CLASS QUIZ: JANUARY 11: HYPERBOLIC FUNCTIONS

MATH 153, SECTION 55 (VIPUL NAIK)

Your name (print clearly in capital letters): _____

(1) What is the limit $\lim_{x\to\infty} (\cosh x)/e^x$? Last year: 21/28 correct

- (A) 0
- (B) 1/2
- (C) 1
- (D) 2
- (E) The limit does not exist.

(2) What is the limit $\lim_{x\to-\infty} (\cosh x)/e^x$? Last year: 24/28 correct

- (A) 0
- (B) 1/2
- (C) 1
- (D) 2
- (E) The limit does not exist.

Your answer: _____

- (3) Consider the function y = f(x) where $f(x) := \arctan(\sinh x)$. Which of the following does $\cosh x$ necessarily equal? Last year: 19/28 correct
 - (A) $\sin y$
 - (B) $\cos y$
 - (C) $\cot y$
 - (D) $\sec y$
 - (E) $\csc y$

Your answer: _____

- (4) Consider the function y = f(x) where $f(x) := \arctan(\sinh x)$ (same as in the previous question). The function is a one-to-one increasing function on its domain. What are its domain and range? Last year: 24/28 correct
 - (A) The domain and range are both equal to \mathbb{R}
 - (B) The domain and range are both equal to the open interval $(-\pi/2, \pi/2)$
 - (C) The domain equals $\mathbb R$ and the range equals the open interval $(-\pi/2,\pi/2)$
 - (D) The domain equals the open interval $(-\pi/2, \pi/2)$ and the range equals \mathbb{R}
 - (E) The domain equals the open interval $(-\pi/2, \pi/2)$ and the range equals the closed interval $[-\pi/2, \pi/2]$

Your answer:

- (5) (*) sinh is a one-to-one function with domain and range both equal to \mathbb{R} . Hence, it must have an inverse function with domain and range both equal to \mathbb{R} . What is this inverse function? Last year: 15/28 correct
 - (A) $x \mapsto (\ln(x) \ln(-x))/2$ (B) $x \mapsto (1/2) \ln(x^2 + 1)$
 - (C) $x \mapsto \ln[x + \sqrt{x^2 + 1}]$ (D) $x \mapsto \ln[x \sqrt{x^2 + 1}]$ (E) $x \mapsto \ln[\sqrt{x^2 + 1} x]$

Your answer: