
THE LEAST UPPER BOUND AXIOM

MATH 153, SECTION 55 (VIPUL NAIK)

Corresponding material in the book: Section 11.1.
What students should already know: The intuitive idea of the real line, basic algebra and calculus

as done in the course up to this point for motivation/background.
What students should definitely get: The definitions of least upper bound and greatest lower bound,

the definition of boundedness, the statements about the existence of these in the real numbers. Computation
of these in special cases.

Executive summary

Words ...

(1) The real numbers satisfy the least upper bound property: any nonempty subset of the set of real
numbers that is bounded from above has a least upper bound. This property does not hold if we
replace the real numbers by the rational numbers.

(2) The real numbers satisfy the greatest lower bound property: any nonempty subset of the set of real
numbers that is bounded from below has a greatest lower bound. This property again does not hold
if we replace the real numbers by the rational numbers.

(3) We can prove the greatest lower bound property using the least upper bound property. There are
two proofs of this. One of these proofs involve reflection: replacing a set by its set of negatives. The
other proof, which is there in the book, is also worth going through. Please go through it. I’ll go
through it in review session. You will not be asked the proof in the test, but it may be helpful for
multiple choice questions and other conceptually based problems.

(4) The natural numbers satisfy a property that is somewhat similar to the greatest lower bound property
for the reals, but stronger: any nonempty subset of the set of natural numbers has a least element.
This is equivalent to the principle of mathematical induction.

(5) If a nonempty subset of the real numbers has a maximum element, then that element is also the
least upper bound of the set. Conversely, if the least upper bound of a set is in the set, then that is
also the maximum element of the set.

(6) If a nonempty subset of the real numbers has a minimum element, then that element is also the
greatest lower bound of the set. Conversely, if the greatest lower bound of a set is in the set, then
that is also the minimum element of the set.

(7) A nonempty finite subset always has a maximum and a minimum element. Thus, its greatest lower
bound and least upper bound are both in the set.

(8) For an interval with lower endpoint a and upper endpoint b, the least upper bound is b and the
greatest lower bound is a. Note that this holds for all the four possibilities for the interval: [a, b],
(a, b), [a, b), and (a, b].

(9) If T is a nonempty subset of a nonempty bounded subset S of R, any lower bound for S remains
a lower bound for T and any upper bound for S remains an upper bound for T . However, we may
have an upper bound for T that is not an upper bound for S. Similarly, we may have a lower bound
for T that is not a lower bound for S. Thus, the least upper bound for T is ≤ the least upper bound
for S, and the greatest lower bound for T is ≥ the greatest lower bound for S.

(10) A set does not have an upper bound if and only if it has arbitrarily large elements. Similarly, a set
does not have a lower bound if and only if it has arbitrarily small elements (i.e., negative elements
of arbitrarily large magnitude).

(11) If M is the least upper bound of a nonempty subset S of R, then, for every ε > 0, S has a nonempty
intersection with the interval (M−ε,M ]. In particular, if M /∈ S, then S has a nonempty intersection
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with the interval (M − ε,M). (See also the analogous theorem for greatest lower bounds, which is
Theorem 11.1.4 in the book).

Actions ...
(1) To compute the greatest lower bound and least upper bound of a set, we first need to compute the

set. Finding the set as a union of intervals is often useful.
(2) Given a set S, we can construct corresponding sets such as S+λ (translation), −S (reflection about

0), f(S) (image of S under a function f), and abs(S) (the set of absolute values of elements of
S, i.e., folding about 0). Please review the results that relate bounds for S with bounds on these
corresponding sets.

1. Ordering, boundedness, and related properties

1.1. A total ordering. The real numbers, as we have come to understand them, are a totally ordered set.
This means that for any two real numbers a and b, one of three possibilities holds:

(1) a < b: Equivalent formulations are b > a, a − b < 0, and b − a > 0. In words, we say that a is less
than or smaller than b.

(2) a = b: Equivalent formulations are b = a, a− b = 0, and b− a = 0.
(3) a > b: Equivalent formulations are b < a, b−a < 0, and a− b > 0. In words, we say that a is greater

than or bigger than b.
We also know that if a < b and b < c, then a < c.
Any two real numbers are comparable. We can say for sure that one real number is bigger or smaller

than another. In other words, the real numbers can be arranged in increasing order, since they are arranged
on a line. This total ordering is something very specific to the real numbers and subsets thereof. It breaks
down for more complicated mathematical structures, such as the complex numbers, vector spaces over the
real numbers, or polynomials. In many of those cases, we can artificially impose an ordering, but it does not
behave in a nice and familiar way.

1.2. The reals, the rationals, and the integers. There are many subsets of the reals with qualitatively
different behavior, but we concentrate on four important subsets that, when studied together, shed light on
many of the issues of interest.

(1) The positive integers or natural numbers, denoted N. These start at 1, and go like 1, 2, 3, . . . . A
very important feature of the positive integers is that every nonempty subset of the positive integers
has a smallest element. This can be reformulated as the principle of mathematical induction: if a
statement is true for 1 and its truth for k implies its truth for k + 1, then it is true for all positive
integers.

(2) The integers, denoted Z. Unlike the positive integers, they do not satisfy the property that every
nonempty subset has a least element. The integers stretch to infinity in both directions. However,
just like the positive integers, they are discrete – for every integer, there is a unique successor (a
unique smallest integer that’s the next integer) and a unique predecessor (a unique largest integer
that’s the previous integer).

(3) The rational numbers, denoted Q. These differ from the integers in the following important respect:
they have a density property. Between any two rational numbers, there is yet another rational
number. And this process can be repeated ad infinitum, so between any two rational numbers,
there are infinitely many rational numbers. Although the rational numbers are dense, they are not
complete – there are holes. We can have a bunch of rational numbers that seem to be heading to
some specific number that turns out to be irrational.

(4) The real numbers, denoted R. These include the rational numbers and more numbers that can be
arrived at by taking limits of rational numbers. The set of real numbers is complete in the sense
that it has no holes. If a sequence of real numbers is headed somewhere finite, it is headed towards
a real number.

We would like to make precise the notion of completeness of the real numbers, i.e., the idea that the real
numbers don’t have holes. There are many different (and equivalent) ways of doing this. The one we will
follow is the least upper bound axiom, which we discuss next.
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Aside: Sequences and sizes of infinite sets. A sequence of real numbers is defined as a function from
N to R. The sequence can be written as a list:

f(1), f(2), . . . , f(n), . . .

Conversely, any list can be thought of as a function:

a1, a2, . . . , an, . . .

where the function is defined as f(n) = an.
An infinite subset of the reals is countable if there is a sequence of real numbers that includes all elements

in the subset. In other words, we can count, or list, all elements of the subset. It turns out that:
(1) The set of natural numbers (positive integers) is countable. We can just use the sequence 1, 2, 3, . . . ,

which corresponds to the identity function on N.
(2) The set of integers is countable. We can use the sequence 0, 1,−1, 2,−2, 3,−3, . . . . Note that this

sequence involves alternating between the positive and negative numbers, so it does not preserve the
usual ordering.

(3) The set of rational numbers is countable. The way we list the rational numbers does not preserve
the usual ordering, and involves a snake-like path.

(4) The set of real numbers is not countable. In other words, there is no way to list all real numbers.
Thus, in this sense, even though all the four sets N, Z, Q, and R are infinite, R is a bigger set than the

other three. Note that although N ⊂ Z ⊂ Q, the ostensibly bigger and much more dense set Q is not bigger
in terms of number of elements than the ostensibly smaller N.

1.3. Boundedness, upper bounds, and lower bounds. Suppose S is a nonempty subset of the real
numbers. An element a ∈ R is termed an upper bound for S if x ≤ a for all x ∈ S. In particular, we allow
the upper bound to be in the set. A nonempty subset of R that has an upper bound is said to be bounded
from above.

An element b ∈ R is a lower bound for S if b ≤ x for all x ∈ S. In particular, we allow the lower bound to
be in the set. A nonempty subset of R that has a lower bound is said to be bounded from below.

A nonempty subset of R is said to be bounded if it is both bounded from above and bounded from below.
Some comments:

(1) a is an upper bound for S if and only if S ⊆ (−∞, a].
(2) b is a lower bound for S if and only if S ⊆ [b,∞).
(3) a is an upper bound for S and b is a lower bound for S if and only if S ⊆ [b, a].

1.4. Least upper bound and greatest lower bound. Suppose S is a nonempty subset. An element
a ∈ R is termed a least upper bound for S if a is an upper bound for S and, for any upper bound a′ of S,
a ≤ a′. In other words, a is the least possible element we can choose as an upper bound.

We can make two petty observations without much thought:
(1) For a least upper bound to exist, the set must be bounded from above.
(2) If a and a′ are both least upper bounds for a nonempty subset S, then a = a′. This is because each

one is less than or equal to the other.
Now, whatever we have said so far applies inside the real numbers, but it also applies inside the rational

numbers, inside the integers, and inside the positive integers. In fact, it applies more abstractly inside any
totally ordered set. However, what we are going to say now is something very specific to the real numbers,
in so far as it captures a completeness property of the real numbers. This says that:

Any nonempty subset of the real numbers that is bounded from above has a least upper
bound which is also a real number.

As already mentioned in the two points made above, the “bounded from above” condition is clearly
necessary, and also, the least upper bound must be unique. Thus, for a subset S of R that is bounded from
above, we denote the least upper bound of S by lub(S).

In a similar vein, we can define the notion of greatest lower bound, and we have the following:
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Any nonempty subset of the real numbers that is bounded from below has a greatest lower
bound.

Similar to the previous case, the “bounded from below” condition is necessary, and the greatest lower
bound must be unique. We denote this by glb(S).

1.5. Pedestrian observations.

(1) The following are equivalent for a nonempty subset S of R:
(a) S has a maximum element – an element that is larger than every other element of S.
(b) The least upper bound of S is in S.
Moreover, if these equivalent conditions hold, the maximum element equals the least upper bound.

(2) The following are equivalent for a nonempty subset S of R:
(a) S has a minimum element – an element that is smaller than every other element of S.
(b) The greatest lower bound of S is in S.
Moreover, if these equivalent conditions hold, the minimum element equals the greatest lower bound.

(3) A finite set has a maximum element and a minimum element. Thus, any finite set contains its least
upper bound and greatest lower bound.

(4) For an interval with lower endpoint a and upper endpoint b, the least upper bound is b and the
greatest lower bound is a. Note that this holds for all the four possibilities for the interval: [a, b],
(a, b), [a, b), and (a, b]. The key distinction between the closed and open situation is not in the value
of the upper/lower bound but in whether that value is contained in the set we start with.

(5) If T is a nonempty subset of a nonempty bounded subset S of R, any lower bound for S remains
a lower bound for T and any upper bound for S remains an upper bound for T . However, we may
have an upper bound for T that is not an upper bound for S. Similarly, we may have a lower bound
for T that is not a lower bound for S. Thus, the least upper bound for T is ≤ the least upper bound
for S, and the greatest lower bound for T is ≥ the greatest lower bound for S.

(6) A (set does not have an upper bound) if and only if (it has arbitrarily large elements). Similarly,
a set (does not have a lower bound) if and only if (it has arbitrarily small elements (i.e., negative
elements of arbitrarily large magnitude)).

1.6. Boundedness of a set and of related sets. Given a nonempty set S ⊆ R, we can construct the
following sets:

(1) Translation: S + λ, which is defined as {s+ λ : s ∈ S}: a is an upper (respectively lower) bound for
S if and only if a + λ is an upper (respectively lower) bound for S + λ. S is bounded from above
(respectively below) if and only if S + λ is. The least upper bound and greatest lower bound both
get translated to the right by λ. In other words, the least upper bound of S + λ is λ plus the least
upper bound of S, and the greatest lower bound of S + λ is λ plus the greatest lower bound of S.

(2) Reflection about 0: −S, which is the set {−s : s ∈ S}. a is an upper (respectively lower) bound for S
if and only if −a is a lower (respectively upper) bound for S. S is bounded from above (respectively
below) if and only if −S is bounded from below (respectively above). The least upper bound for
−S is the negative of the greatest lower bound for S, and the greatest lower bound for −S is the
negative of the least upper bound for S (these statements are subject to existence).

(3) Folding about 0: The set abs(S) = {|s| : s ∈ S}. Although this could be denoted |S|, that notation
is often used for the size (or number of elements) of S, so we will refrain from that notation. S is
bounded (i.e., bounded from both above and below) if and only if abs(S) is bounded from above.
Note that abs(S) is always bounded from below by 0. Moreover, the least upper bound of abs(S) is
the maximum of the absolute values of the greatest lower bound and least upper bound of S.

(4) An increasing function: Suppose f : R → R is a continuous increasing function and f(S) is the
image of S under f . Then, the least upper bound of the image f(S) is the image under f of the
least upper bound of S, while the greatest lower bound of the image f(S) is the image under f of
the greatest lower bound of S.

(5) A decreasing function: Suppose f : R→ R is a continuous decreasing function and f(S) is the image
of S under f . Then, the greatest lower bound of the image f(S) is the image under f of the least
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upper bound of S, while the least upper bound of the image f(S) is the image under f of the greatest
lower bound of S.

(6) The least upper bound (respectively greatest lower bound) of a set of rational numbers may be
rational or irrational. Similarly, the least upper bound (respectively greatest lower bound) of a set
of irrational numbers may be rational or irrational.

2. Some important results

2.1. There are numbers arbitrarily close up to the least upper bound. The statement of the theorem
is:

If M is the least upper bound of a nonempty subset S of R, then, for every ε > 0, S has a
nonempty intersection with the interval (M − ε,M ]. In particular, if M /∈ S, then S has a
nonempty intersection with the interval (M − ε,M).

The proof is straightforward. Suppse there exists ε > 0 such that S has empty intersection with the
interval. Then, we can easily check that M−ε is also an upper bound for S, which contradicts the minimality
of M as an upper bound for S.

A similar statement holds for the greatest lower bound.
Basically, what these results are saying is that for something to qualify as the least upper bound or

greatest lower bound, it either must be in the set or there must be stuff arbitrarily close to it that is in the
set. It should not be possible to isolate it away from the set that it claims to be the best bound on.

2.2. Deriving the least upper bound and greatest lower bound results from each other. In the
book’s presentation, the statement about the existence of a least upper bound is stated as an axiom while
the statement about the existence of a greatest lower bound is stated as a theorem, proved using the least
upper bound axiom.

In reality, there is an elaborate construction procedure for the real numbers, and the details of that
construction procedure guarantee both the least upper bound and the greatest lower bound properties.
However, since we are not going through the construction procedure, we take a shortcut by treating the least
upper bound existence statement as a given. It turns out, though, that the statement about the greatest
lower bound can be deduced from it. There are two ways of deducing it:

(1) Reflection about 0: This interchanges the role of upper and lower bounds. We can use the least
upper bound axiom on −S to deduce the greatest lower bound property for S.

(2) The method as given in the book: The crux of this method is the following observations: (a) the
greatest lower bound of a set is the least upper bound of the set of lower bounds of the set, (b)
the set of lower bounds on a nonempty set S is bounded from above by an element of S, hence is
bounded from above. We use the least upper bound axiom to argue that the set of lower bounds of
S has a least upper bound, and then use (a) to show that this least upper bound of the set of lower
bounds of S is also the greatest lower bound for S. For a formal proof, refer to the book.

The second approach may seem a little dense (in the non-mathematical sense) – why go for this kind of
twisted logic when we can simply use the reflection about 0 proof? There is a deep reason.

The proof that involves the use of reflection about 0 is drawing on the additive structure of the real
numbers and the behavior of the negation operation. Thus, this proof does not generalize to arbitrary
totally ordered sets. On the other hand, the second proof uses nothing special about the real numbers and
is equally valid for any totally ordered set. In other words, the second proof is valid over any totally ordered
set, and says that a totally ordered set satisfies the least upper bound property if and only if it satisfies the
greatest lower bound property.
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