TAKE-HOME CLASS QUIZ: DUE FEBRUARY 15: INTERPLAY OF CONTINUOUS AND DISCRETE

MATH 153, SECTION 55 (VIPUL NAIK)

Your name (print clearly in capital letters):

YOU ARE FREE TO DISCUSS ALL QUESTIONS, BUT PLEASE MAKE SURE TO ONLY ENTER ANSWER CHOICES THAT YOU PERSONALLY ENDORSE

- (1) Consider a function f defined on all real numbers. Consider also the sequence $a_n = f(n)$ defined for n a natural number. Which of the following is true?
 - (A) $\lim_{x\to\infty} f(x)$ is finite if and only if $\lim_{n\to\infty} a_n$ is finite, and if so, both limits are equal.
 - (B) $\lim_{x\to\infty} f(x)$ is finite if and only if $\lim_{n\to\infty} a_n$ is finite, but the limits need not be equal.
 - (C) If $\lim_{x\to\infty} f(x)$ is finite, then $\lim_{n\to\infty} a_n$ is finite, but the converse is not true. Moreover, if both limits are finite, they must be equal.
 - (D) If $\lim_{n\to\infty} a_n$ is finite, then $\lim_{x\to\infty} f(x)$ is finite, but the converse is not true. Moreover, if both limits are finite, they must be equal.
 - (E) It is possible for aeither of the limits $\lim_{x\to\infty} f(x)$ and $\lim_{n\to\infty} a_n$ to be finite, but for the other one not to be finite. Moreover, even if both limits exist, they need not be equal.

Your answer: _

- (2) Consider a function $f : \mathbb{R} \to \mathbb{R}$. Restricting the domain of f to the natural numbers, obtain a sequence whose n^{th} member a_n is defined as f(n). Which of the following statements is **false** about the relationship between f and the sequence (a_n) ?
 - (A) If f is an increasing function, then (a_n) form an increasing sequence.
 - (B) If f is a decreasing function, then (a_n) form a decreasing sequence.
 - (C) If f is a bounded function, (i.e., its range is a bounded set) then (a_n) form a bounded sequence.
 - (D) If f is a periodic function, then (a_n) form a periodic sequence.
 - (E) If f has a limit at infinity, then (a_n) is a convergent sequence.

Your answer: ____

- (3) We are given a sequence $a_1, a_2, \ldots, a_n, \ldots$ of real numbers. The goal is to find a *continuous* function f on all of \mathbb{R} such that $f(n) = a_n$ for all $n \in \mathbb{N}$. Which of the following is true?
 - (A) There is a unique choice of f that works.
 - (B) There exist infinitely many different choices of f that work.
 - (C) The number of possible choices of f depends on the sequence. Depending on the sequence, the number of possible choices of f may be zero, one, or infinite.
 - (D) The number of possible choices of f depends on the sequence. Depending on the sequence, the number of possible choices of f may be zero or one. It can never be infinite.
 - (E) The number of possible choices of f depends on the sequence. Depending on the sequence, the number of possible choices of f may be one or infinite. It can never be zero.

Your answer:

- (4) We are given a sequence $a_1, a_2, \ldots, a_n, \ldots$ of real numbers. The goal is to find an *infinitely differentiable* function f on all of \mathbb{R} such that $f(n) = a_n$ for all $n \in \mathbb{N}$. Which of the following is true?
 - (A) There is a unique choice of f that works.
 - (B) There exist infinitely many different choices of f that work.

- (C) The number of possible choices of f depends on the sequence. Depending on the sequence, the number of possible choices of f may be zero, one, or infinite.
- (D) The number of possible choices of f depends on the sequence. Depending on the sequence, the number of possible choices of f may be zero or one. It can never be infinite.
- (E) The number of possible choices of f depends on the sequence. Depending on the sequence, the number of possible choices of f may be one or infinite. It can never be zero.

Your answer: _

(5) We are given a sequence $a_1, a_2, \ldots, a_n, \ldots$ of real numbers. The goal is to find a *polynomial* function f on all of \mathbb{R} such that $f(n) = a_n$ for all $n \in \mathbb{N}$. Which of the following is true?

- (A) There is a unique choice of f that works.
- (B) There exist infinitely many different choices of f that work.
- (C) The number of possible choices of f depends on the sequence. Depending on the sequence, the number of possible choices of f may be zero, one, or infinite.
- (D) The number of possible choices of f depends on the sequence. Depending on the sequence, the number of possible choices of f may be zero or one. It can never be infinite.
- (E) The number of possible choices of f depends on the sequence. Depending on the sequence, the number of possible choices of f may be one or infinite. It can never be zero.

Your answer: _

For the remaining questions: For a function $f : \mathbb{N} \to \mathbb{R}$, define Δf as the function $n \mapsto f(n+1) - f(n)$. Denote by $\Delta^k f$ the function obtained by applying Δk times to f.

- (6) If $f(n) = n^2$, what is $(\Delta f)(n)$?
 - (A) 1
 - (B) n
 - (C) 2n 1
 - (D) 2n
 - (E) 2n+1

Your answer: _____

- (7) If f is expressible as a polynomial function of degree d > 0, what is the smallest k for which $\Delta^k f$ is identically the zero function? *Hint: Think of the analogous question using continuous derivatives.* Although Δ differs from the continuous derivative, much of the qualitative behavior is the same.
 - (A) d-2
 - (B) d 1(C) d
 - (D) d + 1
 - (E) d + 1(E) d + 2
 - (\mathbf{L}) u + 2

- (8) If f is a function such that $\Delta f = af$ for some positive constant a, and f(1) is positive, which of the following best describes the nature of growth of f? Hint: Think of the analogous differential equation using continuous derivatives. The precise solution is different but the nature of the solution is similar.
 - (A) f grows like a sublinear function of n.
 - (B) f grows like a linear function of n.
 - (C) f grows like a superlinear but subexponential function of n.
 - (D) f grows like an exponential function of n.
 - (E) f grows like a superexponential function of n.

Your answer: _

Your answer: _____