CLASS QUIZ: JANUARY 9: INVERSE TRIGONOMETRIC FUNCTIONS

MATH 153, SECTION 55 (VIPUL NAIK)

Your name (print clearly in capital letters):

- (1) What is the domain of $\arcsin \circ \arcsin$? Here, *domain* refers to the maximal possible subset of \mathbb{R} on which the function is defined. Last year: 18/28 correct
 - (A) [-1,1]
 - (B) $[-\sin 1, \sin 1]$
 - (C) $[-\arcsin 1, \arcsin 1]$
 - (D) $[-\sin(2/\pi), \sin(2/\pi)]$
 - (E) $\left[-\arcsin(2/\pi), \arcsin(2/\pi)\right]$

Your answer:

- (2) One of these five functions has a horizontal asymptote as x → +∞ and a horizontal asymptote as x → -∞, with the limiting values for +∞ and -∞ being different. Identify the function. This didn't appear in last year's quiz, but appeared in a midterm two years ago in somewhat modified form. At the time, 11/15 got it correct.
 - (A) $f(x) := \ln |x|$.
 - (B) $f(x) := \arctan x$.
 - (C) $f(x) := e^{-x}$.
 - (D) $f(x) := e^{-x^2}$.
 - (E) $f(x) := (\sin x)/(x^2 + 1).$

Your answer: _____

- (3) Suppose f is a polynomial with degree at least one and positive leading coefficient. Consider the function $g(x) := \arctan(f(x))$. What can we say about the horizontal asymptotes of the graph y = g(x)? Last year: 22/28 correct
 - (A) The horizontal asymptote is $y = \pi/2$ both for $x \to +\infty$ and for $x \to -\infty$, regardless of f.
 - (B) The horizontal asymptote is $y = \pi/2$ for $x \to +\infty$ and $-\pi/2$ for $x \to -\infty$, regardless of f.
 - (C) The horizontal asymptote is $y = \pi/2$ for $x \to +\infty$, and as $x \to -\infty$, it is $y = \pi/2$ if f has even degree and $y = -\pi/2$ if f has odd degree.
 - (D) The horizontal asymptote is $y = f(\pi/2)$ both for $x \to +\infty$ and for $x \to -\infty$.
 - (E) The horizontal asymptote is $y = f(\pi/2)$ for $x \to +\infty$ and as $x \to -\infty$, it is $y = f(\pi/2)$ if f has even degree and $y = f(-\pi/2)$ if f has odd degree.

Your answer: _____

- (4) Consider the function $f(x) := \arcsin(\sin x)$ on the domain $[\pi/2, 3\pi/2]$. Which of the following is f(x) equal to on that domain? Last year: 20/28 correct
 - (A) $\pi + x$
 - (B) πx
 - (C) $x \pi$

- (D) $(3\pi/2) x$
- (E) $x (\pi/2)$

Your answer: _____

- (5) Consider the function $f(x) := \arccos(\sin x)$ on all of \mathbb{R} . What can we say about the function f? Last year: 21/28 correct
 - (A) f is periodic, continuous, and piecewise linear.
 - (B) f is periodic and continuous but is not piecewise linear.
 - (C) f is continuous and piecewise linear but not periodic.
 - (D) f is periodic but not continuous.
 - (E) f is continuous but not periodic or piecewise linear.

Your answer: _____