one variable defined for all real inputs. Consider a point $\left(x_{0}, y_{0}\right)$ in the domain of F, which is \mathbb{R}^{2}. Which of the following statements about local extrema is true?
(A) If f has a local minimum at x_{0} and g has a local minimum at y_{0}, then F has a local minimum at $\left(x_{0}, y_{0}\right)$.
(B) If f has a local minimum at x_{0} and g has a local maximum at y_{0}, then F has a saddle point at $\left(x_{0}, y_{0}\right)$.
(C) If f has a local maximum at x_{0} and g has a local minimum at y_{0}, then F has a saddle point at $\left(x_{0}, y_{0}\right)$.
(D) If f has a local maximum at x_{0} and g has a local maximum at y_{0}, then F has a local maximum at $\left(x_{0}, y_{0}\right)$.
(E) None of the above, i.e., they are all false.

Your answer: \qquad

