CLASS QUIZ: FEBRUARY 17: LIMIT, ORDER OF ZERO, LH RULE

MATH 153, SECTION 55 (VIPUL NAIK)

Your name (print clearly in capital letters):

(1) Suppose $g : \mathbb{R} \to \mathbb{R}$ is a continuous function such that $\lim_{x\to 0} g(x)/x = A$ for some constant $A \neq 0$. What is $\lim_{x\to 0} g(g(x))/x$?

(A) 0

- (B) A
- (C) A^2
- (D) g(A)
- (E) g(A)/A

Your answer:

- (2) Suppose $g : \mathbb{R} \to \mathbb{R}$ is a continuous function such that $\lim_{x\to 0} g(x)/x^2 = A$ for some constant $A \neq 0$. What is $\lim_{x\to 0} g(g(x))/x^4$?
 - (A) A
 - (B) A^2
 - (C) A^3
 - (D) $A^2g(A)$
 - (E) $g(A)/A^2$

Your answer: _____

For the remaining questions, keep in mind that the order of a zero for a function f at a point c in its domain (where it's continuous) such that f(c) = 0 is defined as the lub of the set $\{\beta \ge 0 \mid \lim_{x\to c} |f(x)|/|x-c|^{\beta} = 0\}$.

If f is an infinitely differentiable function at c, then the order, if finite, must be a positive integer. If the order is a positive integer r, then the first r-1 derivatives of f at c equal zero and the r^{th} derivative at c is nonzero (assuming f to be infinitely differentiable).

For convenience, we take c = 0 in the next three questions, i.e., all limits are being taken as $x \to 0$. (3) If f has a zero of order 2 and g has a zero of order 3 at the point 0, what is the order of zero for the pointwise sum f + g at zero? (Example: $f(x) = \sin^2 x$ and $g(x) = \ln(1 + x^3)$).

- (A) 1
- (B) 2
- (C) 3
- (D) 5
- (E) 6

Your answer: _____

- (4) If f has a zero of order 2 and g has a zero of order 3 at the point 0, what is the order of zero for the pointwise product fg at zero? (Example: $f(x) = \sin^2 x$ and $g(x) = \ln(1 + x^3)$).
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 5
 - (E) 6

Your answer: _

- (5) If f has a zero of order 2 and g has a zero of order 3 at the point 0, what is the order of zero for the composite function $f \circ g$ at zero? (Example: $f(x) = \sin^2 x$ and $g(x) = \ln(1 + x^3)$).
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 5
 - (E) 6

Your answer:

(6) The L'Hopital rule can be related with order of zero in the following manner: Every time the rule is applied to a $(\rightarrow 0)/(\rightarrow 0)$ form, the order of zero of the numerator and denominator go *down by one*. Repeated application hopefully yields a situation where either the numerator or the denominator has a nonzero value.

Assume that we start with a limit $\lim_{x\to c} f(x)/g(x)$ where both f and g are infinitely differentiable at c, and further, that f(c) = g(c) = 0. If the order of zero of f is d_f and the order of zero of g is d_g , which of the following is true?

- (A) If $d_f = d_g$, then we need to apply the LH rule d_f times and we will then get a nonzero numerator and nonzero denominator, that we can evaluate to get the limit. If $d_f < d_g$, then we apply the LH rule d_f times to get a nonzero numerator and zero denominator, so the limit is undefined. If $d_g < d_f$, then we apply the LH rule d_g times to get a zero numerator and nonzero denominator, so the limit is zero.
- (B) If $d_f = d_g$, then we need to apply the LH rule d_f times and we will then get a nonzero numerator and nonzero denominator, that we can evaluate to get the limit. If $d_f < d_g$, then we apply the LH rule d_f times to get a zero numerator and nonzero denominator, so the limit is undefined. If $d_g < d_f$, then we apply the LH rule d_g times to get a nonzero numerator and zero denominator, so the limit is zero.
- (C) If $d_f = d_g$, then we need to apply the LH rule d_f times and we will then get a nonzero numerator and nonzero denominator, that we can evaluate to get the limit. If $d_f < d_g$, then we apply the LH rule d_f times to get a nonzero numerator and zero denominator, so the limit is zero. If $d_g < d_f$, then we apply the LH rule d_g times to get a zero numerator and nonzero denominator, so the limit is undefined.
- (D) If $d_f = d_g$, then we need to apply the LH rule d_f times and we will then get a nonzero numerator and nonzero denominator, that we can evaluate to get the limit. If $d_f < d_g$, then we apply the LH rule d_f times to get a zero numerator and nonzero denominator, so the limit is zero. If $d_g < d_f$, then we apply the LH rule d_g times to get a nonzero numerator and zero denominator, so the limit is undefined.
- (E) In all cases, we perform the LH rule $\min\{d_f, d_g\}$ times and obtain a nonzero numerator and nonzero denominator.

Your answer: _____