
REVIEW SHEET FOR MIDTERM 2: BASIC

MATH 153, SECTION 55 (VIPUL NAIK)

To maximize efficiency, please bring a copy (print or readable electronic) of the basic and
advanced review sheet AND the previous review sheet to the review session.

This review sheet does not repeat review of material in the midterm 1 syllabus, although some of the
“Quickly” stuff does not overlap. So, please go through the midterm 1 review sheet too. In the review
session, we will concentrate on the midterm 2 review sheet (advanced version), but we will review some of
the formulas from the basic version. However, we will not review every point and you should do that review
on your own time.

This is the basic review sheet. The error-spotting exercises are in the advanced review sheet.

1. Left-overs from integration

1.1. Integrating radicals. Words ...
(1) Expressions of the form a2 + x2 (with a > 0) in the denominator or under the radical sign suggest

the substitution θ = arctan(x/a). With this substitution, x = a tan θ, dx = a sec2 θ dθ, a2 + x2 =
a2 sec2 θ, and

√
a2 + x2 = a sec θ. In the end, when substituting back, we use θ = arctan(x/a),

tan θ = x/a, sec θ =
√

a2 + x2/a, cos θ = a/
√

a2 + x2, and sin θ = x/
√

a2 + x2. The first sentence
of substitutions is useful when converting the given integrand into a trigonometric integrand. The
second sentence is useful when converting the integrated answer back at the end. (This latter step
is unnecessary when we are dealing with a definite integral and we transform limits simultaneously).

(2) For a2 − x2 under a square root, we have a similar substitution θ = arcsin(x/a). For x2 − a2, we
take θ = arccos(a/x). It is useful to work out the forward and backward substitutions for these.
(See the notes for the details of these substitutions). It is strongly suggested that you internalize both
the forward and the backward substitutions to the point where they become automatic. Memorization
helps, but you should also be able to re-derive things on the spot as the need arises.

(3) There is a little subtlety in these substitutions. When we take θ as arcsin, we know that cos θ is
nonnegative. Hence, when we simplify

√
a2 − x2, we get

√
a2 cos2 θ. Because by assumption a is

positive, and because cos θ is nonnegative, we can write the answer as a cos θ. In other words, we
know how exactly we can lift off the square root. Something similar happens when we are dealing with
the tangent and secant functions: secant is nonnegative on the range of arc tangent. Unfortunately,
tangent is not nonnegative on the entire range of arc secant, so we need to actually look at the region
where we are carrying out the integration. In case both the upper and lower bounds of integration
are greater than a, we know that we will in fact get tan θ.

Note: Some of you may find it useful to draw right triangles, as suggested in the book, if reading trigono-
metric ratios off triangles is easier for you than algebraic manipulation of trigonometric expressions.

Actions ...
(1) Trigonometric substitutions allow us to integrate things like xm(a2 + x2)n/2. However, some special

cases of these can be integrated without resort to trigonometric substitutions. For instance, when n
is a nonnegative even integer, this is a sum of powers of x and can be integrated term wise. Also, if
m is odd, we can do a u-substitution with u = a2 + x2.

(2) Similar remarks apply to expressions involving
√

a2 − x2 and
√

x2 − a2.
(3) To apply this or similar techniques to more general quadratics, we need to use a technique known

as completing the square. Here, we rewrite:

Ax2 + Bx + C = A(x + (B/2A))2 + (C −B2/4A)
The special case where A = 1 is given by:
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x2 + Bx + C = (x + (B/2))2 + (C − (B/2)2)
Note that the left-over constant term after completing the square is −D/4A where D is the

discriminant of the quadratic polynomial. In the case A = 1, when the polynomial has positive
discriminant, this left-over term is negative, whereas when the polynomial has negative discriminant,
this left-over term is positive. In the latter case, we can write it as the square of something. We
would thus have written our original polynomial as (x − β)2 + γ2, whereupon we can make the
substitution θ = arctan((x− β)/γ) (or directly apply the integration formula).

