
INTEGRATION BY PARTS AND RELATED MISCELLANEA

MATH 153, SECTION 55 (VIPUL NAIK)

Corresponding material in the book: Section 8.2, part of Section 8.3 (some of the material of Section
8.3 is a repeat of earlier ideas; that part is not discussed in these lecture notes).

Difficulty level: For the key ideas, easy to moderate, depending on the extent to which you have seen
integration by parts before. For some of the subtler notions, moderate to hard.

What students should already know: The product rule for differentiation, graphical interpretation
of integral as area.

What students should definitely get: The formal procedure/formula for integration by parts. Ap-
plying it to products of polynomials and trigonometric functions, products of polynomial and exponential
functions, products of trigonometric and exponential functions, expressions involving logarithmic and in-
verse trigonometric functions. Repeated application. The key idea for using it in circular or self-referential
situations, i.e., the original integral reappearing as a new integral.

What students should hopefully get: The interpretation of integration by parts as two ways of
calculating an area. The rationale for integration by parts. The notion of complexity that is critical to
deciding how to choose parts correctly.

Note on difference with text: The text explains integration by parts with the letters u and v for what
I have called F and G. You may be more familiar with the letters u and v and the corresponding way of
thinking. However, some of the added discussion of complexity and choosing parts becomes easier (in my
view) with the notation and context set in the lecture notes. Rest assured, there is no substantive difference.

Executive summary

Words ...
(1) Integration by parts is a technique that uses the product rule to integrate a product of two terms.

If F and g are the two functions, and G is an antiderivative of g, we obtain:∫
F (x)g(x) dx = F (x)G(x)−

∫
F ′(x)G(x) dx

This basically follows from the product rule, which states that:

d

dx
[F (x)G(x)] = F (x)G′(x) + F ′(x)G(x) = F (x)g(x) + F ′(x)G(x)

In particular, we integrate one function and differentiate the other.
(2) Applying integration by parts twice stupidly tells us nothing. In particular, if we choose to re-

integrate the piece that we just obtained from differentiation, we get nowhere.
(3) The definite integral version of this is:∫ b

a

F (x)g(x) dx = [F (x)G(x)]ba −
∫ b

a

F ′(x)G(x) dx

In particular, note that the part outside the integral sign is simply evaluated between limits.
(4) We can use integration by parts to show that integrating a function f twice is equivalent to integrating

f and the function xf(x). More generally, integration a function f k times is equivalent to integrating
f(x), xf(x), x2f(x), and so on up till xk−1f(x).

(5) To integrate exg(x), we can use integration by parts, typically taking ex as the second part. We
could also do this integral by finding a function f such that f + f ′ = g, and then writing the answer
as exf(x) + C. The latter approach is feasible and sometimes quicker in case g is a polynomial
function.
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Actions ...

(1) Integration by parts is not the first or best technique to consider upon seeing a product. The first
thing to attempt is the u-substitution/chain rule. In cases where such a thing fails, we move to
integration by parts.

(2) For products of trigonometric functions, it is usually more fruitful to apply the trigonometric iden-
tities, such as 2 sinA cos B = sin(A + B) + sin(A−B), than to use integration by parts.

(3) To apply integration by parts, we need to express the function as a product. The part to integrate
should always be chosen as something that we know how to integrate. Beyond this, we should try
to make sure that: (i) the part to differentiate gets simpler in some sense after differentiating, and
(ii) the part to integrate does not get too much more complicated upon integration.

(4) Beware of the circular trap when doing integration by parts. In particular, when using integration
by parts twice, you should always make sure that the part to integrate is not chosen as the thing
you just got by differentiating.

(5) For polynomial times trigonometric or exponential, always take the polynomial as the first part
(the part to differentiate). The trigonometric or exponential thing is the thing to integrate. After
enough steps, the polynomial is reduced to a constant, and the trigonometric part (hopefully) does
not become any more complex.

