
DIFFERENTIAL EQUATIONS

MATH 153, SECTION 55 (VIPUL NAIK)

Corresponding material in the book: Sections 9.1, 9.2 (though covered in a different ordering within
these notes).

What students should already know: The prime and Leibniz notation for derivatives, the meaning
of differentiation, implicit differentiation, and integration.

What students should definitely get: What a differential equation means, what a solution to a
differential equation means, how to solve a multiplicatively separable first-order differential equation, how
to solve an initial value problem. The specific choice of integrating factor used to solve a linear differential
equation, and how to execute the solution.

What students should hopefully get: The notion of parameters as degrees of freedom, the notion of
constraints as pinning these down, the basic concerns in differential equation manipulation. How first-order
and higher order differential equations can be used to understand real world phenomena.

Executive summary

0.1. Solving differential equations at large. Words ...

(1) A differential equation with dependent variable y and independent variable x is something of the
form F (x, y, y′, y′′, . . . ) = 0.

(2) The order of a differential equation is the largest k for which the kth derivative appears in the
differential equation. In particular, a first-order differential equation only involves x, y, and y′, and
does not involve y′′ or higher derivatives. A second-order differential equation only involves x, y, y′,
and y′′.

(3) A polynomial differential equation is one where F looks like a polynomial in y and its derivatives. A
linear differential equation is a differential equation of the form:

fk(x)y(k) + · · ·+ f1(x)y′ + f0(x)y = g(x)

We can clear out the coefficient of y(k) by dividing throughout by fk(x). The homogeneous case
is where the right side is zero.

(4) A particular solution is a relation R(x, y) = 0 that, when plugged into the differential equation,
satisfies it. (Here, higher derivatives are computed using implicit differentiation). A particular
solution in functional form is one where we explicitly find a function f with y = f(x) that satisfies
the differential equation.

(5) A solution family is a family with one or more parameters such that for every permissible value of
the parameter, we obtain a particular solution.

(6) The general solution is a solution family that contains all particular solutions.
(7) A general principle is that the number of freely varying parameters in the general solution, also

described as the number of degrees of freedom, equals the order of the original differential equation.
The reason for this is roughly that the number of integrations we do that introduce new degrees of
freedom equals the order of the differential equation.

(8) An autonomous differential equation is a differential equation where the independent variable does
not appear explicitly (except as the thing in terms of which differentiation is carried out). The
independent variable can be thought of as time. Autonomous differential equations have the property
that any time translate of a solution is also a solution. This property is found in most physical laws,
and essentially states that the formulation of the physical law does not depend on when we started
measuring time, i.e., there is no natural time origin.
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(9) To solve a second-order differential equation we usually do a substitution to break it up into solving
two first-order differential equations.

(10) Of first-order differential equations, there are two broad classes that we know how to solve: separable
differential equations and linear differential equations. For the latter case, the solution method
isolates y as a function of x. In the former case, we can get a mixed bag situation.

Actions ...
(1) The separable case is where we have y′ = f(x)g(y). In this case, we rearrange to obtain

∫
dy/g(y) =∫

f(x) dx, and integrate both sides. We need to put the +C on only one side, because additive
constants emanating from both integrals can be combined into one additive constant.

(2) In the autonomous separable case, we have dy/dt = g(y), and we integrate to obtain
∫

dy/g(y) =
∫

dt.
This is the case that arises when we look at the logistic equation and its many variants.

(3) In the linear case, we have y′ + p(x)y = q(x) (after dividing out by any coefficient of y′). Let
H(x) =

∫
p(x) dx. The integrating factor that we choose is eH(x). When we multiply by this

integrating factor the left side becomes the derivative of yeH(x). Thus, we obtain:

y = e−H(x)

∫
q(x)eH(x) dx

Note that the +C arises in the inner integral, so the general solution is a particular solution plus
Ce−H(x).

(4) When solving differential equations (particularly the separable case) we often get a solution involving
logarithms. In some cases, it may be useful to exponentiate both sides. When we do so, the original
additive constant C arising from indefinite integration becomes a multiplicative constant eC . We
can also absorb sign uncertainty into it and define a new constant k = eC sgn(y) to get the answer
in terms of a sign expression.

(5) In a similar vein to the above, if our answer involves an inverse trigonometric function, we can
apply the trigonometric function to both sides. In this case, the additive constant sticks inside. For
instance, if we get arctan y = x+C, then applying tan to both sides yields y = tan(x+C). To simplify
this further (if we so desire), we need to use the angle sum formula. The other major caveat that we
need to bear in mind is that there is a loss of information when we apply the trigonometric substituion
to both sides, because an inverse trigonometric function value is constrained to a particular range.
This constraint needs to be kept track of separately.

(6) In some cases, before exponentiating or applying the inverse trigonometric function, it might help to
use the initial value condition to pin down the freely varying parameters (see the next subsection).

0.2. Graphical interpretation and initial value problems. Words ...
(1) Any particular solution (whether expressed with y as an explicit function of x or in terms of a relation

between x and y) can be plotted as a curve in the xy-plane. When it is an explicit function, this is
the graph of a function – otherwise, it’s just the set of points satisfying the relation. This picture in
the plane is called an integral curve or a solution curve for the differential equation.

(2) The general solution is thus a picture which has all the particular solutions marked.
(3) Since solving a kth order differential equation introduces k degrees of freedom, we expect that to

pin down a unique solution, we need k pieces of information. In particular, to choose one particular
solution for a first-order differential equation, we need (by and large) one piece of information. In
an initial value problem, this is provided by specifying an initial value, which is one point (x0, y0) on
the particular solution curve.

(4) Geometrically, we expect that the solution family to a first-order differential equation has one real
parameter and that, except in some degenerate cases, knowing one point on the curve determines
the curve. In other words we expect that by and large, the solution curves do not intersect.

(5) For higher-order differential equations, on the other hand, we expect that even after knowing one
point on the curve, we have pinned down only one of many degrees of freedom, and we still have
solution families to deal with rather than isolated solutions. More information, such as information
about higher derivatives, or information about the curve passing through other points, is desirable.

Actions ... Nothing really, except that we plug in the initial value condition to pin down the constants.
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1. Understanding differential equations and solutions

1.1. Differentiation: the two interpretations. We have dealt with two interpretations of differentiation
that it would be useful to recall at this stage. One interpretation is in terms of functions. Here, we think of
a function f as a black box that takes as input a variable x and outputs a variable f(x), that we may choose
to call y. f ′ is a new function, i.e., a new black box, that takes as input x and gives an output called f ′(x),
that we may also call y′.

In this interpretation, it is the function, rather than the inputs and outputs to it, that takes on primal
importance. The disadvantage of this approach is that it does not allow us to go beyond functions.

The second interpretation is to view a function as a relation between two quantities – the input quantity
and the output quantity. The function describes the nature of the dependence of the output quantity upon
the input quantity. Under this approach, we denote the derivative as dy/dx, the Leibniz notation.

The Leibniz notation dy/dx arises from the fact that the derivative is the limit of the difference quotient:

dy

dx
= lim

∆y

∆x

The focus here is not on the function that relates x to y, but on the variables x and y. The advantage
of this approach is that we can apply this approach even when neither of the variables is a function of the
other. For instance, we could do something called implicit differentiation, which allows us to find dy/dx
when x and y are entangled. For instance, given:

y2 + sin(xy) = x3 cos(x + y)

We differentiate and get:

2y
dy

dx
+ cos(xy)

[
x

dy

dx
+ y

]
= 3x2 cos(x + y)− x3 sin(x + y)

[
1 +

dy

dx

]
We can collect terms and obtain an expression for dy/dx in terms of x and y.

1.2. A differential equation. Consider two variables x (the so-called independent variable) and y (the
so-called dependent variable). A differential equation is an equation involving the variables x, y, and first
and higher derivatives of y with respect to x. For instance, here’s a differential equation.

x + yy′ + xy sin(y′) = 0

Here, y′ is shorthand for dy/dx. Thus, this differential equation can also be written as:

x + y
dy

dx
+ xy sin

(
dy

dx

)
= 0

If we want to get y = f(x), the above can be rewritten as:

x + f(x)f ′(x) + xf(x) sin(f ′(x)) = 0

Another way of putting this is that a differential equation is something of the form F (x, y, y′, y′′, . . . ) = 0
where F is some expression in many variables.

Before proceeding further, however, we must understand what a differential equation means, and how it
differs from an ordinary equation.

(1) A functional solution or function solution is a function y = f(x) such that, taking derivatives the
usual way, we find that the differential equation is satisfied for all x. More specifically, a function
y = f(x) solves the differential equation if F (x, f(x), f ′(x), f ′′(x), . . . ) = 0 for all x.

(2) A solution to a differential equation is a relation R(x, y) between x and y such that if we consider
the set R(x, y) = 0, and use implicit differentiation to find the higher derivatives, these satisfy the
condition F ≡ 0. A solution may differ from a functional solution in the sense that y may not be
written explicitly as a function of x, and, in fact, globally, may not give a unique function of x.
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(3) More pictorially, a solution to a differential equation is a curve in the plane R2 with the property that
the differential equation holds at all points on the curve. What this means is that at any point on
the curve, if we calculate the higher derivatives based on their geometric interpretations, we obtain
a bunch of stuff that satisfies the differential equation.

What does this mean and how does this differ from an ordinary equation? Some important differences:
(1) Each solution to an ordinary equation (such as a polynomial equation) is a number. In contrast,

each solution to a differential equation is a function or relation between two variables.
(2) When we are looking at an ordinary equation, such as x2 +x+2 = 0, we are looking at points where

this equation holds. When we are looking at a differential equation, we are looking at curves such
that the equation holds at all points on the curve.

(3) To check that an ordinary equation holds at a point, we evaluate at the point. However, to check
whether a differential equation holds, we need to understand behavior locally, on a neighborhood. In
other words, it makes no sense to ask whether a differential equation holds for a given point (x0, y0);
it only makes sense to ask whether it holds on a given curve.

Basically, a differential equation seeks to find a function that exhibits certain local behavior (in contrast
with pointwise behavior) as described by an expression involving the function and its derivatives.

Aside: Differential equations as functional equations. A functional equation is an equation that asks
for a function satisfying certain conditions. Specifically, a functional equation is an equation in terms of a
function that we require to be true for every choice of value for all the letters in the equation, i.e., we require
it to be an identity in all letter variables.1

For instance, the equation:

f(x) = f(−x) ∀ x ∈ R
has solution set precisely the set of all even functions. Similarly, the equation:

f(ax) = af(x) ∀a, x ∈ R
has solution set precisely the set of all functions f of the form f(x) = λx, where λ is a constant.
The desired solutions to functional equations are functions, and is does not make sense to ask whether a

particular input-output pair satisfies a functional equation.
Differential equations are a particular kind of functional equation. Specifically, differential equations are

functional equations involving derivative behavior all considered at a single point. 2

1.3. Some examples of differential equations and solutions. We begin with a simple differential
equation:

dy

dx
= 1

We claim that y = x + 13 is a solution to this differential equation. In the various jargon that we have
introduced:

(1) The function f(x) = x + 13 satisfies the condition that f ′(x) = 1.
(2) The curve y = x + 13 satisfies the condition y′ = 1.

Both these statements are clearly true. Graphically, the curve y = x + 13 is a straight line with slope 1
and intercept 13. Since its slope is 1, dy/dx = 1 everywhere on the line.

However, this is not the only solution. Astute observers would have noted that there was nothing partic-
ularly auspicious about the number 13. In fact, for any constant C, y = x+C, or the function f(x) = x+C,
solves this differential equation.

Thus, any line with slope 1 is a solution curve to this differential equation.

1In mathematical jargon, the letter variables for numbers are typically quantified over all reals.
2There are more complicated functional equations involving derivatives that are not differential equations in the sense that

we have talked about. Examples include delay differential equations, which relate the values of the function and its derivative
at far-off points.
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Note that every value of C gives one solution, called a particular solution. Each such solution corresponds
to a line with slope 1. Pictorially, we get a bunch of parallel lines that cover the entire plane.

Are these the only ones? Indeed, which brings us to the next topic.

1.4. De ja vu. When we first learn algebra in middle or high school, we are given examples such as:

How many more apples need to be added to 3 apples to obtain 5 apples? Algebra version:
Solve 3 + t = 5.

At first, these seem like silly examples, because anybody who has grasped the concept of subtraction
(the inverse operation to addition) can probably solve the problem without any knowledge of algebra. It
is only after seeing harder examples of equations that people begin to appreciate the power of algebraic
manipulation in solving problems that are too hard to manipulate with basic arithmetic.

In the same way, our first example of a differential equation is in fact an integration problem. Specifically,
solving:

dy

dx
= 1

is equivalent to performing the indefinite integration:

y =
∫

1 dx

which gives the answer y = x + C where C is an arbitrary constant. Each value of C gives a particular
solution.

Let us elaborate the process a little further:

dy

dx
= 1

Moving the dx to the numerator on the other side, we obtain:

dy = dx

Note that this is just formal manipulation, akin to the way you learned formal algebra when you got
started. Don’t ponder about the intrinsic meaning of dy and dx.

Integrating both sides, we get: ∫
dy =

∫
dx

Which gives:

y = x + C

(Note that we can actually get positive constants with both indefinite integrals, but we can absorb the
two constants into one).

This drawn-out process seems pointless for this specific example, just like algebra seemed pointless when
you were solving 3 + t = 5. Unlike middle school, however, where we waded through a lot of these silly
examples before getting to more substantive examples of the use of algebra, we can now jump straight to
harder situations where we see the machinery of differential equations and how it gets used.

Aside: Yesterday’s problem is today’s solution. In the elementary grades, addition, subtraction,
multiplication and division were the problems, and numbers were the answers. In the middle grades, simple
algebraic equations were the problems, and reducing them to a clearly stated arithmetic computation was
the crux of the solution (the rest was trivial). When we learned differentiation, differentiating functions was
the problem, but when we studied graphing and integration, differentiation was one of the many tools that
was used in coming up with solutions.
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This is the fundamental nature of mathematics: yesterday’s focus problems become the taken-for-granted
tools of solution to today’s focus problems. Reducing the solution to today’s focus problem to solving a bunch
of yesterday’s focus problems is almost as good at solving yesterday’s problem.3

Incidentally, this is also related to the continually shifting boundaries between concrete and abstract. For
five-year olds, a bunch of three apples is concrete, and the number three is abstract. For middle-schoolers
first learning algebra, numbers are concrete and variables and algebraic expressions are abstract. For people
just learning precalculus and calculus, functions given by explicit expressions are concrete but the definition
of a function, limit, or derivative, is abstract. Needless to say, if you continue studying mathematics, you’ll
later view everything you learned in calculus as “concrete” as opposed to the abstract things you may learn
later.

Until very recently in this course, integration was the problem. Now, integration is part of the solution.
Once a differential equation is reduced to calculating a bunch of integrals, we’re home. Our goal in finding
solution functions to differential equations is to reduce differential equations to (one or more) integration
problems.

2. Understanding and solving separable equations

2.1. Separable equations: a crash course. A differential equation of the form:

dy

dx
= f(x)

has as solution:

y =
∫

f(x) dx

where the right side can be computed by finding one antiderivative and then tacking on a +C.
This is a form of differential equation that directly reduces to a single integration problem – the calculus

analogue to 3 + t = 5.
Let’s look at a slightly more complicated example:

dy

dx
= f(x)g(y)

also written as:

y′ = f(x)g(y)
In words, we say that y′ is a multiplicatively separable function of x and y – it is the product of a function

that depends only on x and a function that depends only on y.
We do some algebra-like manipulations whose aim is to bring together on one side all terms involving y

and bring together on the other side all terms involving x:

dy

g(y)
= f(x) dx

We now put integral signs and carry out indefinite integration:∫
dy

g(y)
=

∫
f(x) dx

Once we find antiderivatives, we put the +C on just one side (because two additive constants can be
absorbed into one).

For instance, consider:

dy

dx
= (x2 + 1)(y2 + 4)

We proceed to get:

3Assuming you remember how to solve yesterday’s problems. Mathematical knowledge is cumulative, but an individual’s
mathematical knowledge is cumulative only if that individual actually accumulates knowledge.
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∫
dy

y2 + 4
=

∫
(x2 + 1) dx

This becomes:

1
2

arctan
(y

2

)
=

x3

3
+ x + C

What the +C means is that every particular value of C gives a particular solution. For instance, when
C = 0, we get the solution:

1
2

arctan
(y

2

)
=

x3

3
+ x

The curve in the plane given by this solution (that we don’t need to imagine) satisfies this differential
equation.

Note that although the expression is not in the form of y as a function of x, we can bring it in that form
with some algebraic manipulation, to get:

y = 2 tan
[
2x3

3
+ 2x

]

However, this kind of separation and writing things as functions is not always possible (I am glossing over
many details here).

2.2. Separable equations from the other side. Suppose we start with a family of curves of the form:

F (x) + G(y) = C

where C varies over R. We want to find a differential equation that is satisfied by all curves in the family.
We use implicit differentiation to get:

F ′(x) + G′(y)y′ = 0

which can also be written as:

y′ =
−F ′(x)
G′(y)

Which is a (slightly differently written) version of the original thing we stated out with.
Basically, an expression where the derivative y′ is multiplicatively separable in x and y solves to get

a situation where an additively separable function of x and y takes constant values, where each possible
constant value gives a particular solution.
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2.3. Of circles.
Consider, for instance, the family of circles centered at the origin (a concentric family):

x2 + y2 = a2

Differentiating and rearranging terms, we obtain the differential equation:

ydy = −xdx

In fractions, this becomes:

dy

dx
=
−x

y
Conversely, solving this differential equation yields:

x2 + y2 = C

Note, however, something peculiar here. The claim in general is that each value of C gives a particular
solution. However, from the way sums of squares behave, we know that:

(1) For C > 0, we do get particular solutions – the circles we began with.
(2) For C = 0, we get a single point circle, which cannot be called much of a solution to the differential

equation, because there isn’t room to move around within the point.
(3) For C < 0, we get the empty set, which again cannot be called much of a solution.

In other words, many of the values of C give empty sets as their curves, which could not be called solutions.
Thus, in general, it is not correct to say that each value of C gives a legitimate and nontrivial solution. On
the other hand, the general theory we have developed so far is not strong enough to predict precisely which
values of C give legitimate solutions and which ones give degenerate (as in the case of the single point circle)
or empty solution curves.

3. Initial value problem

3.1. Terminology recall and improvement. Every function or relation that solves a particular differential
equation is called a particular solution and the corresponding curve in R2 is termed an integral curve or
solution curve. We have seen that, in general, there could be more than one solution curve – in fact, there
could be entire families of solution curves parametrized by constants C ∈ R. A general expression that
describes the entire family of solutions is termed a/the general solution to the differential equation.

Some other terminology: We say that the order of a differential equation is the largest n such that the nth

derivative of the dependent variable appears in the differential equation. A polynomial differential equation
is a differential equation of the form F (x, y, y′, . . . ) where F looks like a polynomial in y and in each of the
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derivatives. A linear differential equation is a differential equation of the form F (x, y, y′, . . . ) where F is a
linear function of the variables y, y′, . . . . The degree of a (usually polynomial) differential equation is the
power to which the highest order derivative is raised.

3.2. The constants as parameters. Remember that when we integrate a function once, we get a +C
in the solution. The +C indicates that the integral is not a single unique function but rather a family of
functions, all of which can be obtained by taking a particular antiderivative and adding any constant function
to it. We can think of the set of possible antiderivatives as being parametrized by the real numbers.

When we integrate a function k times, the general solution is of the form of (particular solution) plus (an
arbitrary polynomial of degree less than k, i.e., degree at most k − 1). The coefficients of this polynomial
are the k constants, one arising from each integration. The set of solutions is thus parametrized by the set
of possible k-tuples of real numbers.

In physics and chemistry (for instance, in statistical mechanics and thermodynamics), each freely varying
real parameter is termed a degree of freedom.

When solving a first-order differential equation (i.e., a differential equation where second or higher deriva-
tives do not appear) what we hope to do is separate x and y (something that can be done in the case y′

is multiplicatively separable) and then integrate both pieces. We get constants at both places, but these
constants can be merged into one constant. The general idea is that when solving a first-order differential
equation, we expect to have one free real parameter, or one degree of freedom, in the solution. Similarly,
when solving a differential equation of order k, we expect to have k free parameters, or k degrees of freedom,
in the solution.

3.3. Initial value specification for first-order differential equations. As noted above, the general
solution to a first-order differential equation contains a degree of freedom, typically described by a freely
varying real parameter C. Geometrically, there is a family of solution curves, and this family is parametrized
by a real number.

To find a particular solution, we need some piece of information that helps us narrow down to a particular
choice of curve.

Information that tells us the location of one point on the desired solution curve is termed an initial value
condition or an initial value specification. A problem that consists of a differential equation along with an
initial value condition is termed an initial value problem.

Typically, an initial value specification helps us determine a specific value of C, i.e., it helps us pin down
and destroy the one degree of freedom.

For instance, consider:

dy

dx
= xy

Rearranging, we have: ∫
dy

y
=

∫
x dx

We obtain:

ln |y| = x2

2
+ C

Exponentiating both sides, we obtain:

|y| = ex2/2eC

Note that we can pick a new constant k = eC sgn(y) and obtain:

y = kex2/2

This is the general solution. If, however, we are given that y(1) = 1 (in other words, the solution curve
passes through (1, 1)), we get:
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1 = ke1/2

Thus, we obtain k = 1/
√

e. Plugging this back in, we get the particular solution that we are interested
in:

y =
1√
e
ex2/2

or equivalently:

y = e(x2−1)/2

3.4. Brief note on initial value specifications for higher orders. As noted above, when solving a
general differential equation of order k, we expect to obtain a general solution with k degrees of freedom. To
constrain these, we need k pieces of information (in a rough sense). An initial value condition would provide
these k pieces of information by providing the information of a point and the first k− 1 derivative values at
the point.

3.5. An example of a second-order differential equation and a geometric interpretation. Consider
the second-order differential equation:

y′′ = 0
In the Leibniz notation, this is:

d2y

dx2
= 0

This basically involves integrating twice. We let z = y′, and get:

z′ = 0
Solving, we obtain:

z = C0

where C0 is an arbitrary real constant. We now need to solve:

y′ = C0

which becomes:

dy

dx
= C0

Solving this yields:

y = C0x + C1

Thus, the general solution involves two arbitrary real constants. Looking at the solution curves in the
plane, we see that these are precisely all the non-vertical lines.

With first order differential equations, the integral curves typically do not intersect each other. In other
words, in the case of first order differential equations, every point is on a unique integral curve (there are
sometimes exceptions, such as some special points that lie on lots of curves, and there are sometimes situations
where every point lies on two curves). On the other hand, for this second order differential equation, each
point lies on an entire infinite family of curves.

Thus, simply specifying one point is not enough to determine an integral curve. On the other hand, if
we specify one point on the curve and the value of the derivative at that point, that information together is
enough to determine the integral curve. Thus, higher order derivative information is necessary to obtain a
strong enough initial value condition to uniquely solve the problem.

The fact that we need two pieces of information to pinpoint a curve in this family is not surprising
considering that there are two degrees of freedom, or two parameters.
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3.6. Other ways of pinning down degrees of freedom. An initial value specification constrains degrees
of freedom by providing a point and derivative information at that point. There are other ways of specifying
a unique integral curve among the set of all possible integral curves, and one of these is to specify the value
of the function at multiple points. For instance, in the case of the family of all non-vertical straight lines
given by the second-order differential equation y′′ = 0, specifying two points is enough to specify a line – a
fact which we already learned in high school geometry.

4. Linear differential equations

4.1. What is a linear differential equation? A linear differential equation of order k with independent
variable x and dependent variable y is a differential equation of the form:

fk(x)y(k) + fk−1(x)y(k−1) + · · ·+ f1(x)y′ + f0(x)y = g(x)
where the fi are all functions given to us explicitly. In case g ≡ 0, we say that we have a homogeneous

linear differential equation of order k.
We are interested in solving linear differential equations of order 1. These look like:

f1(x)y′ + f0(x)y = g(x)
Dividing throughout by f1(x), we obtain:

y′ + p(x)y = q(x)
where p(x) := f0(x)/f1(x) and q(x) = g(x)/f1(x).
This is the prototype of the first-order linear differential equation that we describe here how to solve.

4.2. Flashback. We first consider the special case where p(x) ≡ 1, and we get:

y′ + y = q(x)
Recall that f(x) + f ′(x) = q(x) if and only if the derivative of exf(x) is exq(x). In other words, solving

this problem is equivalent to integration the function exq(x), and then dividing the answer we obtain by ex.
In the past, we used this approach to convert the integration problem to a problem of finding a function

f such that f + f ′ = q. We were able to do this in cases where q was a polynomial function and we could
make a reasonable starting guess as to what f must be.

Now, we employ the procedure in reverse, i.e., we start with the differential equation, and convert it to
an integration problem. Let’s write out what’s happening in this particular case.

We start with:

y′ + y = q(x)
We multiply both sides by ex and obtain:

ex(y′ + y) = exq(x)
The left side is the derivative of yex, so we obtain:

d

dx
(yex) = exq(x)

Integrating, we obtain:

yex =
∫

exq(x) dx

or:

y = e−x

[∫
exq(x) dx

]
Note that the +C comes inside the parentheses, so the general solution is some particular solution plus

Ce−x.
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Here now is the more general case:

y′ + p(x)y = q(x)

Define:

H(x) =
∫

p(x) dx

In other words, H is an antiderivative of p. In particular, H ′(x) = p(x).
Multiply both sides by eH(x). We obtain;

eH(x)[y′ + p(x)y] = eH(x)q(x)

We can rewrite this as:

eH(x)[y′ + H ′(x)y] = eH(x)q(x)

The left side is now the derivative of eH(x)y, so we obtain:

eH(x)y =
∫

eH(x)q(x) dx

This simplifies to:

y = e−H(x)

[∫
eH(x)q(x) dx

]
Note that the +C emerging from integration arises inside the parentheses, so the general solution is a

particular solution plus Ce−H(x).
The function eH(x) is termed an integrating factor, because multiplication by it converts the differential

equation to a form where we can integrate both sides.
Here is one example:

y′ − xy = 1

Here, p(x) = −x and q(x) = 1. We obtain H(x) = −x2/2 and the integrating factor is thus e−x2/2. We
thus get:

y = ex2/2

∫
e−x2/2 dx

Please see more examples from the book.

5. A little more in-depth understanding

5.1. A “solvable” differential equation. Let us return to the philosophical question of what it means to
solve a differential equation. We arrange the different notions of solution in increasing order of preference:

(1) We reduce the problem to a bunch of integration problems. We have seen two methods of doing this:
the separable case, where we simply collect the dx and dy terms and integrate, and the linear case,
where we multiply by an integrating factor.

(2) We are able to obtain a relation R(x, y) = 0 that is free of derivatives, but may have one or more
free parameters, such that all solutions to the differential equation arise by setting particular values
of these parameters. This is typically achieved after we successfully carry out the integrations in
step (1).

(3) We are able to write y as a function of x, explicitly. This is sometimes possible with some algebraic
manipulation of the results obtained in step (2). Note that in the linear case, we get directly from
step (1) to step (3) because y is already isolated on one side in the general expression for the solution.

12



We see that there are thus three steps that we would like to execute. People who work in differential
equations typically concentrate on the first step, treating the second and third step as trivial, or as mere
curiosities or afterthoughts. This may come as a surprise to those of you who have been struggling with
indefinite integration for the past few months. However, it is still desirable to reduce differential equations
(which could be really unshapely) to integration problems. Even if the integration cannot be carried out
formally, we can still use other methods, such as numerical approximation, to understand the solutions
qualitatively.4

The sad news is that there is no general procedure to take an arbitrary differential equation – even a first-
order differential equation – and reduce it to an integration problem. There are a lot of special techniques
that we could learn if we wanted to. However, these other techniques are not very important for our current
goals, so we skip over them.

6. Autonomous differential equations and the Verhulst process

6.1. What’s autonomous? In the context of the real world, a particularly important kind of differential
equation is an autonomous differential equation. This is a differential equation where we are studying a
quantity varying with time, and the differential equation does not involve the time variable explicitly except
as the variable with respect to which we differentiate. An autonomous first-order differential equation is of
the form:

dy

dt
= g(y)

Note that an autonomous first-order first-degree differential equation is separable, and specifically, it can
be integrated as: ∫

dy

g(y)
= t + C

6.2. Physical significance of autonomous equations. Most physical processes and physical laws satisfy
the condition of time translation invariance. In other words, if we change the origin of time measurement,
the physical law remains invariant. Another way of saying this is that if f1(t) is one solution function, the
function f2(t) := f1(t + C) is also a solution function. Thus, taking any solution function and translating
the time coordinate would give another solution function. Geometrically, this means that the graph of a
solution function can be translated horizontally to give the graph of another solution function.

Autonomous differential equations capture this property. Thus, differential equations describing physical
or chemical processes in the day-to-day world are autonomous.

6.3. Population growth. Earlier in the course, we studied a process known as exponential growth. Expo-
nential growth arises as the solution function to the autonomous differential equation:

dy

dt
= ky

At the time we introduced this idea, I conjured up the solution out of thin air. We can now see exactly
how we got the solution:

dy

y
= k dt

Integrating, we obtain:

ln |y| = kt + C

We thus get:

y = C1e
kt

4To borrow a colloquialism: the devil you know (indefinite integration) is better than the angel you don’t (differential
equations).
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where C1 = eC sgn(y).
The autonomous differential equation describing exponential growth was based on the idea that the rate

of growth at any given instant is in direct proportion to the quantity that is already around at that instant.
We also know that in the case k > 0, this exponential growth goes on indefinitely at an ever increasing pace.

We now consider a variant of this that makes more sense in a resource-constrained world. The general
variant is:

dy

dt
= aym(b− y)n

where a, b, m and n are all positive.
Note that a plays the role of the growth rate parameter as k did earlier. m and n, however, now modify

the nature of growth. b can be thought of as a ceiling on y. Specifically, if the y value reaches b, the rate of
growth becomes zero. Moreover, we see that, for 0 < y < b, the growth rate (given by the right side) is low
for very small y (because the ym term is very small) but it is also small for y very close to b (because the
b− y terms is very small). In physical terms, the low growth rate for small y can be understood by the fact
that a very small population cannot create new thins quickly, and the low growth rate as y gets close to b
can be explained by overcrowding leading to a struggle for resources which thus slows down the growth rate.

Now, a little note of caution is in order here. We have given above a plausible mathematical model
describing resource-constrained growth, with some parameters m and n. This does not mean that every
example of resource-constrained growth fits into this model. Nor does it mean that any quantitative or
qualitative conclusions we draw from this model necessarily hold for all examples of resource-constrained
growth. If a particular real-world instance of resource-constrained growth is to be considered as an example
of the model, some empirical or theoretical evidence needs to be provided.

In this model, we can predict the following – depending on the values of m and n:
(1) For any initial value of y strictly between 0 and b, we have y(t) → b as t →∞, but it does not reach

there in finite time, i.e., the approach is asymptotic.
(2) For any initial value of y strictly between 0 and b, we have that y(t) reaches b in finite time and

stays there forever.
It is instructive to try to work out values of m and n for which these two cases arise. We shall consider

the particular case m = n = 1, which is the standard Verhulst process or logistic equation.

6.4. Verhulst process: working out. The equation is:

dy

dt
= ay(b− y)

In this simple model, the rate of growth of y is proportional to the product of y (the current value) and
b− y (the amount of unoccupied space).

Solving, we obtain:

1
b

ln
∣∣∣∣ y

b− y

∣∣∣∣ = at + C

This simplifies to:

y

b− y
= keabt

for some constant k.
We can now simplify to obtain an explicit expression for y in terms of t. Note that time translating the t

simpliy affects the corresponding value of k, as we might predict given that we’re dealing wit han autonomous
differential equation.

The explicit solution is:

y = b
keabt

1 + keabt
= b

k

e−abt + k
14



We see that in this case, for any starting value strictly between 0 and b, the limiting value of b is approached
as t →∞, and the limiting value of 0 is approached as t → −∞. Some further observations:

• The value of y increases for all t, because y′ is strictly positive.
• The growth rate is maximum when y = b/2.
• In fact, the graph has a half-turn symmetry about the pair (t0, b/2) where t0 is the time it reaches

b/2. The graph is concave up prior to reaching this point, and concave down beyond that.
Here is an example of a graph, where a = b = k = 1, and so the mid-value of b/2 is attained at time t = 0.

This can also be described in terms of the hyperbolic tangent function, which, alas, we did not discuss.
Note that the particular value of k can be determined from the initial value condition.
The book looks at the Verhulst process from a somewhat different perspective. It is recommended that

you read this and try to work out how the constants in the book match up with what we have discussed
here.

6.5. Square roots, arc sine, and more. Let’s now consider the case m = n = 1/2:

y′ = a
√

y(b− y)
Rearranging, we get:

dy

a
√

y(b− y)
= dt

As usual, it is the left side that is a mess to integrate. The expression under the square root symbol has
negative coefficient for y2, so the correct way of thinking of it is as a square of a constant minus a square of
a translate of y. Recalling quadratics, we see that the right choice is (b/2)2− (y− b/2)2. We thus get an arc
sine integration:

1
a

arcsin
(

y − (b/2)
b/2

)
= t + C

Let ϕ = aC, so we get:

arcsin
(

y − (b/2)
b/2

)
= at + ϕ

Taking sin both sides, we get:

y − (b/2)
b/2

= sin(at + ϕ)

Rearranging, we get:

y =
b

2
(1 + sin(at + ϕ))

Further, since we are using the arcsin substitution, we know that at + ϕ is between −π/2 and π/2. In
particular, we get that:
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−π

2
≤ at + ϕ ≤ π

2
Thus, we get that:

−π − 2ϕ

2a
− ϕ ≤ t ≤ π − 2ϕ

2a
What does this mean? It means that the above differential equation is valid only in the interval indicated[−π−2ϕ
2a , π−2ϕ

2a

]
. For times beyond the right endpoint of the interval, the value of y is stable at b. For times

before the left endpoint of the interval, the value of y is stable at 0.

Something is fishy here! The graph looks like 0 up to some point in time, then it suddenly springs to life,
behaves like a sin curve for a while, then goes up to b (in finite time), and then becomes stable at b. There
are also two other extreme solutions: that y = 0 throughout, and that y = b throughout.

7. Vector spaces, linear algebra, and linear differential equations

Linear differential equations are a good pretext to introduce some extremely important ideas – namely,
the ideas of vector space and linear algebra. We will not be concerned with these ideas in a computational
sense, but they provide a good conceptual footing for much of what we’re talking about here.

7.1. Vector space basics. A (real) vector space is a set of things where we can perform addition (the
usual way) and scalar multiplication (where the scalars are real numbers), such that the usual roles of
commutativity and associativity of addition, as well as the usual nice properties of scalar multiplication,
hold.

A subspace of a real vector space is a subset that is closed under both the addition and the scalar
multiplication operations.

The standard example of a vector space that we will be concerned about is the space of all real-valued
functions on an interval I (usually, an open or closed interval, but we could also take I as all real numbers)
of the reals. Addition and scalar multiplication are both done pointwise. Here are some things that are
certainly true:

• The continuous functions on I form a subspace of the vector space of all functions. This subspace is
denoted C(I) or C0(I).

• Suppose I is an open interval. Denote by Ck(I) the set of all real-valued functions on I that are k
times continuously differentiable. Then, Ck(I) is a subspace of the vector space of all functions. Fur-
ther, Ck(I) contains Ck+1(I). The intersection of all these is the subspace of infinitely differentiable
functions, denoted C∞(I).

We define a mapping T : V → W of vector spaces to be linear if T (f + g) = Tf + Tg and T (λf) = λTf ,
i.e., T respects both the addition and scalar multiplication operation. The kernel of the mapping T is defined
as the set of all f such that Tf = 0. The kernel of a linear mapping is always a subspace.

We note that:
• For an open interval I, Differentiation defines a linear mapping from C1(I) (the continuously differ-

entiable functions) to C0(I) (the continuous functions).
• The range (image) of the mapping is the full C0(I) – every continuous function is the derivative of

some continuously differentiable function.
• The kernel of the mapping is the set of constant functions on I, with each constant funcion described

by its value (a real number). This is a (one-dimensional) subspace of the space of all functions.
• This differentiation mapping has the property that it sends each Ck(I) to Ck−1(I) and sends C∞(I)

to C∞(I).
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The significance of this as as follows. If T is a linear mapping, then Tf = Tg if and only if f − g is in the
kernel of T . We already saw this with the differentiation mapping: two functions on an open interval have
the same derivative iff their difference is a constant function.

What this means is that if T is a linear mapping, and we want to solve Tf = q for known h and unknown
f , it suffices to find (i) the kernel of T , and (ii) just one function g such that Tg = q (a particular solution).
The general solution is then functions of the form g + ϕ where ϕ is a function in the kernel. Again, this
is how we do indefinite integration. We first try to find a particular antiderivative, and then the general
solution for the indefinite integral is that particular antiderivative plus an arbitrary constant function.

7.2. Finite-dimensional vector spaces and span. For a finite collection of functions f1, f2, f3, . . . , fn,
the vector space spanned by these functions is the space of all possible functions of the form a1f1 + a2f2 +
· · ·+ anfn, where the ai are all real numbers. Typically, we call these real linear combinations of the fis.

A vector space has dimension n if we can find a collection of n functions such that it is spanned by them,
but we cannot span it using fewer than n functions. A one-dimensional vector space is a space spanned by
a single function. For instance, the space of constant functions is a one-dimensional space, and it is spanned
by the constant function 1.

7.3. Application to differential equations. Here’s the relevance to linear differential equations: a linear
differential equation can be thought of as trying to find a function f such that Tf = q for a specified linear
operator T and a specified function q. For instance, recall the first-order linear differential equation:

y′ + p(x)y = q(x)
Here, the operator Tf := f ′ + p · f is a linear operator, and we want to find all functions f such that

Tf = 0. We use the integrating factor method to do this: first we find an antiderivative H for f . The kernel
of T is the one-dimensional vector space spanned by e−H(x). The general solution is a particular solution
plus Ce−H(x).

8. A chemistry problem

Here is the homework problem that you need to solve:
It is known that m parts of chemical A combine with n parts of chemical B to produce a compound C.

Suppose that the rate at which C is produced varies directly with the products of the amounts of A and B
present at that instant. Find the amount of C produced in t minutes from an initial mixing of A0 pounds of
A with B0 pounds of B, given that:

(1) n = m, A0 = B0, and A0 pounds of C are produced in the first minute.
(2) n = m, A0 = 1

2B0, and A0 pounds of C are produced in the first minute.
(3) n 6= m, A0 = B0, and A0 pounds of C are produced in the first minute.

If you just want to solve the problem, you can directly follow the hint in the book. However, it might be
more helpful to understand the background, which is what we explore in this short note.

8.1. Conservation of mass and constant proportions. For now, let us forget how the reaction proceeds
with time, and understand what exactly is happening in the reaction.

The reaction is of the form:

A + B → C

We are also given that m parts of A combine with n parts of B to yield C. Although the question does
not state this explicitly, the parts here are by mass. This means, for instance, that m pounds of A combine
with n pounds of B. By the law of conservation of mass, the output of C is m + n pounds.

For instance, consider the reaction:

2H2 + O2 → 2H2O

Here, the total weight of 2H2 is 4 units (atomic mass of 1, two atoms, giving molecular mass of 2, then
multiplied by 2 to get 4) and the total weight of O2 is 32 units (atomic mass of 16 with 8 neutrons and 8
protons, multiplied by 2 to get 32), so 4 units (By mass) of hydrogen combine with 32 units (by mass) of
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oxygen to yield 36 units (by mass) of water. The proportions are thus m : n = 4 : 32, which can also be
written as 1 : 8. Thus, 1 part of hydrogen combines with 8 parts of oxygen to yield 9 parts of water. Note
that it is the ratio of m to n that matters, not the values of m and n per se.

The fact that specific chemical reactions occur in specific proportions was once considered so important as
to actually be given a name. This name is the law of constant proportions or the law of definite proportions.
In fact, empirical observation of this law preceded acceptance of the atomic theory of matter and was one of
the pieces of evidence that led to support for the atomic theory of matter. Some archaic chemistry textbooks
and courses still begin with the statement of this law.

8.2. Stoichiometric constraints. Since a given chemical reaction occurs with constant proportions, this
indicates that the change in mass of each of the reactants and products through the course of the reaction
is in the same proportion. For instance, in the hydrogen-oxygen reaction to produce water, we know that 1
pound of hydrogen would combine with 8 pounds of oxygen to produce 9 pounds of water. This means that
if x pound of hydrogen are lost, then 8x pounds of oxygen are lost, and 9x pounds of water are gained. Thus,
if we know the initial amounts of hydrogen, oxygen, and water, and we know the final amount of hydrogen,
we can measure the hydrogen lost, and use that to deduce the oxygen lost (and hence the final amount of
oxygen) and the amount of water gained (and hence the final amount of water).

This can be viewed in terms of a three-dimensional configuration space. Consider a three-dimensional
space with the three axes marked respectively by the current mass of hydrogen, the current mass of oxygen,
and the current mass of water.

What the stoichiometric constraint (or the law of constant proportions) says is that, as the reaction
proceeds, the configuration moves along a straight line whose direction is determined by the nature of the
reaction. The straight line has the property that the oxygen axis coordinate changes at eight times the rate
of change of the hydrogen axis coordinate, and the water axis coordinate changes in the opposite direction
at nine times the rate.

In the more general case, with:

A + B → C

the coordinate change ratios are m : n : −(m + n), and the path of the reaction is along a straight line.

8.3. Initial condition. The path of the reaction is along a straight line whose direction is determined
by the nature of the reaction (i.e., by the ratio m : n). However, there are many different straight lines
with the same direction. The particular straight line that the reaction is confined to depends on the initial
configuration.

Typically, we start out without any of the product (i.e., we only have the reactants A and B. In terms
of the three-dimensional picture with coordinates A, B, and C, the initial configuration is in the AB-plane.
Where it is in the AB-plane determines which line the reaction moves against. (This can be thought of as a
three-dimensional analogue of the point-slope form).

8.4. Keeping track of just one coordinate. Suppose we want to know each coordinate at every point
in time. We claim that it is enough to know:

(1) The initial value of each coordinate.
(2) The value, at any given time t, of just one coordinate.

In particular, if we know the initial amounts of A, B and C (which we assume to be zero), then knowing
the quantity of C at time t allows us to determine the quantities of A and B at time t.

Here’s how we can deduce what these quantities are. Let C(t) denote the quantity of C at time t. We’re
assuming C(0) = 0, so C(t) amount of C was gained. By constant proportions, we note that the amount of
A lost is mC(t)/(m + n) and the amount of B lost is nC(t)/(m + n). Thus, the amount of A at time t is:

A(t) = A(0)− m

m + n
C(t)

Similarly, the amount of B at time t is:

B(t) = B(0)− n

m + n
C(t)
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In the problem setup, we are given that A(0) = A0 and B(0) = B0.

8.5. Bringing time and rates into the equation. So far, we have largely focused on the path that the
reaction takes. The next relevant question is the rate at which the reaction occurs. In the three-dimensional
graphical representation, this is basically determining how fast we’re moving along the line.

When trying to measure the rate of a reaction, there is a little ambiguity. Should we measure the rate at
which A is being lost, the rate at which B is being lost, or the rate at which C is being gained? By the law
of constant proportions, these rates are all related:

−1
m

dA

dt
=
−1
n

dB

dt
=

1
m + n

dC

dt

We can keep track of just one of the three, and the one we choose to keep track of is C. Note that the
proportionality in the rates of change is the differential version of the expressions A(t) = A(0)−mC(t)/(m+n)
and B(t) = B(0)− nC(t)/(m + n).

Thus, when we say that the rate of reaction is proportional to some quantity, that statement would apply
to all the three rates of change dA/dt dB/dt, and dC/dt, with the constants of proportionality themselves
in the ratio m : n : −(m + n).

8.6. Formulating the differential equation. For convenience, we take pounds (the mass measure) as our
unit of measurement. Let A0 and B0 be the initial number of pounds of A and B respectively.

If the number of pounds of C at time t is C(t), then A(t) = A0 − mC(t)/(m + n) and B(t) = B0 −
nC(t)/(m + n).

We know that the rate dC/dt equals kAB, where k is some unknown constant. We thus have:

dC

dt
= k

[
A0 −

m

m + n
C(t)

] [
B0 −

n

m + n
C(t)

]
Note that this is an autonomous differential equation, which is to be expected since it arises from a

physical law that is time translation invariant. Note: The law is time translation invariant, not the actual
configuration.

Notice another feature of this problem. In general, when we solve a differential equation, we introduce one
free parameter. For this differential equation, we already have a bunch of parameters, and we will introduce
one more parameter when we solve the differential equation. However, the added parameter can easily be
determined from the initial condition C(0) = 0.

8.7. Solving the differential equation. The equation is autonomous and separable, and we can rearrange
terms to get: ∫

dC[
A0 − m

m+nC
] [

B0 − n
m+nC

] =
∫

k dt

The right side integrates to kt + c1, and the left side can be integrated in one of the standard ways. Once
we integrate the left side, we can choose c1 in such a way that C(0) = 0.

There are two natural cases for the left side:

(1) The two linear factors in the denominator are equal, or proportional: In this case, the integrand is
the reciprocal of the square of a linear function of C, and that is directly integrated. Note that this
case occurs if A0/B0 = m/n, i.e., if the initial proportion of masses is the stoichiometric proportion.
In the homework problem, part (a) is of this type.

(2) The two linear factors in the denominator are not proportional: In this case, we need to use the
partial fractions approach to integrate. In the homework problem, parts (b) and (c) are of this type.

8.8. Predicting answers: limiting reagent. Looking at the answers, could we have predicted them to
begin with? Qualitatively, yes:
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(1) In the case of stoichiometric proportions, the equilibrium state of the reaction is where all of both A
and B are used up so everything is converted to C. Note: This is assuming (as we’re doing in this
question) that the reverse reaction does not occur, otherwise an equilibrium will be attained before
that.

(2) In the case of non-stoichiometric proportions, one of the reactants is what is called a limiting reagent.
While the quantity of the limiting reagent approaches zero, the asymptotic quantity of the other
reagent is strictly positive.

8.9. An additional piece of information. Suppose we are given m/n as well as A0, B0. Then, the only
unknown in the original differential equation is k. Integration yields another unknown parameter (arising
as the additive constant from integration) which can be determined using C(0) = 0. We thus get a general
expression for C(t) that features k. However, since k is not given, we would like to determine it.

To determine k, we need some other piece of information. In the question here, the additional piece of
information is in the form of the value C(1). Specifically, we plug in the value C(1) in the general expression
for C(t) and solve the corresponding equation to determine the value of k. Having obtained this value of k,
we plug back in the general expression for C(t).

The use of a point-in-time measurement to determine k is analogous to many experimental approaches in
physics and chemistry. In most of these, a general physical or chemical law tells us that the expression for a
quantity is of some type, with one or more parameters appearing. These parameters are physical constants
but we do not have the theoretical tools to determine them. So, we do an experiment that measures certain
things, from which we deduce the value of the parameter.

For instance, in physics, there are some laws of friction between dry bodies, which explain how the
magnitude of the friction force between two bodies depends on a certain dimensionless constant called the
coefficient of friction, that depends on the surfaces in contact. However, the coefficient of friction cannot be
determined theoretically. So, we do an experimental study that measures certain quantities, from which we
can deduce the coefficient of friction.
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