CLASS QUIZ: JANUARY 18: MATHEMATICAL INDUCTION

MATH 153, SECTION 55 (VIPUL NAIK)

Your name (print clearly in capital letters): _

For all these questions, *natural number* refers to positive integer. In particular, 0 is not considered to be a natural number.

- (1) Suppose S is a subset of the natural numbers with the property that $1 \in S$ and $k \in S \implies k+2 \in S$. What can we conclude is **definitely true** about S? Last year: 18/29 correct
 - (A) S contains all natural numbers.
 - (B) S contains all natural numbers other than 2. It may or may not contain 2.
 - (C) S contains all odd natural numbers.
 - (D) S contains all even natural numbers.
 - (E) S does not contain any natural number other than 1.

Your answer: _

- (2) Suppose S is a subset of the natural numbers with the property that whenever $k \in S$, we have $k + 5 \in S$. Which of these is the **smallest subset** T with the property that checking $T \subseteq S$ is sufficient to show that S is the set of all natural numbers? Last year: 21/29 correct
 - (A) $\{1, 2, 3\}$
 - (B) $\{1, 2, 3, 4\}$
 - (C) $\{1, 2, 3, 4, 5\}$
 - (D) $\{1,4\}$
 - (E) $\{1, 3, 5\}$

Your answer: _____

- (3) Consider the function $f(x) := a \sin x + b \cos x$, with a, b nonzero reals. The n^{th} derivative of f is denote $f^{(n)}$. The association $n \mapsto f^{(n)}$ is periodic, i.e., there is a unique smallest positive integer h such that $f^{(n+h)} = f^{(n)}$ for all n. What is **this value** of h? Last year: 25/29 correct
 - (A) 1
 - (B) 2
 - (C) 3 (D) 4
 - (E) 5

Your answer: ____

(4) What is the correct general expression for the sum $\sum_{k=2}^{n} \frac{1}{k^2-1}$ for a positive integer $n \ge 2$? Last year: 18/29 correct

year: 18/29 correct (A) $\frac{3}{2} - \frac{2n+3}{2(n+1)}$ (B) $\frac{3}{2} - \frac{2n+3}{n(n+1)}$ (C) $\frac{3}{4} - \frac{2n+1}{(n+1)(n+2)}$ (D) $\frac{3}{4} - \frac{2n-1}{2n(n-1)}$ (E) $\frac{3}{4} - \frac{2n+1}{2n(n+1)}$ Your answer: