CLASS QUIZ: FRIDAY JANUARY 11: POLAR COORDINATES

MATH 195, SECTION 59 (VIPUL NAIK)

Your name (print clearly in capital letters): \qquad
YOU ARE ALLOWED TO DISCUSS ONLY QUESTIONS THAT BEGIN WITH A (*) OR (**). PLEASE ATTEMPT ALL OTHER QUESTIONS BY YOURSELF. EVEN FOR THE QUESTIONS YOU DISCUSS, PLEASE FINALLY ENTER ONLY THE ANSWER OPTION YOU ARE PERSONALLY MOST CONVINCED ABOUT - DON'T ENGAGE IN GROUPTHINK.
(1) ${ }^{*}$) Consider a straight line that does not pass through the pole in a polar coordinate system. The equation of such a line in the polar coordinate system can be expressed as $r=F(\theta)$. What kind of function is F ? Last time: $8 / 21$ correct
(A) $F(\theta)$ is a linear combination of $\sin \theta$ and $\cos \theta$
(B) $F(\theta)$ is the reciprocal of a linear combination of $\sin \theta$ and $\cos \theta$.
(C) $F(\theta)$ is a linear combination of $\tan \theta$ and $\cot \theta$.
(D) $F(\theta)$ is the reciprocal of a linear combination of $\tan \theta$ and $\cot \theta$.
(E) $F(\theta)$ is a linear combination of $\sec \theta$ and $\csc \theta$.

Your answer: \qquad
(2) Consider the curve $r=\sin ^{2} \theta$. Which of the following symmetries does the curve enjoy? Please see options (D) and (E) before answering. Last time: 10/21 correct
(A) Mirror symmetry about the polar axis
(B) Mirror symmetry about an axis perpendicular to the polar axis (what would be the y-axis if the polar axis is the x-axis)
(C) Half turn symmetry about the pole
(D) All of the above
(E) None of the above

Your answer: \qquad
(3) Which of the following is the correct expression for the length of the part of the curve $r=F(\theta)$ from $\theta=\alpha$ to $\theta=\beta$, with $\alpha<\beta$? Last time: $14 / 21$ correct
(A) $\int_{\alpha}^{\beta} \sqrt{(F(\theta))^{2}+\left(F^{\prime}(\theta)\right)^{2}} d \theta$
(B) $\int_{\alpha}^{\beta}\left|F(\theta)+F^{\prime}(\theta)\right| d \theta$
(C) $\int_{\alpha}^{\beta}\left|F(\theta)-F^{\prime}(\theta)\right| d \theta$
(D) $\int_{\alpha}^{\beta} \sqrt{(F(\theta))^{2}+\left(F^{\prime}(\theta)\right)^{2}+4 F(\theta) F^{\prime}(\theta)} d \theta$
(E) $\int_{\alpha}^{\beta} \sqrt{(F(\theta))^{2}+\left(F^{\prime}(\theta)\right)^{2}-4 F(\theta) F^{\prime}(\theta)} d \theta$

Your answer: \qquad

