CLASS QUIZ: FRIDAY JANUARY 18: VECTORS

MATH 195, SECTION 59 (VIPUL NAIK)

Your name (print clearly in capital letters): \qquad
YOU ARE ALLOWED TO DISCUSS ONLY QUESTIONS THAT BEGIN WITH A (*) OR (**). PLEASE ATTEMPT ALL OTHER QUESTIONS BY YOURSELF. EVEN FOR THE QUESTIONS YOU DISCUSS, PLEASE FINALLY ENTER ONLY THE ANSWER OPTION YOU ARE PERSONALLY MOST CONVINCED ABOUT - DON'T ENGAGE IN GROUPTHINK.
(1) Suppose S is a collection of nonzero vectors in \mathbb{R}^{3} with the property that the dot product of any two distinct elements of S is zero. What is the maximum possible size of S ? Last time: $14 / 23$ correct
(A) 1
(B) 2
(C) 3
(D) 4
(E) There is no finite bound on the size of S

Your answer: \qquad
(2) Suppose S is a collection of nonzero vectors in \mathbb{R}^{3} such that the cross product of any two distinct elements of S is the zero vector. What is the maximum possible size of S ? Last time: $17 / 23$ correct (A) 1
(B) 2
(C) 3
(D) 4
(E) There is no finite bound on the size of S

Your answer: \qquad
(3) ${ }^{(* *)}$ Suppose a and b are vectors in \mathbb{R}^{3}. Which of the following is/are true? Last time: $6 / 23$ correct
(A) If both a and b are nonzero vectors, then $a \times b$ is a nonzero vector.
(B) If $a \times b$ is a nonzero vector, then $a \cdot(a \times b)$ is a nonzero real number.
(C) If $a \times b$ is a nonzero vector, then $a \times(a \times b)$ is a nonzero vector.
(D) All of the above
(E) None of the above

Your answer: \qquad
(4) $\left(^{*}\right)$ Suppose a, b, c, and d are vectors in \mathbb{R}^{3}, with $a \times b \neq 0$ and $c \times d \neq 0$. What does $(a \times b) \times(c \times d)=0$ mean? Last time: 9/23 correct
(A) Both the vectors a and b are perpendicular to both the vectors c and d.
(B) a and b are perpendicular to each other and c and d are perpendicular to each other.
(C) a and c are perpendicular to each other and b and d are perpendicular to each other.
(D) The plane spanned by a and b is perpendicular to the plane spanned by c and d.
(E) a, b, c, and d are all coplanar.

Your answer:
(5) ${ }^{(* *)}$ The correlation between two vectors in \mathbb{R}^{n} is defined as the quotient of the dot product of the vectors by the product of their lengths. Suppose a, b, and c are vectors in \mathbb{R}^{n} such that the correlation between vectors a and b is a number x and the correlation between b and c is a number y, and suppose x, y are both positive. What is the maximum possible value of the correlation between a and c given this information? Hint: Geometrically if $\theta_{a b}$ is the angle between a and $b, \theta_{b c}$ is the angle between b and c, and $\theta_{a c}$ is the angle between a and c, then $\left|\theta_{a b}-\theta_{b c}\right| \leq \theta_{a c} \leq \theta_{a b}+\theta_{b c}$. Last time: 5/23 correct
(A) $x y$
(B) $\max \{1, x y\}$
(C) $\min \{1, x y\}$
(D) $x y+\sqrt{\left(1-x^{2}\right)\left(1-y^{2}\right)}$
(E) $x y-\sqrt{\left(1-x^{2}\right)\left(1-y^{2}\right)}$

Your answer: \qquad
(6) If the correlation between nonzero vector v and nonzero vector w in \mathbb{R}^{n} is c, then we say that the proportion of vector w explained by vector v is c^{2}. If $v_{1}, v_{2}, \ldots, v_{k}$ are all pairwise orthogonal nonzero vectors, and c_{i} is the correlation between v_{i} and w, then $c_{1}^{2}+c_{2}^{2}+\cdots+c_{k}^{2} \leq 1$, with equality occurring if and only if $k=n$. (This is all a result of the Pythagorean theorem). If $k<n$, then $1-\left(c_{1}^{2}+c_{2}^{2}+\cdots+c_{k}^{2}\right)$ is the unexplained proportion of w.

Suppose w is the variation of beauty vector, v_{1} is the variation of genes vector, and v_{2} is the variance of make-up vector. Assume that v_{1} and v_{2} are orthogonal (i.e., there is no correlation between genes and make-up choice). If the correlation between v_{1} and w is 0.6 and the correlation between v_{2} and w is 0.3 , what proportion of the variation of beauty remains unexplained (i.e., is not explained by either genes or make-up)? Last time: 17/23 correct
(A) 0.1
(B) 0.19
(C) 0.55
(D) 0.74
(E) 1

Your answer: \qquad

