
POWER SERIES AND CONVERGENCE ISSUES

MATH 153, SECTION 55 (VIPUL NAIK)

Corresponding material in the book: Section 12.8, 12.9.
What students should definitely get: The meaning of power series. The relation between Taylor series

and power series, the notion of convergence, interval of convergence, and radius of convergence. The theorems
for differentiation and integration of power series. Convergence at the boundary and Abel’s theorem.

What students should hopefully get: How notions of power series provide an alternative interpre-
tation for many of the things we have studied earlier in calculus. How results about power series combine
with ideas like the root and ratio tests and facts about p-series.

Executive summary

Words ...
(1) The objects of interest here are power series, which are series of the form

∑∞
k=0 akxk. Note that

for power series, we start by default with k = 0. If the set of values of the index of summation is
not specified, assume that it starts from 0 and goes on to ∞. The exception is when the index of
summation occurs in the denominator, or some other such thing that forces us to exclude k = 0.

(2) Also note that x0 is shorthand for 1. When evaluating a power series at 0, we simply get a0. We do
not actually do 00.

(3) If a power series converges for c, it converges absolutely for all |x| < |c|. If a power series diverges
for c, it diverges for all |x| > |c|.

(4) Given a power series
∑

akxk, the set of values where it converges is either 0, or R, or an interval
that (apart from the issue of inclusion of endpoints) is symmetric about 0. In particular, the interval
could be of the following four forms: (−c, c), [−c, c], [−c, c), and (−c, c]. The radius of convergence
is c. Note that if the set of convergence is {0}, we say that the radius of convergence is 0, and if the
power series converges everywhere, we say that the radius of convergence is ∞.

(5) Suppose a power series
∑

akxk converges on an interval (−c, c) to a function f . Then, f is infinitely
differentiable on (−c, c) and the power series for f ′ is obtained by differentiating the power series for
f . In fact, the radius of convergence of the power series for f ′ is precisely the same as the radius
of convergence of the power series for f . On the other hand, the interval of convergence may differ
– the power series for f may converge at boundary points where the power series for f ′ does not.
An example is arctan, which has interval of convergence [−1, 1], but whose derivative has interval of
convergence (−1, 1).

(6) Suppose a power series
∑

akxk converges on an interval (−c, c) to a function f . Then, term wise
integration of this power series gives an antiderivative of f on (−c, c). In particular, if we choose the
power series with constant term 0, we get the unique antiderivative that takes the value 0 at 0.

(7) Abel’s theorem states that if
∑

akxk = f(x) on (−c, c), f is left continuous at c, and
∑

akck

exists, then f(c) =
∑

akck. Similarly, if f is right continuous at −c, and
∑

ak(−c)k exists, then
f(−c) =

∑
ak(−c)k.

(8) We can also consider power series centered at a:
∑

ak(x− a)k. Everything translates nicely.
Deeper elaboration ...
(1) We have two kinds of operators: one from functions to power series (which involves taking the Taylor

series) and the other from power series to functions (which involves summing up). It turns out that,
if we start with a power series with a nonzero (possibly infinite) radius of convergence, look at the
function it converges to, and take the Taylor series of that function, we retrieve the original power
series. This follows from the differentiation theorem stated above, which states that the derivative of
a power series converges to the derivative of the function that the power series converges to.
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(2) On the other hand, it is possible to start with a function f infinitely differentiable on R, take the
Taylor series, and have the Taylor series converge to some function other than f . An example is
the function that is e−1/x2

for all x 6= 0 and 0 at x = 0. The function is infinitely differentiable
everywhere and all its derivatives at 0 take the value 0. Thus, its Taylor series is 0, which obviously
converges to the zero function rather than the specified function.

(3) It is also possible to have a function f that is infinitely differentiable on all of R such that the Taylor
series of f converges to f , but the radius of convergence of the Taylor series is finite. More generally,
it is possible that the interval of convergence of the Taylor series is smaller than the domain of the
function. Two important examples in this direction are the arctan function (infinitely differentiable
on all of R but interval of convergence [−1, 1]) and the function ln(1+x) (infinitely differentiable on
(−1,∞) but interval of convergence (−1, 1]).

(4) Call a function globally analytic if it is defined on all of R and has a power series about 0 that converges
to the function everywhere. Sine, cosine, the exponential function, and polynomial functions are
all globally analytic. Moreover, globally analytic functions are closed under addition, subtraction,
multiplication, and composition.

(5) Call a function C∞ on R if it is defined and infinitely differentiable on all of R. The space of
C∞ functions is closed under addition, subtraction, multiplication, and composition. Moreover, any
globally analytic function is C∞. The converse is not true.

(6) A function is termed analytic about 0 if its Taylor series converges to it on an interval of nonzero
radius. Any function that is analytic about 0 is infinitely differentiable (C∞) around 0. However, the
function may well be C∞ on a bigger interval than the interval on which the Taylor series converges.

(7) If f and g have Taylor series that both converge on (−c, c) to the respective functions, the Taylor
series for f + g also converges on (−c, c) to it.

Actions ...

(1) We can consider functions in the following decreasing order of the behavior as x → ∞: double
exponential (like eex

, e2x

), exponential in higher powers of x (exλ

, λ > 1), factorial (x!, Γ(x), xx),
exponential (ax, a > 1), exponential in lower powers of x (exλ

, 0 < λ < 1), exponential in higher
powers of lnx (e(ln x)λ

, λ > 1), polynomial or power functions of x (xλ, which we can again split into
cases based on whether λ > 1, λ = 1, or 0 < λ < 1), polynomials in lnx, ln(lnx), and so on down.

(2) There is often quite a bit of separation within each level of the hierarchy (allowing for further
stratification). Anything at a higher level in the hierarchy beats anything at a lower level in the
hierarchy, so that the quotients tend to ∞ or 0 depending on which one is higher.

(3) The decay rates of the reciprocal functions mirror the growth rates of the functions.
(4) We use the term superexponential for functions that grow faster than exponential functions (for

instance, eex

, ex2
, and x!), exponential for functions that grow exponentially, and subexponential for

functions that grow smaller than exponential.
(5) In general, when adding, subtracting, and multiplying, the larger one dominates. Division by a

superexponential function leads to superexponential decay.
(6) Consider a power series

∑
akxk. If the ak grow superexponentially in k, then the series converges

only at 0. If the ak decay superexponentially in k (i.e., 1/ak grow superexponentially in k), then the
series converges everywhere. [Justify to yourself using the ratio and/or root test]

(7) For
∑

akxk, if the ak grow or decay exponentially, then the radius of convergence is finite and
nonzero, and equals limk→∞ 1/|ak|1/k – in other words, the reciprocal of the limiting common ratio
of the aks. This is because at exponential growth, the aks match the xks and can affect the radius
of convergence.

(8) For
∑

akxk, if the ak grow or decay subexponentially, they have no effect on the radius of convergence
– it is still 1. More generally, if ak is the product of an exponential and a subexponential function,
only the exponential function affects the radius of convergence. The subexponential component does
affect whether the endpoints are included in the interval of convergence.

(9) As regards endpoints, the following is a rough statement. Consider
∑

akxk. If the aks are growing or
constant, the series diverges at ±1, so the interval of convergence is (−1, 1). If the aks are decaying at
a rate that is linear or slower, then the series does not absolutely converge, but it may conditionally
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converge at one or both ends due to the alternating series theorem. If the aks are decaying at a rate
that is k−λ, λ > 1, then the series converges at both +1 and −1. Note that cases like 1/[k(1+(ln k)2)]
are ambiguous, as discussed earlier.

(10) In particular, if ak = p(k)/q(k) where p and q are polynomials, the following can be said: if the
degree of q is at least 2 greater than the degree of p, the interval of convergence is [−1, 1]. If the
degree of q is equal to or less than the degree of p, the interval of convergence is (−1, 1). If the
degree of q is exactly one more than the degree of p, the interval of convergence is [−1, 1). Note
that the endpoint included may change under slight modifications of the situation, so you should
also be aware of the reasoning process that leads to this conclusion. For instance, if there are only
odd degree terms and nonnegative coefficients, we do not get any alternating series and the interval
of convergence is (−1, 1). On the other hand, if there are odd degree terms and alternating signs of
coefficients among the odd degree terms, then the alternating series theorem applies at both ends −1
and 1.

1. Power series and convergence

So far, we have started with a function f and looked at the Taylor series for f , which is a power series
– like a polynomial, except that the terms just keep going on. We now develop a general theory of power
series, without being concerned about whether the power series arises as the Taylor series of a function. We
define a power series as a series that looks like:

∞∑
k=0

akxk

Note that we start the summation at 0, and we interpret x0 to be 1.
For any particular value of x, we get a series in the usual sense – a series of numbers. Thus, for any

particular value of x ∈ R, we can ask whether this power series converges. We say that the power series
converges on a set if it converges for all elements in the set.

We now state two basic results:
(1) If a power series converges for x = c, then it converges absolutely for all x satisfying |x| < |c|.
(2) If a power series diverges for x = c, then it diverges for all x satisfying |x| > |c|.

1.1. The interval of convergence. From the above, we see the following possibilities for the set of values
where a power series converges:

(1) Only 0: Note that a power series always converges at 0 to a0. It is possible to have power series
that do not converge anywhere else. What’s happening is that the coefficients grow so fast that they
overwhelm the geometric series xk. For instance

∑∞
k=0 2k2

xk diverges for all x 6= 0.
(2) Everywhere: This means that the power series converges for all real inputs. This happens when the

coefficients go down so quickly as to overwhelm any geometric progression. Typical examples are
the finite power series (i.e., polynomials) and the power series for sin, cos, and exp.

(3) There is a finite positive c such that the power series converges for all |x| < |c| and diverges for all
|x| > |c|. Such a c can be defined as the least upper bound over all |x| where the series converges for
x. This value c is termed the radius of convergence. Note that what happens at c and −c is unclear.
There are four possibilities for the interval of convergence: [−c, c] (which means that convergence
occurs both at c and at −c), (−c, c) (which means that convergence occurs at neither endpoint),
[−c, c) and (−c, c].

Here are examples for each of the four possibilities mentioned in (3):
∑∞

k=0 xk converges only on (−1, 1),∑∞
k=1 xk/k converges on [−1, 1),

∑∞
k=1(−1)kxk/k converges on (−1, 1], and

∑∞
k=0 xk/k2 converges on [−1, 1].

Note that one remarkable thing about the interval of convergence is that, apart from the issue of inclusion
of endpoints, it is symmetric about 0. This means that if we try to define the function:

f(x) =
∞∑

k=0

akxk

then the domain of f is almost symmetric about 0.
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1.2. Determining the radius of convergence. We use the root test to determine the radius of conver-
gence. Specifically, we note that if c is the radius of convergence, then for |x| < c, we expect |anxn|1/n

approaches something less than 1, and for |x| > c, it approaches something greater than 1. The radius of
convergence should thus be chosen so that |ancn|1/n → 1.

This gives us a formula for the radius of convergence:

c = lim
n→∞

1
|an|1/n

if such a limit exists.
In case the limit on the right side is 0, then we are in case (1). If the limit in the denominator is 0, the

radius of convergence is ∞.
There is a little problem with this, which is that some of the ans may be 0. The way to get around it is

to use a notion of limit superior and limit inferior instead of limit. However, we have not developed these
notions in detail, so will skip it. In practice, just take the limit for that subcollection of ans that are nonzero.
This will suffice for most of the examples that we consider, though a foolproof approach must use the limit
superior/limit inferior idea.

We can also adapt the ratio test to determine the radius of convergence. The adaptation of the ratio test
yields that:

c = lim
n→∞

|an|
|an+1|

if such a limit exists. This works particularly well when the ans involve factorials.

2. Differentiation and integration of power series

Given a power series:

∞∑
k=0

akxk

We can apply a procedure called formal differentiation or term wise differentiation, which basically just
differentiates it term by term. We get:

∞∑
k=1

kakxk−1

Re-indexing the dummy variable for summation, we get:

∞∑
k=0

(k + 1)ak+1x
k

This is also a power series.
We have the following results:
(1) If a power series converges on (−c, c), the power series obtained by term wise differentiation also

converges on (−c, c) (Theorem 12.9.1). Note that this does not mean that wherever a power series
converges, so does the formal derivative. It is possible that a power series converges on [−c, c] but
its derivative does not converge at one or both of the boundary points.

(2) The differentiability theorem (Theorem 12.9.2): If a power series converges on (−c, c), then its formal
derivative power series converges on (−c, c), and the function to which the formal derivative converges
is the derivative of the function to which the series converges. Formally, if f(x) =

∑∞
k=0 akxk, then

f ′(x) =
∑∞

k=1 kakxk−1.
(3) As a corollary of the differentiability theorem, if f is the function to which the power series

∑∞
k=0 akxk

converges on (−c, c), then f is infinitely differentiable on (−c, c) and each of its derivatives can be
expressed using a power series obtained by differentiating the power series for f the required number
of times.
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(4) Term by term integration (Theorem 12.9.3): If f(x) =
∑∞

k=0 akxk on (−c, c), then term by term
integration of the power series of f converges to an antiderivative of f on (−c, c). The new series
is

∑∞
k=0 akxk+1/(k + 1). Note that this is the particular antiderivative that takes the value 0 at 0.

Adding a constant C gives the antiderivative that takes the value C at 0.
(5) Abel’s theorem (Theorem 12.9.5): Suppose that f(x) =

∑∞
k=0 akxk on (−c, c). Then, if f is left

continuous at c and
∑∞

k=0 akck converges, it converges to f(c). Similarly, if f is right continuous at
c and

∑∞
k=0 ak(−c)k converges, it converges to f(−c).

In particular, when a power series converges everywhere, we can merrily differentiate and integrate to
our hearts’ contents. Combining these theorems, we can conclude that the radius of convergence of a power
series and of its formal derivative are exactly equal, though it is possible that the power series converges at
one or both endpoints for the function but not at the derivative..

3. Power series and Taylor series

3.1. Back and forth. We have done two kinds of things:
(1) Start from a (infinitely differentiable) function and compute the Taylor polynomials and Taylor series

of the function. The goal is to approximate the function using polynomials.
(2) Start from a power series, figure out where it converges, and consider the function to which it

converges. On the interior of the interval of convergence, the function is infinitely differentiable.
We have two kinds of mappings:
Infinitely differentiable functions  Power series (i.e., the Taylor series of the function)
Power series  Infinitely differentiable functions (i.e., the function obtained by actually doing the sum-

mation at each point)

3.2. Inverses of each other? The next natural question is whether the two mappings are inverses of each
other. This breaks up into two questions:

(1) Start with an infinitely differentiable function f . Take its Taylor series and now consider the interval
of convergence of this power series. Does the Taylor series converge to f on its interval of convergence?

(2) Start with a power series with a nonzero (positive or infinite) radius of convergence. Consider the
function to which it converges on the interval of convergence, and take the Taylor series of that
function. Do we get back the original power series?

The answer to the first question is no and the answer to the second question is yes.

3.3. The answer to (2) is yes. If we start with a series, look at the function it converges to, and take
the Taylor series of that function, we get back the original series. This can easily be verified from the
differentiability theorem.

The way this works is as follows: suppose f is the function obtained from the power series
∑

akxk. Then,
by the differentiability theorem applied m times and evaluate at 0. The value at 0 turns out to be k!ak.
This means that f (k)(0) = k!ak. Rearranging, we see that ak = f (k)(0)/k!, so the power series we started
with has the same coefficients as the Taylor series of f .

3.4. Why the answer to (1) is no. There are three things that could go wrong:
• The Taylor series for the function does not converge anywhere, so the question that (1) poses becomes

meaningless.
• The Taylor series for the function converges, but not to the original function. An example of this is

the function described below.
• The Taylor series does converge to the function, but the interval of convergence of the Taylor series

is a lot smaller than the domain of definition of the function.
Consider the function:

f(x) := { e−1/x2
, x 6= 0

0, x = 0
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By definition f(0) = 0. We can check that f is continuous at 0, and in fact, it is infinitely differentiable
at 0 and all its derivatives take the value 0 at 0. Thus, the Taylor series for f is the zero series. However, f
is not the zero function.

On the other hand, for polynomials, the sine function, the cosine function, and the exponential function,
the power series does converge back to the original function, and the radius of convergence is all of R. One
way to establish this (which we did in the previous lecture) is using the Lagrange formula for the remainder,
and show that, as n →∞, the remainder goes to zero.

For some other functions, the power series converges to the function on a small interval, even though the
function is defined on a bigger interval. For instance, the function ln(1+x) has a power series that converges
on (−1, 1] even though the function is defined on (−1,∞). Intuitively, the interval of convergence of the
power series must be roughly symmetric about 0, whereas the domain of definition of the function may be
a lot bigger.

We can make this more precise. For any infinitely differentiable function f whose domain D is an open
interval containing 0 (possibly infinite in one direction) and such that the function cannot be extended
immediately beyond D, then the radius of convergence of the Taylor series of f cannot be more than the
smaller of the two sides about 0. For instance, for a function defined on (−1, 3), the radius of convergence
of the Taylor series about 0 cannot be more than 1, while for a function defined on (−∞, 2.3), the radius of
convergence of the Taylor series cannot be more than 2.3.

Thus, we can say offhand that, for the function tan, the radius of convergence of its power series cannot
be more than π/2, because the function goes off to ∞ at π/2 and to −∞ at −π/2.

Is it possible for the Taylor series to converge to the function on an open interval about 0, but not on the
largest possible symmetric interval? Indeed it is. An example of this is the arctan function. This function
is defined and infinitely differentiable on all of R. However, its interval of convergence is [−1, 1]. This is an
application of the integration theorem, the theorem on convegence of alternating series, and Abel’s theorem,
and we will see this in the next section.

3.5. Power series centered at points other than 0. We discussed Taylor series centered at points a
other than 0. We can analogously discuss power series centered at any point λ: there are series of the form∑

ak(x− λ)k. The results stated above are easy to translate (in both senses of the word) to this putatively
more general context.

3.6. Real-analytic functions: where the answer to (1) is yes. A globally analytic function is a function
that has a Taylor series that converges to the function everywhere. Globally analytic functions are everywhere
infinitely differentiable, but infinitely differentiable functions need not be globally analytic (as the e−1/x2

example illustrates). Here are some important facts about globally analytic functions:
(1) Sine, cosine, the exponential function, and polynomials are all globally analytic functions.
(2) Globally analytic functions are closed under addition, subtraction, and scalar multiplication. More-

over, addition of functions corresponds to addition of the series, subtraction of functions corresponds
to subtraction of series, and scalar multiplication of a function corresponds to scalar multiplication
of its series. Thus, the globally analytic functions form a R-vector space.

(3) Globally analytic functions are closed under multiplication. Multiplication of functions corresponds
to multiplication of series, where the multiplication of power series is carried out in a manner gen-
eralizing multiplication of polynomials. Combining with the previous observation, we obtain that
globally analytic functions form a R-algebra.

(4) Globally analytic functions are closed under differentiation and integration. Any derivative of a
globally analytic function is globally analytic. Any antiderivative of a globally analytic function is
globally analytic.

(5) Globally analytic functions are closed under composition. Composition of functions corresponds to
basically plugging in place of the x in one series the entirety of the other series. For instance, for
sin(x2), we plug in x2 in place of x in the power series of x. For sin(cos x), we plug in the entire
power series for cos x in place of x in the power series for sin.