1.2. Partial fractions. Words ...
(1) For most practical purposes, we can study monic polynomials instead of arbitrary polynomials. A

monic polynomial is a polynomial whose leading coefficient is 1. The reason we can restrict attention
to monic polynomials is that any nonzero polynomial can be expressed as a nonzero constant times
a monic polynomial.

(2) A nonconstant monic quadratic polynomial is irreducible (i.e., cannot be expressed as a product of
polynomials of smaller degree) if and only if it has negative discriminant.

(3) Every nonconstant monic polynomial with real coefficients is a product of monic linear polynomials
and irreducible monic quadratics, and this factorization is unique. Thus, all irreducible monic
polynomials are either linear or quadratics with negative discriminant.

(4) The partial fractions approach breaks up any rational function as the sum of a polynomial and
rational functions of the form R/Qk where Q is a monic irreducible factor of the original denominator
and R is a polynomial of degree strictly less than the degree of Q.

(5) Each of these partial fraction pieces is easy to integrate. The case where Q is linear, it is of the
form x − α, and the numerator is a constant, so this is a straightforward power integration. In
the case where Q is quadratic, we break R as the sum of a constant and the derivative of Q. The
constant part is handled by a trigonometric substitution, and the derivative of Q part is handled by
the u-substitution u = Q.

(6) The partial fractions approach shows that every rational function can be integrated, and we obtain
an antiderivative that involves ln (evaluated at some linear function of x), arctan (again, evaluated
at some linear function of x), and other rational functions.

(7) Using the partial fractions approach and the equivalence of repeated integrability with the integra-
bility of x times a function, we can show that any rational function can be repeatedly integrated,
with the final answer in terms of arctan, ln, and rational functions.

Actions ... Please go through the notes on partial fractions as well as the discussion of these in the book.
We here list only some salient points:

(1) Before beginning, make the denominator monic, and use the Euclidean algorithm to reduce to a
problem where the degree of the numerator is less than the degree of the denominator.

(2) The general approach is to first factorize the denominator and then break it up into partial fractions
with unknown numerators. The coefficients of the numerator need to be determined. One way
of doing this is to take a common denominator, multiply out, compare coefficients, and solve the
resultant system of linear equations.

(3) Instead of equating coefficients, we can also use a strategy of plugging in values. We plug in values
so that a large number of the expressions that we are evaluating become zero.

(4) In particular, if we want to write:

r(x)
(x− α1)(x− α2) . . . (x− αn)

=
c1

x− α1
+ · · ·+ cn

x− αn

where all the αis are distinct and the degree of r is less than n, then we get:

ci =
r(αi)

product of αi − αj , all j 6= i

We can use this to very rapidly write any fraction with denominator a product of distinct linear
factors in terms of partial fractions, and then integrate it.
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(5) To handle:

r(x) dx

(q(x))k

where q is an irreducible quadratic, we do repeated division, taking quotients and remainders,
and obtain the result in terms of partial fractions.

(6) A thorough understanding of the partial fractions approach should allow you to predict, simply
by looking at a rational function, whether the antiderivative expression for it will be (i) a rational
function, (ii) something involving rational functions and arctan, (iii) something involving rational
functions and ln, or (iv) something involving rational functions, arctan, and ln. For some practice
of these, refer to the integration quiz.

1.3. Improper integrals. Words ...

(1) The integral
∫∞

a
f(x) dx is defined as the limit limL→∞

∫ L

a
f(x) dx. If F is an antiderivative of f ,

this equals limL→∞ F (L)− F (a).
(2) The integral

∫ a

−∞ f(x) dx is defined as the limit limL→−∞
∫ a

L
f(x) dx. If F is an antiderivative of f ,

this equals F (a)− limL→−∞ F (L).
(3) The integral

∫∞
−∞ f(x) dx is defined as a double limit, where the upper limit of integration is limited

to infinity, while the lower limit of integration is limited to negative infinity. If F is an antiderivative
of f , this equals limL→∞ F (L)− limM→−∞ F (M).

(4) Another kind of improper integral occurs where the function is integrated over an interval and is not
defined at an endpoint of the interval. Here, we take the limit over intervals of integration where the
interval gradually tends towards the trouble points. For instance, if a function f is to be integrated
over [a, b] but b is a trouble point, we take limc→b

∫ c

a
f(x) dx. If F is an antiderivative of f , then if

F extends continuously to b, this is just equal to F (b)− F (a).
(5) In general, if there are multiple trouble points, we first partition the interval of integration so that

all the trouble points are at the partition boundaries. We then use the limiting procedure on each
piece and add up across the pieces.

Actions ...
(1) The most straightforward way of computing an indefinite integral is to compute the corresponding

antiderivative and take the difference between the upper and lower limits.
(2) In some cases, this is either infeasible or terribly messy. In these cases, we may use the various other

methods for computing definite integrals that bypass computing the antiderivative. These include
the use of symmetry and a combination of u-substitution plus noticing that after the substitution,
the upper and lower limits of integration become the same.

(3) In yet other cases, taking the limit of the antiderivative may be hard, and we may need to use all
the techniques discussed in preceding subsections for computing this antiderivative.

2. Differential equations

2.1. Solving differential equations at large. Words ...
(1) A differential equation with dependent variable y and independent variable x is something of the

form F (x, y, y′, y′′, . . . ) = 0.
(2) The order of a differential equation is the largest k for which the kth derivative appears in the

differential equation. In particular, a first-order differential equation only involves x, y, and y′, and
does not involve y′′ or higher derivatives. A second-order differential equation only involves x, y, y′,
and y′′.

(3) A polynomial differential equation is one where F looks like a polynomial in y and its derivatives. A
linear differential equation is a differential equation of the form:

fk(x)y(k) + · · ·+ f1(x)y′ + f0(x)y = g(x)
We can clear out the coefficient of y(k) by dividing throughout by fk(x). The homogeneous case

is where the right side is zero.
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(4) A particular solution is a relation R(x, y) = 0 that, when plugged into the differential equation,
satisfies it. (Here, higher derivatives are computed using implicit differentiation). A particular
solution in functional form is one where we explicitly find a function f with y = f(x) that satisfies
the differential equation.

(5) A solution family is a family with one or more parameters such that for every permissible value of
the parameter, we obtain a particular solution.

(6) The general solution is a solution family that contains all particular solutions.
(7) A general principle is that the number of freely varying parameters in the general solution, also

described as the number of degrees of freedom, equals the order of the original differential equation.
The reason for this is roughly that the number of integrations we do that introduce new degrees of
freedom equals the order of the differential equation.

(8) An autonomous differential equation is a differential equation where the independent variable does
not appear explicitly (except as the thing in terms of which differentiation is carried out). The
independent variable can be thought of as time. Autonomous differential equations have the property
that any time translate of a solution is also a solution. This property is found in most physical laws,
and essentially states that the formulation of the physical law does not depend on when we started
measuring time, i.e., there is no natural time origin.

(9) To solve a second-order differential equation we usually do a substitution to break it up into solving
two first-order differential equations.

(10) Of first-order differential equations, there are two broad classes that we know how to solve: separable
differential equations and linear differential equations. For the latter case, the solution method
isolates y as a function of x. In the former case, we can get a mixed bag situation.

Actions ...

(1) The separable case is where we have y′ = f(x)g(y). In this case, we rearrange to obtain
∫

dy/g(y) =∫
f(x) dx, and integrate both sides. We need to put the +C on only one side, because additive

constants emanating from both integrals can be combined into one additive constant.
(2) In the autonomous separable case, we have dy/dt = g(y), and we integrate to obtain

∫
dy/g(y) =

∫
dt.

This is the case that arises when we look at the logistic equation and its many variants.
(3) In the linear case, we have y′ + p(x)y = q(x) (after dividing out by any coefficient of y′). Let

H(x) =
∫

p(x) dx. The integrating factor that we choose is eH(x). When we multiply by this
integrating factor the left side becomes the derivative of yeH(x). Thus, we obtain:

y = e−H(x)

∫
q(x)eH(x) dx

Note that the +C arises in the inner integral, so the general solution is a particular solution plus
Ce−H(x).

(4) When solving differential equations (particularly the separable case) we often get a solution involving
logarithms. In some cases, it may be useful to exponentiate both sides. When we do so, the original
additive constant C arising from indefinite integration becomes a multiplicative constant eC . We
can also absorb sign uncertainty into it and define a new constant k = eC sgn(y) to get the answer
in terms of a sign expression.

(5) In a similar vein to the above, if our answer involves an inverse trigonometric function, we can
apply the trigonometric function to both sides. In this case, the additive constant sticks inside. For
instance, if we get arctan y = x+C, then applying tan to both sides yields y = tan(x+C). To simplify
this further (if we so desire), we need to use the angle sum formula. The other major caveat that we
need to bear in mind is that there is a loss of information when we apply the trigonometric substituion
to both sides, because an inverse trigonometric function value is constrained to a particular range.
This constraint needs to be kept track of separately.

(6) In some cases, before exponentiating or applying the inverse trigonometric function, it might help to
use the initial value condition to pin down the freely varying parameters (see the next subsection).

2.2. Graphical interpretation and initial value problems. Words ...
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(1) Any particular solution (whether expressed with y as an explicit function of x or in terms of a relation
between x and y) can be plotted as a curve in the xy-plane. When it is an explicit function, this is
the graph of a function – otherwise, it’s just the set of points satisfying the relation. This picture in
the plane is called an integral curve or a solution curve for the differential equation.

(2) The general solution is thus a picture which has all the particular solutions marked.
(3) Since solving a kth order differential equation introduces k degrees of freedom, we expect that to

pin down a unique solution, we need k pieces of information. In particular, to choose one particular
solution for a first-order differential equation, we need (by and large) one piece of information. In
an initial value problem, this is provided by specifying an initial value, which is one point (x0, y0) on
the particular solution curve.

(4) Geometrically, we expect that the solution family to a first-order differential equation has one real
parameter and that, except in some degenerate cases, knowing one point on the curve determines
the curve. In other words we expect that by and large, the solution curves do not intersect.

(5) For higher-order differential equations, on the other hand, we expect that even after knowing one
point on the curve, we have pinned down only one of many degrees of freedom, and we still have
solution families to deal with rather than isolated solutions. More information, such as information
about higher derivatives, or information about the curve passing through other points, is desirable.

Actions ... Nothing really, except that we plug in the initial value condition to pin down the constants.

3. The least upper bound axiom

Words ...

(1) The real numbers satisfy the least upper bound property: any nonempty subset of the set of real
numbers that is bounded from above has a least upper bound that is also a real number. This
property does not hold if we replace the real numbers by the rational numbers (i.e., the least upper
bound of a set of rationals bounded from above exists as a real number, but need not be a rational
number).

(2) The real numbers satisfy the greatest lower bound property: any nonempty subset of the set of real
numbers that is bounded from below has a greatest lower bound that is also a real number. This
property again does not hold if we replace the real numbers by the rational numbers.

(3) We can prove the greatest lower bound property using the least upper bound property. There are
two proofs of this. One of these proofs involve reflection: replacing a set by its set of negatives. The
other proof, which is there in the book, is also worth going through. Please go through it. I’ll go
through it in review session. You will not be asked the proof in the test, but it may be helpful for
multiple choice questions and other conceptually based problems.

(4) The natural numbers satisfy a property that is somewhat similar to the greatest lower bound property
for the reals, but stronger: any nonempty subset of the set of natural numbers has a least element.
This is equivalent to the principle of mathematical induction.

(5) If a nonempty subset of the real numbers has a maximum element, then that element is also the
least upper bound of the set. Conversely, if the least upper bound of a set is in the set, then that is
also the maximum element of the set.

(6) If a nonempty subset of the real numbers has a minimum element, then that element is also the
greatest lower bound of the set. Conversely, if the greatest lower bound of a set is in the set, then
that is also the minimum element of the set.