(6) The ILATE/LIATE rule is a reasonable precedence rule for doing integration by parts.
(7) In some cases, we may use integration by parts once or twice and then relate the integral we get at

the end to the original integral in some other way (for instance, using a trigonometric identity) to
solve the problem. Examples include ex cos x and sec3 x.

(8) For functions such as ln(x), we typically take 1 as the part to integrate and the given function as
the part to differentiate.

(9) In general, for functions of the form f(lnx) or f(x1/n), we can first do a u-substitution (setting
u = ln x or u = x1/n respectively). This converts it to a product, on which we can apply integration
by parts. We can also apply integration by parts directly, but this tends to get messy.

1. The product rule and the statement of integration by parts

1.1. The product rule for differentiation, nicely stated. Suppose F and G are functions with F ′ = f
and G′ = g. The product rule states that:

(F ·G)′ = f ·G + F · g

Stating this in terms of antiderivatives, we have:∫
f ·G + F · g = F ·G

More concretely: ∫
f(t)G(t) + F (t)g(t) dt = F (t)G(t)

This can be rearranged as: ∫
F (t)g(t) dt = F (t)G(t)−

∫
f(t)G(t) dt

Writing G as
∫

g(t) dt and f as F ′, we get:∫
F (t)g(t) dt = F (t)

∫
g(t) dt−

∫
F ′(t)(

∫
g(t) dt) dt

The above formulation is termed integration by parts. But before getting into the explanation, let us
understand the product rule a little more closely.
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1.2. Parametric curves. There have been three ways we have created curves in the past:
(1) A curve obtained by writing y as a function of x.
(2) A curve obtained by writing x as a function of y.
(3) A curve obtained as the set of (x, y) such that F (x, y) = 0, where F is an expression in two variables.

This came up in the context of implicit differentiation.
There is a fourth way of describing curves, where we write both x and y as functions of a variable t. The

standard example of this is the circle, where we can describe the circle as the set (cos t, sin t), with t ∈ R. In
this context, x is given by the function cos and y is given by the function sin, with the parameter being t.

Suppose F and G are two functions, with F ′ = f and G′ = g. First, consider the curve given by
(F (t), G(t)). In other words, it is the set of points whose x-coordinate is F (t) and whose y-coordinate is
G(t). Suppose a < b are points such that [a, b] is in the domain of both F and G. Then [F (t)G(t)]ba =
F (b)G(b)− F (a)G(a).

This can be interpreted graphically as follows. Consider the rectangle with two sides along the axes
and one vertex at the point (F (a), G(a)). The area of this rectangle is F (a)G(a). Similarly, consider the
rectangle with two sides along the axes and one vertex at the point (F (b), G(b)). The area of this rectangle
is F (b)G(b). The difference of these areas is also the area of the region between the rectangles, which is like
a corridor with one turn.

Now, the curve (F (t), G(t)) (in the simple case) divides this corridor region into two parts. One part is
the region between the curve and the x-axis. The other part is the region between the curve and the y-axis.
The area of the first part is given by: ∫

y dx =
∫ b

a

G(t)F ′(t) dt

The other part is given by: ∫
x dy =

∫ b

a

F (t)G′(t) dt

We thus obtain:

[F (t)G(t)]ba =
∫ b

a

F (t)G′(t) + F ′(t)G(t) dt

which is just a reformulation of the product rule for differentiation. This idea that the product rule in
integral form is just two ways of calculating areas is an important idea.

1.3. Using integration by parts: the key idea. To begin integration by parts, we need to do the
following: express the integrand as the product of a function F (that we know how to differentiate) and a
function g (that we know how to integrate). We first find the derivative f of F and an antiderivative G of
g. We then use integration by parts:∫

F (t)g(t) dt = F (t)G(t)−
∫

f(t)G(t) dt

We can do everything inline:∫
F (t)g(t) dt = F (t)

∫
g(t) dt−

∫
F ′(t)[

∫
g(t) dt] dt

The following things should be kept in mind, though:
(1) Although we use the symbol

∫
g(t) dt, what we are interested in is picking one antiderivative for g.

We are not interested in the general expression for the antiderivative (i.e., we don’t need the +C).
Moreover, the expression for the antiderivative must be the same in both parts of the formula.

(2) When using this formula for definite integration, the evaluation between limits is done after the final
expression is calculated. Specifically, the inner integrals, such as

∫
g, are not the places where we

evaluate between limits – we only evaluate between limits the entirety of the expression.
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The part F that we differentiate is typically termed the first part, or Part I, or the part to differentiate,
while the part g that we integrate is termed the second part, or Part II, or the part to integrate.

2. Using integration by parts

2.1. The burden of choice. To use integration by parts, we need to write the integrand as a product of
two terms, such that the first part is easy to differentiate and the second part is easy to integrate. There
are many elements of choice here:

(1) We first need to think of the integrand as a product. In some cases, the integrand may not look like
a product at all. In other cases, it may be a product of a large number of pieces.

(2) We next need to decide which of the parts is Part I and which of the parts is Part II.

2.2. Some reflections. We divide the elementary functions that we have found into five easy classes:
(1) Inverse trigonometric functions: The derivatives of these are algebraic functions (rational functions

or functions involving rational functions, radicals). Further differentiation keeps us in the algebraic
domain.

(2) Logarithmic functions: The derivatives of these are algebraic functions (specifically, rational func-
tions). Further differentiation keeps us in the algebraic domain.

(3) Algebraic functions: These include polynomials, rational functions, and functions created using
rational functions and radicals (squareroots, etc.). Differentiation keeps us in the algebraic domain.
Further, for polynomials, differentiation eventually gets us down to constants, while integrating again
and again causes the degree to go to infinity. Integration of polynomials keeps us in the algebraic
domain, but for other rational functions, it may land us in the inverse trigonometric or logarithmic
domains.

(4) Trigonometric functions: These include sin, cos, and rational functions of these. Differentiation
keeps us in the trigonometric domain, and integrating once gets us into the domain of linear plus
trigonometric functions. Integrating k times gets us into the polynomial plus trigonometric domain.
Note also another interesting thing: for the most part, neither differentiation nor integration increases
the complexity of the trigonometric part. This is particularly the case for sin and cos, whose sequence
of derivatives is periodic with period 4.

(5) Exponential functions: This includes exp and various functions constructed from it such as cosh and
sinh. These functions are remarkably stable under differentiation and integration, and the complexity
does not change much under either operation.

2.3. Products of polynomials and trigonometric/exponential functions. Suppose we have a function
of the form F (x) cos x, where F is a polynomial. How do we integrate it?

It turns out that it is ideal to choose F , the polynomial, as the first part, since differentiating a polynomial
gives a polynomial of lower degree. On the other hand, integrating cos gives sin, which has the same amount
of complexity.

Consider, for instance: ∫
x cos x dx

We take x as the first part and cos x as the second part. An antiderivative for cos x is sinx, so we get:∫
x cos x dx = x sinx−

∫
1 · sinx dx = x sinx + cos x + C

Now, consider: ∫
x2 cos x dx

We take x2 as the first part and cos x as the second part. An antiderivative of cos x is sinx, so we get:∫
x2 cos x dx = x2 sinx−

∫
2x sinx dx
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We now use integration by parts for the 2x sinx integrand, first pulling the 2 out and then taking x and
sinx as the first and second part respectively:∫

x2 cos x dx = x2 sinx− 2x(− cos x) + 2
∫

(− cos x) dx = x2 sinx + 2x cos x− 2 sinx + C

You can convince yourself that this technique can be used to handle the product of any polynomial
with sinx or cos x. Note, however, that this technique fails when we have a fractional or negative exponent,
because what we really want is that, after a finite number of iterations of integration by parts, the polynomial
gets down to a constant. If we start with something like x3/2 sinx then repeated differentiation never gets
to a constant because the exponent jumps past 0 from 1/2 to −1/2. Similarly, when trying to integrate
(sinx)/x, we never hit an exponent of 0 on the x because the exponent, starting from −1, keeps going down
further and further.

The technique does not always work for everything that is a product of a polynomial and a trigonometric
function. sin and cos are particularly nice because they are (up to sign) integrals and derivatives of each
other. The situation gets more complicated with tan. For instance, suppose we are trying to integrate:∫

x tanx dx

We start off by taking x as the first part and tanx as the second part. We get:∫
x tanx dx = −x ln | cos x| −

∫
(− ln | cos x|) dx

But the inner integral is no easier than what we started with. More generally, the problem with other
trigonometric functions is that we may be unable to repeatedly integrate the trigonometric function the
requisite number of times. But the technique does work occasionally. For instance, consider:∫

x tan2 x dx

We know that tan2 x is the derivative of tanx− x, and we thus get:∫
x tan2 x dx = x(tanx−x)−

∫
(tanx−x) dx = x(tanx−x)+ln | cos x|+x2

2
+C = x tanx+ln | cos x|−x2

2
+C

2.4. Integration by parts could be a red herring. The fact that the integrand is a product is not a
compelling case for integration by parts. In fact, integration by parts should be treated as a last resort
approach. Generally a product suggests a u-substitution or chain rule approach. So how do we distinguish
between the chain rule-suggesting products and integration by parts?

Situations that are good for the chain rule are where one of the factors of the product is the derivative of
something in terms of which the second factor can be written. Situations that are good for the product rule
are those where the two factors seem unrelated.

For instance, the integral
∫

x sin(x2) dx suggests the chain rule, setting u = x2. We also see that in this
case, integration by parts cannot really be applied because sin(x2) doesn’t have an antiderivative expressible
in elementary terms. On the other hand, x2 sinx is suitable for integration by parts.

Some situations are more mixed. For instance, consider an integrand of the form x3 sin(x2). Here, we
first make a u-substitution, setting u = x2, to get an integrand of the form u sinu. Then, we use integration
by parts. There are ways of combining this all into one step, but as beginners, you are encouraged to do it
in two steps.

2.5. Products involving a polynomial and an exponential. These obey very similar rules to those
outlined for products of polynomials and sine or cosine. Basically, the same nice feature is present: the
exponential function, like sine and cosine, remains remarkably oblivious to any attempts to integrate and
differentiate it. Thus, for its product with a polynomial, we can steadily bring down the degree of the
polynomial to zero.

Recall that to integrate a function of the form g(x)ex, one approach was to find a function f such that
f + f ′ = g. Integration by parts gives an alternative, more hidden way of achieving the same goal.
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More on this is given in section 4.1.

2.6. Logarithmic and inverse trigonometric functions. Logarithmic and inverse trigonometric func-
tions have the behavior of being hard to integrate but easy to differentiate, and the derivatives land in the
algebraic domain. This means that they can be differentiated as many times as desired, giving answers in
the algebraic domain.

Thus, when dealing with the product of a logarithmic or inverse trigonometric function and a polynomial
or rational function, we take the polynomial or rational function as Part II.

We first begin by integrating the logarithmic function itself. This is just a single function, but we use
integration by parts by choosing it as Part I and the constant function 1 as Part II.

Thus: ∫
lnx dx =

∫
lnx · 1 dx = ln x · x−

∫
1
x
· x dx = x lnx− x + C

Similarly, we obtain that:∫
arctanx dx = x arctanx−

∫
x dx

1 + x2
= x arctanx− 1

2
ln(1 + x2) + C

where, for the latter integration, we use the form g′/g. We can use a similar approach to integrate arcsin.
This approach also extends to more tricky computations. For instance, consider the integral:∫

xr(lnx)s dx

where r 6= −1 and s is a nonnegative integer. We take (lnx)s as part I and xr as part II and integrate.
We can then reduce this to integrating xr(lnx)s−1. Specifically, the power of lnx goes down by 1. Repeating
the procedure s times, we finally get down to simply integrating xr.

As observed earlier, you should first be on the lookout for u-substitutions before attempting integration
by parts. Thus, it is a bad idea to integrate

∫
(lnx)/x dx using integration by parts: that integration is easily

settled using a u-substitution.

2.7. Integration by parts and recursive relationships. In some cases, we attempt to do an integration
by parts and end up with a new integral that just looks like a copy of the old integral. We consider a familiar
example. ∫

sin2 x dx =
∫

1− cos(2x)
2

dx =
x

2
− sin(2x)

4
+ C

We now consider another approach for this integral: integration by parts. We take sinx as the first part
and sinx as the second part. An antiderivative for sin x is − cos x, so we get:∫

sin2 x dx = − sinx cos x−
∫

cos x(− cos x) dx = − sinx cos x +
∫

cos2 x dx

Now, we need to integrate cos2 x. We observe that cos2 x = 1− sin2 x. We thus get:∫
sin2 x dx = − sinx cos x +

∫
1− sin2 x dx = x− sinx cos x−

∫
sin2 x dx

We now move terms around and obtain:

2
∫

sin2 x dx = x− sinx cos x

Thus, we obtain: ∫
sin2 x dx =

x− sinx cos x

2
Note that this is the same as the previous answer, using the fact that sin(2x) = 2 sinx cos x.

6



A similar approach works for
∫

cos2 x dx. So, it turns out that, by using integration by parts, we can
avoid remembering the identities about cos(2x).

Note that the key idea here is to identify the copy of the original integrand in the new integrand we get
when we apply integration by parts.

Here is another example: ∫
sec3 x dx

We write sec3 x = sec x · sec2 x, taking sec x as the first part and sec2 x as the second part. We thus obtain
that: ∫

sec3 x dx = sec x tanx−
∫

sec x tan2 x dx

Since tan2 x = sec2 x− 1, the new integrand can be written as sec3 x− sec x, and we get:

2
∫

sec3 x dx = sec x tanx +
∫

sec x dx

Thus, we obtain: ∫
sec3 x dx =

1
2
[sec x tanx + ln | sec x + tanx|] + C

Note that the +C is added as an afterthought.
This idea, combined with induction, can be used to integrate odd powers of secant, as well as even powers

of sine and cosine. You see some of this in your homework problems.

2.8. Products of trigonometric and exponential functions. Consider the integration problem:∫
ex cos x dx

We can try resolving this using integration by parts, taking ex as the second part:∫
ex cos x dx = (cos x)ex −

∫
(− sinx)ex dx

We again take ex as the second part, and obtain:∫
ex cos x dx = (cos x + sinx)ex −

∫
ex cos x dx

We can now rearrange and obtain:∫
ex cos x dx =

cos x + sinx

2
ex + C

2.9. Converting compositions to products. Note: I might not cover this in class, but you are encouraged
to read it.

In some cases, tricky composites can be integrated using integration by parts. The general rule is that
the inner function of the composition should have an inverse that is nice. We take two kinds of examples.

First, consider: ∫
f(x1/n) dx

The idea here is to set u = x1/n. This gives:∫
f(u) · nun−1 du

Pulling the n out, we are left with a polynomial times f . In particular, this technique can be used to
integrate functions of the form sin(x1/n), cos(x1/n), ex1/n

.
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We can directly use integration by parts on the original integrand and avoid this intermediate step by
taking part II as 1. This is essentially equivalent but perhaps less intuitive since it is not clear what is going
on.

A similar approach works for expressions of the form:∫
f(lnx) dx

Here, we set u = ln x, and obtain: ∫
euf(u) du

after which we apply the usual techniques of integration by parts.

2.10. Circular traps. If applying integration by parts twice, one may end up with a tautology. This
happens if the second application of integration by parts simply reverses the first application, in which case,
you will just end up precisely with the original integrand. You need to be careful about this.

What this means is that if you write your original function as F · g, and reduce the computation of
∫

F · g
to the computation of

∫
f · G, then taking G as the first part and f as the second part will simply retrace

your steps. To actually do something new, you need to take f as the first part or G as the second part.

2.11. The ILATE/LIATE rule: a thumb rule for integration. A reasonable thumb rule for integration
by parts is the ILATE/LIATE rule. This says that we give preference for part I in the integration by parts
to the following functions in decreasing order:

(1) Logarithmic and inverse trigonometric functions: These deserve first preference in integration by
parts. In general, lump together all of these into part I of the integration by parts and whatever is
left into part II (if nothing is left, take part II as 1).

(2) Algebraic functions: This includes polynomial and rational functions, as well as things with radicals.
These are taken as part II when placed along with a logarithmic or inverse trigonometric function,
because by taking the logarithmic or inverse trigonometric function as part I, we can differentiate it
and get completely in the algebraic domain (or so we hope).

(3) Trigonometric and exponential functions: These are taken as the second part, because integrating
them does not increase their complexity (unlike the case of polynomials, where every integration
increases the degree). Among these, exponential functions are preferred as part II when opposed to
trigonometric functions.

The ILATE/LIATE mnemonic arises by taking the first letters of these classes of functions (Inverse
trigonometric, Logarithmic, Algebraic, Trigonometric, Exponential).

3. More on collections of functions closed under integration and differentiation

3.1. Polynomial functions. The collection of polynomial functions is closed under the following operations:
(1) Addition and subtraction: The sum of two polynomial functions is a polynomial function. The

difference of two polynomial functions is a polynomial function.
(2) Scalar multiplication: Any scalar times a polynomial function is a polynomial function.
(3) Multiplication: The product of two polynomial functions is a polynomial function.
(4) Composition: A composition of two polynomial functions is a polynomial function.
(5) Differentiation: The derivative of a polynomial function is a polynomial function. Another important

thing to note is that polynomials are the only functions for which the higher derivatives eventually
become identically zero.

(6) Integration: Every antiderivative of a polynomial function is a polynomial function.
This collection is not closed under the following two operations:
(1) Multiplicative inverses (reciprocals) and division: Applying this operation to polynomial functions

gets us into the larger class of rational functions.
(2) Inverse functions: Even in the cases where a polynomial function is one-to-one, its inverse is not a

polynomial function unless the polynomial we started out is linear.
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3.2. Rational functions. Rational functions are closed under addition, subtraction, scalar multiplication,
multiplication, division, and differentiation. With respect to multiplicative inverses, they are more closed
(i.e., better) than polynomials. On the other hand, with respect to integration, they are much worse behaved.
Recall that we have so far seen two types of rational functions whose antiderivatives shatter the algebraic
glass ceiling:

(1) The rational function 1/x, and more generally, rational functions with linear denominators, have
antiderivatives that involve natural logarithms.

(2) Rational functions of the form 1/(x2 + a2), and more generally, rational functions with quadratic
denominators that have negative discriminant, have antiderivatives that involve arctangents.

It turns out that we can use the above two facts to obtain a method for integrating any rational function.
This uses a technique called partial fractions, which essentially writes the original rational function as a
sum of rational functions such that the denominator of each is either linear or a quadratic with negative
discriminant. However, the question of interest for now is: can we integrate repeatedly? It is not enough to
have a method for integrating the original rational function – we must have a method for integrating the
antiderivatives obtained.

Indeed, the process of integration by parts gives a general approach for this. Note that:
(1) Integrating 1/x gives ln x. Integrating lnx gives x lnx − x + C. Each further round of integration

gives a constant times xk lnx plus a polynomial in x. To execute each step, we use integration by
parts with ln x as the first part.

(2) Integrating 1/(x2 +1) gives arctanx. Integrating arctanx gives x arctanx− (1/2) ln(1+x2)+C. We
can integrate this again, but notice that it gets tricky: both the expressions x arctanx and ln(1+x2)
require integration by parts to resolve. At any stage, the expression will involve a polynomial times
arctanx, a polynomial times ln(1 + x2), and a free-floating polynomial. (See the discussion in the
last subsection on why a rational function can always be repeatedly integrated).

3.3. Some functions that we cannot integrate. Integration by parts is the last of the classical methods
of integration. (There remain a few tricks here and there, and some tying-together ideas, but no major
further breakthrough). So, we are now in a position to start appreciating, at least at a basic level, why some
kinds of functions do not have antiderivatives that can be expressed in elementary terms.

Roughly, integration by parts is the only viable strategy for handling non-obvious heterogeneous products,
i.e., products of functions of very different kinds. Thus, for such heterogeneous products, if integration by
parts does not work, nothing can.

We describe here some important classes of functions that are not easy to integrate:
(1) Product of a fractional or negative power and a trigonometric or exponential function: The famous ex-

amples are (sinx)/x (the sinc function) and ex/x (integrating this is equivalent, via a u-substitution,
to integrating eex

, which arises in the Gompertz function, and is also equivalent to integrating 1/ lnx,
which is called the logarithmic integral).

(2) A composition f ◦g where f is trigonometric or exponential and g is anything more complicated than
a linear or constant function: Examples are sin(x2) (whose integral is termed the Fresnel integral)
and e−x2

(which arises in the normal distribution). Also, things like sin(sin x).
(3) Composites of logarithmic and trigonometric functions, composites of inverse trigonometric and

exponential functions: This includes functions such as ln(sin x) and arctan(ex).
(4) Squareroots of polynomials of degree greater than two, and expressions involving them: In most

cases, these do not have antiderivatives in the elementary domain. However, it is possible to invent
analogues of trigonometry to integrate some of these functions.

3.4. Equivalences between integrating functions that we cannot integrate. Even for the functions
for which there is no elementary integral, it is useful to understand the rules of integration, because these
allow us to relate the antiderivatives of different functions. For instance, we can use u-substitutions to move
back and forth between integrating eex

, ex/x and 1/ lnx. A u-substitution allows us to go back and forth
between integrating sin(ex) and (sinx)/x.

Integration by parts is also useful in relating different integrals to each either, even when none of them
is elementary. For instance, we can try to integrate x2e−x2

using integration by parts, taking the first part
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as x and the second part as xe−x2
. This allows us to write an antiderivative for x2e−x2

in terms of an
antiderivative for e−x2

.

4. Three additional ideas/elaborations

These were alluded to in the previous parts of the lecture notes, and are covered in more detail here.

4.1. A deeper understanding of integrating exg(x). We have the following fact:

f + f ′ = g ⇐⇒
∫

exg(x) dx = exf(x)

In other words, finding, for a given function g, a function f such that f + f ′ = g is equivalent to solving∫
exg(x) dx.
Both directions of implication are useful. Sometimes, it is easy to find the function f using the fact that

f + f ′ = g. Sometimes, it is easier to use integration by parts to solve
∫

exg(x) dx.
We first consider the case where g is a polynomial. In this case, we guess (rightly) that f is also a

polynomial. Since f ′ has smaller degree than f , f and f + f ′ = g have the same degree and same leading
coefficient. We thus know the degree and leading coefficient of f . We next need to find the other coefficients.

We give variable letter names to each of the coefficients of f and then compare coefficients to get a system
of linear equations. This system of linear equations is particularly nice – it is triangular, so we can read off
the solutions. In particular, we can compute the coefficients of f quite easily.

For instance, consider the case g(x) = x2 + x + 1.
In that case, we see that f(x) = x2 + Ax + B, where A, B are real numbers. Further, we have:

f(x) + f ′(x) = (x2 + Ax + B) + (2x + A) = x2 + (A + 2)x + (B + A)

We thus have that, as polynomials:

x2 + (A + 2)x + (B + A) ≡ x2 + x + 1

If two polynomials are equal as polynomials, they are equal coefficient-wise, and we obtain:

A + 2 = 1, B + A = 1

This solves to give A = −1, B = 2, and we get that f(x) = x2 − x + 2.
We can also use integration by parts to obtain the same answer. Although integration by parts looks like

a very different procedure, it is actually the same procedure in disguise.
Note for those who have seen matrices: Integration by parts can literally be thought of as multiplying by

the “inverse matrix” to the matrix of the (triangular) linear operator that sends f to f + f ′. There is some
pretty mathematics going on here that is not completely accessible to you. (End note)

We see that in order to solve f + f ′ = g, our approach was:
(1) First make a guess about the general form of f (in our case, we guessed that f is a polynomial).
(2) Next, use the constraints to reduce the general form to a form with a finite number of unknown

parameters (in our case, we noted that f has the same degree and leading coefficient as g, and the
other coefficients were the unknown parameters).

(3) Next, use the constraint f +f ′ = g to obtain a system of (typically linear) equations in the unknown
parameters. (In our case, the system was triangular).

(4) Finally, solve that system of linear equations.
(5) Check that the final solution you get is correct (we didn’t need to do this in our case, but it is

advisable in general).
We see that for things trickier than polynomials, step (1) is the most intimidating step, which is why this

approach often flounders, and we decide to try integration by parts on
∫

exg(x) dx instead.
On the other hand, we are sometimes able to make inspired guesses even outside the polynomial guesses.

For instance, for the integral
∫

ex cos x dx, we need to find f such that f + f ′ = cos. A nice guess is that
f = A cos +B sin for constants A and B. We thus get:

10



f ′(x) = −A sinx + B cos x

and:

f(x) + f ′(x) = (A + B) cos x + (B −A) sinx

Thus:

cos x ≡ (A + B) cos x + (B −A) sinx

Comparing coefficients, we see that A + B = 1 and B − A = 0, yielding that A = B = 1/2. We thus get
f(x) = (cos x + sinx)/2. This is the same as the answer we got using integration by parts.

4.2. Integration by parts and dealing with unsimplified stuff. Suppose that, after integration by
parts, we get an equality of the form: ∫

A(x) dx = P (x) +
∫

Q(x) dx

Suppose that we now need to evaluate this between limits a and b. The way we do this is:∫ b

a

A(x) dx = [P (x)]ba +
∫ b

a

Q(x) dx = P (b)− P (a) +
∫ b

a

Q(x) dx

In other words, for the parts that are still under the integral sign, we put the upper and lower limits on
the integral sign. For the parts that have already been simplified, we do the evaluation between limits.

4.3. Repeated integration and integration of products with polynomials. We note the following
equivalence:

We know how to integrate f twice ⇐⇒ We know how to integrate f and xf(x).
This is essentially a direct application of integration by parts. This is also related to the problem about

Taylor series in advanced homework 2. For instance, if we start by integrating xf(x) taking f as the second
part, we see that this reduces to integrating f once and twice.

More generally:
We know how to integrate f n times ⇐⇒ We know how to integrate f , xf(x), x2f(x), . . . , xn−1f(x)
We note two applications:
(1) Using repeated integrability to deduce integrability of products with polynomials: Using the fact

that cos and sin can be integrated repeatedly, we obtain that any polynomial times cos or sin can
be integrated. On the other hand, since tan cannot be integrated twice, we cannot integrate x tanx.

(2) Using integrability of products with polynomials to deduce repeated integrability: We begin with
the “fact” (that we have not yet established) that every rational function can be integrated once.
We want to argue that every rational function can be integrated any number of times. To do this,
we note that in order to integrate a rational function f n times, we need to know how to integrate
f . xf(x), x2f(x), and so on, up till xn−1f(x). But all these are again rational functions, so we can
integrate all of them. Thus, a rational function can be repeatedly integrated.
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