CLASS QUIZ: FRIDAY JANUARY 18: VECTORS

MATH 195, SECTION 59 (VIPUL NAIK)

Your name (print clearly in capital letters): ____

YOU ARE ALLOWED TO DISCUSS ONLY QUESTIONS THAT BEGIN WITH A (*) OR (**). PLEASE ATTEMPT ALL OTHER QUESTIONS BY YOURSELF. EVEN FOR THE QUESTIONS YOU DISCUSS, PLEASE FINALLY ENTER ONLY THE ANSWER OP-TION YOU ARE PERSONALLY MOST CONVINCED ABOUT – DON'T ENGAGE IN GROUPTHINK.

- (1) Suppose S is a collection of *nonzero* vectors in \mathbb{R}^3 with the property that the dot product of any two distinct elements of S is zero. What is the maximum possible size of S? Last time: 14/23 correct (A) 1
 - (A) 1 (B) 2
 - (D) $\frac{2}{(C)}$
 - (D) 4
 - (E) There is no finite bound on the size of S

Your answer:

- (2) Suppose S is a collection of *nonzero* vectors in \mathbb{R}^3 such that the cross product of any two distinct elements of S is the zero vector. What is the maximum possible size of S? Last time: 17/23 correct
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4
 - (E) There is no finite bound on the size of ${\cal S}$

Your answer:

- (3) (**) Suppose a and b are vectors in \mathbb{R}^3 . Which of the following is/are true? Last time: 6/23 correct (A) If both a and b are nonzero vectors, then $a \times b$ is a nonzero vector.
 - (B) If $a \times b$ is a nonzero vector, then $a \cdot (a \times b)$ is a nonzero real number.
 - (C) If $a \times b$ is a nonzero vector, then $a \times (a \times b)$ is a nonzero vector.
 - (D) All of the above
 - (E) None of the above

Your answer:

(4) (*) Suppose a, b, c, and d are vectors in \mathbb{R}^3 , with $a \times b \neq 0$ and $c \times d \neq 0$. What does $(a \times b) \times (c \times d) = 0$ mean? Last time: 9/23 correct

- (A) Both the vectors a and b are perpendicular to both the vectors c and d.
- (B) a and b are perpendicular to each other and c and d are perpendicular to each other.
- (C) a and c are perpendicular to each other and b and d are perpendicular to each other.
- (D) The plane spanned by a and b is perpendicular to the plane spanned by c and d.
- (E) a, b, c, and d are all coplanar.

Your answer:

- (5) (**) The correlation between two vectors in \mathbb{R}^n is defined as the quotient of the dot product of the vectors by the product of their lengths. Suppose a, b, and c are vectors in \mathbb{R}^n such that the correlation between vectors a and b is a number x and the correlation between b and c is a number y, and suppose x, y are both positive. What is the maximum possible value of the correlation between a and c given this information? Hint: Geometrically if θ_{ab} is the angle between a and b, θ_{bc} is the angle between b and c, and θ_{ac} is the angle between a and c, then $|\theta_{ab} - \theta_{bc}| \leq \theta_{ac} \leq \theta_{ab} + \theta_{bc}$. Last time: 5/23 correct
 - (A) xy
 - (B) $\max\{1, xy\}$
 - (C) $\min\{1, xy\}$
 - (D) $xy + \sqrt{(1-x^2)(1-y^2)}$ (E) $xy \sqrt{(1-x^2)(1-y^2)}$

(6) If the correlation between nonzero vector v and nonzero vector w in \mathbb{R}^n is c, then we say that the proportion of vector w explained by vector v is c^2 . If v_1, v_2, \ldots, v_k are all pairwise orthogonal nonzero vectors, and c_i is the correlation between v_i and w, then $c_1^2 + c_2^2 + \cdots + c_k^2 \leq 1$, with equality occurring if and only if k = n. (This is all a result of the Pythagorean theorem). If k < n, then $1 - (c_1^2 + c_2^2 + \dots + c_k^2)$ is the unexplained proportion of w.

Suppose w is the variation of beauty vector, v_1 is the variation of genes vector, and v_2 is the variance of make-up vector. Assume that v_1 and v_2 are orthogonal (i.e., there is no correlation between genes and make-up choice). If the correlation between v_1 and w is 0.6 and the correlation between v_2 and w is 0.3, what proportion of the variation of beauty remains unexplained (i.e., is not explained by either genes or make-up)? Last time: 17/23 correct

- (A) 0.1
- (B) 0.19

(C) 0.55

- (D) 0.74
- (E) 1

Your answer:

Your answer: