
REVIEW SHEET FOR FINAL: BASIC

MATH 152, SECTION 55 (VIPUL NAIK)

With minor exceptions, this document does not re-review material already covered in the review sheet for
midterm 1 and midterm 2. It is your responsibility to go through that review sheet again and make sure you
have mastered all the material there.

See the advanced version for error-spotting exercises and the quickly list.

1. Area computations

Note that this section partially repeats material from the prevoius midterm review, because part of the
area computations syllabus was in the previous midterm syllabus.

Words ...
(1) We can use integration to determine the area of the region between the graph of a function f and

the x-axis from x = a to x = b: this integral is
∫ b

a
f(x) dx. The integral measures the signed area:

parts where f ≥ 0 make positive contributions and parts where f ≤ 0 make negative contributions.
The magnitude-only area is given as

∫ b

a
|f(x)| dx. The best way of calculating this is to split [a, b]

into sub-intervals such that f has constant sign on each sub-interval, and add up the areas on each
sub-interval.

(2) Given two functions f and g, we can measure the area between f and g between x = a and x = b as∫ b

a
|f(x)− g(x)| dx. For practical purposes, we divide into sub-intervals so that on each sub-interval

one function is bigger than the other. We then use integration to find the magnitude of the area on
each sub-interval and add up. If f and g are both continuous, the points where the functions cross
each other are points where f = g.

(3) Sometimes, we may want to compute areas against the y-axis. The typical strategy for doing this is
to interchange the roles of x and y in the above discussion. In particular, we try to express x as a
function of y.

(4) An alternative strategy for computing areas against the y-axis is to use formulas for computing areas
against the x-axis, and then compute differences of regions.

(5) A general approach for thinking of integration is in terms of slicing and integration. Here, integration
along the x-axis is based on the following idea: divide the region into vertical slices, and then integrate
the lengths of these slices along the horizontal dimension. Regions for which this works best are the
regions called Type I regions. These are the regions for which the intersection with any vertical line
is either empty or a point or a line segment, hence it has a well-defined length.

(6) Correspondingly, integration along the y-axis is based on dividing the region into horizontal slices,
and integrating the lengths of these slices along the vertical dimension. Regions for which this works
best are the regions called Type II regions. These are the regions for which the intersection with any
horizontal line is either empty or a point or a line segment, hence it has a well-defined length.

(7) Generalizing from both of these, we see that our general strategy is to choose two perpendicular
directions in the plane, one being the direction of our slices and the other being the direction of
integration.

Actions ...
(1) In some situations we are directly given functions and/or curves and are asked to find areas. In

others, we are given real-world situations where we need to find areas of regions. Here, we have to
find functions and set up the integration problem as an intermediate step.

(2) In all these situations, it is important to draw the graphs in a reasonably correct way. This brings
us to all the ideas that are contained in graph drawing. Remember, here we may be interested in
simultaneously graphing more than one function. Thus, in addition to being careful about each
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function, we should also correctly estimate where one function is bigger than the other, and find
(approximately or exactly) the intersection points. (Go over the notes on graph-drawing, and some
additional notes on graphing that weren’t completely covered in class).

(3) In some situations, we are asked to find the area(s) of region(s) bounded by the graphs of one, two,
three, or more functions. Here, we first need to sketch the figure. Then, we need to find the interval
of integration, and if necessary, split this interval into sub-intervals, such that on each sub-interval,
we know exactly what integral we need to do. For instance, consider the region between the graphs
of sin, cos, and the x-axis. Basically, the idea is to find, for all the vertical slices, the upper and
lower limits of the slice.

2. Volume computations

Words ...

(1) The cross section method for computing volume is an analogue of the two-dimensional area com-
putation method: our slices are replaced by cross sections by planes parallel to a fixed plane, and
the line of integration is a line perpendicular to the planes. One-dimensional slices are replaced by
two-dimensional cross sections.

(2) Suppose Ω is a region in the plane. We can construct a right cylinder with base Ω and height h.
This is obtained by translating Ω in a direction perpendicular to its plane by a length of h. The
cross section of this right cylinder along any plane parallel to the original plane looks like Ω if that
plane is within range. The volume is the product of the area of Ω and the height h. This is also
called the right cylinder with constant cross section Ω.

(3) We can also construct an oblique cylinder. Here, the direction of translation is not perpendicular to
the original plane. The total volume is the product of the area of Ω and the height perpendicular to
Ω. Oblique cylinders are to right cylinders what parallelograms are to rectangles.

(4) More generally, the volume of a solid can be computed using the cross section method. Here, we
choose a direction. We measure areas of cross sections along planes perpendicular to that direction,
and integrate these areas along that direction.

(5) This general approach has another special case that is perhaps as important as right cylinders. These
are the cones (there are right cones and oblique cones). A cone is obtained by taking a region in
a plane and connecting all points in it to a point outside the plane. It is a right cone if that point
is directly above the center of the region. The volume of a cone is 1/3 times the product of the
base area and the height, i.e., the perpendicular distance from the outside point to the plane. In
particular, a cone has one-third the volume of a cylinder of the same base and height.

(6) A solid of revolution is a solid obtained by revolving a region in a plane about a line (called the
axis of revolution). The volume of a solid of revolution can be computed by choosing the axis as
the axis of integration and using the planes of cross section as planes perpendicular to it. These
cross sections are either circular disks or annuli in the nice cases. Added: In nastier cases, the cross
sections could be unions of multiple annuli.

(7) The disk method is a special case of the above, where the region being revolved is supported on the
axis of revolution. For instance, consider the region between the x-axis, the graph of a function f ,
and the lines x = a and x = b. The volume of the corresponding solid of revolution is π

∫ b

a
[f(x)]2 dx.

This is because the radius of the cross section disk at x = x0 is |f(x0)|.
(8) The washer method is the more general case where the region need not adhere to the axis of revolution.

For instance, consider two nonnegative functions f, g and suppose 0 ≤ g ≤ f . Consider the region
bounded by the graphs of these two functions and the lines x = a and x = b. The volume of the
corresponding solid of revolution is π

∫ b

a
([f(x)]2 − [g(x)]2) dx. Note that in the more general case

where the functions cross each other, we may need to split into sub-intervals so that we can apply
the washer method on each sub-interval.

(9) The shell method works for situations where we revolve about the y-axis the region made between
the graph of a function and the x-axis. The formula here is 2π

∫ b

a
xf(x) dx for f nonnegative and 0 <

a < b. If f could be positive or negative, we use 2π
∫ b

a
x|f(x)| dx.. More generally, if we are looking
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at the region between the graphs of f and g (vertically) with g ≤ f , we get 2π
∫ b

a
x[f(x)− g(x)] dx.

If we don’t know which one is bigger where, we use 2π
∫ b

a
x|f(x)− g(x)| dx.

Actions ...
(1) To compute the volume using cross sections, we first need to set things up so that we know the cross

section areas as a function of the position of the plane. For this, it is usually necessary to use either
coordinate geometry or basic trigonometry, or a combination.

(2) A solid occurs as a solid of revolution if it has complete rotational symmetry about some axis. In
that case, that axis is the axis of revolution and the original region that we need is obtained by
taking a cross section in any plane containing the axis of revolution and looking at the part of that
cross section that is on one side of the axis of revolution.

(3) For solids of revolution, be particularly wary if the original figure being revolved has parts on both
sides of the axis of revolution. If it is symmetric about the axis of revolution, delete one side. Added:
In general, fold the figure about the axis of revolution – folding does not affect the final solid of
revolution we obtain.

(4) Be careful about the situations where you have to be sign-sensitive and the situations where you
do not. In the disk method sensitivity to signs is not important. In the washer method and shell
method, it is. Added: Also be careful about applying the disk, washer, and shell methods when the
axis of revolution is not the x- or y-axis but is parallel to one of them.

(5) The farther the shape being revolved is from the axis, the greater the volume of the solid of revolution.
(6) The average value point of view is sometimes useful for understanding such situations.

3. One-one functions and inverses

3.1. Vague generalities. Words...
(1) Old hat: Given two sets A and B, a function f : A → B is something that takes inputs in A and

gives outputs in B. The domain of a function is the set of possible inputs, while the range of a
function is the set of possible outputs. The notation f : A→ B typically means that the domain of
the function is A. However, the whole of B need not be the range; rather, all we know is that the
range is a subset of B. One way of thinking of functions is that equal inputs give equal outputs.

(2) A function f is one-to-one if f(x1) = f(x2) =⇒ x1 = x2. In other words, unequal inputs give
unequal outputs. Another way of thinking of this is that equal outputs could only arise from equal
inputs. Or, knowledge of the output allows us to determine the input uniquely. One-to-one functions
are also called one-one functions or injective functions.

(3) Suppose f is a function with domain A and range B. If f is one-to-one, there is a unique function g
with domain B and range A such that f(g(x)) = x for all x ∈ B. This function is denoted f−1. We
further have that g is also one-to-one, and that f = g−1. Note that f−1 differs from the reciprocal
function of f .

(4) Suppose f : A → B and g : B → C are one-to-one functions. Then g ◦ f is also one-to-one, and its
inverse is the function f−1 ◦ g−1.

Actions ...
(1) To determine whether a function is one-to-one, solve f(x) = f(a) for x in terms of a. If, for every

a in the domain, the only solution is x = a, the function is one-to-one. If, on the other hand, there
are some values of a for which there is a solution x 6= a, the function is not one-to-one.

(2) To compute the inverse of a one-to-one function, solve f(x) = y and the expression for x in terms of
y is the inverse function.

3.2. In graph terms. Thousand words ...
(1) A picture in a coordinatized plane is the graph of a function if every vertical line intersects the

picture at most once. The vertical lines that intersect it exactly once correspond to the x-values in
the domain. This is known as the vertical line test.

(2) A function is one-to-one if and only if its graph satisfies the horizontal line test: every horizontal
line intersects the graph at most once. The horizontal lines that intersect the graph exactly once
correspond to y-values in the range.
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(3) For a one-to-one function, the graph of the inverse function is obtained by reflecting the graph of
the function about the y = x line. In particular, a function equals its own inverse iff its graph is
symmetric about the y = x line.

(4) Many of the results on inverse functions and their properties have graphical interpretations. For
instance, the fact that the derivative of the inverse function is the reciprocal of the derivative cor-
responds to the geometrical fact that reflection about the y = x line inverts slopes of tangent lines.
Similarly, the results relating increase/decrease and concave up/down for a function and its inverse
function can all be deduced graphically.

3.3. In the real world. Words... (from now on, we restrict ourselves to functions whose domain and range
are both subsets of the real numbers)

(1) An increasing function is one-to-one. A decreasing function is one-to-one.
(2) A continuous function on an interval is one-to-one if and only if it is either increasing throughout

the interval or decreasing throughout the interval.
(3) If the derivative of a continuous function on an interval is of constant sign everywhere, except possibly

at a few isolated points where it is either zero or undefined, then the function is one-to-one on the
interval. Note that we need the function to be continuous everywhere on the interval, even though
it is tolerable for the derivative to be undefined at a few isolated points.

(4) In particular, a one-to-one function cannot have local extreme values.
(5) A continuous one-to-one function is increasing if and only if its inverse function is increasing, and is

decreasing if and only if its inverse function is decreasing.
(6) Point added, not present in original executive summary of lecture notes: If a one-to-one function

on an interval satisfies the intermediate value property, then it is continuous. This is because
the function cannot jump suddenly since it needs to cover all intermediate values. Note that the
analogous statement is not true if we drop either the assumption of one-to-one or the assumption of
the intermediate value property. (Think of sin(1/x), for instance).

(7) If f is one-to-one and differentiable at a point a (emphasis added) with f ′(a) 6= 0, with f(a) = b, then
(f−1)′(b) = 1/f ′(a). This agrees with the previous point and also shows that the rates of relative
increase are inversely proportional.

(8) Two extreme cases of interest are: f ′(a) = 0, f(a) = b. In this case, f has a horizontal tangent at
a and f−1 has a vertical tangent at b. The horizontal tangent is typically also a point of inflection.
It is definitely not a point of local extremum. Similarly, if (f−1)′(b) = 0, then f−1 has a horizontal
tangent at b and f has a vertical tangent at a.

(9) A slight complication occurs when f has one-sided derivatives but is not differentiable. If both one-
sided derivatives of f exist and are nonzero, then both one-sided derivatives of f−1 (at the image
point) exist and are nonzero. When f is increasing, the left hand derivative of f−1 is the reciprocal
of the left hand derivative of f , and the right hand derivative of f−1 is the reciprocal of the right
hand derivative of f . When f is decreasing, the right hand derivative of f−1 is the reciprocal of
the left hand derivative of f , and the left hand derivative of f−1 is the reciprocal of the right hand
derivative of f .

(10) The second derivative of f−1 at f(a) is −f ′′(a)/(f ′(a))3. In particular, the second derivative of the
inverse function at the image point depends on the values of both the first and the second derivatives
of the function at the point.

(11) If f is increasing, the sense of concavity of f−1 is opposite to that of f . If f is decreasing, the sense
of concavity of f−1 is the same as that of f .

Actions ...

(1) For functions on intervals, to check if the function is one-to-one, we can compute the derivative and
check if it has constant sign everywhere except possibly at isolated points.

(2) In order to find (f−1)′ at a particular point, given an explicit description of f , it is not necessary
to find an explicit description of f−1. Rather, it is enough to find f−1 at that particular point and
then calculate the derivative using the above formula. The same is true for (f−1)′′, except that now
we need to compute the values of both f ′ and f ′′.
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(3) The idea can be extended somewhat to finding (f−1)′ when f satisfies a differential equation that
expresses f ′(x) in terms of f(x) (with no direct appearance of x).

4. Logarithms, exponents, derivatives and integrals

4.1. Logarithm and exponential: basics.
(1) The natural logarithm is a one-to-one function with domain (0,∞) and range R, and is defined as

ln(x) :=
∫ x

1
(dt/t).

(2) The natural logarithm is an increasing function that is concave down. It satisfies the identities
ln(1) = 0, ln(ab) = ln(a) + ln(b), ln(ar) = r ln a, and ln(1/a) = − ln a.

(3) The limit limx→0 ln(x) is −∞ and the limit limx→∞ ln(x) is +∞. Note that ln goes off to +∞ at ∞
even though its derivative goes to zero as x→ +∞.

(4) The derivative of ln(x) is 1/x and the derivative of ln(kx) is also 1/x. The derivative of ln(xr) is
r/x.

(5) The antiderivative of 1/x is ln |x|+C. What this really means is that the antiderivative is ln(−x)+C
when x is negative and ln(x)+C when x is positive. If we consider 1/x on both positive and negative
reals, the constant on the negative side is unrelated to the constant on the positive side.

(6) e is defined as the unique number x such that ln(x) = 1. e is approximately 2.718. In particular, it
is between 2 and 3.

(7) The inverse of the natural logarithm function is denoted exp, and exp(x) is also written as ex. When
x is a rational number, ex = ex (i.e., the two definitions of exponentiation coincide). In particular,
e1 = e, e0 = 1, etc.

(8) The function exp equals its own derivative and hence also its own antiderivative. Further, the
derivative of x 7→ emx is memx. Similarly, the integral of emx is (1/m)emx + C.

(9) We have exp(x + y) = exp(x) exp(y), exp(rx) = (exp(x))r, exp(0) = 1, and exp(−x) = 1/ exp(x).
All of these follow from the corresponding identities for ln.

Actions...
(1) We can calculate ln(x) for given x by using the usual methods of estimating the values of integrals,

applied to the function 1/x. We can also use the known properties of logarithms, as well as approx-
imate ln values for some specific x values, to estimate lnx to a reasonable approximation. For this,
it helps to remember ln 2, ln 3, and ln 5 or ln 10.

(2) Since both ln and exp are one-to-one, we can cancel ln from both sides of an equation and similarly
cancel exp. Technically, we cancel ln by applying exp to both sides, and we cancel exp by applying
ln to both sides.

4.2. Integrations involving logarithms and exponents. Words/actions ...
(1) If the numerator is the derivative of the denominator, the integral is the logarithm of the (absolute

value of) the denominator. In symbols,
∫
g′(x)/g(x) dx = ln |g(x)|+ C.

