TAKE-HOME CLASS QUIZ: DUE FEBRUARY 8: LIMITS AT INFINITY AND IMPROPER INTEGRAL

MATH 153, SECTION 55 (VIPUL NAIK)

Your name (print clearly in capital letters):

YOU ARE FREE TO DISCUSS ALL QUESTIONS, BUT PLEASE MAKE SURE TO ONLY ENTER ANSWER CHOICES THAT YOU PERSONALLY ENDORSE

- (1) If $\lim_{x\to\infty} f(x) = L$ for some finite L, this tells us that the graph of f has a:
 - (A) vertical asymptote
 - (B) horizontal asymptote
 - (C) vertical tangent
 - (D) horizontal tangent
 - (E) vertical cusp

Your answer:

(2) If $\lim_{x\to\infty} f(x) = L$ and $\lim_{x\to\infty} f'(x) = M$, where both L and M are finite, then:

- (A) L = 0 but M need not be zero
- (B) M = 0 but L need not be zero
- (C) Both L and M must be zero.
- (D) Neither L nor M need be zero.
- (E) At least one of L and M must be zero, but it could be either one.

Your answer: _____

Consider the following $\epsilon - \delta$ definition of limit at ∞ : $\lim_{x \to \infty} f(x) = L$ if for all $\epsilon > 0$, there exists $a \in \mathbb{R}$ such that for all x > a, $|f(x) - L| < \epsilon$.

- (3) What is the smallest a that can be picked for the function $f = \arctan t$ being its limit at ∞ and $\epsilon = \pi$?
 - (A) $\sqrt{3}$
 - (B) 1
 - (C) 0
 - (D) -1
 - (E) There is no smallest a. Any $a \in \mathbb{R}$ will do.

Your answer: _____

(4) What is the smallest a that can be picked for the function $f = \arctan t L$ being its limit at ∞ and $\epsilon = \pi/6$?

(A) 1/2

- (B) $1/\sqrt{3}$
- (C) 1
- (D) $\sqrt{3}$
- (E) 2

Your answer: _____

- (5) Suppose f(x) := p(x)/q(x) is a rational function in reduced form (i.e., the numerator and denominator are relatively prime) and $\lim_{x\to c} f(x) = \infty$. Which of the following can you conclude about f?
 - (A) x c divides p(x), and the largest r such that $(x c)^r$ divides p(x) is even.
 - (B) x c divides q(x), and the largest r such that $(x c)^r$ divides q(x) is even.
 - (C) x c divides p(x), and the largest r such that $(x c)^r$ divides p(x) is odd.
 - (D) x c divides q(x), and the largest r such that $(x c)^r$ divides q(x) is odd.
 - (E) x c does not divide either p(x) or q(x).

Your answer:

- (6) Suppose f(x) := p(x)/q(x) is a rational function in reduced form (i.e., the numerator and denominator are relatively prime) and $\lim_{x\to c^-} f(x) = \infty$ and $\lim_{x\to c^+} f(x) = -\infty$. Which of the following can you conclude about f?
 - (A) x c divides p(x), and the largest r such that $(x c)^r$ divides p(x) is even.
 - (B) x c divides q(x), and the largest r such that $(x c)^r$ divides q(x) is even.
 - (C) x c divides p(x), and the largest r such that $(x c)^r$ divides p(x) is odd.
 - (D) x c divides q(x), and the largest r such that $(x c)^r$ divides q(x) is odd.
 - (E) x c does not divide either p(x) or q(x).

Your answer: _

Suppose F is a function of two real variables, say x and t, so F(x, t) is a real number for x and t restricted to suitable open intervals in the real number. Suppose, further, that F is jointly continuous (whatever that means) in x and t.

(whatever that means) in x and t. Define $f(t) := \int_0^\infty F(x,t) dx$. Here, while doing the integration, t is treated as a constant. x, the variable of integration, is being integrated on $[0, \infty)$.

Suppose further that f is defined and continuous for t in $(0, \infty)$.

In the next few questions, you are asked to compute the function f explicitly given the function F, for $t \in (0, \infty)$.

(7) $F(x,t) := e^{-tx}$. Find *f*.

- (A) $f(t) = e^{-t}/t$
- (B) $f(t) = e^t/t$
- (C) f(t) = 1/t
- (D) f(t) = -1/t
- (E) f(t) = -t

Your answer:

- (8) $F(x,t) := 1/(t^2 + x^2)$. Find f. (A) $f(t) = \pi/(2t)$ (B) $f(t) = \pi/t$ (C) $f(t) = 2\pi/t$
 - (D) $f(t) = \pi t$
 - (E) $f(t) = 2\pi t$

Your answer: _

- (9) $F(x,t) := 1/(t^2 + x^2)^2$. Find f. (A) $f(t) = \pi/t^3$ (B) $f(t) = \pi/(2t^3)$
 - (C) $f(t) = \pi/(4t^3)$
 - (D) $f(t) = \pi/(8t^3)$
 - (E) $f(t) = 3\pi/(8t^3)$

Your answer: _____

- (10) $F(x,t) = \exp(-(tx)^2)$. Use that $\int_0^\infty \exp(-x^2) dx = \sqrt{\pi}/2$. Find f. (A) $f(t) = t^2 \sqrt{\pi}/2$ (B) $f(t) = t\sqrt{\pi}/2$ (C) $f(t) = \sqrt{\pi}/2$ (D) $f(t) = \sqrt{\pi}/(2t)$ (E) $f(t) = \sqrt{\pi}/(2t^2)$ Your answer:
- (11) In the same general setup as above (but with none of these specific Fs), which of the following is a *sufficient* condition for f to be an increasing function of t?
 - (A) $t \mapsto F(x_0, t)$ is an increasing function of t for every choice of $x_0 \ge 0$.
 - (B) $x \mapsto F(x, t_0)$ is an increasing function of x for every choice of $t_0 \in (0, \infty)$.
 - (C) $t \mapsto F(x_0, t)$ is a decreasing function of t for every choice of $x_0 \ge 0$.
 - (D) $x \mapsto F(x, t_0)$ is a decreasing function of x for every choice of $t_0 \in (0, \infty)$.
 - (E) None of the above.

Your answer: _____