TAKE-HOME CLASS QUIZ: DUE WEDNESDAY JANUARY 9: PARAMETRIC STUFF

MATH 195, SECTION 59 (VIPUL NAIK)

Your name (print clearly in capital letters): \qquad
THIS IS A TAKE-HOME CLASS QUIZ, BUT I WILL GIVE YOU ABOUT 5 MINUTES TO REVIEW YOUR ANSWERS IN CLASS AND DISCUSS WITH OTHER STUDENTS.

YOU ARE ALLOWED TO DISCUSS ONLY QUESTIONS THAT BEGIN WITH A (*) OR (**). PLEASE ATTEMPT ALL OTHER QUESTIONS BY YOURSELF. EVEN FOR THE QUESTIONS YOU DISCUSS, PLEASE FINALLY ENTER ONLY THE ANSWER OPTION YOU ARE PERSONALLY MOST CONVINCED ABOUT - DON'T ENGAGE IN GROUPTHINK.
(1) Consider the curve given by the parametric description $x=\cos t, y=\sin t$, where t varies over the interval $[a, b]$ with $a<b$. What is a necessary and sufficient condition on a and b for this curve to be the circle $x^{2}+y^{2}=1$? Last time: $11 / 24$ correct
(A) $b-a=\pi$
(B) $b-a>\pi$
(C) $b-a=2 \pi$
(D) $b-a>2 \pi$
(E) $b-a \geq 2 \pi$

Your answer: \qquad
(2) (**) Consider the curve given by the parametric description $x=\arctan t$ and $y=\arctan t$ for $t \in \mathbb{R}$. Which of the following is the best description of this curve? Last time: 8/24 correct
(A) It is the graph of the function arctan
(B) It is the line $y=x$
(C) It is a line segment (without endpoints) that is part of the line $y=x$
(D) It is a half-line (with endpoint) that is part of the line $y=x$
(E) It is a disjoint union of two half-lines that are both part of the line $y=x$

Your answer: \qquad
(3) (**) Consider the curve given by the parametric description $x=\sin ^{2} t$ and $y=\cos ^{2} t$ for $t \in \mathbb{R}$. Which of the following is the best description of this curve? Last time: $5 / 24$ correct
(A) It is the arc of the circle $x^{2}+y^{2}=1$ comprising the first quadrant, i.e., when $x \geq 0$ and $y \geq 0$.
(B) It is the entire circle $x^{2}+y^{2}=1$
(C) It is the line segment joining the points $(0,1)$ and $(1,0)$
(D) It is the line $y=1-x$
(E) It is a portion of the parabola $y=x^{2}$

Your answer: \qquad
(4) Identify the parametric description which does not correspond to the set of points (x, y) satisfying $x^{3}=y^{5}$. Last time: $16 / 24$ correct
(A) $x=t^{3}, y=t^{5}$, for $t \in \mathbb{R}$
(B) $x=t^{5}, y=t^{3}$, for $t \in \mathbb{R}$
(C) $x=t, y=t^{3 / 5}$, for $t \in \mathbb{R}$
(D) $x=t^{5 / 3}, y=t$, for $t \in \mathbb{R}$
(E) All of the above parametric descriptions work

Your answer: \qquad
(5) $\left.{ }^{(* *}\right)$ Consider the parametric description $x=f(t), y=g(t)$ where t varies over all of \mathbb{R}. What is the necessary and sufficient condition for the curve given by this to be the graph of a function, i.e., to satisfy the vertical line test? Last time: $10 / 24$ correct
(A) For any t_{1} and t_{2} satisfying $f\left(t_{1}\right)=f\left(t_{2}\right)$, we must have $g\left(t_{1}\right)=g\left(t_{2}\right)$.
(B) For any t_{1} and t_{2} satisfying $g\left(t_{1}\right)=g\left(t_{2}\right)$, we must have $f\left(t_{1}\right)=f\left(t_{2}\right)$.
(C) Both f and g are one-to-one functions.
(D) For any t_{1} and t_{2}, we must have $f\left(t_{1}\right)=f\left(t_{2}\right)$.
(E) For any t_{1} and t_{2}, we must have $g\left(t_{1}\right)=g\left(t_{2}\right)$.

Your answer: \qquad
(6) Suppose f and g are both twice differentiable functions everywhere on \mathbb{R}. Which of the following is the correct formula for $(f \circ g)^{\prime \prime}$? Last time: 20/21 correct
(A) $\left(f^{\prime \prime} \circ g\right) \cdot g^{\prime \prime}$
(B) $\left(f^{\prime \prime} \circ g\right) \cdot\left(f^{\prime} \circ g^{\prime}\right) \cdot g^{\prime \prime}$
(C) $\left(f^{\prime \prime} \circ g\right) \cdot\left(f^{\prime} \circ g^{\prime}\right) \cdot\left(f \circ g^{\prime \prime}\right)$
(D) $\left(f^{\prime \prime} \circ g\right) \cdot\left(g^{\prime}\right)^{2}+\left(f^{\prime} \circ g\right) \cdot g^{\prime \prime}$
(E) $\left(f^{\prime} \circ g^{\prime}\right) \cdot(f \circ g)+\left(f^{\prime \prime} \circ g^{\prime \prime}\right)$

Your answer: \qquad
(7) Suppose $x=f(t)$ and $y=g(t)$ where f and g are both twice differentiable functions. What is $d^{2} y / d x^{2}$ in terms of f and g and their derivatives evaluated at t ? Last time: 20/21 correct
(A) $\left(f^{\prime}(t) g^{\prime \prime}(t)-g^{\prime}(t) f^{\prime \prime}(t)\right) /\left(f^{\prime}(t)\right)^{3}$
(B) $\left(f^{\prime}(t) g^{\prime \prime}(t)-g^{\prime}(t) f^{\prime \prime}(t)\right) /\left(g^{\prime}(t)\right)^{3}$
(C) $\left(g^{\prime}(t) f^{\prime \prime}(t)-f^{\prime}(t) g^{\prime \prime}(t)\right) /\left(f^{\prime}(t)\right)^{3}$
(D) $\left(g^{\prime}(t) f^{\prime \prime}(t)-f^{\prime}(t) g^{\prime \prime}(t)\right) /\left(g^{\prime}(t)\right)^{3}$
(E) None of the above

Your answer: \qquad
(8) Which of the following pair of bounds works for the arc length for the portion of the graph of the sine function between $(a, \sin a)$ and $(b, \sin b)$ where $a<b$? Last time: 15/21 correct
(A) Between $(b-a) / \sqrt{3}$ and $(b-a) / \sqrt{2}$
(B) Between $(b-a) / \sqrt{2}$ and $b-a$
(C) Between $(b-a)$ and $\sqrt{2}(b-a)$
(D) Between $\sqrt{2}(b-a)$ and $\sqrt{3}(b-a)$
(E) Between $\sqrt{3}(b-a)$ and $2(b-a)$

Your answer: \qquad
(9) $\left(^{*}\right)$ Consider the parametric curve $x=e^{t}, y=e^{t^{2}}$. How does y grow in terms of x as $x \rightarrow \infty$? Last time: $7 / 21$ correct
(A) y grows like a polynomial in x.
(B) y grows faster than any polynomial in x but slower than an exponential function of x.
(C) y grows exponentially in x.
(D) y grows super-exponentially in x but slower than a double exponential in x.
(E) y grows like a double exponential in x.

Your answer: \qquad
(10) We say that a curve is algebraic if it admits a parameterization of the form $x=f(t), y=g(t)$, where f and g are rational functions and t varies over some subset of the real numbers. Which of the following curves is not algebraic? Last time: $11 / 21$ correct
(A) $x=\cos t, y=\sin t, t \in \mathbb{R}$
(B) $x=\cos t, y=\cos (3 t), t \in \mathbb{R}$
(C) $x=\cos t, y=\cos ^{2} t, t \in \mathbb{R}$
(D) $x=\cos t, y=\cos \left(t^{2}\right), t \in \mathbb{R}$
(E) None of the above, i.e., they are all algebraic

Your answer: \qquad
(11) $\left(^{* *}\right)$ Suppose $x=f(t), y=g(t), t \in \mathbb{R}$ is a parametric description of a curve Γ and both f and g are continuous on all of \mathbb{R}. If both f and g are even, what can we conclude about Γ and its parameterization? Last time: 5/21 correct
(A) Γ is symmetric about the y-axis
(B) Γ is symmetric about the x-axis
(C) Γ is symmetric about the line $y=x$
(D) Γ has half turn symmetry about the origin
(E) The parameterizations of Γ for $t \leq 0$ and for $t \geq 0$ both cover all of Γ, and in directions mutually reverse to each other.

Your answer: \qquad