(2) More generally, whenever we see an expression of the form g′(x)/g(x) inside the integrand, we
should consider the substitution u = ln |g(x)|. Thus,

∫
f(ln |g(x)|)g′(x)/g(x) dx =

∫
f(u) du where

u = ln |g(x)|.
(3)

∫
f(ex)ex dx =

∫
f(u) du where u = ex.

(4)
∫
ex[f(x) + f ′(x)] dx = exf(x) + C.

(5)
∫
ef(x)f ′(x) dx = ef(x) + C.

(6) Trigonometric integrals:
∫

tanx dx = − ln | cosx| + C, and similar integration formulas for cot, sec
and csc:

∫
cotx dx = ln | sinx| + C,

∫
secx = ln | secx + tanx| + C, and

∫
cscx dx = ln | cscx −

cotx|+ C.

4.3. Exponents with arbitrary bases, exponents. Words ...
(1) For a > 0 and b real, we define ab := exp(b ln a). This coincides with the usual definition when b is

rational.
(2) All the laws of exponents that we are familiar with for integer and rational exponents continue to

hold. In particular, a0 = 1, ab+c = ab · ac, a1 = a, and abc = (ab)c.
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(3) The exponentiation function is continuous in the exponent variable. In particular, for a fixed value
of a > 0, the function x 7→ ax is continuous. When a 6= 1, it is also one-to-one with domain R and
range (0,∞), with inverse function y 7→ (ln y)/(ln a), which is also written as loga(y). In the case
a > 1, it is an increasing function, and in the case a < 1, it is a decreasing function.

(4) The exponentiation function is also continuous in the base variable. In particular, for a fixed value
of b, the function x 7→ xb is continuous. When b 6= 0, it is a one-to-one function with domain and
range both (0,∞), and the inverse function is y 7→ y1/b. In case b > 0, the function is increasing,
and in case b < 0, the function is decreasing.

(5) Actually, we can say something stronger about ab – it is jointly continuous in both variables. This
is hard to describe formally here, but what it approximately means is that if f and g are both
continuous functions, and f takes positive values only, then x 7→ [f(x)]g(x) is also continuous.

(6) The derivative of the function [f(x)]g(x) is [f(x)]g(x) times the derivative of its logarithm, which is
g(x) ln(f(x)). We can further simplify this to obtain the formula:

d

dx

(
[f(x)]g(x)

)
= [f(x)]g(x)

[
g(x)f ′(x)
f(x)

+ g′(x) ln(f(x))
]

(7) Special cases worth noting: the derivative of (f(x))r is r(f(x))r−1f ′(x) and the derivative of ag(x)

is ag(x)g′(x) ln a.
(8) Even further special cases: the derivative of xr is rxr−1 and the derivative of ax is ax ln a.
(9) The antiderivative of xr is xr+1/(r+1)+C (for r 6= −1) and ln |x|+C for r = −1. The antiderivative

of ax is ax/(ln a) + C for a 6= 1 and x+ C for a = 1.
(10) The logarithm loga(b) is defined as (ln b)/(ln a). This is called the logarithm of b to base a. Note that

this is defined when a and b are both positive and a 6= 1. This satisfies a bunch of identities, most
of which are direct consequences of identities for the natural logarithm. In particular, loga(bc) =
loga(b)+loga(c), loga(b) logb(c) = loga(c), loga(1) = 0, loga(a) = 1, loga(ar) = r, loga(b) · logb(a) = 1
and so on.

(11) Added: The derivative of logf(x)(g(x)) is given by:

d

dx

[
logf(x)(g(x))

]
=

ln(f(x))g′(x)/g(x)− ln(g(x))f ′(x)/f(x)
(ln(f(x)))2

Actions...
(1) We can use the formulas here to differentiate expressions of the form f(x)g(x), and even to differentiate

longer exponent towers (such as xxx

and 22x

).
(2) To solve an integration problem with exponents, it may be most prudent to rewrite ab as exp(b ln a)

and work from there onward using the rules mastered earlier. Similarly, when dealing with relative
logarithms, it may be most prudent to convert all expressions in terms of natural logairthms and
then use the rules mastered earlier.
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