
CONTINUOUS AND DISCRETE: THE INTERPLAY

MATH 153, SECTION 55 (VIPUL NAIK)

This is some additional material that does not directly correspond to material in the book but is helpful
for perspective.

Executive summary

Words ...
(1) Given a function on R, we can restrict the function to N and obtain a sequence. This restriction is

unique.
(2) Conversely, given a sequence, i.e., a function on N, we can extend it to a continuous function on

R. However, the extension is not unique, and there are a lot of different ways of extending. If the
sequence is described by means of a nice closed form functional expression, we may be able to extend
it by considering that functional expression for all real numbers.

(3) Usually, information about the function on the reals gives us corresponding information about the
corresponding sequence, but we cannot get information in the reverse direction that easily. For
instance, an increasing function gives an increasing sequence, but increasing sequences can arise from
functions that are not increasing. A decreasing function gives a decreasing sequence, a monotonic
function gives a monotonic sequence, and a bounded function gives a bounded sequence.

(4) A function with integer period gives a periodic sequence.
(5) The mean value theorem relates the derivative of a function to the discrete derivative (i.e., forward

difference operator) of the corresponding sequence.
(6) We can define a notion of concave up and concave down for sequences based on the second discrete

derivative. If a function is concave up, so is the corresponding sequence. If the function is concave
down, so is the corresponding sequence.

1. Filling the holes: continuating the discrete

In the previous lecture or part of lecture, we developed the analogy between the calculus apparatus that
we developed for continuous functions and the study of sequences. The analogy was illuminative, but is it
more than just an analogy? Specifically, we know that:

(1) Continuous to discrete: Any function on the reals can be domain-restricted to give a function on the
natural numbers, i.e., a sequence.

(2) Discrete to continuous: If a function on the natural numbers has a nice enough closed form expression
(such as a polynomial) that closed form expression can be extended to more real numbers.

Some natural questions are: how does the discrete derivative (i.e., the forward difference operator) relate
to its continuous counterpart for the same function? How does the discrete integral (which is basically just
a summing up) relate to its continuous counterpart? The answers to these questions, while not completely
satisfying, are useful.

1.1. Filling the gaps. Recall that N ⊂ Z ⊂ Q ⊂ R. Note that if a function is defined on a bigger set among
these, it can always be restricted to a smaller set in a unique manner – just restrict inputs to that smaller
set. Extending functions is a more interesting question: can a function on a smaller set be extended to a
bigger set in a nice way? The answers are as follows:

(1) If f is a function on Q, there is at most one way of extending f continuously to all of R. The
uniqueness of the extension arises from the fact that Q is dense in R, so where a particular real
number goes is determined by where its rational neighbors go. However, it may not always be
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possible to extend. For instance, f(x) := 1/(x2 − 2) is defined and continuous on Q, but cannot be
extended to the point

√
2 ∈ R continuously.

(2) If f is a function on Z (or on N), there are many ways of extending it to a continuous function on
R. Basically, all we have to do is join up the function values at consecutive integers by continuous
curves. With a few kindergarten lessons in smooth drawing, we can even make sure that the function
on R that we obtain is continuously differentiable, and with more practice yet, we can ensure that
the function that we obtain is infinitely differentiable. Basically, there is a lot of freedom.

Since there are infinitely many ways of extending functions on N to continuous and even to infinitely
differentiable functions on R, we are faced with a paradox of choice. Nonetheless, in most cases, the nicest
closed form expression for the function on N suggests an obvious extension to R. Thus, for a polynomial
sequence, the extension to a polynomial function on R is unique.

In some cases, we need to be more ingenuous in finding a natural extension to R. Luckily, calculus has
provided us with enough tools to find these functions in many cases. We discuss some examples.

1.2. Exponential and superexponential sequences. Consider the sequence:

1, 2, 4, 8, 16, 32, . . .

The recurrence relation is clear:

an = 2an−1, a1 = 1
We can also see that a closed form expression is:

an = 2n−1

This kind of sequence is termed a geometric sequence or geometric progression because the quotient of
successive terms is constant. It is a solution to the discrete differential equation an = 2an−1, whose continuous
analogue is y′ = ky. Both the continuous and the discrete versions result in exponential growth.

Note that in this case, the solution can be extended to all real numbers, via the function:

f(x) := 2x−1

But we were able to do this only because we had developed a prior theory of exponentiation with arbitrary
positive bases and arbitrary real exponents. Had we not developed such a theory, it would not have been
clear how we could extend the function.

Consider instead the function:

−1, 1,−1, 1, . . .

The nth term is given by:

an = (−1)n

Now, this particular expression cannot be extended to all real numbers, because (−1)x does not make
sense for arbitrary x. However, there is another way of defining the nth term, namely, as:

an = cos(nπ)
With this expression, we can extend it to all real numbers, as the function:

f(x) := cos(πx)
This extension is not natural in any strong sense of the word. Other possible etensions to the reals include

cos(3πx), cos(5πx) and cos3(πx).
Consider another example:

1, 2, 6, 24, 120, 720, 5040, . . .

The recurrence relation here is:
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an = nan−1, a1 = 1
Note that this is not autonomous. We solve it to obtain that:

an = n · (n− 1) · . . . 2 · 1 =: n!
We thus have a nice expression for an. However, unlike the previous case, it is not clear how this can be

extended to a function on all real numbers, or even on anything that is not a positive integer. The reason is
that we have not pondered this question before. However, a recent homework problem you did shows that:∫ ∞

0

xne−x = n!

This actually gives a way of extending the function to all positive real numbers, and in fact, to all real
numbers greater than −1. Basically, although the right side makes sense only for positive integers, the
left side makes sense in a much broader context. This is closely related to the gamma function which is a
mainstay of analysis and statistics, defined as Γ(a) := (a − 1)!. We will not delve more into it, except to
remark that Γ(1/2) = (−1/2)! =

√
π, and that this can be derived from the results about the integral of

e−x2
.

2. Back and forth between discrete and continuous

2.1. Continuous and discrete: relationship of the functions. When we restrict the domain to the
natural numbers for a function defined on the reals, then what we are really doing is taking a very restrictive
snapshot of the function. Some observations:

(1) If f is increasing on the reals, its restriction to the natural numbers is increasing. However, the
converse does not hold. In other words, a function may be increasing on N but may be a lot more
desultory on the real numbers. For instance, consider the function f(x) := x−sin(πx). Its restriction
to the natural numbers gives the sequence 1, 2, 3, . . . which is increasing. However, the function is
not increasing throughout R, because the derivative f ′(x) = 1 − π cos(πx) takes both positive and
negative values. An analogous statement holds for decreasing functions, and analogous examples
work.

(2) If limx→∞ f(x) exists, then the limit of the restriction to natural numbers, i.e., limn→∞ f(n) exists
and is equal to limx→∞ f(x). However, the existence of the limit limn→∞ f(n) for n ∈ N does not
imply the existence of the limit for all x. For instance, consider the function f(x) := sin(πx). This
is a constant function with value 0 when restricted to N and hence limits to 0. On the other hand,
the function on R is periodic and oscillatory and has no limit.

2.2. Continuous and discrete: relationship of the derivatives. We now turn to the question of how
the derivative of a continuous function is related to the discrete derivative (i.e., forward difference operator)
of its restriction to N (or Z).

The forward difference operator is a coarse measure of the average change over an interval of length 1
(from n to n+1). The derivative, on the other hand, is an instantaneous rate of change at a given point. The
forward difference operator is thus the average value of the derivative over the interval from n to n + 1. We
can thus apply the mean value theorem, and conclude that, if f is continuous on [n, n+1], and differentiable
on (n, n + 1), then (∆f)(n) equals the value f ′(c) for some c ∈ (n, n + 1).

Similar to the way we made observations in the previous subsection, we make some observations here:
(1) Suppose f has a fixed sense of concavity on [n, n + 1], i.e., f ′ is either increasing throughout the

interval or decreasing throughout the interval. This forces that (∆f)(n) lies between f ′(n) and
f ′(n + 1).

(2) If the continuous function f has a certain sense of concavity, then its discrete version also has the
same sense of concavity. We say that a function on N is concave up if ∆2f(n) > 0 for all n, and is
concave down if ∆2f(n) < 0 for all n.

(3) If f is a differentiable function and limx→∞ f ′(x) = L for some finite L, then limn→∞(∆f)(n) = L
as well. In particular, if limx→∞ f ′(x) = 0, then limn→∞ f(n + 1)− f(n) = 0.
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In all these cases, universal constraints on the continuous versions give, via some averaging procedures,
corresponding constraints on the discrete versions. It is usually harder to go form universal constraints on
the discrete version to corresponding constraints on the continuous version, because there is too much slack.

2.3. Continuous and discrete: periodic functions. Here are some easy facts:
(1) If a continuous function is periodic with period a positive integer, then the corresponding discrete

function is also periodic with period at most that positive integer. (The discrete function could
repeat at even shorter intervals).

(2) Given a discrete periodic function with period k, we can write it as a linear combination of a bunch of
continuous periodic functions all arising from trigonometry. The details of this are beyond the current
scope and have to do with Fourier analysis. An illustrative example is k = 3: any periodic sequence
with period 3 can be expressed as a linear combination of the functions sin(2πn/3), cos(2πn/3) and
the constant function 1. The coefficients for the linear combination can be determined by solving a
system of linear equations.

2.4. Continuous and discrete: integration. [We may not get time to cover this in class right now, but
will get back to it later anyway.]

We have already seen this, albeit without a lot of thoughtful reflection. Again, things are easiest to
see when f is a monotonic function, though some of the observations carry over to functions of bounded
variation.

Suppose we are looking at a continuous function f defined on [1, n]. We can now take a partition of the
interval [1, n]: 1 < 2 < 3 < · · · < n. Let’s assume that f is increasing on [1, n]. Then, the lower sum of f
for the partition is f(1) + f(2) + . . . f(n − 1). The upper sum is f(2) + f(3) + · · · + f(n). The integral is
between these, and we obtain:

f(1) + f(2) + · · ·+ f(n− 1) <

∫ n

1

f(x) dx < f(2) + · · ·+ f(n)

On the other hand, if f is decreasing, we get:

f(1) + f(2) + · · ·+ f(n− 1) >

∫ n

1

f(x) dx > f(2) + · · ·+ f(n)

Now, suppse f is a decreasing function, and suppose further that
∫∞
1

f(x) dx is finite. Then, taking the
limit as n →∞ in the above, we get:

f(1) + f(2) + · · · >
∫ ∞

1

f(x) dx > f(2) + f(3) + . . .

Rearranging, we obtain that the sum:

f(1) + f(2) + f(3) + . . .

is between
∫∞
1

f(x) dx and f(1) +
∫∞
1

f(x) dx.
This procedure actually allows us to calculate sums using integrals. Specifically, in cases where an infinite

integral is easy to compute but an infinite sum is not, the infinite sum can be computed approximately using
the computation of the infinite integral. A modification of this procedure, that we will look at later, allows
us to compute the infinite sum to a very high degree of precision using a combination of integral calculations
and finite sums.
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