
REVIEW SHEET FOR FINAL: BASIC

MATH 153, SECTION 55 (VIPUL NAIK)

1. Series and convergence

Words ...
(1) Not for discussion: The

∑
summation notation is used to compactly express a sum of many (finitely

or infinitely many) terms. The terms of the summation are called summands and the variable that
changes value across summands is termed the variable of summation or index of summation, and is
a dummy variable. Some variants include: (i) writing the start of summation at the bottom and the
end of summation at the top, (ii) writing the set constraint at the bottom, (iii) doing (i) or (ii) but
omitting the index of summation.

(2) The infinite sum
∑∞

k=1 f(k) is defined as the limit limn→∞
∑n

k=1 f(k). The sums
∑n

k=1 f(k) are
termed the partial sums. We use the term series for a sequence to be summed up. The sum of a
series is the limit of the sequence of partial sums. The summands are called the terms of the series.

(3) For a series of nonnegative terms, the sum is independent of the ordering of the terms. It can also be
determined by grouping together the terms in any manner whatsoever. Thus, sums of nonnegative
terms are commutative and associative in a strong sense.

(4) Summation is linear: it is additive and scalar multiples can be pulled out. In other words,
∑

(f(k)+
g(k)) =

∑
f(k) +

∑
g(k). On the other hand, summation is not multiplicative. In other words,∑

f(k)g(k) is not the same thing as (
∑

f(k))(
∑

g(k)).
(5) If g = ∆f where ∆ is the forward difference operator, then

∑b
k=a g(k) = f(b + 1)− f(a). This has

a more general version called telescoping. Telescoping can be thought of as the discrete analogue of
the fundamental theorem of calculus.

(6) There are four kinds of things we can do concretely for a series of nonnegative terms: (i) show that
the series diverges, (ii) show that the series converges, and find its sum, (iii) show that the series
converges, and find bounds on its sum, without finding an explicit summation-free expression for the
sum, (iv) show that the series converges, without any explicit bounds on its sum.

(7) A series of nonnegative terms converges to the least upper bound of its sequence of partial sums.
Note that the sequence of partial sums is a non-decreasing sequence precisely because the terms of
the series (i.e., the summands) are nonnegative.

(8) If a series of (possibly mixed sign) terms converges, the magnitudes of the terms must go to 0. The
contrapositive is that if the terms of a series do not go to 0, the series does not converge. This
establishes a necessary but not sufficient condition for the convergence of a series. Note that we are
talking about the terms here, not the partial sums. Also, the terms going to zero does not directly
say anything about the value of the sum of the series.

(9) Left shifts and/or changing finitely many terms does not change the convergence of a series though
it may change the value of the sum of the series. This result holds for a series with mixed sign terms.

(10) A geometric series is a series where the quotient of successive terms is constant. The constant
(successor term over current term) is termed the common ratio. A geometric series of possibly mixed
sign terms converges if and only if the common ratio has absolute value strictly less than 1. If the
first term is a and the common ratio is r, the geometric series converges to a/(1− r).

(11) The sum of a finite segment of a geometric series with n terms, first term a, and common ratio r, is
a(1− rn)/(1− r) if r 6= 1, and na if r = 1.

(12) The integral test gives both a computational estimate for the sum of a series and a conditional
test for whether the series converges. In particular, it states that for a (eventually) nonnegative,
(eventually) continuous, (eventually) decreasing function, the integral is finite if and only if the sum
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is. (See the class notes for the details on the computational estimate; the book concentrates on the
conditionality aspect).

(13) The basic comparison test states that if 0 ≤ ak ≤ bk for all sufficiently large k, and
∑

bk converges,
so does

∑
ak. Similarly, if

∑
ak diverges, so does

∑
bk.

(14) The limit comparison test states that if limk→∞ ak/bk is finite and positive, then both series have
the same convergence/divergence behavior.

(15) For p > 0, consider the p-series
∑∞

k=1 k−p. This series diverges for p ≤ 1 and converges for p > 1.
We define the zeta function ζ(p) as the sum of the series. We note that max{1, 1/(p − 1)} ≤
ζ(p) ≤ p/(p − 1) for all p, by the integral test. [Review how this is derived]. ζ is a continuous
decreasing function on (1,∞) with limp→1+ ζ(p) = ∞ and limp→∞ ζ(p) = 1. Also, ζ(2) = π2/6 and
ζ(4) = π4/90. [Note: We have not seen how to derive these values.]

Actions ...

(1) Telescoping is a powerful tool. It allows us to use partial fractions to sum up various kinds of sums
with quadratic denominatorics. In particular, if g(k) = f(k)− f(k + m), with f(k) → 0 as n →∞,
them

∑
g(k) = f(1) + f(2) + · · ·+ f(m).

(2) We can also use the known formulas for summing up
∑

1,
∑

k,
∑

k2 and
∑

k3 along with linearity
to calculate summations where the summands are polynomials of degree at most 3 in k.

(3) We can sum up an eventually geometric series by summing up the eventual geometric part of the
series and separately handling the first few anomalous terms. It often happens in real world series
that the series is eventually geometric but the first few terms are anomalous. This is due to boundary
effects/startup issues. [For instance, the bouncing ball distance traveled problem.]

(4) For a series with alternating common ratios, we can sum up by splitting into two geometric series.
(see example from class notes).

(5) The geometric series can be interpreted as an expansion for 1/(1− x):

1
1− x

= 1 + x + x2 + . . . , |x| < 1

As we see later, this is the Taylor series for the function 1/(1− x).
(6) As a corollary of the convergence results on p-series and the basic comparison test, we have the

following rule: for a rational function f , the series
∑

f(k) converges if the degree of the denominator
exceeds the degree of the numerator by at least 2, and diverges otherwise.

(7) More generally, for series involving polynomial-like things, if the degree of the denominator (possibly
fractional) exceeds the degree of the numerator by something strictly greater than 1, the series
converges, otherwise it diverges.

(8) Things get a little trickier when ln k appears in the terms. ln can be thought of as being a polynomial
in k of degree 0+ – slightly greater than 0 but less than any positive number. If, in the given setup,
the degree of the denominator minus the degree of the numerator is strictly less than 1, 1− or 1, the
series diverges. If it is strictly greater than 1, the series converges. If it is 1+, then the situation is
indeterminate, and we may need to use the integral test. For instance,

∑
(ln k)/k clearly diverges,

because the difference is 1−. On the other hand
∑

1/(k ln(k+1)) and 1/(k[(ln k)2+1]) are ambigious,
because we get 1+ in both cases. In fact, the series diverges in the former case and converges in the
latter case, as we can see using the integral test.

(9) sin and cos are bounded between −1 and 1, and this, along with the basic comparison test, can often
be used to ascertain behavior about these functions. For instance, consider

∑
(2 + sin k)/k2.

Cautionary notes ...

(1) Where you start – it matters: In some cases, we index the terms of a series with labels starting from
0 rather than 1. This is most customarily done when dealing with power series, but is also something
done in other contexts. Please be careful when writing expressions for the general term whether the
term labels begin at 0 or 1.

(2) Start late to determine convergence: If you are asked to judge whether a series converges, but are
not told a starting point, then always start with a large enough starting point so that the terms
beyond that are well defined. For instance, if dealing with 1/(k ln(k − 1)), you need to start from
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k = 3. Note that even if you start later than the absolute earliest possible starting point, this will
not affect the conclusion on convergence.

(3) Use the correct letter: When writing the general expression for the term of a series (or sequence)
please use the same letter as the subscript for the general term. If the general term is written as ak,
then you should write it as a function of k, not of some other variable.

(4) Dummy variable cannot appear outside: The sum of a series whose terms are indexed by k cannot
have a k in it, because k, the index of summation, is a dummy variable.

(5) Keep distinction between terms and partial sums clear: The sum of a series is the limit of the partial
sums. When talking of the terms of a series

∑
ak, simply write ak, do not write

∑
ak. The partial

sum sn =
∑n

k=1 ak is not the same thing as a term of the series.

2. Root and ratio tests

Words ...
(1) Not for discussion: A geometric series with common ratio less than 1 is a discrete analogue of

exponential decay. A geometric series with common ratio greater than 1 is a discrete analogue of
exponential growth. The common ratio of the geometric series is a parameter controlling growth,
just as the constant k controls growth in ekx.

(2) If a series of nonnegative terms is eventually bounded from above by a geometric series with common
ratio less than 1, then the series converges. This is the idea behind both the root test and the ratio
test.

(3) The root test for a nonnegative series
∑

ak looks at the limit limk→∞ a
1/k
k . If this limit is less than

1, the root test tells us that the series converges. If the limit is greater than 1, the series diverges.
If the limit equals 1, the root test is indecisive (i.e., the series may converge or it may diverge).

(4) The ratio test for a nonnegative series
∑

ak looks at the limit limk→∞ ak+1/ak. If this limit is less
than 1, the series converges. If the limit is greater than 1, the series diverges. If the limit equals 1,
the ratio test is indecisive (i.e., the series may converge or it may diverge).

(5) Here is a slight modification of the root test: if a
1/k
k is greater than 1 for infinitely many k, the series

diverges. This is for the simple reason that the terms cannot go to 0. On the other hand, if the
sequence a

1/k
k is eventually bounded away from and below 1 (i.e., bounded from above by a number

strictly less than 1) then the series converges. The inconclusive case is thus where the sequence does
eventually get below 1 but cannot be bounded away from 1 (i.e., it has terms arbitrarily close to 1).

(6) Here is a slight modification of the ratio test: if ak+1/ak approaches 1 from the right, or, more
generally, if it is ≥ 1 for all sufficiently large k, the series diverges. This is because the terms do not
go to 0. On the other hand, if ak+1/ak is bounded away from and bleow 1, the series converges. The
inconclusive case is where the series comes really close to or overshoots 1 infinitely often.

(7) The root test is stronger than the ratio test. The reason is that the ratio test is highly sensitive to
the precise orderings of the terms, while the root test can handle small permutations. [An example
of this is in one of the advanced homework problems. Please look it up to refresh your memory.]

Actions ...
(1) The root test is more useful for power functions.
(2) The ratio test is more useful for factorials.
(3) For rational functions and for p-series, both tests are indecisive (the limit becomes 1), and we fall

back on the rule covered earlier about the difference of degrees of numerator and denominator.
(4) In some cases, it is somewhat more convenient to massage the series a little before applying the root

and ratio tests. As long as this massaging does not change the property of whether or not the series
converges, that is perfectly fine.

3. Absolute and conditional convergence

Words ...
(1) Not for discussion: When discussing the convergence of a series, we can throw out all the terms that

are zero.
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(2) Not for discussion: A series
∑

ak is termed absolutely convergent if the series
∑
|ak| converges. Note

that for a series of nonnegative terms, being absolutely convergent is equivalent to being convergent.
(3) Suppose a series

∑
ak is absolutely convergent. Then, the positive terms converge (say, to P ) and

the negative terms converge (say, to N). Moreover,
∑

ak is the sum P +N , and
∑
|ak| = |P |+ |N |.

(4) If a series is absolutely convergent, then it is convergent and every rearrangement of the series
converges to the same sum.

(5) If a series is not absolutely convergent but is convergent, it is termed conditionally convergent, and
the positive terms add up to +∞, the negative terms add up to −∞, and both the positive terms
and the negative terms go to 0.

(6) The Riemann series rearrangement theorem states that a series that is conditionally convergent but
not absolutely convergent can be rearranged to give any real number as its sum. It can also be
rearranged to give a sum of +∞ and it can also be rearranged to give a sum of −∞. It can also be
rearranged so that the sequence of partial sums oscillates between any two fixed locations. [Recall
that you heard some non-symbolic, purely didactic reasoning for this in class. Please review this
reasoning from the class notes.]

(7) The alternating series theorem states that a series whose terms have alternating signs, and have
magnitudes monotonically decreasing to zero, must converge. Moreover, the point to which the
series converges is the least upper bound of the decreasing sequence of even-numbered partial sums
and the greatest lower bound of the increasing sequence of odd-numbered partial sums. [Recall the
interpretation of this in terms of jumping along the number line.]

(8) (Questions: What happens if the magnitudes go to zero but not monotonically? What happens if
the series is not alternating? What happens if the magnitudes decrease monotonically but not to
zero?)

4. Taylor series

4.1. Taylor series at 0. Words ...

(1) Suppose f is a function defined and n times differentiable at 0. Then, the nth Taylor polynomial of
f is:

Pn(x) =
n∑

k=0

f (k)(0)
xk

k!

(2) The degree of the nth Taylor polynomial is ≤ n. Note that it is exactly n if and only if f (n)(0) 6= 0.
(3) The number of nonzero terms in the nth Taylor polynomial is at most n + 1, but it could be

substantially less, depending on how many of the n+1 numbers f(0), f ′(0), . . . , f (n)(0) are nonzero.
(4) For m < n, the mth Taylor polynomial is the truncation to terms of degree ≤ m of the nth Taylor

polynomial.
(5) The Taylor series is the infinite sum:

∞∑
k=0

f (k)(0)
xk

k!

The Taylor polynomials are thus truncations of the Taylor series.
(6) The Taylor series for exp, sin, cos, sinh, and cosh are particularly easy to write down because the

sequence of derivatives of these functions is periodic, hence so is the sequence of derivative values at
0. [Review the formulas]

(7) The Taylor series of a polynomial is the same polynomial.
(8) For exp, sin, cos, sinh, cosh, and polynomials, the Taylor series converges to the function everywhere.
(9) The Taylor series for an even function has nonzero coefficients only for even powers of x. In other

words, the Taylor series for an even function is an even power series. Similarly, the Taylor series for
an odd function has nonzero coefficients only for odd powers of x.

(10) The Taylor series of the derivative is the derivative (via term wise differentiation) of the Taylor series.
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(11) The Taylor series operator is linear and multiplicative: the Taylor series for f + g is the sum of the
Taylor series for f and g, and the Taylor series for f · g is the product for the Taylor series for f and
g. [Note: Multiplying two Taylor series is a pain in general. Howveer, if one of the functions is a
polynomial, it is not too hard. For instance, xex, x2 sin(x2), (2x + 1) cos x]

(12) Suppose g is a polynomial with zero constant term. Then, the Taylor series for f ◦g can be obtained
by taking the Taylor series for f , replacing x by g(x) throughout, and simplifying. Consider, for
instance, the Taylor series for sin(x2) and e−x2/2.

(13) The nth (Taylor) remainder Rn for a function f is defined as f − Pn, where Pn is the nth Taylor
polynomial for f . Taylor’s theorem states that if f is at least (n + 1) times differentiable, the
remainder Rn is given by Rn(x) = 1

n!

∫ x

0
f (n+1)(t)(x− t)n dt.

(14) The Lagrange formula is a corollary of Taylor’s theorem, and it states that there exists c between 0
and x such that Rn(x) = f (n+1)(c)xn+1/(n + 1)!. Here, c between 0 and x means c ∈ [0, x] if x > 0
and c ∈ [x, 0] if x < 0.

(15) A further corollary of the Lagrange formula (that we call the max-estimate here) states that |Rn(x)|
is at most |x|n+1/(n + 1)! times the maximum value of |f (n+1)(t)| for t between 0 and x.

(16) The max-estimate can be used to justify that the Taylor series for exp, sin, and cos actually converge
to the respective functions. This is done by showing that for any x ∈ R, we have limn→∞Rn(x) = 0.

(17) The zeroth Taylor polynomial for a function f is the constant function f(0). The first Taylor
polynomial is the constant/linear function f(0) + f ′(0)x. This describes the tangent line to the
function, and is the best straight line approximation to the function locally around 0. More generally,
the nth Taylor polynomial is the best approximation to the function around 0 among the polnyomials
of degree ≤ n.

4.2. Taylor series in x − a. It is an instructive exercise (and I urge you to do this) to translate all the
statements about Taylor series around 0 to the corresponding statements about Taylor series around an
arbitrary a ∈ R. In particular, see if you can correctly translate (pun intended) Taylor’s theorem, the
Lagrange formula, and its max-estimate corollary. We will go over this further in the review session.

5. Power series

Words ...
(1) The objects of interest here are power series, which are series of the form

∑∞
k=0 akxk. Note that

for power series, we start by default with k = 0. If the set of values of the index of summation is
not specified, assume that it starts from 0 and goes on to ∞. The exception is when the index of
summation occurs in the denominator, or some other such thing that forces us to exclude k = 0.

(2) Also note that x0 is shorthand for 1. When evaluating a power series at 0, we simply get a0. We do
not actually do 00.

(3) If a power series converges for c, it converges absolutely for all |x| < |c|. If a power series diverges
for c, it diverges for all |x| > |c|.