(7) A nonempty finite subset always has a maximum and a minimum element. Thus, its greatest lower
bound and least upper bound are both in the set.

(8) For an interval with lower endpoint a and upper endpoint b, the least upper bound is b and the
greatest lower bound is a. Note that this holds for all the four possibilities for the interval: [a, b],
(a, b), [a, b), and (a, b].

(9) If T is a nonempty subset of a nonempty bounded subset S of R, any lower bound for S remains
a lower bound for T and any upper bound for S remains an upper bound for T . However, we may
have an upper bound for T that is not an upper bound for S. Similarly, we may have a lower bound
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for T that is not a lower bound for S. Thus, the least upper bound for T is ≤ the least upper bound
for S, and the greatest lower bound for T is ≥ the greatest lower bound for S.

(10) A set does not have an upper bound if and only if it has arbitrarily large elements. Similarly, a set
does not have a lower bound if and only if it has arbitrarily small elements (i.e., negative elements
of arbitrarily large magnitude).

(11) If M is the least upper bound of a nonempty subset S of R, then, for every ε > 0, S has a nonempty
intersection with the interval (M−ε,M ]. In particular, if M /∈ S, then S has a nonempty intersection
with the interval (M − ε,M). (See also the analogous theorem for greatest lower bounds, which is
Theorem 11.1.4 in the book).

Actions ...

(1) To compute the greatest lower bound and least upper bound of a set, we first need to compute the
set. Finding the set as a union of intervals is often useful.

(2) Given a set S, we can construct corresponding sets such as S +λ (translation), −S (reflection about
0), f(S) (image of S under a function f), and abs(S) (the set of absolute values of elements of
S, i.e., folding about 0). Please review the results that relate bounds for S with bounds on these
corresponding sets.

4. Sequences of reals

4.1. Sequencs: basics. Words ...

(1) A sequence in a set is a function from N to that set.
(2) A sequence of reals can be described in three ways: as an ordered list of real numbers (where we

write only the first few members due to space and time considerations), as a closed form expression
for the general term of the sequence (i.e., thinking of it as a function), and in terms of a recurrence
relation.

(3) The range of a sequence is the set of values that it takes. The range of a sequence differs from the
sequence in the following two senses: (i) it ignores repetition (ii) it ignores the ordering or sequencing
of the elements.

(4) There are many properties that we can talk of in the context of sequences: increasing, decreasing,
non-increasing, non-decreasing, monotonic, constant, periodic, bounded from below, bounded from
above, and bounded. Note that the boundedness-related properties depend only on the range of the
sequence, whereas the other properties depend on the sequence as a whole.

(5) For any property p that can be evaluated on each sequence, we can talk of the property eventually
p, which means that some left shift of the sequence has the property p. For instance, we can
talk of eventually increasing, eventually decreasing, eventually constant, eventually monotonic, and
eventually periodic.

(6) Eventually bounded is the same as bounded.
(7) There are various operations we can do on sequences similar to the corresponding operations on

functions: add, subtract, multiply, divide, multiply by a scalar, and compose with a function defined
on the range of the sequence.

(8) We can do left shifts, right shifts (though this requires us to throw in more new terms), splicing, and
other fancy operations.

(9) If a sequence is defined recursively, i.e., using a recurrence relation, then we need to separately specify
initial values. The number of initial values that we need to specify depends on how far back the
recurrence relation reaches. This is related both to the principle of mathematical induction and the
idea of free parameters and initial value specifications for differential equations.

(10) We can define a discrete derivative, called the forward difference operator, defined as follows: for a
sequence f : N → R, the forward difference operator is (∆f)(n) = f(n+1)−f(n). This is analogous
to the derivative of a continuous function.

(11) The integration equivalent for the forward difference operator is the summation operator. (Try to
find the formula for this in the notes/class discussion).
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(12) The forward difference operator behaves analogously to differentiation (though the formulas differ)
for constants, polynomial sequences, and periodic sequences. (Please see the notes for a list of
points).

(13) Periodic sequences can be defined using a case-wise definition based on the remainder modulo the
period. They can alternatively be defined as combinations of trigonometric functions. In the special
case of a period 2, we can also express in terms of (−1)n.

(14) A sequence with periodic derivative can be expressed as the sum (pointwise) of a linear sequence
and a periodic sequence.

4.2. Continuous-discrete interplay. Words ...

(1) Given a function on R, we can restrict the function to N and obtain a sequence. This restriction is
unique.

(2) Conversely, given a sequence, i.e., a function on N, we can extend it to a continuous function on
R. However, the extension is not unique, and there are a lot of different ways of extending. If the
sequence is described by means of a nice closed form functional expression, we may be able to extend
it by considering that functional expression for all real numbers.

(3) Usually, information about the function on the reals gives us corresponding information about the
corresponding sequence, but we cannot get information in the reverse direction that easily. For
instance, an increasing function gives an increasing sequence, but increasing sequences can arise from
functions that are not increasing. A decreasing function gives a decreasing sequence, a monotonic
function gives a monotonic sequence, and a bounded function gives a bounded sequence.

(4) A function with integer period gives a periodic sequence.
(5) The mean value theorem relates the derivative of a function to the discrete derivative (i.e., forward

difference operator) of the corresponding sequence.
(6) We can define a notion of concave up and concave down for sequences based on the second discrete

derivative. If a function is concave up, so is the corresponding sequence. If the function is concave
down, so is the corresponding sequence.

5. Limit computation techniques

Words ...

(1) L’Hôpital’s rule for 0/0 form: Consider limx→c f(x)/g(x) where limx→c f(x) = limx→c g(x) = 0. If
both f and g are differentiable around c, then this limit is equal to limx→c f ′(x)/g′(x).

(2) Analogous statements hold for one-sided limits and in the case c = ±∞.
(3) The 0/0 form LH rule cannot be applied if the numerator does not limit to zero or if the denominator

does not limit to zero.
(4) L’Hôpital’s rule for∞/∞ form: Consider limx→c f(x)/g(x) where limx→c f(x) = ±∞ and limx→c g(x) =

±∞. If both f and g are differentiable around c, then this limit is equal to limx→c f ′(x)/g′(x).
(5) Analogous statements hold for one-sided limits and for c = ±∞.
(6) For a function f having a zero at c, the order of the zero at c is the least upper bound of β such

that limx→c |f(x)|/|(x− c)|β = 0. At this least upper bound, the limit is usually finite and nonzero.
For larger values of β, the limit is undefined.

(7) Given a quotient f/g for which we need to calculate the limit at c, the limit is zero if the order of the
zero for f is greater than the order for g, and undefined if the order of the zero for f is less than the
order for g. When the orders are the same, the limit could potentially be a finite nonzero number.

Actions ...

(1) For polynomial functions and other continuous functions, we can calculate the limit at a point by
evaluating at the point. For rational functions, we can cancel common factors between the numerator
and the denominator till one of them becomes nonzero at the point.

(2) There is a bunch of basic limits that translate to saying that for the following functions f : f(0) = 0
and f ′(0) = 1, which is equivalent to saying that limx→0 f(x)/x = 1. These functions are sinx,
x 7→ ln(1 + x), x 7→ ex − 1, x 7→ tanx, x 7→ arcsin x, and x 7→ arctanx.
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(3) For all the functions f of the above kind (that we call strippable), the following is true: in any
multiplicative situation, if the input to the function goes to zero in the limit, the function can be
stripped off.

(4) Two other basic limits are limx→0(1− cos x)/x2 = 1/2 and limx→0(x− sinx)/x3 = 1/6. These can
be obtained using the LH rule.

(5) Typically, to compute limits, we can combine the LH rule, stripping, and removing multiplicative
components that we can calculate directly.

(6) Applying the LH rule 0/0 form pushes the orders of both the numerator and the denominator down
by one.

(7) It is also useful to remember that logarithmic functions are dominated by polynomial functions,
which in turn are dominated by exponential functions. These facts can be seen in various ways,
including the LH rule.
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