(6) Globally analytic functions are not closed under taking quotients. For instance, 1/(x2 + 1) is not
globally analytic. This is a very important observation because it is one of the reasons why we can
exit the world of globally analytic functions.
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In addition to globally analytic functions, we are also interested in locally analytic functions: functions
whose Taylor series have nonzero radius of convergence and converge to the function on that nonzero radius.
Some examples of locally analytic functions that are not globally analytic include the tangent, arc tangent,
and logarithm function. Analogues of all the observations (except the last one) about globally analytic
functions can be made about locally analytic functions. Note that when we add two functions with different
radii of convergence, the radius of convergence of the sum could be as low as the minimum of the two radii
of convergence.

4. Playing around with power series, differentiation, and integration

4.1. Rational functions: basics. We begin by exploring the power series for rational functions. We
already know, by the geometric series formula, that:

1
1− x

= 1 + x + x2 + . . .

with the radius of convergence equal to 1.
Some corollaries and related formulas, all with radius of convergence 1, are:

1
1 + x

= 1− x + x2 − x3 + x4 − . . .

1
1 + x2

= 1− x2 + x4 − x6 + x8 − x10 + x12 − . . .

1
1− xn

= 1 + xn + x2n + . . .

1
1 + xn

= 1− xn + x2n − x3n + x4n − . . .

1
(1− x)2

= 1 + 2x + 3x2 + . . .

We can use these to quickly determine the power series expansions for x/(1 + x2), 1/(1 + x2)2, and so on,
using composition and multiplication.

4.2. Logarithm function. Using the integration theorem, we see that:∫ x

0

dt

1 + t
= x− x2

2
+

x3

3
− x4

4
+ . . .

The left side is ln(1 + x) for x ∈ (−1,∞), and we thus get that, at least for x ∈ (−1, 1):

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ . . .

The limit of the function at −1 is −∞, and the limit of the function at 1 is ln 2. By the theorem on
alternating series, the series converges at 1. Hence, by Abel’s theorem, the series converges at 1 to ln 2, and
we get:

ln 2 = 1− 1
2

+
1
3
− 1

4
+

1
5
− . . .

which can be written more compactly as:

ln 2 =
∞∑

k=1

(−1)k−1

k
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4.3. Arc tangent function. Using the integration theorem, we see that:∫ x

0

dt

1 + t2
= x− x3

3
+

x5

5
− . . .

with the radius of convergence again equal to 1. We already know that the left side is arctanx, so we
obtain:

arctanx = x− x3

3
+

x5

5
− x7

7
+ . . .

The radius of convergence is 1, so the series converges absolutely on (−1, 1). Does the series converge at
−1 and at 1? It turns out that:

• By the theorem of alternating series, the series does converge at 1. Thus, by Abel’s theorem, we
obtain that arctan 1 equals the value of the series at 1. We thus obtain:

π

4
= 1− 1

3
+

1
5
− 1

7
+

1
9
− . . .

• The same theorem works at −1, giving:

−π

4
= −1 +

1
3
− 1

5
+

1
7
− . . .

4.4. Other rational functions. Consider:

1
(1− x)(2− x)

Using Taylor series to find its expansion is tedious. Instead, we use the known expansion for (1 − x)−1

and (1− (x/2))−1 and get:

1
2
(1 + x + x2 + . . . )(1 + (x/2) + (x/2)2 + . . . )

The radii of convergence for the two series are 1 and 2 respectively, and so the overall radius of convergence
is 1. We can now do polynomial-style multiplication to determine the coefficients of the power series.

4.5. Integrating the unintegrable. Earlier in the course, we encountered many functions that could not
be integrated in terms of other elementary functions. Power series, however, allow us to integrate many more
functions. Specifically, if we can express a function in terms of a power series, we can express its integral
in terms of a power series, even if there is no description of the power series directly in terms of elementary
functions.

We use this to re-explore some of the unintegrable functions seen earlier in the course.
Recall the function, which we’ll here call ERF:

ERF (x) =
∫ x

0

e−t2 dt

The power series expansion for e−x2
is:

1− x2

1!
+

x4

2!
− x6

3!
+ . . .

Integrating term wise, we obtain that:

ERF (x) = x− x3

1! · 3
+

x5

2! · 5
− x7

3! · 7
+ . . .

This power series expansion allows us to calculate ERF (x) to any desired degree of accuracy without
having to use the various techniques of integration such as partitions, upper sums, and lower sums.

Another function that we looked at in the part was:
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Si(x) =
∫ x

0

sin t

t
dt

Again, we can write:

sinx

x
= 1− x2

3!
+

x4

5!
− x6

7!
+ . . .

Integrating term wise, we obtain that:

Si(x) = x− x3

3 · 3!
+

x4

5 · 5!
− x6

7 · 7!
+ . . .

5. Eyeballing to determine convergence

5.1. Hierarchy of functions. Here is a useful hierarchy to remember:

(1) Double exponential and other such monstrosity.
(2) Exponential in xr, r > 1.
(3) Factorial, or Γ function. Roughly, exponential in x lnx.
(4) Exponential or geometric.
(5) Exponential in xr, r < 1.
(6) Exponential in (ln x)r, r > 1.
(7) Polynomial, or about xr, r > 0.
(8) Polynomial in the logarithm.

This is a rough hierarchy of the important functions. Note that the ones above geometric are double
exponential, exponential in xr, r > 1, and factorial. These are the functions that totally dominate the
behavior of geometric series. If this kind of function is in the numerators of terms of a power series, the
power series has radius of convergence 0. If this kind of function is in the denominators of terms of power
series, the power series has radius of convergence ∞.

Thus, the following power series have radius of convergence 0:

(1)
∑

k!xk

(2)
∑

2k2
xk

(3)
∑

22k

xk

On the other hand, the following power series have radius of convergence ∞:

(1)
∑

xk/k! or similar power series.
(2)

∑
e−k2

xk

(3)
∑

e−2k

xk.

On the middle hand, if the coefficients of the power series are exponential or subexponential, then the
power series usually has a finite radius of convergence. We consider some of these cases below.

5.2. Power series where the coefficients are exponential. If the coefficients are exponential, then
these determine the radius of convergence, For instance

∑
2kxk has radius of convergence 1/2.

5.3. Power series where the coefficients are rational functions. Consider a situation where the
coefficients ak are rational functions. In this case, the geometric behavior of the series dominates over the
coefficients, and the radius of convergence is 1.

The rational function does affect something: convergence at the boundary, i.e., convergence at 1 and −1.
Here, we follow two major rules:

(1) The rule for alternating series usually settles zero or one of the two boundary points, where the
terms of the series have alternating signs.

(2) For the other boundary point(s), where all terms have the same sign, the criterion for convergence
is that the degree of the denominator should be at least 2 more than the degree of the numerator.

9



Thus,
∑

xk/k2 converges on [−1, 1], because the series has positive terms at both boundary points and
the denominator has degree 2 more than the numerator.

∑
xk/k converges on [−1, 1) – convergence at −1

because of alternating series, and diverging at 1 because the degree gap between the numerator and the
denominator is just 1.

5.4. Power series where the coefficients are product of rational function and exponential func-
tion. In this case, the exponential part determines the radius of convergence, and the rational function part
determines the issue of convergence at the boundary.

For instance, consider the power series:

∞∑
k=0

(2x)k

k2 + 1

The coefficients have an exponential component 2k and a subexponential component 1/(k2 + 1). The
exponential component determines the radius of convergence, which in this case becomes 1/2. The subex-
ponential components determines whether the series converges at the endpoints −1/2 and 1/2. In this case,
since

∑
1/(k2 + 1) is absolutely convergent, convergence occurs at both endpoints.

Consider another power series:

∞∑
k=0

x2k

k ln(2 + k)3k

The radius of convergence is
√

3. At the endpoint
√

3, we get:

∞∑
k=0

1
k ln(2 + k)

which diverges by the integral test. At the other endpoint −
√

3, we get the same summation, which again
diverges by the integral test. So the interval of convergence is (−

√
3,
√

3).
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