(4) Given a power series
∑

akxk, the set of values where it converges is either 0, or R, or an interval
that (apart from the issue of inclusion of endpoints) is symmetric about 0. In particular, the interval
could be of the following four forms: (−c, c), [−c, c], [−c, c), and (−c, c]. The radius of convergence
is c. Note that if the set of convergence is {0}, we say that the radius of convergence is 0, and if the
power series converges everywhere, we say that the radius of convergence is ∞.

(5) Suppose a power series
∑

akxk converges on an interval (−c, c) to a function f . Then, f is infinitely
differentiable on (−c, c) and the power series for f ′ is obtained by differentiating the power series for
f . In fact, the radius of convergence of the power series for f ′ is precisely the same as the radius
of convergence of the power series for f . On the other hand, the interval of convergence may differ
– the power series for f may converge at boundary points where the power series for f ′ does not.
An example is arctan, which has interval of convergence [−1, 1], but whose derivative has interval of
convergence (−1, 1).

(6) Suppose a power series
∑

akxk converges on an interval (−c, c) to a function f . Then, term wise
integration of this power series gives an antiderivative of f on (−c, c). In particular, if we choose the
power series with constant term 0, we get the unique antiderivative that takes the value 0 at 0.
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(7) Abel’s theorem states that if
∑

akxk = f(x) on (−c, c), f is left continuous at c, and
∑

akck

exists, then f(c) =
∑

akck. Similarly, if f is right continuous at −c, and
∑

ak(−c)k exists, then
f(−c) =

∑
ak(−c)k.

(8) We can also consider power series centered at a:
∑

ak(x− a)k. Everything translates nicely.
Deeper elaboration ...
(1) We have two kinds of operators: one from functions to power series (which involves taking the Taylor

series) and the other from power series to functions (which involves summing up). It turns out that,
if we start with a power series with a nonzero (possibly infinite) radius of convergence, look at the
function it converges to, and take the Taylor series of that function, we retrieve the original power
series. This follows from the differentiation theorem stated above, which states that the derivative of
a power series converges to the derivative of the function that the power series converges to.

(2) On the other hand, it is possible to start with a function f infinitely differentiable on R, take the
Taylor series, and have the Taylor series converge to some function other than f . An example is
the function that is e−1/x2

for all x 6= 0 and 0 at x = 0. The function is infinitely differentiable
everywhere and all its derivatives at 0 take the value 0. Thus, its Taylor series is 0, which obviously
converges to the zero function rather than the specified function.

(3) It is also possible to have a function f that is infinitely differentiable on all of R such that the Taylor
series of f converges to f , but the radius of convergence of the Taylor series is finite. More generally,
it is possible that the interval of convergence of the Taylor series is smaller than the domain of the
function. Two important examples in this direction are the arctan function (infinitely differentiable
on all of R but interval of convergence [−1, 1]) and the function ln(1+x) (infinitely differentiable on
(−1,∞) but interval of convergence (−1, 1]).

(4) Call a function globally analytic if it is defined on all of R and has a power series about 0 that converges
to the function everywhere. Sine, cosine, the exponential function, and polynomial functions are
all globally analytic. Moreover, globally analytic functions are closed under addition, subtraction,
multiplication, and composition.

(5) Call a function C∞ on R if it is defined and infinitely differentiable on all of R. The space of
C∞ functions is closed under addition, subtraction, multiplication, and composition. Moreover, any
globally analytic function is C∞. The converse is not true.

(6) A function is termed analytic about 0 if its Taylor series converges to it on an interval of nonzero
radius. Any function that is analytic about 0 is infinitely differentiable (C∞) around 0. However, the
function may well be C∞ on a bigger interval than the interval on which the Taylor series converges.

(7) If f and g have Taylor series that both converge on (−c, c) to the respective functions, the Taylor
series for f + g also converges on (−c, c) to it.

Actions ...
(1) We can consider functions in the following decreasing order of the behavior as x → ∞: double

exponential (like eex

, e2x

), exponential in higher powers of x (exλ

, λ > 1), factorial (x!, Γ(x), xx),
exponential (ax, a > 1), exponential in lower powers of x (exλ

, 0 < λ < 1), exponential in higher
powers of lnx (e(ln x)λ

, λ > 1), polynomial or power functions of x (xλ, which we can again split into
cases based on whether λ > 1, λ = 1, or 0 < λ < 1), polynomials in lnx, ln(lnx), and so on down.

(2) There is often quite a bit of separation within each level of the hierarchy (allowing for further
stratification). Anything at a higher level in the hierarchy beats anything at a lower level in the
hierarchy, so that the quotients tend to ∞ or 0 depending on which one is higher.

(3) The decay rates of the reciprocal functions mirror the growth rates of the functions.
(4) We use the term superexponential for functions that grow faster than exponential functions (for

instance, eex

, ex2
, and x!), exponential for functions that grow exponentially, and subexponential for

functions that grow smaller than exponential.
(5) In general, when adding, subtracting, and multiplying, the larger one dominates. Division by a

superexponential function leads to superexponential decay.
(6) Consider a power series

∑
akxk. If the ak grow superexponentially in k, then the series converges

only at 0. If the ak decay superexponentially in k (i.e., 1/ak grow superexponentially in k), then the
series converges everywhere. [Justify to yourself using the ratio and/or root test]
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(7) For
∑

akxk, if the ak grow or decay exponentially, then the radius of convergence is finite and
nonzero, and equals limk→∞ 1/|ak|1/k – in other words, the reciprocal of the limiting common ratio
of the aks. This is because at exponential growth, the aks match the xks and can affect the radius
of convergence.

(8) For
∑

akxk, if the ak grow or decay subexponentially, they have no effect on the radius of convergence
– it is still 1. More generally, if ak is the product of an exponential and a subexponential function,
only the exponential function affects the radius of convergence. The subexponential component does
affect whether the endpoints are included in the interval of convergence.

(9) As regards endpoints, the following is a rough statement. Consider
∑

akxk. If the aks are growing or
constant, the series diverges at ±1, so the interval of convergence is (−1, 1). If the aks are decaying at
a rate that is linear or slower, then the series does not absolutely converge, but it may conditionally
converge at one or both ends due to the alternating series theorem. If the aks are decaying at a rate
that is k−λ, λ > 1, then the series converges at both +1 and −1. Note that cases like 1/[k(1+(ln k)2)]
are ambiguous, as discussed earlier.

(10) In particular, if ak = p(k)/q(k) where p and q are polynomials, the following can be said: if the
degree of q is at least 2 greater than the degree of p, the interval of convergence is [−1, 1]. If the
degree of q is equal to or less than the degree of p, the interval of convergence is (−1, 1). If the
degree of q is exactly one more than the degree of p, the interval of convergence is [−1, 1). Note
that the endpoint included may change under slight modifications of the situation, so you should
also be aware of the reasoning process that leads to this conclusion. For instance, if there are only
odd degree terms and nonnegative coefficients, we do not get any alternating series and the interval
of convergence is (−1, 1). On the other hand, if there are odd degree terms and alternating signs of
coefficients among the odd degree terms, then the alternating series theorem applies at both ends −1
and 1.

6. Summation techniques

(1) For finite sums involving polynomials of small degree, use linearity and the formulas for summations
of 1, k, k2, k3.

(2) For reciprocals of quadratic functions, use partial fractions and then look for telescoping when the
quadratic can be factorized. If the quadratic cannot be factorized but is a perfect square, try to use
ζ(2) = π2/6. If the quadratic has negative discriminant, there is no closed form expression.

(3) In general, look for telescoping wherever you go. This includes rational functions, logarithms (e.g.,
ln((k + 1)/k)).

(4) Sometimes, for higher degree rational functions, you can combine telescoping with known information
about zeta functions.

(5) See if the summation is a geometric series in disguise, or combines two or more geometric series and
some possibly anomalous terms.

(6) Sometimes, the summation is related to a geometric series via integration or differentiation. For
instance

∑
kxk is related to

∑
xk via differentiation. Use the differentiation and integration theorems

to use these to get closed forms.
(7) In some cases, the summation is a known series such as that for the exponential, sine, cosine, arc

tangent or logarithm, with some modifications: it might involve a sum or difference of two such series,
it might be arrived at by composing such a series with mxn, it might be arrived by multiplying such
a series with mxn, it might be arrived at by integrating or differentiating such a series.

(8) To identify these possibilities better, here are some heuristics: factorials in denominator suggests
exponentials or sine/cosine, and the nature of sign alternation helps decide which. Ordinary k in
the denominator suggests logarithm or arc tangent, and the nature of sign alternation helps decide
which. [Exponential and logarithm have a sign periodicity of at most 2, while sine, cosine and arc
tangent have a sign periodicity of 4].
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