CLASS QUIZ: FRIDAY JANUARY 11: POLAR COORDINATES

MATH 195, SECTION 59 (VIPUL NAIK)

Your name (print clearly in capital letters):

YOU ARE ALLOWED TO DISCUSS ONLY QUESTIONS THAT BEGIN WITH A (*) OR (**). PLEASE ATTEMPT ALL OTHER QUESTIONS BY YOURSELF. EVEN FOR THE QUESTIONS YOU DISCUSS, PLEASE FINALLY ENTER ONLY THE ANSWER OP-TION YOU ARE PERSONALLY MOST CONVINCED ABOUT - DON'T ENGAGE IN **GROUPTHINK.**

- (1) (*) Consider a straight line that does not pass through the pole in a polar coordinate system. The equation of such a line in the polar coordinate system can be expressed as $r = F(\theta)$. What kind of function is F? Last time: 8/21 correct
 - (A) $F(\theta)$ is a linear combination of $\sin \theta$ and $\cos \theta$
 - (B) $F(\theta)$ is the reciprocal of a linear combination of $\sin \theta$ and $\cos \theta$.
 - (C) $F(\theta)$ is a linear combination of $\tan \theta$ and $\cot \theta$.
 - (D) $F(\theta)$ is the reciprocal of a linear combination of $\tan \theta$ and $\cot \theta$.
 - (E) $F(\theta)$ is a linear combination of $\sec \theta$ and $\csc \theta$.

Your answer:

- (2) Consider the curve $r = \sin^2 \theta$. Which of the following symmetries does the curve enjoy? Please see options (D) and (E) before answering. Last time: 10/21 correct
 - (A) Mirror symmetry about the polar axis
 - (B) Mirror symmetry about an axis perpendicular to the polar axis (what would be the y-axis if the polar axis is the x-axis)
 - (C) Half turn symmetry about the pole
 - (D) All of the above
 - (E) None of the above

Your answer: _____

- (3) Which of the following is the correct expression for the length of the part of the curve $r = F(\theta)$ from $\theta = \alpha$ to $\theta = \beta$, with $\alpha < \beta$? Last time: 14/21 correct

 - $\begin{aligned} \theta &= \alpha \text{ to } \theta = \beta, \text{ with } \alpha < \beta! \text{ Last time! } 14/21 \\ (A) \int_{\alpha}^{\beta} \sqrt{(F(\theta))^2 + (F'(\theta))^2} \, d\theta \\ (B) \int_{\alpha}^{\beta} |F(\theta) + F'(\theta)| \, d\theta \\ (C) \int_{\alpha}^{\beta} |F(\theta) F'(\theta)| \, d\theta \\ (D) \int_{\alpha}^{\beta} \sqrt{(F(\theta))^2 + (F'(\theta))^2 + 4F(\theta)F'(\theta)} \, d\theta \\ (E) \int_{\alpha}^{\beta} \sqrt{(F(\theta))^2 + (F'(\theta))^2 4F(\theta)F'(\theta)} \, d\theta \end{aligned}$

Your answer: