
PROOFS AND OTHER IDEAS OF MATHEMATICS

MATH 152, SECTION 55 (VIPUL NAIK)

1. General ideas related to proofs

1.1. The idea of models and proof. The main idea behind the concept of proof is to establish something
clearly, give a fool-proof, error-free explanation of why something is true. That means that all cases must
be covered, every step of the argument should be justified, and there shouldn’t be any hidden assumptions
that aren’t true. We’ll go over some of these in detail, but the first question you might be wondering is: why
proof?

So the one thing you have to remember about mathematics is that the world of mathematics is a world of
its own creation. It’s true that mathematical ideas and formalisms are applied a lot to real-world settings, but
often the mathematical ideas go far beyond what we can determine or verify through real-world observation.
In other words, for a lot of the things we want to do in the mathematical world, it is hard to be sure of
them simply by looking around at the real world. So, in mathematics, it is important to develop a way of
being sure of things that depends purely on internal reasoning. In fact, this concept of internal reasoning,
or reasoning within the framework of rules of the system, is what defines mathematics.

If you think about mathematics as a system of rules-based internal reasoning, your most significant
introduction to mathematics isn’t when you learn numbers, it is when you learn how to play games, and
how to deploy strategies within games.

And it so happens that most systems of rules that we deal with involve the concepts of numbers, many
of them involve some geometric ideas, and some of them need the tools of algebra and trigonometry and
calculus. But you shouldn’t think of mathematics as being the same as algebra or trigonometry or calculus.
These are just tools. The main feature of mathematics is that in mathematics, there is a strong place for
internal reasoning – reasoning within the system to try to determine what is true and what is false.

And, if you look at major developments in a number of academic disciplines, you see that mathematics
is seeping into most of them. And I don’t just mean that they are getting more quantitative, though that’s
part of the story. Those who’ve seen Newton’s laws and classical mechanics know that there’s a specific
model (which, it turns out, isn’t exactly how the real world operates) and we can predict how things will
behave in that model. Nowadays, many papers in the social sciences also start by creating some artificial
model that has a reasonable resemblance to reality, and then try to derive formally what happens in that
model. And the main difference between mathematicians and those in other sciences is that for people in
the other sciences, they need to justify that their model has some kind of resemblance with, or explanatory
power about, the real world. But mathematicians aren’t subject to that constraint.

So think of mathematical rigor as something that allows mathematicians to explore things where intuition,
or real-world checks and balances, are hard to find.

1.2. Proof by example isn’t; cover your bases, consider all cases. So one of the things people often
do in the real world is when they want to know if something is true they take some example and check it.
And you see the media and politicians do that kind of thing everyday. So whenever somebody wants to
prove that some thing works, they’ll find one person to give a testimonial for it.

But in mathematics, we don’t consider a few isolated examples to be proof. And the reason is simple:
different cases behave differently, so the examples we choose are probably not representative. That’s true in
the real world, but it is often even more true in mathematics, where things aren’t constrained to be realistic.

So mathematicians try to cover all cases in proofs. What does this mean? If you want to prove a statement
for all real numbers, it isn’t enough to prove it for all rational numbers. After all, there are real numbers
that aren’t rational. So you need to prove the statement for all rational numbers and all irrational numbers.
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Now, how we choose to break down the problem into cases is up to us. For some problems, the natural way
of breaking up the problem may be to first consider rational numbers and then consider irrational numbers.
Sometimes, it may be helpful to first consider positive numbers and then consider negative numbers. If
you have to prove a statement for all numbers in a finite set, the ultimate break-up would be to check it
separately for every element of the finite set.

The thing you should remember is that if you are breaking things up into cases, you should remember
to cover all cases. And one way to remember this is to think of mathematics as just about the smartest
adversary you can find in the battlefield. If you don’t cover every possible line of attack on your adversary,
your adversary will hide in the one place you forgot to cover.

1.3. Conditional implication. In mathematics, we often consider statements of the form:
“If A, then B”
Now, these kinds of statements can sometimes be confusing, so let’s try to understand what exactly this

means. This roughly means that, assuming that A is given to be true, B is true. For instance, “if I don’t
oversleep, I will attend the calculus lecture on Friday”. That is a conditional statement.

There are a lot of subtleties about conditional implications that we need to understand. The first is that
“If A, then B” only means that A is sufficient for B. It doesn’t mean that A is necessary for B. There may
be other ways that B could become true, even if A were false. For instance, you may say “If I have enough
money, I’ll eat lunch”. But you may be able to eat lunch even though you don’t have enough money – by
going to one of U of C’s Free Food events.

So “if A, then B” means that if, somehow, one could guarantee A to be true, B would follow – but there
may be other ways to guarantee B. In particular, if you prove a statement “if A then B” and then you
separately prove that A is true, then you would have proved that B is true.

1.4. Rough work and fair work. In many situations where we need to do a proof, there are two parts to
doing the proof. The first is the exploratory phase, or the discovery phase, where we need to find a strategy
that works for the proof. For instance, in the case of ε − δ proofs, the exploratory phase involved coming
up with a winning strategy for the prover or the skeptic as the case may be. In this exploratory phase, we
may do some rough calculations, make some wild guesses, check out our intuition on examples, etc. The
exploratory phase may involve working backwards, splitting into cases, etc. At the end of exploratory phase,
we have an overall proof strategy.

At the end of the exploratory phase, we hopefully have a clear proof strategy. The next phase is that of
clearly expressing the strategy and showing that it works. When writing this final stategy and the proof,
you do not need to cover everything you went through in the exploratory phase. Stick only to that which is
more relevant to the final proof strategy. Also, state the strategy right upfront and proceed, to the extent
possible, starting from what you know and proceeding towards what you need to show.

1.5. Opposite statement. Another concept that I should mention, and that you’ve had a bit of past
experience with, is the opposite of a statement. This is related to the question: how do I prove that A is not
true? Well, in order to prove that, you first need a clear formulation of what it means for A to not be true.
This new statement is sometimes called the negation or opposite of A.

Now, some of you may have seen some Boolean algebra or logic, so you might have some idea of the formal
process of negating a statement, but even if you haven’t, most of the rules are intuitive provided you pause
to think and don’t just try to rush. Keep your cool, and it’s not hard. I’ll just mention some important
ideas:

(1) Negation turns and to or, and or to and. For instance, the negation of the statement x = 1 or x = 2
is the statement x 6= 1 and x 6= 2.

(2) Negation on a ∀ quantifier gives a ∃ quantifier and negation on a ∃ quantifier gives a ∀ quantifier. For
instance, the negation of the statement ∀x ∈ R, f(x2) = f(x)2 is the statement ∃x ∈ R, f(x2) 6= f(x).
This came up when we looked at ε− δ proofs.

1.6. Proof by contradiction. One of the useful proof techniques is proof by contradiction. This comes up
sometimes, and I’ll talk more about it when it does, but the way it works is like this: suppose you are trying
to prove A. So the first thing you may try to do is prove A straightforward, but that may seem tricky. So
what you do is this. You assume that the opposite of A is true. So you write down the opposite of A, and
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start with that as given. And then, from that, you derive some statement that is plainly not true. Since the
conclusion isn’t true, the statement you started by assuming, namely, the opposite of A, couldn’t have been
true either. And since the opposite of A is false, A itself must be true.

Some of you may have seen the proof that
√

2 is irrational. That proof is a classic example of proof by
contradiction.

2. Specific issues

The material in the previous section is very general and I think most of you would lap it up pretty easily.
Most of you seem to have a reasonable understanding of these ideas, but there are some more specific issues
that you may have with expressing your proofs. Below are listed some of the specific issues that students in
past years have had in the first two advanced homeworks.

2.1. Making your strategy and specific claims clear upfront. This issue has occurred in the past
with some of the ε− δ proofs. If you’re the prover, then the stategy involves finding an expression for δ that
works in terms of ε. If you’re the skeptic, the strategy involves finding an ε for which no δ works, and then
being able to choose a value of x in (c− δ, c + δ) \ {c}.

In the exploratory phase, you try to figure out a strategy that works. Then, in the actual proof phase,
you show that the strategy works.

When writing up the final proof, please do not show the exploratory phase. Please write the final winning
strategy upfront. Then, proceed to translate the general statement about the existence or non-existence of
limit into a specific claim based on your strategy. Then, do some algebraic manipulation or case-by-case
reasoning to prove that your strategy works.

Some examples:
• For the homework problem limx→2 x2 = 4, state right at the beginning that the winning strategy is

δ = min{1, ε/5}. Then, state the specific claim: if 0 < |x− 2| < min{1, ε/5}, then |x2 − 4| < ε. Now,
prove the specific claim.

Some people do some algebraic manipulation to discover the δ that works. Others are comfortable
using the general formula that works for the quadratic. Whichever thing you choose to do, please
remember that the less of this exploratory work you show, the clearer your proof is. This is because
exploratory work, as a general rule, is mesy, with conditionals much more complicated, steps going
forward and backward, etc. So please skip this and write your winning strategy clearly.

• Consider problems where, for instance, we need to select a δ value for a given ε value, and the
function is defined differently on rationals and irrationals. Here, we need to find a δ1 that works for
rationals, a δ2 that works for irrationals, and then take δ = min{δ1, δ2}.

You should write down the strategy for choosing δ right on top, make the specific claim, and split
into cases to prove the specific claim.

Some of you split into cases first, proved things in each case, and gave the overall winning strategy
at the end. This is probably the way that you discover things in the exploratory phase, but it’s not
the prettiest way of presenting a final proof.

Caveat: There are situations where it is advantageous to show your exploratory phase. For instance,
if you were a teacher and were guiding students through a learning process, this exploratory phase might
be helpful. If you were trying to break ground with a similar new problem, it might help to revisit the
exploratory phase.

However, you should think of showing your exploratory phase as filming the process of the manufacture
of sausage, and the fair work proof phase as the phase of enjoying the final sausage.

2.2. Doing the general case clearly. This problem arose with some advanced homework solutions in
Homework 1, and a subsequent clarification was made. However, it’s worth reiterating here.

In the exploratory phase, we may use some specific numerical examples to check if something is true.
Then, we discover that the actual steps work in somewhat greater generality, and we need that greater
generality in order to do the whole proof.

When writing down the final proof, jump directly to proving that the actual steps work in somewhat
greater generality.
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The example from the first advanced homework was: “Show that the function f(x) := { 1, x rational
0, x irrational

is periodic but has no period.”
One possible discovery approach is as follows:
(1) We notice that the number 1 works in the sense that f(x + 1) = f(x) for all x ∈ R. We prove this

by splitting into the cases where x is rational and x is irrational.
(2) After finishing that proof, we notice that, in fact, the proof depended only on the fact that rational

+ rational = rational and irrational + rational = irrational. Crucially, the only thing we were using
about 1 was that it is rational.

(3) We thus conclude that any rational h > 0 works in place of 1.
(4) Since there are arbitrarily small positive rational numbers, we concluded that there is no period.

In the final write-up of the proof, we remove steps (1) and (2) and directly proceed with the claim of step
(3), with the proof of that claim basically mimicking our original proof of (1).

2.3. Meta-strategies. Some of the advanced problems involve constructing a strategy for one game using
strategies for other games as black boxes. For instance, in problems 1 and 5 of advanced homework 2, you
are asked to come up with winning strategies for the prover for |f |, max{f, g}, and min{f, g}, assuming that
there exist winning strategies for f and g.

Here, you assume that the winning strategies for f and g are given to you on a platter, but you have to
treat them as black boxes. In other words, you assume some statement of the form:

“For every ε > 0, there exists a δ1 > 0 such that if 0 < |x− c| < δ1, then |f(x)− L| < ε.”
and:
“For every ε > 0, there exists a δ2 > 0 such that if 0 < |x− c| < δ2, then |g(x)− L| < ε.”
Our “winning strategy” for H := max{f, g}, is to choose, for a given ε > 0, δ = min{δ1, δ2}, i.e., the

minimum of the δs that work for f and g.
We then make the specific claim: “If 0 < |x− c| < min{δ1, δ2}, then |H(x)− L| < ε.”
After this, we prove the specific claim by splitting into cases for x, based on whether H(x) = f(x) or

H(x) = g(x).
Meta-strategies are tricky to understand at first, because the strategies that we are using as black boxes

are unknown knowns – we can use them, but have to treat them as black boxes.

2.4. Fixed but arbitrary. Another note about the ε−δ proofs. In all these proofs, ε is “fixed but arbitrary.”
What this basically means is that ε is fixed, but it is fixed by the skeptic, so we (as the provers) have no
control over the choice so we should be prepared for the worst.
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INEQUALITY SOLVING

MATH 152, SECTION 55 (VIPUL NAIK)

Difficulty level: Moderate for people who have been inequalities before, high for people who haven’t.
Corresponding material in the book: Section 1.3. However, this section does not cover inequalities

involving rational functions, and only does the polynomial case. The rational functions case is only a mild
generalization of the polynomial case, but it is essential that you understand the rational functions case from
the notes.

Things that students should definitely get: Set notation for writing intervals, how to manipulate
and solve inequalities, inequalities for rational functions, inequalities for absolute value.

Executive summary

Words...

(1) When solving inequalities, we can add the same thing to both sides. We can subtract the same thing
from both sides. We can add two inequalities with the same direction of inequality.

(2) We can multiply a positive number to both sides and preserve the direction of inequality. If we
multiply by a negative number, we reverse the direction of inequality. If we multiply by a number
that we know is nonnegative (But we’re not sure if it is positive or zero) then the direction of
inequality is preserved but an equality case gets introduced. e.g., if a > b and x ≥ 0, we get ax ≥ ab.

Actions (think back to examples where you’ve dealt with these issues)...

(1) If |x| takes values in a certain set A, then the set of possible values for x is the union of A and the
negatives of numbers in A.

(2) Generally, when solving inequalities involving absolute value, consider the case that the thing inside
the absolute value is negative and the case that it is nonnegative. Solve both cases and then take
the union of the solutions.

(3) When solving inequalities involving rational functions, bring everything to one side. So it reduces to
trying to find when a given rational function is positive, negative, zero, and undefined.

(4) A rational function is undefined wherever the denominator is 0. It is 0 where the numerator is 0 but
the denominator isn’t. For positive and negative, start from the far positive end and remember that
every time you cross over a linear factor of the numerator or the denominator, the sign changes...

(5) ... except that the sign changes only if the total multiplicity of that factor is odd. If the total
multiplicity is even, then the sign doesn’t change. (What do I mean? Review the examples we did
and try figuring out)...

(6) ... and what if there are quadratic factors in the numerator or denominator, such as x2 + 1, that do
not factorize further? These are anyway always positive or always negative, so they don’t affect the
sign of things ...

(7) ... and what if there are quadratic factors that you don’t know how to factorize? Well, use the
quadratic formula.

1. Equality versus inequality

In this lecture, we cover inequalities. This is almost like solving equations, except that instead of an
equality sign, there is an inequality sign. The main difference is that because we have an inequality sign, the
solution sets are usually much bigger – they’re not just a few isolated points, they are unions of intervals.
Further, the solution to the corresponding equation is usually on the boundary of the solution set to the
inequality.
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2. Review of notation

2.1. Review of set notation. So I hope that you’ve either seen the set notation before, either before
coming here or in the last two days. But I’ll review some of the basics anyway, very quickly. As you may
have heard, a set is a well-defined collection of objects, called its members or elements. If A is a set and x
is an object, we say x ∈ A if x is a member of A, and x /∈ A otherwise. We have the symbols ∪ for union
of sets, ∩ for intersection of sets. We have the symbol ∅ for empty set, symbols ⊂ and ⊆ for strict and not
necessarily strict containment. For reverse containment, we have ⊃ and ⊇. And, as we saw last time, \
represents the set difference.

Now, let’s discuss two ways of writing sets. One way is what we might call the laundry list or naive way:
just list everything. I think a more professional word for this is the roster method. So, for instance, the set
of all one-digit positive integers is {1, 2, 3, 4, 5, 6, 7, 8, 9}. That’s a complete list of all of them.

The other approach, which is the set builder method or constructive method, specifies a qualification. For
instance, if R denotes the set of real numbers (and it always does in this course), then the set:

{x ∈ R | x > 0 and x2 + x + 1 > 2x}

is basically a set given by some condition. To determine whether an x is in the set, we check that it
satisfies the condition. Is 1 in the set, for instance? Well, 1 > 0, and 12 + 1 + 1 = 3, which is greater than
21 = 2. Good, so it is in. What about 0.5? Well, 0.52 + 0.5 + 1 = 1.75, which is greater than 20.5 =

√
2.

Now the book does not use the | separator, it uses the : separator, and that’s fine too. So in the book’s
notation, the above becomes:

{x ∈ R : x > 0 and x2 + x + 1 > 2x}

2.2. Review of interval notation. Certain subsets of R that come up pretty frequently are the intervals,
and there is special notation for these. Let’s discuss both the notation and the way these intervals are shown
on the number line.

The interval (a, b) is the set {x ∈ R : a < x < b}. In other words, it is the set of (real) numbers strictly
between a and b. It is represented on the number line by creating unfilled circles at a and b and shading or
darkening the region in between. This interval is termed the open interval between a and b. By the way, one
of your homework problems asks you to think of this open interval in another way – in terms of a center and
a radius. That’s a very important homework problem not because it is particularly difficult, but because it
is critical to many of the ε− δ definitions of limits.

The interval (a, b) is also denoted ]a, b[. The latter notation has both advantages and disadvantages. The
primary advantage is that while (a, b) may be confused with an ordered pair representing a point in the
coordinate plane with coordinates a and b, the notation ]a, b[ has no alternative interpretations. However,
for these notes and the rest of this course, we’ll use the (a, b)-notation. This is used in the book and is also
standard in most mathematics courses you will see.

Note, by the way, that the interval (a, b) is empty, and shouldn’t be talked about, if a ≥ b.
The interval [a, b] is the set {x ∈ R : a ≤ x ≤ b}. This is called the closed interval between a and

b, and we use filled circles at a and b instead of the unfilled circles used earlier. Okay, here’s a question:
what is [a, b] \ (a, b)? In other words, what happens when you remove the open interval from the closed
interval? What’s the difference? The answer is: the two points a and b. So [a, b] \ (a, b) = {a, b}, and
(a, b) ∪ {a, b} = [a, b].

There are also notions of half-open, half-closed intervals. So what does it mean for an interval to be
left-open and right-closed? Well, that’s an interval of the form (a, b] = {x ∈ R : a < x ≤ b}. And it’s
represented by an unfilled circle at a and a filled circle at b. In the other notation, it would be ]a, b].
Similarly, [a, b) = {x ∈ R : a ≤ x < b} is represented by a filled circle at a and an unfilled circle at b. In the
other notation, it would be [a, b[.

So I think you’re getting the general philosophy. The round parentheses () represent openness, or the
endpoint excluded, while the square braces [] represent closedness, or the endpoint included. Pictorially, an
excluded point is an unfilled circle, and an included endpoint is a filled circle.
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To complete the discussion, we need to talk about ∞. Now, ∞ is a big and mind-boggling concept and
we’re not really going to discuss it here. For our purposes, ∞ (positive infinity) is a placeholder for no upper
limit and −∞ is a placeholder for no lower limit.

So the interval (a,∞) is the set {x ∈ R : a < x}. and [a,∞) is the set {x ∈ R : a ≤ x}. And similarly,
(−∞, a) is the set {x ∈ R : x < a} and (−∞, a] is the set {x ∈ R : x ≤ a}. And on the number line, you just
use an arrow to indicate that it’ll go on forever.

Notice that the parentheses around ∞ are always the round ones, meaning that ∞ is never included.
And that makes sense because ∞ isn’t real. Nor is −∞. Whether these things exist and what they mean is
beyond the scope of our discussion. I just want you to think of them as placeholders.

2.3. As a union of intervals. Okay, here’s a quick test. Express (−1, 1) \ {0} as a union of intervals?
What is it? [Draw diagram]. You see the picture. It is (−1, 0) ∪ (0, 1).

Or, what about (−2, 2) \ (−1, 1)? [Draw diagram]. That’s (−2,−1] ∪ [1, 2). Note the way the circles fill
and unfill.

3. Inequality solving

3.1. Some basic rules. Let’s discuss some very basic rules of inequality-solving. The way you solve in-
equalities is very similar to the way you solve equalities, except this: when you multiply both sides by a
negative number, you change the direction of the inequality. And the one thing you shouldn’t do is multiply
both sides by zero.

Okay, so consider the inequality:

x + 4 ≤ 5(x− 1)

Moving all stuff to one side gives:

−4x + 9 ≤ 0

Now, you multiply both sides by −1, so change the sign of the inequality, and get:

4x− 9 ≥ 0

And then simplify to x ≥ 9/4. Which is the interval [9/4,∞) on the number line.

Inequality-solving for polynomial functions. Let’s now consider some polynomial functions. The goal
is to consider a polynomial function f , and try to determine where it is zero, where it is positive, and where
it is negative. For now, we’ll focus on polynomial functions that split completely into linear factors.

For instance, consider the polynomial function:

f(x) = x(x + 1)(x− 1)

This polynomial is a product of three linear factors. How do we figure out the sign of this polynomial
function at a point? Its sign is the product of the signs of the three factors. Now, if you have a linear factor
x− a, where is it positive, where is it zero, and where is it negative? Answer: it is positive for x > a, zero
for x = a, and negative for x < a.

So, we see that each linear factor switches sign at the corresponding zero (i.e., the linear factor x − a
switches sign at a). If only one linear factor switches sign, and the signs of the other factors remain the
same, then the product also switches sign. So, for the above polynomial f , the sign changes could potentially
occur at −1, 0, 1. Let’s view this on a number line.

To the right of 1, x is pretty large, so all the three factors are positive. A product of three positives is
a positive, so for x > 1, f(x) is positive. At 1, the function becomes zero. Immediately to the left of 1,
the factor x − 1 becomes negative, but the other two factors are still positive. So, the overall product is
negative. And so the story goes till we hit x = 0. At x = 0, the function again takes the value 0. Then, to
the immediate left of 0, both x and x− 1 are negative, but x+1 is positive. So, the function is positive, and
remains so till we reach x = −1. There it becomes 0, and to the left of −1, all factors are negative, hence so
is the product.
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The upshot: f(x) = 0 for x ∈ {−1, 0, 1}, f(x) > 0 for x ∈ (−1, 0) ∪ (1,∞), and f(x) < 0 for x ∈
(−∞,−1) ∪ (0, 1).

Let’s consider another function:

g(x) := x2(x− 1)

The points where interesting things could happen are, in this case, 0 and 1. But 0 is doubly interesting,
because the linear factor x has multiplicity 2.

So, to the right of 1, all factors are positive, so g(x) > 0 for x > 1. At 1, g takes the value 0. To the
immediate left of 1, x − 1 becomes negative but the remaining factors are still positive. So the function
becomes negative. Then, at 0, it becomes 0. What happens to the left of 0? Does the function switch sign
again? No! And that’s because although the x switches sign to negative, there are two of them, so their
effects cancel each other. So the overall effect is no sign change, and the function remains negative.

So g(x) is positive for x ∈ (1,∞), it is negative for x ∈ (−∞, 0) ∪ (0, 1), and it is zero for x ∈ {0, 1}.

3.2. Inequality solving for rational functions. This is not described explicitly in the book, but is impor-
tant for some later material, so please go through it carefully. We’ll try to briefly go over it in lecture.

Let’s now consider the rational function P (x)/Q(x), where P and Q are polynomials. We want to figure
out where this function is positive, zero, and negative.

Now the first thing you should remember about rational functions is that they aren’t always globally
defined. The points where they aren’t defined are the points where the denominator implodes and the
expression explodes: the roots of Q. So at these points, there is no inequality satisfied: the function just
isn’t defined.

The first thing we do is factor both P and Q. So we obtain:

a(x− α1)(x− α2) . . . (x− αm)
b(x− β1)(x− β2) . . . (x− βn)

So, we already figured out that the values β1, β2, . . . βn are points where this function isn’t defined. And
by the way, do not cancel before figuring out these points, because we have to take the function and treat
it as is (remember FORGET?). But once we’ve excluded all these points, then away from these points, we
can cancel, so let’s assume from now on that there is no common factor between the numerator and the
denominator.

Also, a/b has some sign (positive or negative) so let’s ignore that too, because that’ll just flip signs for
everything. So we’re really looking at:

(x− α1)(x− α2) . . . (x− αm)
(x− β1)(x− β2) . . . (x− βn)

The first thing to observe is that the overall sign is the product of signs of each of the pieces. And the
sign of x − t is positive if x is greater than t and negative is x is less than t. So each time x crosses one of
the αis or βjs, one expression flips sign. Thus, the only points where the expression changes sign, or crosses
zero, are the αis and βjs [See caveat to this in a later example].

Okay, now if your head is already swimming with this, it’s time to take a simple example. Now if I were
trying to impress you with my pedagogy, I would probably start with the simplest example, then gradually
build up to more and more complex examples. And that’s a very valuable approach that I’ll use most of the
time. But, often, I’ll start by just trying to attack the general problem, make a bit of headway, get stuck,
and then proceed to a simple example. It’s important that you develop a tolerance for both styles because
you’ll need both styles. There are times when building up gradually from one example to another isn’t a
luxury you can afford, and there are times where it’s the only thing that makes sense.

So let’s consider:

x(x + 1)(x + 2)
x(x− 1)(x− 2)

So what are the points where this function isn’t defined? 0, 1 and 2, the three roots of the denominator.
Note that at 0, our worry about undefinedness is a little silly because if we were a little smarter we’d cancel
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x and get a new function that is defined at 0. But as written, the function is undefined at 0. [In the
limit/continuity jargon, the function has a removable discontinuity at 0.]

Anyway, away from these three points, the function simplifies to:

(x + 1)(x + 2)
(x− 1)(x− 2)

So, the points where we could have a sign change are −2,−1, 1, 2. Let’s start from the right. On the far
right, everything is positive, because x is greater than all four numbers. So the expression is positive. When
you cross 2, x− 2 becomes negative, the others remain positive. So, negative. Then, when you cross 1, both
x − 1 and x − 2 become negative, the others remain positive, so positive. And then after −1 it becomes
negative and after −2 again positive. So the function is positive at (−∞,−2) ∪ (−1, 1) ∪ (2,∞). But wait.
The original function wasn’t defined at 0, so we need to exclude that. So the original function is positive
on (−∞,−2) ∪ (−1, 0) ∪ (0, 1) ∪ (2,∞). The function is negative at (−2,−1) ∪ (1, 2). The function is zero
on {−2,−1}. It is undefined at {0, 1, 2}. By the way, there’s an important difference between the point 0,
where it is undefined only because we wrote the function stupidly, and {1, 2}, where it is undefined for more
fundamental reasons. Namely, at 0, the discontinuity is removable, but at 1 and 2, it cannot be removed.

So we have a pretty good feel. But there’s an important thing that we didn’t take into account: higher
powers.

For instance, consider:

x(x + 1)3

(x− 1)2

So here, the function is not defined at 1. It’s positive to the right of 1. What happens as we cross 1?
The (x − 1) term changes sign, but it is squared, so the sign change doesn’t affect the sign of the overall
expression. And indeed, there’s no sign change. So the expression continues to be positive. Then, at 0,
there is a sign change, and the expression becomes negative. At −1, there is another sign change, and the
expression becomes positive again. The reason? The exponent in this case is odd.

So, the function is positive on (−∞,−1) ∪ (0, 1) ∪ (1,∞), negative on (−1, 0), zero on {−1, 0}, and
undefined at 1.

To view a consolidated summary on how to handle inequalities involving rational functions, go to the
executive summary at the beginning of the document.

4. Inequalities and absolute value

4.1. Absolute value. We’ve talked about the absolute value function, so I’ll just say a bit about solving
inequalities involving the absolute value function. The main thing to remember is: if the absolute value of
a number is in a set A of nonnegative numbers, then that number itself is in the set A ∪ −A, where −A is
the set of negatives of elements of A. So, for instance:

|x− 2| < 3
is equivalent to:

−3 < x− 2 < 3
So an inequality involving absolute values is really an inequality that involves both an upper bound and

a lower bound. So it is two inequalities rolled into one. Now, when you have two inequalities rolled into one,
you can solve them separately and intersect the solutions. But in this case, it’s easy to sort of solve them
both together. Just add 2 to both sides:

−1 < x < 5
so the solution set is the open interval (−1, 5).
I suggest you look at more examples in the book involving absolute values, rational functions and in-

equalities. There are a lot of tricks. These ideas are very important. They’ll come up again and again,
particularly in the context of ε− δ proofs.
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4.2. More ways of thinking about absolute values. Absolute values and the inequalities related to
them could be a little tricky, so here are some further intuitive ways of thinking about the absolute value
function that might be useful when thinking about inequalities.

One way of thinking of the absolute value function is as a folding function. What I mean is, you think
of the number line as a long thin strip of paper, and to calculate the absolute value, you fold it about 0, so
that −x comes on top of x. So undoing the absolute value function is like unfolding.

Let’s take some examples. Suppose you know that the absolute value of x is 3. Then, what can you say
about x? You may say that x ∈ {−3, 3}. In words, x = 3 or x = −3. A convenient shorthand is x = ±3.
You may have seen this kind of shorthand in the formula for the roots of a quadratic equation.

Now, suppose you are given that the absolute value of x is either 2 or 3. What are the possible values of
x? Think again about unfolding, and you’ll see that the possibilities for x are ±2 and ±3.

Okay, by the way, what can you say about x if you are given that |x| is either 2 or −1? The thing you
have to say is that the −1 case is always false. It has no solution. So the only legitimate case is |x| = 2,
which gives x = ±2.

Now we can proceed to thinking about inequalities. Suppose we are given that 2 < |x| < 3. What does
this tell you about the possibilities for x? Unfolding, you see that it’s either the case that 2 < x < 3 (that
happens when x is positive) or −3 < x < −2 (That happens when x is negative). So the solution set is
(−3,−2) ∪ (2, 3).

Okay, what about −1 < |x| < 2? Well, the first thing you should note is that −1 < |x| is a zero information
statement, because it’s always true. [SIDENOTE: A statement that is always true is termed a tautology and
a statement that is always false is termed a fallacy.] So we can discard that, and we get |x| < 2. So, |x| is
in the region [0, 2). Unfolding this, we obtain that the possibilities for x are the interval (−2, 2).

What about 0 < |x| < 2? Well, you can guess the answer by now: it is (−2, 0) ∪ (0, 2).
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TRIGONOMETRY REVIEW (PART 1)

MATH 152, SECTION 55 (VIPUL NAIK)

Difficulty level: Easy to moderate, given that you are already familiar with trigonometry.
Covered in class?: Probably not (for the most part). Some small segments may be covered in class or

in problem session if it helps with some problems. Please go through this if you experience difficulties while
doing trigonometry problems.

Corresponding material in the book: Section 1.6 (part).
Corresponding material in homework problems: Homework 1, advanced homework problem 6.

1. Trigonometric functions for acute angles

Earlier we talked about the fact that sometimes you know that something is a function (because it sends
every element in the domain to a unique output – and satisfies the condition that equal inputs give equal
outputs) but you don’t have an expression for it. It’s like you know somebody is a person but you don’t
know that person’s name. So what do you do? You just make up a name. Well, that’s what we’re going to
do.

So, let’s consider an angle, that I’ll call θ, and assume that θ is strictly between 0 and π/2 (90 ◦, a right
angle). By the way, the word strictly when used in mathematics means that the equality case (the trivial
or degenerate case) is excluded. So, in this case, it means 0 < θ < π/2. The high school term for an angle
strictly between 0 and π/2 is acute angle.

So now I define the following function whose domain is the set of acute angles. f(θ) is the ratio of the
height of a right-angled triangle with base angle θ to the hypotenuse of that triangle. In other words, it is
the ratio of the opposite side to the angle θ to the hypotenuse.

So, you may say, why is this a function at all? Why does it make sense? There are infinitely many
triangles of different sizes with base angle θ. Could different choices of triangle give different values of f(θ)?
And if so, doesn’t that undermine the claim that f is a function? For instance, in the two triangles 4ABC
and 4DEF , the base angles are equal. Should the corresponding side ratios also be equal?

By the way, this first question that I asked is the kind of question you should ask whenever a function is
defined in a roundabout manner, with some arbitrary choices in between. People often phrase this as is the
function well-defined? though a more precise formulation is: is the so-called function a function at all?
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In this case, the answer is yes, and the reason is the notion of similarity of triangles. For those of you
who’ve taken some high school geometry, you’ve probably seen this notion. For those who haven’t, the idea
is that if two triangles have the same angles, they essentially have the same shape, even if they have different
sizes, so the ratios of side lengths are the same.

So f is a function. But so what? Do we have an expression for it? Well, yes and no. There’s no expression
for f as a polynomial or rational function, because it isn’t that kind of function. But we can give f its own
name, and then we’ll be happy. So what’s a good name? f? No, f , is too plain and all too common. We
need a special name. The name we use is sine, written sine in English and sin in mathematics. So f(θ) is
written as sin(θ). By the way, when the sin is being taken of a single letter variable or constant, we don’t
usually put parentheses. So we just say sin θ.

Okay, so what is the domain of the sin function as we’ve defined it? It is (0, π/2). What is the range?
In other words, what are the possible values that sin θ can take? Well, think about it this way. Think of
a ladder that you have placed with one end touching a vertical wall and the other end on the floor. Now,
imagine this ladder sliding down. When the ladder becomes horizontal, the triangle has base angle of zero.
When it’s almost touched down, the base angle is really small and the opposite side is, too. So sin θ → 0 as
θ → 0. That → here means tends to or approaches – it’s a concept we’ll be looking at in more detail when
we do limits.

At the other extreme, when the ladder is almost upright, the opposite side is almost equal to 1, so sin θ → 1
as θ → π/2. So what we’re seeing is that sin is an increasing function starting off from just about the right
of zero and ending at just about the left of 1. So the range of this function is (0, 1).

So here’s one more point that is worth thinking about. In high school, if you started looking at trigono-
metric functions before the radian measure was introduced, then you might have seen that angles are denoted
differently, e.g., by Greek letters. Why’s that? Well, one reason to think of that is that angles aren’t ordinary
numbers. They are measurements, and denoting an angle by a common letter like x is debasing, because
angles come in degrees. But after you switch to the radian measure, an angle (in radians) is just any old real
number. So we feel free to use x and y to denote angles. We’ve demystified angles.

Now, let’s recall the definitions of cosine. The cosine, denoted cos, is the ratio of the adjacent side to the
hypotenuse. So if θ is the base angle of a right triangle, cos θ is the ratio of the base to the hypotenuse.

And then there is the tangent function. This is denoted tan, and it is the ratio of the opposite side to the
adjacent side. Now, mathematicians can be very creative with naming sometimes but sometimes they just
copy names without much deep meaning. So this tangent function doesn’t have any deep relation with the
concept of tangent to a circle or a curve. Yes, they are loosely related, but the relation isn’t strong enough
to merit the same name. Call that an accident of history.

The other three trigonometric functions are the reciprocals of these. The reciprocal of the sine function
is the cosecant function, denoted in mathematical shorthand as csc. The reciprocal of the cosine function
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is the secant function, denoted in mathematical shorthand as sec. The reciprocal of the tangent function is
the cotangent function, denoted in mathematical shorthand as cot.

We summarize the important definitions here.

Next, we define the six trigonometric functions of θ as ratios of side lengths in this triangle:

sin θ =
Opposite leg
Hypotenuse

=
BC

AC

cos θ =
Adjacent leg
Hypotenuse

=
AB

AC

tan θ =
Opposite leg
Adjacent leg

=
BC

AB

cot θ =
Adjacent leg
Opposite leg

=
AB

BC

sec θ =
Hypotenuse
Adjacent leg

=
AC

AB

csc θ =
Hypotenuse
Opposite leg

=
AC

BC

2. Relation between trigonometric functions

The six trigonometric functions are related via three broad classes of relationships. Each of these rela-
tionships pairs up the six trigonometric functions into three pairs. We discuss each of these pairings.

2.1. Complementary angle relationships. The right triangle 4ABC has two acute angles. The ratios
of side lengths of this triangle give the trigonometric function values for both acute angles. However, a leg
that’s opposite to one angle becomes adjacent to the other. Thus, the trigonometric functions for (π/2)− θ
are related to the trigonometric functions for θ as follows:

sin((π/2)− θ) = cos θ

cos((π/2)− θ) = sin θ

tan((π/2)− θ) = cot θ

cot((π/2)− θ) = tan θ

sec((π/2)− θ) = csc θ

csc((π/2)− θ) = sec θ

The prefix co- indicates a complementary angle relationship. Thus, the functions sine and cosine have
a complementary angle relationship. The functions tangent and cotangent have a complementary angle
relationship. The functions secant and cosecant have a complementary angle relationship.

It is an easy but useful exercise to verify the complementary angle relationships from the definitions of
the trigonometric functions.
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2.2. Reciprocal relationships. Reciprocal relationships between the trigonometric functions are as follows:
(1) sin θ and csc θ are reciprocals. In other words, (sin θ)(csc θ) = 1 for all acute angles θ.
(2) cos θ and sec θ are reciprocals. In other words, (cos θ)(sec θ) = 1 for all acute angles θ.
(3) tan θ and cot θ are reciprocals. In other words, (tan θ)(cot θ) = 1 for all acute angles θ.

It is an easy but useful exercise to verify the complementary angle relationships from the definitions of
the trigonometric functions.

2.3. Square sum and difference relationships. These are the trickiest and the most important of the
relationships. We consider the most important of these first: the square sum relationship between sin and
cos.

By the Pythagorean theorem for the right triangle 4ABC with the angle at B being the right angle, we
have:

AB2 + BC2 = AC2

Or, in terms of the angle θ:

(Adjacent leg)2 + (Opposite leg)2 = (Hypotenuse)2

Dividing both sides by AC2, we obtain:

AB2

AC2
+

BC2

AC2
=

AC2

AC2

Simplifying, we obtain: (
AB

AC

)2

+
(

BC

AC

)2

= 1

Recall that cos θ = AB/AC and sin θ = BC/AC, so we get:

(cos θ)2 + (sin θ)2 = 1
With trigonometric functions, it is a typical convention to write the exponent before the angle, so we

write (cos θ)n as cosn θ. Using this convention, we can rewrite the above relationship as:

cos2 θ + sin2 θ = 1
Two other square sum and difference relationships of importance are:

tan2 θ + 1 = sec2 θ

cot2 θ + 1 = csc2 θ

It is a good exercise to prove both of these using the Pythagorean theorem.

2.4. Everything in terms of sin and cos. It is often useful to deal with sin and cos only, so it is helpful
to know how to write the other trigonometric functions in terms of sin and cos. The expressions are given
below:

It is a good exercise to verify that these expressions are correct using the definitions of the trigonometric
functions.

tan θ =
sin θ

cos θ

cot θ =
cos θ

sin θ

sec θ =
1

cos θ

csc θ =
1

sin θ
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2.5. Everything in terms of sin or cos. Finally, when it comes to acute angles, we can write all the
trigonometric functions in terms of sin alone or cos alone. The key is to use the fact that sin2 θ + cos2 θ = 1.
Since both sin θ and cos θ are positive for an acute angle θ, we can use this to get the expressions:

cos θ =
√

1− sin2 θ

sin θ =
√

1− cos2 θ

Once we have this, we can get expressions for all the other trigonometric functions in terms of sin. We
can also get expressions for all the other trigonometric functions in terms of cos.

We give here all the expressions in terms of sin. In all these, we just take the previos expressions and
replace every occurrence of cos θ by

√
1− sin2 θ.

cos θ =
√

1− sin2 θ

tan θ =
sin θ√

1− sin2 θ

cot θ =

√
1− sin2 θ

sin θ

sec θ =
1√

1− sin2 θ

csc θ =
1

sin θ

You can work out how the other five trigonometric functions look in terms of cos θ by yourself.
Note that these expressions are valid only for acute angles. The problem is that for bigger angles, as we

shall soon see, the value of sin or cos can be negative, so even thought sin2 θ + cos2 θ = 1, we cannot write
sin θ =

√
1− cos2 θ because the √ symbol always gives a nonnegative output and sin θ may well be negative.

3. Unit circle trigonometry

3.1. The unit circle. The unit circle centered at the origin is defined as the set of points (x, y) in the
coordinate plane that satisfy x2 + y2 = 1. This is a circle of radius 1 centered at the origin.

The unit circle intersects the x-axis at the points (1, 0) and (−1, 0). It intersects the y-axis at the points
(0, 1) and (0,−1).
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3.2. Sine and cosine using the unit circle. Suppose θ is an angle. We define sin θ and cos θ using the
unit circle as follows. Start on the unit circle at the point (1, 0). Move an angle of θ in the counter clockwise
direction on the unit circle. Call the point you finally reach (x0, y0). Then, cos θ is defined as x0 and sin θ
is defined as y0.

When θ is an acute angle, then the point (x0, y0) is in the first quadrant. We see that the definitions of
cos θ and sin θ match the definitions we gave earlier in terms of triangles.

4. Qualitative behavior of sine and cosine

4.1. For acute angles. Note that prior to the introduction of unit circle trigonometry, we defined sin and
cos only for acute angles. We first discuss the qualitative behavior of these functions for acute angles, but
also include the limiting cases of 0 and π/2. After that, we discuss the behavior for obtuse angles.

For acute angles, we have the following:

(1) sin is a strictly increasing function for acute angles, starting off with sin 0 = 0 and sin(π/2) = 1.
This can be seen graphically in many ways. For instance, imagine a ladder that is initially vertical
along a wall, and gradually slides down. The angle that the foot of the ladder makes with the floor
decreases from π/2 to 0, and the vertical height of the top of the ladder also decreases. [More class
discussion on this]

(2) cos is a strictly decreasing function for acute angles, starting off with cos 0 = 1 and cos(π/2) = 0. The
fact that the behavior of cos is the mirror opposite of that of sin is not surprising – this essentially
follows from the complementary angle relationship.
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(3) tan is a strictly increasing function for acute angles, starting off with tan 0 = 0. tan(π/2) is not
defined, and as an acute angle θ comes closer and closer to being π/2, tan θ approaches ∞. (The
precise meaning and explanation of this statement involve familiarity with ideas of limits, which are
beyond the current scope of discussion).

(4) cot is a strictly decreasing function for acute angles, and its behavior mirrors that of tan because of
the complementary angle relationship. cot 0 is undefined and cot(π/2) = 0.

4.2. For angles between 0 and π. Using the unit circle trigonometry definition, we can see that:

sin(π − θ) = sin θ

cos(π − θ) = − cos θ

In particular, sin is positive for all angles θ that are strictly between 0 and π, including both acute and
obtuse angles. In terms of unit circle trigonometry, this is because the first half of the unit circle if we go
counter-clockwise from (1, 0) has positive y-coordinate. On the other hand, cos is negative for obtuse angles,
and this can again be seen from the unit circle trigonometry.

Note that tan θ is defined as sin θ/ cos θ wherever cos θ 6= 0, so we get the formula:

tan(π − θ) = − tan θ

4.3. The graphs. Here are the graphs of the sine and cosine function from 0 to 2π.

We will study the graphs of the other trigonometric functions later.

4.4. General facts: value taking.

(1) sin takes its peak value of 1 at numbers of the form 2nπ + (π/2), where n is an integer, and its
trough values of −1 at numbers of the form 2nπ − (π/2), where n is an integer. sin takes the value
0 at multiples of π, i.e., numbers of the form nπ where n is an integer.

(2) The solutions to sinx = sin α come in two families: x = 2nπ + α and x = 2nπ + (π − α), with n
ranging over the integers.

(3) cos takes its maximum value of 1 at multiples of 2π, i.e., numbers of the form 2nπ, n ranging over
integers. It takes its minimum value of −1 at odd multiples of π, i.e., numbers of the form (2n+1)π,
n ranging over integers. it takes the value 0 at odd multiples of π/2, i.e., numbers of the form
nπ + (π/2), n ranging over integers.

(4) The solutions to cos x = cos α come in two families: x = 2nπ + α and x = 2nπ − α, n ranging
over integers. These two families can be combined compactly by writing the general expression as
x = 2nπ ± α.

4.5. Even, odd, mirror symmetry, half turn symmetry. Here are some general facts about the sine
and cosine functions:

(1) The sine function is an odd function, i.e., sin(−θ) = − sin θ. In particular, the graph of the sine
function enjoys a half turn symmetry about the origin. In fact, the graph of the sine function enjoys
a half turn symmetry about any point of the form (nπ, 0).

(2) The graph of the sine function enjoys mirror symmetry about any vertical line through a peak or
trough, i.e., any line of the form x = nπ + (π/2).

(3) The cosine function is an even function, i.e., cos(−θ) = cos θ. In particular, the graph of the cosine
function enjoys a mirror symmetry about the origin. In fact, the graph enjoys a mirror symmetry
about all vertical lines through a peak or trough, i.e., any line of the form x = nπ.
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(4) The graph of the cosine function enjoys a half turn symmetry about any point of the form (nπ +
(π/2), 0).

(5) The tangent, cotangent, and cosecant functions are odd functions on their domains of definition.
The secant function is even on its domain of definition.

4.6. Periodicity. Here are some important facts:
(1) The sine and cosine are periodic functions and they both have period 2π.
(2) The tangent and cotangent are periodic functions and they both have period π.
(3) The secant and cosecant are periodic functions and they both have period 2π.

5. Values of trigonometric functions for important angles

5.1. π/4. To determine the values of trigonometric functions for π/4, we need to examine closely the right
isosceles triangle. In this triangle, both legs have the same length, and by the Pythagorean theorem, the
length of the hypotenuse is

√
2 times this length. Thus, we obtain the following:

sin(π/4) = cos(π/4) =
1√
2

=
√

2
2

≈ 0.707

tan(π/4) = cot(π/4) = 1

sec(π/4) = csc(π/4) =
√

2 ≈ 1.414

Notice something else too. For the angle π/4, the values of any two trigonometric functions that are related
by the complementary angle relationship are equal. Thus, sin(π/4) = cos(π/4), tan(π/4) = cot(π/4), and
sec(π/4) = csc(π/4). Geometrically, this is because we are working with a right isosceles triangle, and there
is a symmetry between the two legs. Algebraically, this is because the angle (π/4) is its own complement,
i.e., (π/4) = (π/2)− (π/4).

5.2. π/6 and π/3. We now consider the triangle where one of the angles is π/6 and the other angle is π/3.
Consider the figure below:

In the figure, the triangle 4ABC is an equilateral triangle and the line AD is an altitude so AD ⊥ BC.
Since 4ABC is equilateral, all its angles are also equal and hence all the angles are π/3. Also, some
elementary geometry tells us that AD bisects BC so DC = (1/2)BC, so DC/BC = 1/2.

Now consider the triangle 4ADC. The angle at C is π/3 and the angle ∠CAD is π/6. Thus, we obtain
that cos(π/3) = sin(π/6) = DC/AC. Since 4ABC is equilateral, AC = BC, so DC/AC = DC/BC, which
is 1/2.

We thus have the first important fact: cos(π/3) = sin(π/6) = 1/2. Now, using the relations between
trigonometric functions, we can obtain the other values. The full list is given below:
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sin(π/6) = cos(π/3) =
1
2

= 0.5

cos(π/6) = sin(π/3) =
√

3
2

≈ 0.866

tan(π/6) = cot(π/3) =
1√
3

≈ 0.577

cot(π/6) = tan(π/3) =
√

3 ≈ 1.732

sec(π/6) = csc(π/3) =
2√
3

≈ 1.154

csc(π/6) = sec(π/3) = 2

You should be able to reconstruct all these values. You can choose either to memorize all of them, or
to memorize the first two rows and reconstruct the rest from them on the spot. Alternatively, you can
remember the side length configuration of the triangle 4ADC and read off the trigonometric function values
by looking at that triangle.
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FUNCTIONS: A RAPID REVIEW (PART 1)

MATH 152, SECTION 55 (VIPUL NAIK)

Difficulty level: Easy to moderate. Most of these are ideas you should have encountered either implicitly
or explicitly in the past.

Covered in class?: This will roughly correspond to material covered on Monday September 26. Most
of the trickier aspects of this will be covered in class, but many small points will be omitted due to time
constraints. Hence, it is recommended that you read through these notes either before or after lecture.

Corresponding material in the book: Sections 1.5, 1.6. Note that the book covers the same material
with somewhat different language and different examples of functions, so you should go through it before or
while doing the homework problems.

Corresponding material in homework problems: Homework 1, routine problems 1–6 (all from
section 1.5), advanced problem 1.

Things that students should get immediately: The concepts of function, domain, range, expression
for function, table of values for a function, graph of a function, the notion of piecewise defined function,
polynomials, rational functions, absolute value function, signum function, positive part function.

Things that students should get with effort: How to obtain a piecewise definition for a maximum
or minimum of two functions, how to determine the domain and range of a function.

Executive review

This review will probably be reproduced (with minor modifications) in the midterm review sheet. It is
meant as a review summary of these lecture notes – capturing those aspects of these notes that are important
on a second reading, and ignoring those things that are significant for first time learning but not so important
later on.

For first time reading, skip to the next section.
Words ...

(1) The domain of a function is the set of possible inputs. The range is the set of possible outputs.
When we say f : A → B is a function, we mean that the domain is A, and the range is a subset of
B (possibly equal to B, but also possibly a proper subset).

(2) The main fact about functions is that equal inputs give equal outputs. We deal here with functions
whose domain and range are both subsets of the real numbers.

(3) We typically define a function using an algebraic expression, e.g. f(x) := 3+sin x. When an algebraic
expression is given without a specified domain, we take the domain to be the largest possible subset
of the real numbers for which the function makes sense.

(4) Functions can be defined piecewise, i.e., one definition on one part of the domain, another definition
on another part of the domain. Interesting things happen where the function changes definition.

(5) Functions involving absolute values, max of two functions, min of two functions, and other similar
constructions end up having piecewise definitions.

Actions (think back to examples where you’ve dealt with these issues)...

(1) To find the (maximum possible) domain of a function given using an expression, exclude points
where:
(a) Any denominator is zero.
(b) Any expression under the square root sign is negative.
(c) Any expression under the square root sign in the denominator is zero or negative.

(2) To find whether a given number a is in the range of a function f , try solving f(x) = a for x in the
domain.
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(3) To find the range of a given function f , try solving f(x) = a with a now being an unknown constant.
Basically, solve for x in terms of a. The set of a for which there exists one or more value of x solving
the equation is the range.

(4) To write a function defined as H(x) := max{f(x), g(x)} or h(x) := min{f(x), g(x)} using a piecewise
definition, find the points where f(x)− g(x) is zero, find the points where it is positive, and find the
points where it is inegative. Accordingly, define h and H on those regions as f or g.

(5) To write a function defined as h(x) := |f(x)| piecewise, split into regions based on the sign of f(x).
(6) To solve an equation for a function with a piecewise definition, solve for each definition within the

piece (domain) for which that definition is satisfied.

1. What is a function?

1.1. Inputs and outputs, or so they say. We’re going to begin by talking about functions. You’ve
probably already seen functions in some form in calculus and precalculus. You may have seen both the
general concept of function and lots of specific examples. In this course, we try to be a lot more precise
about what a function means. This precision will be very important because functions are used for modeling
purposes throughout mathematics and mathematically based disciplines.

A function is something that “takes in” (or eats or gobbles) an input and “gives out” (or spits) an output.
Some people think of a function as a black box or machine into which you feed in input and get output. For
instance, you put in money into a cola vending machine and get out a cola. In today’s computer age, you
might enter an input value onto a computer screen and get an output. We say that a function maps the
input to the output, so functions are also called mappings or maps. Some people say that a function sends
an input to an output. Functions can also be thought of as rules or assignments.

1.2. The real bite: equal inputs give equal outputs. So what’s missing from this description? Well,
the most important thing about a function is that when you put in one input, you get one output, and the
output depends only on the input. In other words, equal inputs should give equal outputs. So it doesn’t
depend on who feeds the input or how the machine is feeling at the time it is fed in. The output depends
on the input, and only on the input. This dependence is what we call a functional dependence.

So is Google a function? It takes in your query and outputs a bunch of search results. But in another
sense, it isn’t a function, because Google’s results keep changing with time and other factors. What about
temperature? Is temperature a function of time? No, because what the temperature is at a given time
depends on where you measure it. On the other hand, the temperature at a particular point in space is a
function of time.

So, in order to make something a function, you have to specify enough input so that the output is
determined based on that.

In this course sequence, we will not be looking at functions with weird inputs and weird outputs. For the
most part, our inputs will be single real numbers and our outputs will be single real numbers. So, although
the concept of function is very general, we will be restricting to very particular kinds of functions to which
we can apply tools specifically developed for real numbers.

There are two important concepts related to functions: the domain and range. We’ll talk about these in
more detail as we proceed, but here’s the rough description: the domain is the set of all possible (sensible)
inputs to the function and the range is the set of all possible outputs of the function.

1.3. Of circumferences and diameters: an illustrative example. Let’s first consider a “real-world”
problem. The wheel of your bicycle has diameter d. You want to find out the circumference of your wheel.
In more abstract jargon, you want to find out the circumference of a circle in terms of its diameter.

The first question you should ask is: does the circumference depend only on the diameter? That’s not
a silly question, even if in this case it seems intuitively clear to some people. What does my question
mean? What it means is that if two circles have the same diameter, is it necessary that they have the same
circumference? If that isn’t the case, then we don’t have a function.

In this case, the answer is yes. If the diameter is the same, the circles are congruent – you can translate
one over to cover the other. So their circumference should be the same. So yes, we do have a function. But
what kind of function is it?
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Now, here’s the thing. We have this loose reasoning that says that there is a function that takes in an
input d and spits out an input. Let’s call this function f . The value obtained by applying f to d is denoted
f(d). What this really means is f evaluated at d or the value of f at d. [Sidenote: In geometric settings,
I will abuse matters a little bit and conflate real numbers with length measurements. The implicit idea
everywhere is to choose a unit of measurement, and all inputs are measured in those units. I will perform
this abuse on a regular basis. I could be more precise, but you’ll find this abuse everywhere so might as
well get used to it.] So f(1) denotes the circumference of a circle with diameter 1, and f(2) denotes the
circumference of a circle with diameter 2.

So far so good. Happy? Not quite. We’ve just shown there is a function, but from a computational point
of view, we haven’t done anything. What we would like to do is have some expression for f that makes it easy
to calculate. As it happens, various ancient civilizations (the Greeks and Indians) showed that f(d) = πd,
where π is some number. They also calculated the first few digits of π, π = 3.141592 . . . . So this finally
gives a formula.

So f(1) = π, f(2) = 2π, f(3) = 3π, f(π) = π2, and so on. What about f(a + b)? What’s that? Well,
to calculate f of something, you do π times that thing, that’s what the formula tells you. So f(a + b) is
π(a + b). What’s that? That’s πa + πb, by the distributivity laws you learned in primary school.

When you apply f to something, you should make sure that you apply f to the whole thing. A common
error that students make is to just write f(a + b) = πa + b. That’s wrong, because the whole expression
a + b has to be multipled by π. So, at the first stage of simplifying a function where the input is itself an
expression, please put parentheses around the input wherever you write it down.

Hey, but πa = f(a) and πb = f(b), so we have this really cool fact:

f(a + b) = f(a) + f(b) ∀ a, b

The ∀ symbol above means for all. What we have is a rule that holds for all values you plug in for a and
b. Is this rule true for any function f , or only for the f that we wrote down? Well, it turns out that this is
true for f because f is a linear function: it is of the form f(x) = cx for some constant c.

What is f(−1)? The formula tells you it is −π. But hang on. What does it even mean to have a circle of
diameter −1? Nothing. It’s nonsense. It doesn’t make sense. The diameter of a circle cannot be negative,
even though the formula makes perfect sense for negative diameters.

Which brings us to the concept of domain. The domain of a function is the set of values you can feed in
as inputs. What’s the domain of f? It is the set of positive real numbers. There are two ways to write this
set: {x ∈ R | x > 0} and (0,∞). [Explain both, if many students don’t understand.]

So f is a function from the positive reals to something – where? The set of values that f can possibly
take is termed the range [SIDENOTE: There is a related concept of co-domain that we will discuss later.]
For this choice of function f , the range is also the set of positive real numbers.

We write this as follows:

f : (0,∞) → (0,∞), f(x) := πx

Note that I changed the letter from d to x. That was bad board technique, but it is not mathematically
a problem at all. Why? Because that’s just a name, and there’s nothing in a name. May be d’s real name is
d, but I prefer to call it by the nickname (or alias) x. The main thing to take care of is that the letter inside
the parentheses is the one used on the right side where the input should go.

And by the way, that earlier equation was not quite correct. We should really have:

f(a + b) = f(a) + f(b) ∀ a, b ∈ dom(f)

or:

f(a + b) = f(a) + f(b) ∀ a, b ∈ (0,∞)

[SIDENOTE, may not be covered in class: By the way, what we’re using here is the fact that, for this
function f , if a and b are in the domain of f , so is a + b. Why is that? This basically goes back to the fact
that the sum of two positive numbers is positive.]
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[SIDENOTE: Local memory, don’t give two functions the same letter name in the same context, but feel
free to reuse letters in different contexts. Function name letters are just like variables in this respect.]

Let’s look at some other functions coming from geometry:
(1) Area of a rectangle as a function of the perimeter? No, sorry. The perimeter does not give enough

information to calculate the area of the rectangle. For instance, we can have a long and thin rectangle
and a square of the same perimeter but very different areas.

(2) Area of a square as a function of the perimeter? Yes, it is g(x) = x2/16, where g has domain and
range the set of positive real numbers.

Before we go into examples of functions, I just want to reiterate the following: whether something is a
function is a very different question from whether we have an expression to compute it. You may be able to
successfully prove that something is a function but be completely at a loss to actually compute it.

2. Some important classes of functions

2.1. Constant functions. A constant function is a function where the output is the same for all inputs.
A constant function can be identified by the constant value of the output. For instance, the zero function is
the function that sends all its inputs to 0.

2.2. Polynomial functions. The general expression for a polynomial looks like:

p(x) = a0 + a1x + · · ·+ anxn

Here, the ai are all real numbers, and they’re termed the coefficients of the polynomial. If an 6= 0, n is
the degree of the polynomial. a0 is termed the constant term of the polynomial and an is termed the leading
coefficient of the polynomial.

The coefficients of the polynomial are constants, in the sense that they do not depend on x. However, we
haven’t specified beforehand the values of these constants. So they’re unknown knowns.

Here are some concrete examples of polynomials:
• 2x−5 is a polynomial of degree 1, with the constant term a0 = −5 and the leading coefficient a1 = 2.
• x2−7x+3 is a polynomial of degree 2 with the constant term a0 = 3, the middle coefficient a1 = −7,

and the leading coefficient a2 = 1.
• x3 − 2 is a polynomial of degree 3 with constant term a0 = −2, leading coefficient a3 = 1, and

a1 = a2 = 0.
Polynomials are globally defined functions. In other words, they have domain the whole real numbers R.

This is just a fancy way of saying that you can evaluate a polynomial at any real number without getting
into trouble.

However, even though a function may be globally defined, we may sometimes be interested in restricting
it to a smaller domain. For instance, in the circle example, we had the linear function f(x) = πx. That
expression is defined for all real numbers. However, the real-world context from which we were getting the
function required us to restrict the function to a smaller domain: the set of positive real numbers.

[SIDENOTE, cover in class only if somebody raises the question: What about the range of a polynomial
function? That turns out to be a trickier question. We will need to build more machinery before we can
answer that question for arbitrary polynomials.]

2.3. Rational functions. Next, we consider rational functions. Here, we have the problem of vanishing
denominators. So, the largest possible domain for a rational function is the real numbers minus all the points
where the denominator vanishes. By the way, the points where a polynomial vanishes are called its zeros or
roots. [SIDENOTE: See “Convention on domains”, Page 28, in the book.]

For instance, consider the rational function T (x) = x/(x2 + 1). What is the largest possible domain for
this function? To answer this, first ask: where does the denominator vanish? Now, those of you who’ve not
seen complex numbers may say – nowhere. And those of you who’ve seen complex numbers will say ±i.
Yes, ±i are roots of the polynomial x2 + 1. But in this course we are dealing with the real world. In all our
discussions, whether I say it or not, all numbers that we deal with are real numbers. And x2 + 1 has no real
roots. So the denominator does not vanish anywhere and this rational function is globally defined on R.

Okay, what about this function called FORGET? FORGET is defined by:
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FORGET (x) =
x

x

You may be tempted to cancel the x and the x and say that FORGET (x) = 1 and so it is always defined.
But one of the things about rational functions is that you need to look at the rational function as it is
written. You cannot cancel something unless it is guaranteed to be nonzero.

So, at the point 0, the function becomes 0/0, which is undefined. At any other point, the function takes
the value 0. So, we find that the domain is the set of nonzero real numbers. How do we express this?

We can use the set difference notation. The domain is written as R \ {0}. Or, we can think of it as the
union of the negative and the positive numbers. In this case, the domain is (−∞, 0) ∪ (0,∞).

3. Computational tools

3.1. The domain. When the domain is not explicitly specified or clear from the situational context, the
convention (cf. Page 28, “conventions on domains”, subtopic of Section 1.5) is to define the domain as the
largest possible subset of R where the function as given can be evaluated. Some of the things you need to
check for are:

• The denominator should not vanish. In other words, we need to exclude from the domain all points
where any denominator becomes zero. For instance, 1/(x(x− 1)) is not defined at the points 0 and
1 because the denominator vanishes at these points.

• When you are taking the square root of some expression as a sub-expression of the function, then
the thing under the square root should be nonnegative. For instance, for the function

√
x +

√
1− x,

we should have both x ≥ 0 and 1− x ≥ 0.
• When an expression under the square root is in the denominator, then the thing under the square

root should be positive.
When we introduce new functions such as the logarithm and exponents with arbitrary bases and exponents,

we will introduce further rules for determining the domain of the function based on the domain properties
of these functions.

3.2. The range. Let’s try to translate the statement “a is in the range of f” into a form that is computa-
tionally tractable. What does it mean for a to be in the range of f? It means that there exists a value of x
such that a = f(x).

For instance, consider the function f(x) = 1/(x − 1). How do we determine whether a given a ∈ R is in
the range of f? Okay, now this might be a little too abstract and symbolic for some people, so I would urge
you to do this little trick. Imagine that a is some constant, some number known to you but not to me. So
in your mind, instead of a, you see a specific number. But since that number is secret, you cannot reveal it
to me and you have to call it a.

So you have this number a that’s known to you and you need to find x such that f(x) = a. Well, let’s
solve. We have:

1/(x− 1) = a

=⇒ 1/a = x− 1
=⇒ x = 1 + (1/a)

The goal is to determine whether there exists a x such that f(x) = a. What we’ve actually done is
obtained a formula for x in terms of a. So for those a where this formula makes sense, we actually do have
a value of x. What are those a? Well, all nonzero reals. So when a 6= 0, we can find a x such that f(x) = a.
What about when a = 0? In this case, it’s clear that f(x) = a has no solution.
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Okay, so this is the rough idea. But other situations can be a little trickier. In some cases, you may get
multiple values of x mapping to a single value of a.

Also see Examples 1 and 2, Page 28-29, and look at Exercises 18-30, Page 30 (all of these are within
Section 1.5).

4. Describing a function

4.1. Description by algebraic expression. So far we’ve discussed functions. Now, we want to discuss
ways of describing functions. One way of describing functions is using an expression. We discussed examples
of this last time, such as:

f : (0,∞) → (0,∞), f(x) = πx sends diameter of circle to circumference

g : (0,∞) → (0,∞), g(x) = x2/16 sends perimeter of square to area

But, unless you have a deep algebraic understanding of the expression, this doesn’t give a very good feel
for the function. And in many cases, an expression may not exist, or we may not know what it is. So we
employ two other tools: tabular listing and graphs.

4.2. Description by tabular listing and graphs. So let’s do this tabular listing thing. Let’s look at the
function f(x) = x2 − x + 3. We want to get a feel for this function. Where is it going up and down? How
does it change? Let’s try some numbers.

x f(x)
−2 9
−1 5

0 3
1 3
2 5
3 9
4 15

Do you see a picture here? Let’s try to draw a graph for this function. What’s a graph? Well, it is a
picture we draw in the plane that allows us to read the value of the function at any point. We choose a
system of coordinate axes. The horizontal axis is conventionally chosen to be the x-axis, with right positive,
and the vertical axis is the f(x)-axis, with up positive. We then plot the points (x, f(x)) for all values of x
in the domain.

Now, there are lots of real numbers, and we cannot plot the values for all of them. So what I’m going
to do here is a little imprecise. We’ll just plot the values at a few numbers (the ones we calculated in the
table) and then try to find an easy-to-draw curve that passes through all those points.

So we draw this graph. Now notice that I sort of assumed that the graph moves smoothly, it doesn’t
have any unexpected kinks, like, it doesn’t jump wildly in between the points I plotted. You should take
that with a grain of salt. I haven’t presented any evidence. To really check that the graph I have drawn
represents reality, you need to check a lot of intermediate values.
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So, by the way, now that we have drawn the graph, two questions emerge: what’s that bottom point for
the graph? Or another way of putting it: what is the minimum value of f(x) and at what value of x is it
attained? For the case of the quadratic, there is a neat algebraic manipulation trick that can give us the
answer. But since you have seen some basic calculus, you are also aware of a general procedure/approach to
answering that kind of question.

Scaling issues with graphs. For most of the graphs that we will draw in class, we will use the same scale
for both the x-axis and the y-axis. However, when using graphs to study functions in practice, this is not
useful. Indeed, for many of the pictures of functions in these lecture notes using Mathematica, the scale used
for the two axes is different.

In addition, it is also sometimes helpful, when drawing graphs, to shift the origin. Mathematica, and
some other graphing softwares, may do this automatically for many graphs. However, for graphs drawn in
class (as well as the Mathematica pictures included here) we will assume that there is no shifting of origin.

4.3. The vertical line test, domain and range. Given a picture in the coordinate plane, we have the
following:

• The picture represents the graph of a function if every vertical line intersects it at most once.
• The domain of the function is the set of values of x such that the vertical line for that value of x

intersects the graph.
• The range of the function is the set of values of y such that the horizontal line for that value of y

intersects the graph.
We will return to these points a little later when we study techniques for drawing graphs.

4.4. Functions defined piecewise. Now, we’re going to consider functions that have explicit expressions,
but they have different expressions for different values. In other words, the domain of the function is split
into parts and the definition of the function is different for each part. We will say that such functions are
piecewise defined.

Can you think of an example? Let’s think about taxes. Now, in a simple world, the tax you pay is a
(non-decreasing) function of your income. The real world is a lot more complicated, with the tax you pay
being a function of many other factors. But let’s ignore all this. Let’s consider the simplest tax system,
which is called a flat tax. 1

So here’s how a simple version of the flat tax works. There is a basic exemption amount, which I’ll call B,
and a tax rate r for all income earned over and above B. In other words, the first B units of money that you
earn don’t get taxed, and of the remaining money you earn, a fraction r is taxed. By the way, 0 < r < 1,
and if you write the tax rate as a percentage, you have to divide it by 100 to get r. So, for instance, a tax
rate of 10% means that r is 0.1.

[SIDENOTE: So, why did I put strict inequality (a < sign instead of a ≤ sign and a > sign instead of
a ≥ sign)? Well, what does r = 0 mean? It means that there is effectively no tax at all for any income,
which isn’t a case of interest here. And what does r = 1 mean? It means that all money you earn beyond
B belongs to the government, and that doesn’t provide people with much incentive to earn. So in fact r
should be between 0 and 1. What the optimal value of r should be is a question beyond the scope of this
discussion.]

So if T is the tax function, we have:

T (I) = r(I −B)
This formula is correct for people who earn as much as or more than B. But what about people who earn

less than B? What if, for instance, your income is 0? The formula then says that your tax is T (0) = −rB,
which means you have a negative tax. But that’s not the way flat tax systems usually work. So, the real
formula is:

T (I) = { 0 if I < B
r(I −B) if I ≥ B

1For instance, income tax in the state of Illinois is a flat tax, with a tax rate of 3% or 0.03. Eastern European countries
such as Estonia, Latvia, Russia, and Bulgaria have flat or near-flat tax systems.
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In other words, T (I) is zero for income up to B, and then rises linearly (or proportionally) with income.
So let’s draw the graph. In the graph, the x-axis is now the I-axis, or income axis, because the income

is the input variable. And the y-axis is the T -axis or the tax axis, because that’s the output variable. Note
that the tax function goes from [0,∞) to [0,∞), i.e., both the income and the tax are nonnegative.

The graph starts off along the horizontal axis (the I-axis) from 0 to B. Then, at B, it takes a turn and
goes in a straight line forever. This line points northeast. Now, what can you say about how steep that line
can be? It depends on the rate r, but can you say something in general? Sure. Since r < 1, the largest
angle that line can make with the horizontal axis is π/4 – that’s the angle when r = 1. The smaller the r,
the smaller the angle.

Note that the function takes a turn at the value B, but it does not jump in value. In other words, you can
draw the graph without lifting your pencil. So what’s happening is that when you cross B, there is a shift
in the tax regime, but your tax function doesn’t jump suddenly. Since most of you have some idea of what
continuous and differentiable means, you can probably make this precise in those terms: the tax function is
continuous everywhere (including at the point B where it changes definition) but it is not differentiable at
B.

So, just as a fun question, what happens with a progressive tax function?2 By the way, the United States,
and most countries, have progressive tax systems. What that would mean is that in addition to the base
exemption, there are likely to be other income cutoff values at which the graph takes turns. So you might
start off with an almost horizontal line, then turn to a slightly steeper slope, then an even steeper slope and
so on. Of course, the tax rate should never exceed 1, so you’ll never get steeper than an angle of π/4 with
the horizontal axis.

And what happens with a regressive tax function? For instance, the payroll tax in the United States is a
regressive tax. Here, the graph becomes less steep as the income increases.

4.5. Back to mathematics. Coming back to mathematics, here are some important functions with piece-
wise definitions:

(1) Absolute value function: The function is denoted, not by a letter, but by bars. For a real number
x, the absolute value of x, denoted |x|, is defined as x if x ≥ 0 and as −x if x < 0. It is also termed
the magnitude.

(2) Signum function: The sign function or signum function sends all positive numbers to +1, 0 to 0,
and all negative numbers to −1. For x 6= 0, the signum function is thus equal to the function that
sends x to x/|x|. In an alternate conventions, the signum function is considered undefined at 0, so
its domain is R \ {0}.

2The term “progressive” here is used in a strictly mathematical, rather than a political sense, even though self-identified
political progressives on average tend to favor more progressive tax systems.
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(3) Positive part function: This function applied to a real number x is denoted x+, and is defined as
max{0, x}. The positive part of x is equal to 0 if x ≤ 0 and equal to x if x > 0.

How do we think of functions defined piecewise? The main thing to remember is that most of the action
happens at the place where the function changes definition. Think of it like switching gears or taking a
turn. That’s what happens literally with the tax function, and the absolute value function and the signum
function. And whenever you have piecewise defined functions and you know that the functions on each of
the parts are very well-behaved, these turning points are the ones where mischief is most likely to occur.

5. The max and min operators

Among the constructs used to create piecewise functions, that arise naturally, are the max and min
operators. For instance, suppose f and g are functions on the real numbers. Then, consider the function:

h(x) := max{f(x), g(x)}
What does this mean? Here is how we evaluate h(x) at a given value of x. We compute both f(x) and

g(x). If f(x) > g(x), then we set h(x) = f(x). If g(x) > f(x), then we set h(x) = g(x). If both are equal,
we set h(x) to be that equal value. In other words:

h(x) := { f(x) if f(x) > g(x)
g(x) otherwise

For instance, consider the function:

h(x) := max{x + 1, 2x}
Here are the graphs of the two functions:

At x = 0, x + 1 = 1 and 2x = 0, and the maximum of these two values is 1. So h(0) = 1.
At x = 1, x + 1 = 2 and 2x = 2. Both are equal to 2, so h(1) = 2.
At x = 2, x + 1 = 3 and 2x = 4. The maximum of these is 4, so h(2) = 4.
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A similar approach works for calculating the min of two functions.
Here are the graphs of the max and min functions for x + 1 and 2x.

Many of the piecewise defined functions that we encounter can naturally be described using the max
operator. For instance:

(1) The flat tax function with base exemption B and rate r can be defined as the function T (I) =
max{0, r(I −B)}.

(2) The absolute value function, that sends x to |x|, can be defined as max{x,−x}.
(3) The positive part function, that sends x to x+, can be defined as max{x, 0}.

Now, here’s a way of thinking of the maximum of two functions. What we need to do is determine, at
every point, which one of them is bigger. Think of it as a race. The two functions are constantly racing
against each other. At some values of x, one function might come on top, and at other values of x, the other
function might come on top.

For instance, think of the absolute value function. Let’s first plot the graph of the function that sends x
to x and the function that sends x to −x. The first is a straight line pointing north-east to soth-west, the
second is a straight line pointing north-west to south-east.

Now, if you start off at −∞ and move right, the function −x dominates, as is obvious both graphically
and algebraically. And it keeps dominating up till the point x = 0, where the two functions become equal.
After that the function x dominates. Thus, we see that |x| = −x for x < 0 and |x| = x for x ≥ 0.

So the main point is that the places where the functions switch roles are the places where the two functions
become equal. [SIDENOTE: Technically, this statement requires both functions to be continuous.] So if we
have h(x) := max{f(x), g(x)}, then the first thing we should do is find the points where f(x) = g(x). Then,
in the intervals between these points, we can try to find out which of the two functions is greater.

For instance, consider the function:

f(x) := max{x, x2 + 1}

The first thing you want to know is when those two functions become equal. So you try to solve:

x = x2 + 1
10



which simplifies to:

x2 − x + 1 = 0
Now, that function that we just wrote down there has no real roots. You can check this by evaluating

the discriminant – the b2 − 4ac term. The discriminant is negative, hence there are no real roots. So this
function is never zero.

Thus, one of the two functions, x or x2 + 1, always has the upper hand. Now you can just plug in one
value of x and see that x2 + 1 is in fact the upper hand. So, in fact:

f(x) = x2 + 1 ∀ x ∈ R
By the way, there is another way of showing that x2 + 1 > x for all x ∈ R. This is by writing:

x2 − x + 1 = (x− 1/2)2 + (3/4) ≥ 3/4 > 0
The secret I used here is completing the square using the middle term. This technique will be of importance

later when we study integration techniques.
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FUNCTIONS: A RAPID REVIEW (PART 2)

MATH 152, SECTION 55 (VIPUL NAIK)

Difficulty level: Easy to moderate. Some of the symmetry concepts (half turn symmetry and mirror
symmetry) and some of the proof techniques are likely to be new to students. The rest should be straight-
forward.

Covered in class?: This will roughly correspond to material covered on Wednesday September 28. Most
of the trickier aspects of this will be covered in class, but many small points will be omitted due to time
constraints. Hence, it is recommended that you read through these notes either before or after lecture.

Corresponding material in the book: Sections 1.6, 1.7. However, some ideas (including mirror
symmetry and half turn symmetry) are not covered in the book. In some other cases, ideas covered later in
the book are introduced at this early stage since you are already familiar with calculus.

Corresponding material in homework problems: Homework 1, routine problems 7–8, advanced
problems 2–3.

Things that students should get immediately: Definitions of various notions of pointwise combina-
tion of functions, scalar multiples of functions, and compositions of functions. Definitions of even, odd, and
periodic functions.

Things that students should get with effort: Definitions and graphical interpretations of half turn
symmetry and mirror symmetry. Proof techniques related to showing even, odd, and periodic.

Executive summary

For first time reading, skip to the next section.
Words ...

(1) Given two functions f and g, we can define pointwise combinations of f and g: the sum f + g, the
difference f − g, the product f · g, and the quotient f/g. For the sum, difference, and product, the
domain is the intersection of the domains of f and g. For the quotient, the domain is the intersection
of the domain of f and the set of points where g takes a nonzero value.

(2) Given a function f and a real number α, we can consider the scalar multiple αf .
(3) Given two functions f and g, we can try talking of the composite function f ◦ g. This is defined for

those points in the domain of g whose image lies in the domain of f .
(4) One interesting kind of symmetry that we often see in the graph of a function is mirror symmetry

about a vertical line. This means that the graph of the function equals its reflection about the
vertical line. If the vertical line is x = c and the function is f , this is equivalent to asserting that
f(x) = f(2c − x) for all x in the domain, or equivalently, f(c + h) = f(c − h) whenever c + h is in
the domain. In particular, the domain itself must be symmetric about c.

(5) A special case of mirror symmetry is the case of an even function. An even function is a function
with mirror symmetry about the y-axis. In other words, f(x) = f(−x) for all x in the domain.
(Even also implies that the domain should be symmetric about 0).

(6) Another interesting kind of symmetry that we often see in the graph of a function is half-turn
symmetry about a point on the graph. This means that the graph equals the figure obtained by
rotating it by an angle of π about that point. A point (c, d) is a point of half-turn symmetry if
f(x) + f(2c − x) = 2d for all x in the domain. In particular, the domain itself must be symmetric
about c. If f is defined at c, then d = f(c).

(7) A special case of half-turn symmetry is an odd function, which is a function having half-turn sym-
metry about the origin. By definition, the domain of an odd function is symmetric about R. An odd
function, if defined at 0, takes the value 0 at 0.
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(8) A function f defined on R is periodic if there exists h > 0 such that f(x+h) = f(x) for every x ∈ R.
If there is a smallest h > 0 satisfying this, such a h is termed the period. Constant functions are
periodic but have no period. The sine and cosine functions are periodic with period 2π.

Actions ...
(1) To prove that a function is periodic, try to find a h that works for every x. To prove that a function

is periodic but has no period, try to show that there are arbitrarily small h > 0 that work.
(2) To prove that a function is even or odd, just try proving the corresponding equation for all x. Nothing

but algebra.
(3) If a function is defined for the positive or nonnegative reals and you want to extend the definition to

negatives to make it even or odd, extend it so that the formula is preserved. So define f(−x) = f(x),
for instance, to make it even.

1. Ways of creating new functions from old

1.1. Pointwise combinations of functions. Suppose f, g : R → R are functions. By the way, before we
proceed, a clarification on notation and terminology. When I say f : A → B is a function, then the domain
of the function is A. However, the range of the function need not be B. All that notation means is that the
range of the function is a subset of B. It might be equal to B, but there’s no guarantee. And the reason
why we allow this kind of latitude is that it makes it a lot easier to write things down if we do not need to
calculate the exact range all the time. And, by the way, the set B is termed the co-domain.

What does f + g mean? So the first thing you might say is: “How can we add functions? I thought we
could add only numbers.” And the answer is that we don’t yet know how to make sense of it, but once we
do, it seems intuitive.

So remember, to define f + g as a function, we need to describe where it sends x. So (f + g)(x) is defined
as follows:

(f + g)(x) := f(x) + g(x)

This is the sum of the two functions, and if you stick around in the world of mathematics, you’ll hear
people say that the sum is defined pointwise. What this really means is that to add two functions, what we
do is add the values of the functions at each point.

Here’s a picture showing two functions f and g and their sum f + g. Note that for each vertical line, the
height of the f + g-point is the sum of the heights of the f -point and the g-point:

Now, I assumed that the functions are both defined from R to R. And so, what is the domain of the
function f + g? Well, it is R again, because as you can see from the definition, since you can evaluate f
and g at a point, you can also evaluate f + g at that point. And, by the way, I use the word point where I
actually mean real number – secretly, I’m thinking of real numbers as points on the number line.

What if f is a function defined on a smaller domain (i.e., a subset of R) and g on another smaller domain
(i.e., another subset of R)? In that case, f + g is defined on the intersection of dom(f) and dom(g). Why
the intersection? Because to evaluate f + g at a point, you need to evaluate f at the point and g at the
point, and then add those values. And to be able to evaluate both, the input should be in the domain of
both functions.
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We similarly define:

(f − g)(x) := f(x)− g(x)

(f · g)(x) := f(x)g(x)

(f/g)(x) := f(x)/g(x)

For the case of the difference and product, the domain is the intersection of the domains. For the ratio,
or quotient, we need to be a little more careful: the domain of the new function is inside the intersection of
the domains of f and g, but there’s a caveat: we need to exclude points at which g = 0.

1.2. Scalar multiples of functions. Suppose f is a function and α is a real number. The function αf is
defined as:

(αf)(x) := αf(x)
For instance, 2f is the function that sends x to 2f(x), while −f is the function sending x to −f(x).

1.3. Composition of functions. Suppose f, g : R → R are functions. Then f ◦g is defined as the following
function:

(f ◦ g)(x) := f(g(x))
f ◦ g is termed the composition of the functions f and g. Orally, we say “f composed with g”. Note that

the function written on the right is the one the we apply first, so in the case of function composition, we
work from right to left. This can be potentially confusing.

We can also define the composite of two functions when their domains are subsets of R. The domain of
the composite f ◦g is that subset of dom(g) whose image under g lies inside dom(f). There is a more precise
way of expressing this, but it will take us too far afield, so we will skip it.

1.4. Are there other ways of creating new functions? Yes, but we will see them later. The most
significant of these are differentiation, integration, and taking inverse functions.

1.5. Why do ways of creating new functions from old matter? First, of course, ways of creating new
functions from old help us create new functions from old. However, just as new food recipes are of little
interest to those unenthusiastic about cooking and eating, new function recipes may seem pointless to those
unenthusiastic about playing with functions. There is a deeper reason.

The point is that these ways of creating new functions from old are already in use when we think of
and create new functions. By explicitly identifying the various recipes used to create new functions from
old, we hope to get a better mental model of functions that already exist. Both pointwise combination and
composition are implicitly used all the time without our even knowing it. Making them explicit is like writing
down an explicit recipe for a dish that we’ve already been cooking and eating.

We will better be able to understand a new phenomenon for all functions when we are able to break the
process of such understanding into two steps: (i) understanding the phenomenon for a list of basic building
block functions, (ii) understanding how the phenomenon interacts with the recipes for creating new functions
from old. For instance:

(1) In order to learn how to differentiate functions, we do two things: (i) learn formulas for differentiating
a list of basic functions (e.g., derivatives of power functions, trigonometric functions, etc.) (ii) learn
formulas for the derivative of a new function created by a recipe from other functions, in terms of
those other functions and their derivatives (e.g., derivatives of sums, differences, scalar multiples,
product rule, quotient rule, and chain rule).

(2) In order to learn how to integrate functions, we do two things: (i) learn integration formulas for a
list of basic functions (ii) learn procedures for integrating complicated functions in terms of their
basic building blocks (unfortunately, the rules for product and composition are not straightforward,
making integration a much more messy and also much more interesting business).
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(3) To prove that all functions in a particular collection satisfy a property such as continuity or differ-
entiability, it suffices to prove the property for the basic building blocks of the collection, and then
to prove that the various ways of building new functions from old within the collection preserve the
property.

2. Symmetries of functions

2.1. Even and odd functions. Let’s first discuss the concept of even function and odd function for globally
defined functions, i.e., functions defined for all real numbers.

By the way, as I pointed out earlier, when I say f : R → R, you should not assume that the range is R. I
just mean a globally defined function that takes real values.

So we say that f is an even function if:

f(x) = f(−x) ∀ x ∈ R
So, what does this mean from the point of view of its graph? Well, it turns out that this is equivalent to

saying that the graph is symmetric about the y-axis.
Here’s a picture of a cute even function:

We say that f is an odd function if:

f(−x) = −f(x) ∀ x ∈ R
This is equivalent to saying that the graph has a rotational symmetry about the origin. If you rotate the

graph by π (that’s 180 ◦) you get back to the original thing.
Here’s a cute picture of an odd function:

The notion of even and odd function also makes sense for functions whose domain is not the whole real
numbers, but rather, is a subset of the real numbers. The notion makes sense only when the domain is
symmetric about 0, i.e., whenever x is in the domain of the function, so is −x. Some examples of domains
symmetric about 0 are: intervals of the form [−a, a], intervals of the form (−a, a), intervals of the form
(−a, a) \ {0}, intervals of the form [−a, a] \ {0}, the set of all integers Z, the set of all rational numbers Q,
a union of intervals of the form (−b,−a) ∪ (a, b), and many more.
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2.2. Mirror symmetry. We say that a function f possesses mirror symmetry about the line x = c if the
domain of f is symmetric about c and, for all x ∈ dom(f), we have:

f(x) = f(2c− x)

Equivalently, for all h > 0, c + h ∈ dom(f) if and only if c− h ∈ dom(f), and if so, then:

f(c + h) = f(c− h)

Even functions are a special case: they have mirror symmetry about the y-axis.
Here’s a picture of a quadratic function that has mirror symmetry about the line x = −1.

2.3. Half turn symmetry. We say that a function f possesses half turn symmetry about the point (c, d)
if the domain of f is symmetric about c and, for all x ∈ dom(f), we have:

f(x) + f(2c− x) = 2d

Equivalently, for all h > 0, c + h ∈ dom(f) if and only if c− h ∈ dom(f), and if so, then:

f(c + h) + f(c− h) = 2d

In other words, the point (c, d) is the midpoint between (c + h, f(c + h)) and (c− h, f(c− h)).
If c ∈ dom(f), then we are forced to have d = f(c).
Odd functions are a special case with the point of half turn symmetry about the origin (0, 0).
Below is a graph of a cubic function x3 + x2 + 1 with half turn symmetry about the point (−1/3, 29/27).

2.4. Periodic functions. Suppose f : R → R is a function. We say that f is a periodic function if there
exists a h > 0 such that:

f(x + h) = f(x) ∀ x ∈ R
The period (more correctly called the fundamental period) of f is the smallest h > 0 for which the above

holds (for all x ∈ R).
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The trigonometric functions are examples of periodic functions. For instance, sin and cos have period 2π.
What about the sin2 function? Well, 2π works, but it isn’t the smallest thing that works. The smallest h
that works is π.

Here’s a picture of a cute periodic function with period 1:

2.5. Other notions of symmetry. There are many other notions of symmetry for functions that we will
encounter as we start drawing graphs. The most significant of these is the periodic + linear symmetry, which
is observed for functions that can be expressed as a sum of a periodic function and a linear function. More
on this later.

2.6. Why do notions of symmetry matter? Notions of symmetry are important for a number of reasons,
including the following:

(1) For functions which possess symmetry, graphing the function can be a lot easier since the symmetry
allows us to fill in the graph at many points based on a small part.

(2) Symmetry allows us to deduce properties about derivatives of the function.
(3) Symmetry allows us to deduce properties about definite integrals. Often, definite integrals can be

computed using symmetry properties even though antiderivatives are hard or impossible to express
explicitly.

3. Proving and reasoning involving these functions

3.1. Proof positive: showing something to be even, odd, or periodic. To show that a function f is
even, we start with a generic x, compute f(x) and f(−x), and show that both are equal.

To show that a function f is odd, we start with a generic x, compute f(x) and f(−x), and show that the
results are negatives of each other.

Showing that a function f is periodic is somewhat trickier. f is defined to be periodic if there exists h > 0
such that f(x + h) = f(x) for all x in the domain of f . Thus, to show that f is periodic, we first need to
find a value of h that works. After we have chosen a specific numerical value of h, we then pick a generic x
and show that f(x + h) = f(x).

In logic notation, periodicity states that:

∃h > 0 such that ∀ x ∈ dom(f), f(x + h) = f(x)
The ∃ stands for an existential quantifier and the ∀ stands for a universal quantifier. For existentially

quantified variables, we need to come up with a specific value that “works” while for universally quantified
variables, we need to show that every value works, which we do by picking a generic value.

3.2. Relation between symmetry and creation of new functions. Here are some important facts that
can be proved using the techniques mentioned in the previous subsection:

(1) The set of even functions is closed under addition, subtraction, scalar multiples, pointwise multi-
plication, and pointwise division (where defined). All constant functions are even. [Sidenote: In
mathematical jargon, we say that even functions form an algebra.]

(2) The set of odd functions is closed under addition, subtraction, and scalar multiples. It is also closed
under composition.
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(3) A product of two odd functions is even.
(4) A product of an even function and an odd function is odd.
(5) A composite f ◦ g where g is even is also even.
(6) If f is even and g is odd, then the composite f ◦ g is even.
(7) If f1 and f2 are periodic functions with periods h1 and h2 such that h1/h2 is a rational number,

then f1 + f2, f1 − f2, and f1 · f2 are all periodic functions.
(8) If f and g are functions such that g is periodic, so is f ◦ g.

3.3. Negative proofs: not even, not odd, not periodic. To show that a function f is not even, it
suffices to find just one counterexample, i.e., to find one value of x such that both x and −x are in the
domain of f but f(−x) 6= f(x). A similar technique works for showing that f is not odd.

Let’s look at an example Consider the function:

f(x) := x2 − x + 1

Claim. f is not an even function.

Proof. If f were an even function, then we would have, for every x ∈ R, that f(x) = f(−x). Thus, to show
that f is not an even function, it suffices to find one value of x at which f(x) 6= f(−x).

In fact, the value x = 1 suffices:

f(1) = 1, f(−1) = 3

So clearly f(1) 6= f(−1). �

Claim. f is not an odd function.

Proof. If f were an odd function, then we would have, for every x ∈ R, that f(x) = −f(−x). Thus, to show
that f is not an odd function, it suffices to find one value of x at which f(−x) 6= −f(x).

In fact, the value x = 1 suffices:

f(1) = 1, f(−1) = 3

So clearly f(−1) 6= −f(1). �

Showing that a function is not periodic is trickier. Recall that f being periodic is equivalent to the
following:

∃h > 0 such that ∀ x ∈ dom(f), f(x + h) = f(x)

Showing this to be false would entail showing that there is no value of h that works in the above.
Equivalently, we need to show that every value of h fails. Thus, we want to show the following:

∀h > 0,∃x ∈ dom(f) such that f(x + h) 6= f(x)

Note that the ∃ quantifier gets replaced by a ∀ quantifier and the ∀ quantifier gets replaced by a ∃
quantifier. This is a universal feature of logical negation, and shall be crucial to a clear understanding of
ε− δ proofs that we will encounter soon in this course. Let’s now show that the function f(x) := x2 − x + 1
is not a periodic one.

Claim. f is not a periodic function.
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The proof technique we use here is what is called proof by contradiction. What we do is start out
by assuming that f is a periodic function and then do some work and show that we have come up with
something that is obviously false.

Proof. Suppose f were a periodic function. By the definition of periodic function, there exists h > 0 such
that:

f(x + h) = f(x) ∀ x ∈ R

Simplifying this, we obtain that:

(x + h)2 − (x + h) + 1 = x2 − x + 1
=⇒ (x + h)2 − x2 + x− (x + h) = 0

=⇒ 2xh + h2 − h = 0
=⇒ h(2x + h− 1) = 0

=⇒ 2x + h− 1 = 0 (using h > 0, so h 6= 0)

=⇒ x =
1− h

2

Thus, there is exactly one value of x, namely x = (1 − h)/2, such that f(x + h) = f(x). Thus, it is
certainly not true that f(x + h) = f(x) for all x ∈ R, and we have the desired contradiction. So, f is not a
periodic function. �

3.4. Extending the domain with even/odd/periodic constraint. Given a function f defined on the
nonnegative reals, there is a unique way of extending the domain of f to all reals to obtain an even function.
Similarly, if in addition f(0) = 0, there is a unique way of extending the domain of f to all reals to obtain
an odd function.

For x < 0, the even way of extending defines f(x) as equal to f(−x), and the odd way of extending defines
f(x) as equal to −f(−x). Graphically, for even functions, the part of the graph of the function for x < 0 is
obtained by reflecting about the y-axis the part of the graph of the function for x > 0. For odd functions,
the x < 0 part of the graph is obtained from the x > 0 part of the graph by performing a half turn about
the origin.

Similarly, given a function defined on a closed interval [a, b] such that f(a) = f(b), we can extend f
uniquely to a periodic function for which h = b− a works.

4. More offbeat functions

4.1. Greatest integer function and fractional part function. The greatest integer function, denoted
by [], is defined as follows. For x ∈ R, the greatest integer function of x, denoted [x], is defined as the
greatest integer less than or equal to x. Thus, [3] = 3, [π] = 3, [0.6] = 0, [

√
47] = 6, [−

√
2] = 2, [−7/3] = 3,

and so on.
The greatest integer function is a piecewise constant function or step function and it has a discontinuity at

every integer, with an upward step size of 1. The greatest integer function is also termed the floor function.
Here is the graph of the greatest integer function:
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Closely related to the greatest integer function is the fractional part function. The fractional part of x,
denoted {x}, is defined as x− [x]. Thus, the fractional part is 3.42 is 0.42, while the fractional part of −0.42
is 0.58.

The fractional part function is piecewise linear, with discontinuities at every integer. Between consecutive
integers n and n + 1, the function rises linearly from 0 to 1, but just when it is about to reach 1, it slips
back down to 0 to start all over again.

Below is the graph of the fractional part function:

4.2. Functions defined differently for rationals and irrationals. For the piecewise definitions of func-
tions that we have seen so far, the pieces are intervals or unions of intervals, and thus there are points at the
boundaries between the pieces where the function can be thought of as changing definition. There is a much
more messy kind of piecewise definition, where the pieces do not look like intervals or unions of intervals,
but are instead scattered across the domain.

One example is where the pieces are taken to be the rational numbers and irrational numbers respectively.
both the rational numbers and irrational numbers are dense in the real numbers – in other words, every
nonempty open interval in the reals contains both rational and irrational numbers.

For instance, the Dirichlet function is defined as:

f(x) := { 1 if x is rational
0 if x is irrational

There are some variants of this where there is one constant value (not necessarily 1) for the rational
numbers and another constant value (not necessarily 0) for the irrational numbers. There are also other
variants that you will see as we explore continuity and differentiability further.

4.3. The topologist’s sine curve. We will also be looking at the functions sin(1/x), x sin(1/x), x2 sin(1/x),
x3 sin(1/x) throughout the course. Graphs of these functions are given below.

Graph of sin(1/x):
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Graph of x sin(1/x):

Graph of x2 sin(1/x):

Graph of x3 sin(1/x):

4.4. Why do we care about weird functions? The greatest integer function and fractional part func-
tion have applications to real world situations, particularly when those real world situations have integer
constraints. For instance, you can only buy and sell integer quantities of some commodity.
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However, the rational-irrational dichotomy functions and the topologist’s sine curve have very few practical
applications as functions. Their main utility is to provide examples that allow us to test the soundness of
definitions and notions of continuity and differentiability. Most of the natural examples of functions are too
nice for us to test whether our definitions of continuity and differentiability can rough it out. You can think
of them as the equivalent of high school bullies who make you a strong person, as long as you don’t cave in
to them.
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INFORMAL INTRODUCTION TO LIMITS

MATH 152, SECTION 55 (VIPUL NAIK)

Corresponding material in the book: Section 2.1, parts of Sections 2.4.
Difficulty level: Easy to moderate, assuming you have seen some intuitive concept of limits before.
Covered in class?: Probably not. We may go over some small part of this quickly before covering ε− δ

definitions of limits.
Things that students should definitely get: To define limits, you need to get really really close.

There are two directions from which to approach a real number: left and right. The notation for limits and
one-sided limits. The intuitive meaning of the existence of limits and of continuity,, one-sided continuity,
continuity on intervals. The notions of removable and jump discontinuity.

Things that students should hopefully get: The allusion to why taking limits for functions on a
plane is harder because of multiple directions of approach.

Executive summary

Words ...
(1) On the real line, there are two directions from which to approach a point: the left direction and the

right direction.
(2) For a function f , limx→c f(x) is read as “the limit as x approaches c of f(x). Equivalently, as x

approaches c, limx→c f(x) is the value that f(x) approaches.
(3) limx→c f(x) makes sense only if f is defined around c, i.e., both to the immediate left and to the

immediate right of c.
(4) We have the notion of the left hand limit limx→c− f(x) and the right hand limit limx→c+ f(x). The

limit limx→c f(x) exists if and only if (both the left hand limit and the right hand limit exist and
they are both equal).

(5) f is termed continuous at c if c is in the domain of f , the limit of f at c exists, and f(c) equals the
limit. f is termed left continuous at c if the left hand limit exists and equals f(c). f is termed right
continuous at c if the right hand limit exists and equals f(c).

(6) f is termed continuous on an interval I in its domain if f is continuous at all points in the interior
of I, continuous from the right at any left endpoint in I (if I is closed from the left) and continuous
fromthe left at any right endpoint in I (if I is closed from the right).

(7) A removable discontinuity for f is a discontinuity where a two-sided limit exists but is not equal to
the value. A jump discontinuity is a discontinuity where both the left hand limit and right hand
limit exist but they are not equal.

Actions: See the procedure in the last subsection on computing limits for polynomial and rational func-
tions.

Note: These notes cover only the informal and intuitive concept of limits that you should be familiar with,
and do not include the ε− δ definitions. The ε− δ definitions are covered in subsequent notes which we will
go through very carefully in class.

1. Intuitive conception of limits

1.1. The real numbers and two-sidedness of approach. The first thing you need to know is that in
order to understand limits, you really need to appreciate the real numbers. There’s something particularly
interesting about the real numbers: you can get really really close to a real number without equaling it.
That’s not something you can do with more sparse sets such as the integers.

It is this ability to sneak really close to something without being equal to it that allows us to talk of
limits. This is something you should keep in mind – we’ll get back to it later again when we talk of another
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kind of limit in 153 – the limit of a sequence. That’s a very different but in some ways remarkably similar
notion, but we’ll come to it in due course.

Now, in the picture, I sneaked up on this number from one side – the left side. But I could sneak up to it
from another side – the right side. This two-sidedness makes things pretty interesting. By the way, this is
one advantage of dealing with a line – there are only two directions to worry about. Imagine, just imagine,
if you were dealing with a plane. Then there would be the left side, the right side, the up side, the down
side, this side, that side – too many! Luckily for us, we can postpone all those headaches for multivariable
calculus, which is beyond the scope of the 150s. So we focus right now on this simple real line.

Here’s the kind of picture you can avoid thinking about for now:

1.2. Beginning and verbal gymnastics.
So let’s be really abstract. Suppose f is a function from a subset of the reals to a subset of the reals and

c is a real number. What we would like to know is the answer to this question: as x gets really close to c,
what does f(x) get close to? If f(x) is heading towards a specific destination, that’s called its limit, and it
has the notation:

lim
x→c

f(x)

This is read as “the limit as x approaches c of f(x)”. An equation such as:

lim
x→c

f(x) = b

can be read in two ways: “the limit as x approaches c of f(x) is b” or “as x approaches c, f(x) approaches
b”. By the way, some people say tends to instead of approaches. Some people say goes to and those who’re
living at the point c may say comes to.
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Now, let’s take some examples. Suppose f(x) = x. So f is what is called the identity function. It is like
a mirror that gives back what is put into it. Well, what then is limx→0 f(x)? Well, f(x) = x, so this is
limx→0 x. So this reads like a word puzzle: “as x tends to 0, what does x tend to?” Of course, 0. In fact,
more generally,

lim
x→c

x = c

1.3. Beyond our reach: can’t limit to what you can’t approach. Okay, here’s the next question:
what is limx→−1

√
x. By the way, remember that

√
x is defined as the nonnegative square root. So what is

this limit? In other words, as x approaches, gets really really close to −1, what does
√

x approach?
Verbal gymnastics doesn’t work the same way as it does for the previous limit, so this one requires some

serious thought. Okay, to simplify matters, let’s first tackle the right side and then the left side.
Okay, let’s try the right side. Let’s start from far off. What is the square root of 4? It’s 2. What is the

square root of 3?
√

3 is approximately 1.732 . . . . Square Root of 2 is 1.414 . . . , square root of 1 is 1, square
root of 0 is 0. Hmmm. So the square root seems to be decreasing. So you might guess right now that the
limit is some negative number.

But to check this guess, you need to go down the negative aisle. And because there’s a paucity of integers,
we need to use fractional numbers. So let’s try some negative number between 0 and −1. Say −1/4. What’s
the square root of −1/4?

It doesn’t have a square root. It’s a negative number. In fact, the domain of the square root function is
the nonnegative reals, the interval [0,∞). And that’s bad. Which means that as we get even a little close
to −1, we cannot evaluate the function from the right side. So the limit from the right side doesn’t make
sense.

The limit from the left side doesn’t make sense either, because the function isn’t defined anywhere to the
left of −1.

What’s the message to take from this? It makes sense to talk of the limit of a function at a point, if the
function is defined at places very close to the point. If it isn’t, it’s like, as some people say, putting “lipstick
on a pig.” You can take the limit of a function that doesn’t exist, and it still doesn’t exist.

1.4. One-sided limits. There are two further notions, that are mirror images of each other: the left hand
limit and the right hand limit. The left hand limit at a is denoted as limx→a− f(x) and limx→a+ f(x).

The left hand limit of a function is the limit as you approach the domain value from the left side. The
right hand limit of a function is the limit as you approach the domain value from the right side. If a function
is defined on both the left and the right side of a point, there are five possibilities:

(1) Neither the left hand limit nor the right hand limit exist.
(2) The left hand limit exists but the right hand limit does not exist.
(3) The left hand limit does not exist but the right hand limit exists.
(4) Both the left hand and the right hand limit exist, but they are not equal.
(5) Both the left hand and the right hand limit exist, and they are equal. In this case, we say that the

function has a limit and the limit is equal to both these values.
Phew! What a wide range of possibilities! But you should be happy that there are only two directions

of approach: left and right. If and when you study multivariable calculus, you’ll be studying functions on a
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plane, where you have not two, but infinitely many directions. If computing limits from two directions is a
headache, computing limits from infinitely many directions is like enduring torture for eternity.

Things are a little different for values that are at extreme ends of the domain. For instance, think about
the function f : [0, 1]→ [0, 1] given by f(x) =

√
1− x2. Now, at the point −1, a left hand limit doesn’t make

sense because the function is not defined to the left of −1. So, only the right hand limit does. Similarly at
the point 1, the right hand limit doesn’t make sense but the left hand limit does.

There’s a little confusion about conventions in what I’m going to say, but I’ll just stick with the book on
this one: if the point c is at the boundary of the domain and so the function isn’t defined on one side, the
book says that talking of the limit at c, or writing limx→c f(x), is not meaningful. However, we can talk of
the one-sided limit from the side that the function is defined. You may see a different convention at other
places, but we’ll just stick to the book for now. That means that if the point is at the boundary of the
domain, you should clearly specify a one-sided limit instead of just taking the limit.

2. Continuity

2.1. The concept of continuity. Suppose f is a function and it is defined around a point a, i.e., f is
defined at the point a and is also defined in some open interval containing a. Then f is continuous at a if
the limit of f exists at a and equals f(a). This means that the left hand limit and the right hand limit of f
exist at a and are equal to f(a). In symbols:

f continuous at a ⇐⇒ lim
x→a−

f(x) = lim
x→a+

f(x) = f(a)

If f is defined at a and on the immediate right of a, then we say that f is right continuous or continuous
from the right at a if the right hand limit of f at a equals f(a). In symbols:

f right continuous at a ⇐⇒ lim
x→a+

f(x) = f(a)

If f is defined at a and on the immediate left of a, then we say that f is left continouus or continuous
from the left at a if the left hand limit of f at a equals f(a). In symbols:

f left continuous at a ⇐⇒ lim
x→a−

f(x) = f(a)

2.2. Continuity on an interval. Suppose I is an interval (open, closed, half-open half-closed, possibly
infinite in one or both directions). A function f whose domain contains I is termed continuous on I if f is
continuous for all interior points of I (i.e., all points of I that are not at the boundary of I) and is continuous
from the appropriate side at all boundary points. We consider all cases below:

(1) If I = (a, b), f needs to be continuous at all points of I.
(2) If I = [a, b], f needs to be continuous at all points of (a, b), right continuous at a, and left continuous

at b.
(3) If I = [a, b), f needs to be continuous at all points of (a, b) and right continuous at a.
(4) If I = (a, b], f needs to be continuous at all points of (a, b) and left continuous at b.
(5) If I = (a,∞) or (−∞, b) or (−∞,∞), f needs to be continuous at all points of I.
(6) if I = [a,∞), f needs to be continuous at all points of (a,∞) and right continuous at a.
(7) If I = (−∞, b], f needs to be continuous at all points of (−∞, b) and left continuous at b.

3. Plumbing leaks

3.1. Filling in the hole in the FORGET function. I hope you remember the FORGET function that
we defined a little earlier:

FORGET (x) =
x

x
When I defined this function, we discussed that the function is not defined at zero. Why? Because at 0,

when we plug in, we get a 0 in the numerator and a 0 in the denominator. Zero in the denominator is bad!
This expression makes no sense. So forget about evaluating this function at 0.

However, it definitely makes sense to ask whether the limit exists at 0:
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lim
x→0

FORGET (x)

Why does it make sense? Because the function is defined at all points other than 0, it is defined at all
points that are close to 0 but not equal to it. It’s defined at all points to the left of 0 and at all points to
the right of 0. The only point where it is not defined is 0. So, it makes sense to evaluate the limit at 0.

It makes sense, but can we actually do this? Well, let’s use the graph.

Okay, so we see that the function is 1 to the left of zero, 1 to the right of zero. What should the limit be?
If there’s any justice in the world, it should be 1. And it is.

Let’s see this mathematically:

FORGET (x) =
x

x
, x 6= 0

Thus:

lim
x→0

FORGET (x) = lim
x→0

x

x
= lim

x→0
1 = 1

Now you may say: why can we cancel now? The reason why we can cancel x in that step above is that
now, since we are only approaching 0 and are not equal to it, x can be canceled. And that is the beauty of
limits. The thing that gives you trouble at a point doesn’t give you any trouble near the point, and because
you are sneaking up from nearby rather than evaluating at the point, you evade trouble. It’s the roundabout
maneuver when a direct assault fails.

3.2. Looking back at the signum function. The signum function, denoted sgn, is the function defined
as x/|x| when x 6= 0. Under some conventions, it is considered undefined at x = 0. Under other conventions,
its value at 0 is defined to be 0.

The signum function is continuous – in fact, locally constant – at all nonzero points in the domain. At
the point 0, it takes the value −1 everywhere on the left and it takes the value 1 everywhere on the right.
Thus, the left hand limit is −1 and the right hand limit is 1. Thus, the function jumps from the value −1
to 1 at 0.
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The signum function differs from the FORGET function in this important respect: for the FORGET
function, we could fix or remove the discontinuity at 0 by filling in the value 1, because the limit at 0 exists.
However, for the signum function, there is no way of fixing the discontinuity at 0 because the limit does not
exist, which happens in turn because the left and right hand limits differ.

3.3. Kinds of discontinuities. We now consider some important kinds of discontinuities for functions, i.e.,
situations where a function f is defined aound a point c but is not continuous at c. Here are two important
kinds of discontinuities:

(1) Removable discontinuities are discontinuities where the limit of f at c exists but is not equal to f(c).
There could be two reasons for this: either f(c) is not defined (as for the FORGET function) or it
is defined but is not equal to the limit.

(2) Jump discontinuities are discontinuities where both the left hand limit and the right hand limit exist
and are finite, but they are not equal. Note that the value of the function at c can be changed
to make the function continuous from the left at c. It can also be changed to make the function
continuous from the right at c. But we cannot choose a value f(c) such that both things happen
simultaneously. An example is the signum function.

These are not the only possibilities. There are also infinite discontinuities (where the left hand limit or
the right hand limit or both is/are ±∞) and oscillatory discontinuities. We will return to this topic later.

Aside:Left and right are based on source, not target. The left hand limit is the limit where the
approach is from the left, but the direction in which the approach happens is toward the right. In other
words, the choice of hand is based on the direction from which approach is being made rather than the
direction in which the approach is happening.

A similar convention is followed when specifying the direction of winds. A northern wind is a wind that
blows from north to south. If you took geography in school or read weather forecasts, you should be familiar
with this.

[I have a guess as to the reason for choosing this convention, but it’s purely speculative, so I won’t include
it here.]

4. Our nice cocooned world

Living on Planet Earth in an age of affluence, we are used to taking niceties for granted. Of course, if we
consider the whole world throughout history, poverty is more the default condition of humans than affluence.

In the same way, the functions you’ve been dealing with so far are nice and sweet. For all their complica-
tions and complexities, they don’t throw tantrums. In this course, we’ll continue to deal, for the most part,
with nice functions, but we’ll explore the more rugged terrain every once in a while to appreciate our good
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fortune and the boundaries of our understanding. For now, let’s review how good we have it and how to
handle the occasional hiccup.

4.1. Limits of polynomial and rational functions. All polynomial functions are continuous, so the limit
of a polynomial function at a point equals the value of the polynomial function at that point. In other words,
if f is a polynomial function and c is a number, then limx→c f(x) = f(c).

For rational functions, we evaluate the limit of a rational function f at a point c using the following rules:
(1) First, try to evaluate the numerator and the denominator at the point. If the denominator is

nonzero at the point, the limit equals the value. If the denominator evaluates to 0 at the point, and
the numerator evaluates to something nonzero at the point, then the limit is not defined. If both
the numerator and the denominator evaluate to 0 at the point, then more work is needed.

(2) If both the numerator and the denominator are 0 at the point c, then there is a factor of x − c in
both the numerator and the denominator. Cancel this factor. This is permissible because we are
only doing this cancellation near the point c, not at the point c. Keep doing such cancellations till
there are no common factors of x − c in the numerator and the denominator, and go back to step
(1).

Here are some examples:
The function f(x) = (x2 − 3x + 2)/(x− 3) has limx→1 f(x) = 0/(−2) = 0.
The function f(x) = (x2 − 3x + 2)/(x − 1) has limx→1 f(x) =?? Well, evaluation gives 0 for both the

numerator and the denominator, so we cancel the (x− 1) factor, and we get:

lim
x→1

x2 − 3x + 2
x− 1

= lim
x→1

(x− 1)(x− 2)
x− 1

= lim
x→1

x− 2 = 1− 2 = −1

Similarly, if f(x) = (x− 1)/(x2 − 3x + 2), we have:

lim
x→1

x− 1
x2 − 3x + 2

= lim
x→1

1
x− 2

=
1

1− 2
= −1

And here’s another example:

lim
x→1

x− 3
x2 − 3x + 2

This limit is not defined, because the numerator approaches −2 and the denominator approaches 0.
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FORMAL DEFINITION OF LIMIT

MATH 152, SECTION 55 (VIPUL NAIK)

Difficulty level: Hard. Full attention needed.
Covered in class?: Yes. But it is strongly recommended that you read this, as well as the book,

preferably prior to the lecture.
Corresponding material in the book: Section 2.2.
Corresponding material in homework problems: Homework 2 advanced problems 1–6 and 10.
Things that students should get immediately: The definition of limit is tricky but there is a

“method behind the madness”. The subtleties in the definition are largely to avoid problems with functions
that fluctuate too much.

Things that students should get with effort: The full definition of limit in terms of εs and δs.
Ideally, write the definition for both generic functions and specific functions, and be able to clearly identify
the bounding task that is needed. Also, be able to execute ε − δ proofs for constant, linear, quadratic
functions and for functions that are piecewise of these types.

Things that students should hopefully get: The approach to showing that certain limits do not
exist.

Executive summary

Words ...

(1) limx→c f(x) = L if, for every ε > 0, there exists δ > 0 such that, for every x ∈ R satisfying
0 < |x − c| < δ (in other words, x ∈ (c − δ, c) ∪ (c, c + δ), we have |f(x) − L| < ε (in other words,
f(x) ∈ (L− ε, L + ε).

(2) What that means is that however small a trap (namely ε) the skeptic demands, the person who
wants to claim that the limit does exist can find a δ such that when the x-value is δ-close to c, the
f(x)-value is ε-close to L.

(3) The negation of the statement limx→c f(x) = L is: there exists ε > 0 such that for every δ > 0 there
exists x ∈ R such that 0 < |x− c| < δ but |f(x)− L| ≥ ε.

(4) The statement limx→c f(x) doesn’t exist: for every L ∈ R, there exists ε > 0 such that for every
δ > 0 there exists x ∈ R such that 0 < |x− c| < δ but |f(x)− L| ≥ ε.

(5) We can think of ε− δ limits as a game. The skeptic, who is unconvinced that the limit is L, throws
to the prover a value ε > 0. The prover must now throw back a δ > 0. Then, the skeptic provides
a value of x within a δ-distance of c. If the f(x)-value is within an ε-distance of L, the prover wins.
Otherwise, the skeptic wins. L being the limit means that the prover has a winning strategy, i.e.,
the prover has a way of picking, for any ε > 0, a value of δ > 0 suitable to that ε.

(6) The function f(x) = sin(1/x) is a classy example of a limit not existing. The problem is that,
however small we choose a δ around 0, the function takes all values between −1 and 1, and hence
refuses to be confined within small ε-traps.

(7) We say that f is continuous at c if limx→c f(x) = f(c).

Actions...

(1) If a δ works for a given ε, then every smaller δ works too. Also, if a δ works for a given ε, the same
δ works for any larger ε.

(2) Constant functions are continuous, we can choose δ to be anything. In this ε − δ game, the person
trying to prove that the limit does exist wins no matter what ε the skeptic throws and no matter
what δ is thrown back.

(3) For the function f(x) = x, it’s continuous, and δ = ε works.
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(4) For a linear function f(x) = ax + b with a 6= 0, it’s continuous, and δ = ε/|a| works. That’s the
largest δ that works.

(5) For a function f(x) = x2 taking the limit at a point p, the limit is p2 (the function is continuous)
and δ = min{1, ε/(1 + |2p|)} works. It isn’t the best, but it works.

(6) For a function f(x) = ax2 + bx + c, taking the limit at a point p, the limit is f(p) (the function is
continuous) and δ = min{1, ε/(|a|+ |2ap + b|)} works. It isn’t the best, but it works.

(7) If there are two functions f and g and limx→c f(x) = limx→c g(x) = L, and h is a function such
that h(x) = f(x) or h(x) = g(x) for every x, then limx→c h(x) = L. The δ that works for h is
the minimum of the δs that work for f and g. This applies to many situations: functions defined
differently on the left and right of the point, functions defined differently for the rationals and the
irrationals, functions defined as the max or min of two functions.

Pep talk

In this really important lecture, we’re going to try and understand the formal definition of limit. This
formal definition is really tricky to understand and it is sort of like a “rite of passage”, like in some places the
boys have to kill a tiger to become men. So it’s the same way – this is when all the wishy-washy precalculus
stuff ends and proper college calculus begins. And this definition has a lot of subtleties, and I hope you took
the time to read the book and try to understand the definition.

1. Rugged terrain

1.1. The topologist’s sine curve. First, let’s recall the graph of the sine curve. This is a nice function –
it is a periodic function with period 2π, and it is not just continuous, it is very smooth, waving smoothly.
As good a function as you can get.

We now consider a slightly different function, which is the function:

f(x) := sin(1/x)

Can you think of f as a composite of two functions? Indeed, f = sin ◦g, where g(x) = 1/x. So what
are the points where f is defined? Well, what could be the problem? The first problem could be that the
function g(x) = 1/x isn’t defined. And that happens at x = 0. So 0 is a problem point. Once we’ve done
the 1/x part, what next? Well, we need to take sin of that, which isn’t a problem, because sin is defined for
all real numbers. Thus, the domain of the function is all nonzero real numbers, or R \ {0}, also written as
(−∞, 0) ∪ (0,∞).

So when I first saw this function, I was like: ouch! What does it even mean to be such a function? What
would the graph of such a function look like? Well, there are ways to compose graphs pictorially, but we
don’t want to go into those right now. So we’ll just do some ad hoc stuff.

First, let’s do the positive side. Suppose x → +∞. What happens to 1/x? Well, it approaches 0, from
the right side. And as you can see from the graph of x, that means it goes to zero. Now in the graph of
sin, you see a very quick, almost straight line descent to zero. But when you are seeing this for 1/x, this is
almost painfully slow, so this is how it is going to look – it is going to sort off go more and more horizontal.
By the way, in this picture, the x-axis is called a horizontal asymptote. We’ll talk about asymptotes a little
later in the course.

So the graph of sin(1/x) reaches 1, here, at x = 2/π. And as you know, 2/π is around 7/11, so it is less
than 1. So that part from 0 to π/2 in the sin graph gives rise to this part from 2/π to ∞. That really small
part in the sin graph becomes this really huge part out here.

And all the other oscillations in the sin graph get compressed into the little region between 0 and 2/π. So
the graph falls to 0 here at 1/π, then, it falls to −1 at 2/3π, then comes back to zero at 1/2π, and then the
oscillations are faster than ever before. And as you get closer and closer to zero from the right, it is almost
like it’s madly just going up and down between −1 and 1.

What about the negative side? Well, if you wanted to build your skills, you would do the whole thing
again, but we can save some time by making an observation. The sine function is an odd function, and the
function sending x to 1/x is an odd function, so the composite is also an odd function. Or another way of
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thinking about this is that sin(1/(−x)) = sin(−1/x) = − sin(1/x). So, what’s going to happen is that the
graph on the left is just obtained from the graph on the right using two flips, or a half turn about the origin.

Okay, now this is the graph that you need to look at and remember. By the way, some mathematicians
have a name for the graph, or more specifically, the x > 0 part; they call it the topologist’s sine curve.

Here’s the zoomed out picture:

Here’s a somewhat intermediate picture where we restrict the domain to [−1, 1].

Here is the picture zoomed in further (note: the x and y axes are scaled differently to make the picture
fit in the page):

And here it is, zoomed in even further:

1.2. One definition of limit. We first discuss a definition of limit that is wrong but it is wrong in an
interesting way. And although it is wrong, it could still be a meaningful definition and is a useful concept in
some cases.
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Well, let’s try to build this wrong definition. We want to interpret the sentence:

lim
x→c

f(x) = L

So one way of thinking of this is: as x gets arbitrarily close to c, f(x) gets arbitrarily close to L. And so
here’s one guess:

Wrong definition of limit:
For every ε > 0 and every δ > 0, there exists x such that 0 < |x− c| < δ and |f(x)− L| < ε.
Okay, let’s try to interpret this. This is saying that if you pick a really small interval (c−δ, c+δ) around c

on the x-axis, and a really small interval (L−ε, L+ε) around L on the f(x)-axis, then you get this rectangle.
And what my definition is saying that you’ll have some point of the curve in this rectangle (but is not the
point (c, L) itself). So what this definition is saying is that however small a rectangle you make around the
point (c, L), you will have some points of the form (x, f(x)).

This seems like a reasonable description, because it says that you have these points that are really close.
And this is certainly satisfied for most of the functions you have seen. But this is not the correct definition.

1.3. Back to the topologist’s sine curve. So to understand what is wrong with this definition, we need
to look again at the topologist’s sine curve. And we need to look at this curve at the point 0, and ask: what
is the limit at 0?

Well, I claim that by the definition I gave, the limit at 0 can be any number between −1 and 1. Why?
Well, think about what is happening to the function close to zero on the positive side. It is madly oscillating.
This means that however small an interval around 0 you take for the x-value, the sin(1/x) function takes all
possible values between −1 and 1. So, however small a rectangle you draw at any point, you’re going to get
points that are in there.

So the thing with the function is that its rapid oscillation is creating a problem: by our definition, we get
all points in the interval [−1, 1] as the limit. But that’s not the way we would like limits to behave – we
want the limit to be unique, and it should be a reasonable description of where the function tends to. If this
definition says that the limit at 0 could be both 0 and 1/2 and −1/2 and 1, and this jars your intuition, it
is this definition that you need to throw out.

Here’s a graphical illustration, where we are trying to study the approach of sin(1/x) to 0.4 as x approaches
0. Note that however small a rectangle we make around the point, it contains lots of points of the sin(1/x)
graph. However, the sin(1/x) graph is all over the place, so the function is never trapped within a small
rectangle.
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1.4. Challenging! So I know that you’re not happy with me – I just tried to shove down your throat a
wrong definition and you spent the time trying to understand it and then I told you that this is the wrong
definition. So, this was just to give you a flavor that getting the definition is challenging, and a definition
that might seem right could be riddled with holes. I know this is exhausting, so I’ll skip right to the correct
definition and explain why it works. And then after some time, I suggest you come back and compare the
correct definition and the wrong definition and try to understand exactly what the difference is.

The way I think about the definition is in terms of a cage (or trap). And the reason why we need this
notion of a cage or trap is precisely to avoid these kinds of oscillations that give rise to multiple limits. So,
here is the formal definition:

We say that limx→c f(x) = L (as a two-sided limit) if, for every ε > 0, there exists δ > 0 such that, for
every x such that 0 < |x− c| < δ, we have |f(x)− L| < ε.

That’s quite a mouthful. Let’s interpret it graphically. What it is saying is that: “for every ε” so we
consider this region (L − ε, L + ε), so there are these two horizontal bars at heights L − ε and L + ε. Next
it says, there exists a δ, so there exist these vertical bars at c + δ and c− δ. So we have the same rectangle
that we had in the earlier definition.

What is different this time is that we not only demand that the graph have a few points in that rectangle,
but rather, that it lies completely inside the rectangle. And this is the crucial difference between this
definition and the previous definition, that allowed sometimes-in-sometimes-out graphs. Because, here we
are saying that the condition holds for all x such that 0 < |x − c| < δ. Which is the same as saying that
the condition holds on the interval (c− δ, c + δ) minus the point {c} itself. Or, you can think of that set as
(c − δ, c) ∪ (c, c + δ). And we’re insisting that the condition hold for all things, not just that there exists a
point here or a point there.

The other main difference from the earlier definition is that in this definition, the value of δ depends on
ε. So here is another way of thinking of this definition that I find useful. Suppose I claim that as x tends to
c, f(x) tends to L, and you are skeptical. So you throw me a value ε > 0 as a challenge and say – can I trap
the function within ε? And I say, yeah, sure, because I can find a δ > 0 such that, within the ball of radius
δ about c, the value f(x) is trapped in an interval of size ε about L. So basically you are challenging me:
can I create an ε-cage? And for every ε that you hand me, I can find a δ that does the job of this cage.

Here’s a pictorial illustration:
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1.5. Formal description as a game. We make the discussion above somewhat more formal by encoding
it as a game. Consider the assertion:

lim
x→c

f(x) = L

where specific values are provided for c and L and for the function f . Suppose, further, that f is defined
at all points on the immediate left and the immediate right of c (otherwise, the game would be meaningless).

The game has two players, a prover, whose goal is to show that the limit statement above is correct, and
a skeptic (in higher mathematics jargon, this person is called a verifier, but I think you’ll find skeptic a more
intuitive term) who is far from convinced and wants to raise the best counter-arguments. The game has
three moves:

• The skeptic chooses an ε > 0 (the subtext being the interval (L − ε, L + ε)), effectively telling the
prover: “try to trap the function with ε of L if you can.”

• The prover chooses a δ > 0 (the subtext being the interval (c − δ, c + δ), excluding the point c),
effectively telling the skeptic: “here’s a trap that works.

• The skeptic chooses a value of x such that 0 < |x− c| < δ, (i.e., within the set (c − δ, c + δ) \ {c}),
challenging the prover at that specific x.

Once these moves are complete: we compute |f(x)− L|. If it is less than ε, the prover wins. Otherwise,
the skeptic wins.

We say that limx→c f(x) = L is true if the prover has a winning strategy. In other words, no matter what
choice the skeptic makes for ε, the prover has a (smart) choice of δ such that no matter what value of x the
skeptic chooses in (c− δ, c) ∪ (c, c + δ), f(x) lies in the interval (L− ε, L + ε).

If, in contrast, the skeptic has a winning strategy, then we declare the statement to be false.
The key take-away is that in order to show a limit statement to be true, we need to devise a winning

strategy for the prover in the above game. Note that the winning strategy must work against an extremely
smart skeptic, not merely against a skeptic who makes a silly choice of ε.

1.6. One-sided limits. The definition of limit we have given is:
limx→c f(x) = L if, for every δ > 0, there exists δ > 0 such that, for every x such that 0 < |x − c| < δ,

then |f(x)− L| < δ.
This defintion is fine when the function is defined on both sides. Note the way we are using both sides of

c, because when we say 0 < |x− c| < δ, we are including the δ-interval on the left side (c− δ, c) and the right
side (c, c + δ).

For the right hand limit, we want to restrict x to the interval (c, c + δ) on the right side, and for the left
hand limit, we want to restrict x to the interval (c− δ, c).
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Here’s how we define the left hand limit: limx→c− f(x) = L if, for every ε > 0, there exists a δ > 0 such
that, for all x satisfying 0 < c− x < δ, we have |f(x)− L| < ε.

Note that 0 < c− x < δ is the same as saying that x ∈ (c− δ, c).
Here’s how we define the right hand limit: limx→c+ f(x) = L if, for every ε > 0, there exists δ > 0 such

that, for all x satisfying 0 < x− c < δ, we have |f(x)− L| < ε.
Note that 0 < x− c < δ is the same as saying that x ∈ (c, c + δ).

2. Strategy stockpile

We now discuss strategies for showing that a particular limit exists and has a particular value, and hence,
for showing that a function is continuous.

2.1. What we need to do. Recall the way of thinking of a limit in terms of a cage or a trap:
We say that limx→c f(x) = L (as a two-sided limit) if, for every ε > 0, there exists δ > 0 such that, for

every x such that 0 < |x− c| < δ, we have |f(x)− L| < ε.
This is quite a mouthful, so let’s slow down and try to understand what it means. Let’s interpret it

graphically. What it is saying is that: “for every ε”so we consider this region (L− ε, L+ ε), so there are these
two horizontal bars at heights L − ε and L + ε. Next it says, there exists a δ, so there exist these vertical
bars at c + δ and c − δ. And what we’re saying is that if the x-value is trapped between the vertical bars
c− δ and c + δ (but is not equal to c), the f(x)-value is trapped between L− ε and L + ε.

The important thing to note here is that the value of δ depends on the value of ε. As I said earlier, we can
think of this as a game, where I (as the prover) am trying to prove to you that the limit limx→c f(x) = L
and you are a skeptic who is trying to catch me out. So you throw εs at me, and challenge me to show that
I have a δ to trap that ε. And if I have a winning strategy, that enables me to find a δ for every ε that you
throw at me, then yes, the limit is equal to L.

2.2. The winning strategy for constant functions. So the real question is: can I obtain a winning
strategy? And what would such a strategy be? It would be some procedure, some function, that takes as
input a value of ε and outputs a value of δ in terms of that ε. Now I know that’s a mouthful, so let’s look
at some simple examples.

We’ll take two kinds of functions for which the limit is particularly easy to compute: constant functions
and the identity function. Let’s first look at a constant function that sends every real number to k. So let
me call this f . So f is a function with the property that f(x) = k for all x ∈ R. So, what can we say about
the graph of f? Well, it is this horizontal line at height k. So far, so good.

Let’s look at a point c, and try to calculate limx→c f(x). Which is the same as trying to compute limx→c k.
The guess, from looking at the graph, is that the limit equals k. So how do we show this in terms of the
ε− δ definition?

Okay, lost? No problem. Sometimes, when unwinding mathematical expressions, you (and even I) get
lost. That’s not the time to give up. Rather, it is the time to refocus and go back to the original definition
and work things out again.

So we want to show that limx→c f(x) = k. In other words, we want to show that for every ε > 0, there
exists a δ > 0 such that if 0 < |x− c| < δ, then |f(x)− k| < ε. By the way, that k that appeared at the end
there is because we’re claiming the limit is k.

Before we unravel that (and it’s a bit of an anti-climax once we do), let’s just think of this graphically.
We are saying that for every ε > 0, so we are thinking of the region between the horizontal bars at heights
k − ε and k + ε. And then we want to say that there exists a δ > 0 (that we haven’t determined) so we are
thinking of the vertical bars at c− δ and c+ δ, so we have this rectangle. And we have to choose δ such that
that part of the graph lies inside that rectangle.
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But the picture makes it clear that we can choose just about any δ > 0! So in the case of the constant
function, we can choose just about anything and not run into trouble. So, let’s see that from the algebra.

We want to show that there exists a δ > 0 such that if 0 < |x − c| < δ, then |f(x) − k| < ε. but what’s
|f(x)− k|? it is |k− k| = 0, and so is less than ε, so the condition is tautologically satisfied for all x. So any
δ will do.

Another way of thinking of this is that in this case, I don’t need a trap at all – any trap will do because
the function is already at the right place all along! Also, remember that the kind of examples that gave us
headaches were things where the function changed a lot from point to point, and constant functions change
as little as possible – they don’t change at all.

Or, thinking of it in terms of the two-person game where you (the skeptic) throw me εs and I throw back
δs that work, this is a really easy game. Whatever you throw at me, I can throw back anything at you. This
is a great game for me – no matter how smart you are or how stupid I am, I always win.

I urge you to go through this example carefully and understand it thoroughly. It’s also Example 5 on
page 67 of the book.

2.3. The winning strategy for the identity function. Okay, now when I asked you to calculate the
limit of the identity function, you might remember I said it’s like a word puzzle: “as x approaches c, what
does x approach?” Well, obviously c. So now we want to do the fancy ε− δ version of that same argument.

Let’s unwind the definition. And by the way, the main thing, once you have got the correct definition, is
to be able to carefully apply it by interpreting it correctly. That isn’t easy but it isn’t impossible. In fact,
at some stage you should be able to take a definition that you’re seeing for the first time and apply it to a
given problem well.

So define g(x) = x. So we want to show that for every ε > 0, there exists a δ > 0 such that whenever
0 < |x − c| < δ, then |g(x) − c| < ε. And by the way, the second c came because we’re claiming that the
limit is c. And by the way, since g(x) = x, I can rewrite this as follows:

I want to show that for every ε > 0, there exists a δ > 0 such that whenever 0 < |x − c| < δ, then
|x− c| < ε. Hmm. So what δ has the property that whenever 0 < |x− c| < δ, then |x− c| < ε? Again, the
answer is almost tautological: set δ = ε.

For the game where the function is the identity function, I can choose the identity function as my winning
strategy, in the sense that whatever ε you throw at me, I throw back the same value to you for δ. We can
also see this graphically:
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I urge you to go through this example carefully and understand it thoroughly. It’s also Example 5 on
page 67 of the book.

2.4. The winning strategy for linear functions: motivation. Okay, let’s up the ante a little bit, getting
more abstract without actually making our function a lot harder. Suppose we have the function:

f(x) := ax + b

So this f is a linear function. And we want to determine the limit limx→c f(x). Here, the numbers a and
b are unknown constants, i.e., in a specific problem situation, their values will be known.

The first thing you can do is draw the graph, and this graph is a straight line. The slope of that straight
line depends on the value of a. So if a is positive, this is a south-west to north-east line, and if a is negative,
this is a north-west to south-east line. And, if a = 0, the line is flat. And the parameter b tells you further
where the line is placed – different bs give different lines that are all parallel to each other.

Your guess would be that the limit at c is f(c), which is sort of pictorially clear, because a straight line
looks very continuous. And you’ll notice that this generalizes both the constant function and the identity
function: the constant function would be the case a = 0, and the identity function would be the case a = 1
and b = 0. Since we already settled the constant function case, we’ll assume a 6= 0.

So, what again do I want to show? limx→c f(x) = f(c). And so, I need to find, for every ε, a suitable δ
such that something holds. What thing?

So, what I want is to find, for every ε > 0, a value δ > 0 such that for 0 < |x − c| < δ, we have
|f(x) − f(c)| < ε. We now try to substitute the actual expression for f in that last inequality. So let’s do
this simplification on the side.

f(x)− f(c) = (ax + b)− (ac + b) = a(x− c)

So, what we want is the following: for every ε > 0, find a value δ > 0 such that for 0 < |x − c| < δ, we
have |a(x− c)| < ε.

Okay, now this looks reasonable, but it isn’t tautological as the previous examples were. We need to do
some thinking, and there is a real logical impasse here. So let’s look at the part:

|x− c| < δ

What does this allow us to say about |a(x − c)|? Well, we can try multiplying the above inequality by
|a|, and we get:

|a||x− c| < |a|δ
9



And, note that there isn’t any sign change because |a| > 0 (as we assumed a 6= 0). And, using the absolute
value of a product is the product of the absolute values, we get:

|a(x− c)| < |a|δ

Okay, so what we have is the above, and what we want is |a(x − c)| < ε. And remember, we have the
freedom to choose any δ that we want. So what value of δ do we choose? Well, a little thought should reveal
that a simple way of choosing a δ that works is to set |a|δ = ε. That gives δ = ε/|a|. So that’s a value of δ
that works.

2.5. The winning strategy: proved succinctly. Problem: Prove that limx→c f(x) = f(c) where
f(x) := ax + b, a 6= 0.

Winning strategy for prover-skeptic game: Choose δ = ε/|a|.
We want to show that, for any ε > 0, if 0 < |x − c| < δ, then |f(x) − f(c)| < ε, where δ = ε/|a|. We do

this as follows:

|f(x)− f(c)|
=|(ax + b)− (ac + b)|
=|ax− ac|
=|a(x− c)|
=|a||x− c|
<|a|δ using |x− c| < δ

=|a| ε

|a|
using δ = ε/|a|

=ε

The chain has one strict inequality and the rest all equalities, so we get, overall, that |f(x)− f(c)| < ε.
So that’s it. We’ve proved that for a linear function, the limit always exists at any point, and moreover,

the limit equals the value of the function at the point. As you saw in the informal introduction earlier, that’s
basically saying that linear functions are continuous.

Here’s the ε− δ picture for a linear function:
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Note that the larger the value of |a|, the smaller the δ needs to be for a given ε. This makes sense, because
the steeper the slope, the more rapidly the function is changing, and hence, the smaller the trap has to be
to catch the function.

2.6. Smaller δs work too. One other important thing to note is that we have some latitude in choosing δ.
In other words, the winning strategy isn’t always unique. In fact, if, for a given ε, one value of δ works, then
any smaller positive value of δ also works. I urge you to think about this graphically and also in strategic
terms.

2.7. Principles and practice. So there are two aspects to everything: there’s the theory and there’s the
practice. And one of the popular quotes on U of C T-shirts and merchandise is “that’s all well and good
in practice... but how does it work in theory?” So what we did in this and the previous lecture was take a
little glimpse at how limits work in theory. And by these attempts to calculate the δ in terms of the ε, we
are basically trying to bridge the gap between theory and practice.

Going from the theory to the practice requires an understanding of inequalities, which you already have.
But it doesn’t just require that – it requires a better conceptual grasp of what we have to determine and
what is given. The thing here is that in the proof, we have to work backwards, in the sense that we have to
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first guess what the limit is going to be, then we have to guess how to get a δ that works, and then we can
check that it works. And this working backwards can be a little tricky because of the implications stuff.

That is why it is very important that you go home and look at the examples we did in class and the
other examples in the book. As far as expectations from you are concerned, you are not expected to be
able to do the ε− δ computations for things other than constant, linear, and quadratic functions, and we’ve
already done the constant and linear cases, and we will now consider general quadratic case. But I suggest
you understand the book’s examples for a couple of the slightly trickier cases – basically to get an idea of
what their goal is and how they’re approaching it.

2.8. General case of quadratic functions: obtaining the formula. NOTE: On your homework or
in the midterm, you cannot assume the ε − δ formulas we have derived for linear and quadratic functions.
However, knowing these formulas will enable you to skip the rough work needed to find the δ and move
directly to the fair work of showing that that δ works.

We look here at the general case of a quadratic function:

f(x) := ax2 + bx + c

with a, b, c ∈ R and a 6= 0. Note that if a = 0, we get a linear or constant function, and we already know
how to deal with it.

The letter c is used up as a variable, so we should not use c as a limiting point. Let’s call the limiting
point p instead. So we claim that, for p ∈ R, we have limx→p f(x) = f(p).

In other words, we need to show that for every ε > 0, there exists a value δ > 0 such that for 0 < |x−p| < δ,
we have |f(x)− f(p)| < ε.

So we again do the usual thing: simplify |f(x)− f(p)|. We have:

f(x)− f(p) = (ax2 + bx + c)− (ap2 + bp + c) = a(x2 − p2) + b(x− p)
Okay, now that’s nice, but can we simplify it a little more? Yes, and this is the important idea you should

take from this problem: the idea is to factor out the (x− p) factor from the expression. So we get:

f(x)− f(p) = (x− p)(a(x + p) + b)
Why did we factor out x− p? Think of what we need to do. We need to say that if the absolute value of

x− p is small, then the absolute value of f(x)− f(p) is small too. And if you go back to the linear example,
what we did was to show that f(x)− f(p) is a scalar multiple of x− p, i.e., it is x− p times a constant. In
the case of the quadratic function, we do not have a constant for the other factor, so it’s going to be a little
harder, but this is the right direction.

Okay, now what next? We need to find a δ such that if 0 < |x − p| < δ, then |f(x) − f(p)| < ε. Now if
|x− p| < δ, then we have:

|f(x)− f(p)| = |x− p||a(x + p) + b| < δ|a(x + p) + b|
Okay, and now we’re stuck, because unlike the linear case, the second part isn’t a constant, and it involves

an x. But can we bound it by a constant? Well, let’s think about this intuitively. We are really interested
in situations where x − p is really small, so x is really close to p. So x + p = (x − p) + 2p, with the x − p
part being small. So:

|a(x + p) + b| = |a(x− p) + 2ap + b| ≤ |a(x− p)|+ |2ap + b| < |a|δ + |2ap + b|
So this is progress, and what exactly is the nature of the progress? Well, what we’ve found is that that

expression which isn’t constant is still bounded from above by some constant plus |a|δ. So, we get:

|f(x)− f(p)| < δ(|a|δ + |2ap + b|)
And now the original question: given a value ε > 0, how do we find a value δ > 0 such that that right

side in terms of δ is not more than ε? Well, you can try solving a quadratic inequality, but that’s a pain, so
I’ll show you a simpler approach.

First, notice that we’re really interested in small values of δ. So let’s assume δ ≤ 1. Then, we get:
12



|f(x)− f(p)| < δ(|a|+ |2ap + b|)
And now, if we have δ ≤ ε/(|a|+ |2ap + b|), we are in good shape.
So, a value of δ that works is min{1, ε/(|a|+ |2ap + b|)}.
What we’ve done above is obtained a value of δ. You should now be able to retrace the steps to confirm

that this value of δ works.
By the way, this generalizes Example 6 (Section 2.2, Page 68) of the book. In that example, a = 1, b =

c = 0, and p = 3. So if there are too many symbols in this example and you want a simpler example with
fewer symbols, you should look at that example in the book and then, armed with that, come back to master
this one.

Please go through both these very thoroughly; this is very important to understand.

2.9. General case of quadratic function: how to present the solution. We illustrate how the solution
would be presented for the general case of a quadratic function.

Problem: Prove that limx→p f(x) = f(p) where f(x) := ax2 + bx + c, a 6= 0.
Winning strategy for prover-skeptic game: Choose δ = min{1, ε

|a|+|2ap+b|}.
Proof: We need to show that, for any ε > 0, if 0 < |x − p| < δ, then |f(x) − f(p)| < ε, where

δ = min{1, ε
|a|+|2ap+b|}.

We have:

|f(x)− f(p)|
=|(ax2 + bx + c)− (ap2 + bp + c)|
=|a(x2 − p2) + b(x− p)|
=|x− p||a(x + p) + b|
=|x− p||a(x− p)− 2ap + b|
≤|x− p|(|a||x− p|+ |2ap + b|) by triangle inequality

<δ(|a|δ + |2ap + b|) using |x− p| < δ

≤δ(|a|+ |2ap + b|) using δ ≤ 1 for the inner δ

≤ ε

|a|+ |2ap + b|
(|a|+ |2ap + b|) using δ ≤ ε/(|a|+ |2ap + b|) for the outer δ

=ε

Each step of the process involves one of the three signs =, <,≤, with one of the steps involving strict
inequality. Thus, overall, we obtain that |f(x)− f(p)| < ε.

Qualitatively, the process can be described as follows:
• Factor the quadratic |f(x)− f(p)| with one of the factors being |x− p|.
• Rewrite the other factor as a constant times x− p plus another constant.
• Now split using the triangle inequality.
• Use |x− p| < δ at both places.
• For the inner factor of δ, use δ ≤ 1.
• For the outer factor, use δ ≤ ε/(...).

2.10. Concrete case of quadratic. We consider a concrete example of a quadratic with actual numerical
values of a, b, c, and p, and walk through what the general steps just described would look like in the concrete
example.

Consider the limit proof:

lim
x→5

(2x2 + 3x + 17) = 82

Winning strategy: Take δ = min{1, ε/25}. We obtain 25 using the formula |a|+ |2ap+ b|, where a = 2,
p = 5, and b = 3, so we got |2|+ |2 · 2 · 5 + 3| = |2|+ |23| = 25.
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Proof: We want to show that, for any ε > 0, if 0 < |x−5| < δ, then |(2x2+3x+17)−(2(5)2+3(5)+17)| < ε,
where δ = min{1, ε/25}.

We consider:

|2x2 + 3x + 17− (2(5)2 + 3(5) + 17)|
=|2x2 + 3x− 65|
=|x− 5||2x + 13|
=|x− 5||2(x− 5) + 23|
≤|x− 5|(2|x− 5|+ 23) by triangle inequality

<δ(2δ + 23) using |x− 5| < δ

≤ δ(2 + 23) using δ ≤ 1
=25δ

≤25
ε

25
using δ ≤ ε/25

=ε

More examples will be done in the relevant review sessions.

3. More ε− δ limit computations

3.1. Function with left and right definition. One kind of situation, that we have already seen, is a
situation where a function given to us has one definition on the left side of a point and another definition on
the right side of the point. Your intuition would tell you that if the left hand limit and the right hand limit
exist separately and are equal, then the limit exists on the whole as well, and equals both these values.

How can we make this intuition precise in terms of the ε−δ game? The idea is to think of it as two games
in parallel: the left hand limit game, where I (the prover) have to throw back a δ at you that works for x
approaching c from the left side, and an analogous right hand limit game. The fact that the left hand limit
and right hand limit are both equal to L tells me that I have winning strategies for both games. I now need
to combine them into a winning strategy for the two-sided limit game. How do I do this?

Basically, I need to choose δ small enough that it’s good enough on both the left and the right. The idea
is simple: pick δ as the minimum of the δs that I picked on the left and on the right. This will work for both
the left side and the right side.

See, for instance, the example of the absolute value function (given on Page 67 of the book). At the point
0, the absolute value function has the definition −x on the left and x on the right.

So what we first need to do is figure out the left strategy and the right strategy separately. For the
function f(x) = −x, what is the δ that works for a given ε? Well, you can do the calculations again, but
since we already did the general case of a linear function, we can just plug that in and get that δ = ε works.
Similarly, on the right side, we again get that δ = ε works. So in this case, the same strategy works on both
sides, so we can use δ = ε as the winning strategy for the two-sided limit.

Okay, let’s take a more interesting example. Suppose f(x) = { 3x, x < 0
−5x, x ≥ 0 . It is an obvious guess that

the limit at 0 equals 0. Since both sides are linear functions, we know how to get the strategies for the left
side and the right side separately. The strategy for the left side is δ = ε/3 and the strategy for the right side
is δ = ε/5. So, what is our overall strategy?

The overall strategy should pick a δ small enough that it works for both sides. In this case, the smaller
of the numbers ε/3 and ε/5 is ε/5 (remember, ε > 0). So, we get a winning strategy by choosing δ = ε/5.

REMINDER: On your homework or in the midterm, you cannot assume the ε − δ formulas we have
derived for linear and quadratic functions. However, knowing these formulas will enable you to skip the
rough work needed to find the δ and move directly to the fair work of showing that that δ works.

Let’s now do the general case, with a full proof:
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Claim. Suppose a1, a2, b1, b2 ∈ R with a1 6= 0 and a2 6= 0. Suppose f(x) = { a1x + b1, x < c
a2x + b2, x > c

. Then,

if L = a1c + b1 = a2c + b2, we have limx→c f(x) = L. For any ε > 0, a δ that works is ε/ max{|a1|, |a2|} =
min{ε/|a1|, ε/|a2|} (note that δ is positive).

Proof. To prove the claim, we need to show that for any x such that 0 < |x− c| < δ, we have |f(x)−L| < ε.
We split this into two cases: the case where x < c and the case where x > c.
Case that x < c: In this case, we have f(x) = a1x + b1. Thus, we get:

|f(x)− L| = |a1x + b1 − (a1c + b1)| = |a1(x− c)| = |a1||x− c| < |a1|δ ≤ |a1|(ε/|a1|) = ε

Thus, |f(x)− L| < ε.
Case that x > c: In this case, we have f(x) = a2x + b2. Thus, we get:

|f(x)− L| = |a2x + b2 − (a2c + b2)| = |a2(x− c)| = |a2||x− c| < |a2|δ ≤ |a2|(ε/|a2|) = ε

�

3.2. Weirder functions, mundane ideas. So far, we have considered the case where the function has one
definition on the left and another definition on the right, and how we can combine the winning strategies.
Basically, we combine the winning strategies by picking the smaller of the two δs. This allows us to use our
strategies for constant, linear, and quadratic functions to tackle functions that are piecewise constant, linear,
and quadratic.

The strategy extends to some more weirdly defined functions, where there are multiple definitions, but
they are not clearly separated in left-right terms. For instance, consider the function:

f(x) = { x2, x rational
x, x irrational

What we have done is split the domain of definition into two subsets, but this time the two subsets aren’t
nicely left and right of some point, they are both scattered all over the place. However, trying to prove limit
problems for such functions follows essentially the same strategy. For instance, if, for the above function, we
are trying to prove that limx→1 f(x) = 1, then what we do is to find a winning strategy for the x2 function,
a winning strategy for the x function, and take the smaller of the δs. And, instead of splitting into cases
based on left and right, we split into cases based on – you guessed it – rational and irrational.

Let’s try to formally prove that limx→1 f(x) = 1. The first thing we need to do is rough work to figure
out the δs that work for the individual functions x2 and x. But we’ve already done this. Recall that for x2,
we can choose δ = min{1, ε/3}, and for x, we can choose δ = ε. So the overall δ that we need to choose is
min{1, ε/3, ε}. We can simplify that to min{1, ε/3}.

To complete the proof, we first consider the case where x is rational and then consider the case that x is
irrational.

Proof. Case that x is rational: We want to show that if 0 < |x− 1| < min{1, ε/3}, then |x2 − 1| < ε. Let’s
do this:

|x2 − 1| = |x− 1||x + 1| < (ε/3)|x + 1| ≤ (ε/3)(|x− 1|+ 2) < ε/3(1 + 2) = ε

In the second step, we used that |x− 1| < ε/3, and in the fourth step, we used |x− 1| < 1.
Case that x is irrationa: We want to show that if 0 < |x− 1| < min{1, ε/3}, then —x− 1| < ε. Let’s do

this:

|x− 1| < min{1, ε/3} ≤ ε/3 < ε

�
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3.3. Max or min of two functions. Suppose f and g are two functions and we define h(x) = min{f(x), g(x)}.
Suppose, further, that at some point c, we have limx→c f(x) = L and limx→c g(x) = L. Then, we’ll also have
limx→c h(x) = L.

The reason? Well, the minimum of two functions is a special situation where, at every point, we are
picking one of the functions. And we’ve just discussed that, whenever you get a function by always picking
one of two functions, and both of them are approaching the same limit, the new function that you’re picking
also approaches the same limit. The reason for that is that we can determine the winning strategies for both
the ε− δ games and then choose the smaller of the δs that we have for both functions.

So, this general strategy works for the minimum. It also works for the maximum.

3.4. ADDENDUM: A harder problem. Suppose f : R → R is a function with the property that, for
every x ∈ R, we have (f(x))2 − 3xf(x) + 2x2 = 0. We want to show that limx→0 f(x) = 0.

Here’s how we do this problem. First, note that the given statement is that:

(f(x))2 − 3xf(x) + 2x2 = 0
=⇒ (f(x)− x)(f(x)− 2x) = 0

This means that for every value of x, we either have f(x) = x or we have f(x) = 2x. Unlike the previous
cases where the domain was split based on left-right or rationa-irrational, we do not know exactly how the
domain splits up into these two definitions. But we do know that everywhere in the domain, the function
behaves like one of these linear functions. And that itself is enough.

Thus, to show that the limit at 0 equals 0, we use the same old trick: we find ε− δ winning strategies for
the functions x and 2x, and then we combine these winning strategies by picking the smaller of the δs and
show that it works.

So I began by calling this a hard problem but we have somehow overcome the hard part and you should
now consider it an easy problem.

4. Skeptic’s victory: showing that something is not the limit

4.1. Negating the existence of limit. Recall the definition of limit: We say that limx→c f(x) = L if f is
defined in a neighborhood of c (except possibly at c) and the following holds:

For every ε > 0, there exists δ > 0 such that, for all x ∈ R satisfying 0 < |x−c| < δ, we have |f(x)−L| < ε.
Now, what does it mean to say that it is not true that limx→c f(x) = L? It means:
There exists ε > 0 such that for all δ > 0, there exists x ∈ R such that 0 < |x− c| < δ but |f(x)−L| ≥ ε.
Note that the quantifiers change roles: for all becomes there exists, and there exists becomes for all.
In our game interpretation, this means that the skeptic has a winning strategy. In other words, the skeptic

has a strategic choice of ε > 0 such that whatever δ > 0 the prover tries to use, the prover fails to trap the
function within ε of the claimed limit.

4.2. What does it mean to say that no limit exists? What does it mean to say that there is no L for
which limx→c f(x) = L? In other words, what does it mean to say that the limit does not exist? It means
that:

For all L ∈ R, there exists ε > 0 such that for all δ > 0, there exists x ∈ R such that 0 < |x− c| < δ but
|f(x)− L| ≥ ε.

4.3. An example of showing that no limit exists. Let’s think back to the picture of the function
f(x) := sin(1/x). This example was the example we used to realize that we need a certain kind of definition
of limit. We noticed that, as x → 0, the value of sin(1/x) didn’t really approach anything because it was
oscillating rapidly between −1 and 1. This led us to define limits in terms of traps; hence the ε−δ definition.

We have to now come back full circle and try to explain why, as x → 0, there does not exist a limit for
sin(1/x). The way to think about this is that the function takes both the values 1 and −1 arbitrarily close
to x = 0. We want to somehow make this be in contradiction with the fact that we can set ε-traps for
arbitrarily small ε. Basically, there are two things going on:
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(1) Suppose limx→0 sin(1/x) = L. Suppose ε = 0.1. Then, there exists a value of δ such that, if
0 < |x − 0| < δ, then | sin(1/x) − L| < 0.1. In other words, we have sin(1/x) ∈ (L − 0.1, L + 0.1).
Now, the interval (L − 0.1, L + 0.1) has width 0.2, and hence, it cannot contain both the numbers
1 and −1. Thus, what we have is that there exists a δ > 0 such that for 0 < |x| < δ, the function
sin(1/x) does not take both the values 1 and −1.

(2) On the other hand, we have that for every δ > 0, the function sin(1/x) takes the values +1 and −1
for 0 < |x| < δ. In fact, it takes all values in [−1, 1]. To see this, note that for 0 < |x| < δ, the
set of possible values for 1/x is (−∞,−1/δ) ∪ (1/δ,∞). You can now see from the graph of the sine
function that sin(1/x) takes all values in [−1, 1].

Something similar works for the Dirichlet function, except that instead of using −1 and 1, we use 1 and
0. And, the main point that needs to be made for the Dirichlet function is that any open interval, no matter
how small, contains infinitely many rational numbers and infinitely many irrational numbers.

5. Stability of limit

5.1. Statement of the problem. Let f be a function defined on some open interval (c − p, c + p). Now
change the value of f at a finite number of points x1, x2, . . . , xn and call the resulting function g. Show that
if limx→c f(x) = L, then limx→c g(x) = L.

5.2. Meaning of the problem. Here’s what the problem means. We start with some function f . For
simplicity you can just imagine f to be a continuous function – a wiggly wavy curve where the x-value varies
in the interval (c−p, c+p). Now, we choose a few points at random and just move the value of the function.
So, if say f(5) = 7, and we don’t like that, we just move the value to 9, creating a hole at the point 7 here
and filling in the poitn at 9. And we do this for finitely many points.

The new function that we get after we do all these moves, we choose to call g. Note that although the
function f that we started with was continuous, g isn’t. Of course, it isn’t necessray that the function that
we start with is continuous either. We could juts start with some function that wiggles and waves and jumps
and then move a few values here and there and get a new function that wiggles and waves and jumps.

5.3. What the question asks for, and the intuitive reason it is true. The question says that if the
limit limx→c f(x) exists and is equal to L, then the limit limx→c g(x) also exists and is equal to L. In other
words, what this is saying is that the notion of limit is stable under changes of value at only finitely many
points.

Now, the first thing you should notice is that if c itself is one of the xis (i.e., one of the points where we
are changing the value of the function) that should make no difference to the limit. Because, if you recall,
the definition of the limit specifically excludes behavior at the point where we are taking the limit. The
definition says:

For every ε > 0, there exists δ > 0 such that if 0 < |x − c| < δ, then |f(x) − L| < ε. Note the 0 < part.
This basically says that we aren’t really imposing any condition when x = c. Specifically, remember that the
set of x satisfying 0 < |x−c| < δ is the set (c−δ, c+δ)\{c}, which is the same as the set (c−δ, c)∪ (c, c+δ).

So changing the value of the function at c doesn’t affect anything. And once we’ve acknowledged this,
we’ll just assume that if c is equal to one of the xis, we can just throw out that value of xi. In other words,
we’ll just assume that we retain only those xis that are not equal to c.

Now, all the other xis – the points where we change the value of the function – are far away from c. What
do I mean by that? I mean that we can choose a small open interval about c that excludes all the other xis.
(It may be helpful to think of the xis as bad points that should be excluded from all decent society for being
traitors to their function.)

And the main idea of limit is that it is intensely local – it only matters what is happening really really
close to the point.1 So, if all those other points are far away, the value of the function at those points
shouldn’t affect the value of the limit.

1There is a deep mathematical concept related to this called a germ, which means the essence of a function really really
close to a point, but you don’t have to bother about that right now.
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5.4. A reality check: why finitely many? What is the significance of the fact that we are allowed to
change the value of the function at only finitely many points? The thing is that if we are allowed to change
the value of the function at infinitely many points, then we can affect the limits at some points. The reason
is that when we have infinitely many points, it may not be possible to avoid all of them.

For example, suppose we have a function defined as the constant 5 on (−1, 1) and we are interested
in the limit at 0. Suppose now that we change the value of the function to the constant 7 at the points
1/2, 1/3, . . . , 1/n, . . . . There are two things you should note: first, we have changed the value of the function
at infinitely many points, and second, the value of the function at most points is still 5. So we haven’t really
changed the function all that much. However, even this small change is enough to disrupt the limit at 0.
Because now, no matter how small an interval I choose about 0, that interval will contain some of those bad
points – those points where the definition changed.

5.5. Formalization of the proof in terms of ε and δ. Read this only after you feel you have understood
the ideas at an intuitive level.

We begin by throwing out any xi that equals c, because the value of f or g at c is clearly of no relevance
to the limits of the functions at c.

We need to show that, if limx→c f(x) = L, then, for every ε > 0, there exists a δ > 0 such that if
0 < |x− c| < δ, then |g(x)− L| < ε.

We begin by noting that since limx→c f(x) = L, plugging in the ε − δ definition shows that there exists
δ1 > 0 such that if 0 < |x− c| < δ1, then |f(x)− L| < ε.

Now, let δ = min{δ1, |c− x1|, |c− x2|, . . . , |c− xn|}. The intuition here is to pick δ small enough so that
none of the xi are in the interval (c− δ, c + δ).

Note that δ1 > 0, and since c is not equal to any of the xis, |c− xi| > 0. Thus, δ > 0. We claim that this
δ works.

To see this, we note two things.
First, if 0 < |x− c| < δ, we also have 0 < |x− c| < δ1, and this gives:

(1) |f(x)− L| < ε

Second, if 0 < |x− c| < δ, we cannot have x equal to any of the xis (why? think about this. This is the
only part that I haven’t justified in the proof). Hence, we get:

(2) f(x) = g(x)

Combining (1) and (2), we get |g(x)− L| < ε for 0 < |x− c| < δ, completing the proof.
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THEOREMS ON LIMITS AND CONTINUITY

MATH 152, SECTION 55 (VIPUL NAIK)

Difficulty level: Moderate to hard. There are a couple of proofs here that are hard to understand;
however, you are not responsible for the proofs of these theorems this quarter. The statements of the
theorems will be easy if you have seen them before, and somewhat hard if you have not.

Corresponding material in the book: Sections 2.3, 2.4, 2.5, 2.6.
Things that students should definitely get: The uniqueness theorem for limits. The statements of

the theorems for limits and continuity in relation to the pointwise combinations of functions and composition.
The fact that all the results for pointwise combination hold for one-sided limits and one-sided continuity. The
statement and simple applications of the pinching theorem, intermediate-value theorem, and extreme-value
theorem.

Things that students should hopefully get: The fact that the limit theorems have both a conditional
existence component and a formula component. The way that the triangle inequality is used critically to prove
the uniqueness theorem and the theorem on limits of sums. The importance of the continuity assumption for
the intermediate-value theorem and of that as well as the closed interval assumption for the extreme-value
theorem. How to think about counterexamples and weird functions in a way that builds intuition about the
significance of the hypotheses to the theorems.

Executive summary

Limit theorems + quick/intuitive calculation of limits. Words...
(1) If the limits for two functions exist at a particular point, the limit of the sum exists and equals the

sum of the limits. Similarly for product and difference.
(2) For quotient, we need to add the caveat that the limit of the denominator is nonzero.
(3) If limx→c f(x) = L 6= 0 and limx→c g(x) = 0, then limx→c(f(x)/g(x)) is undefined.
(4) If limx→c f(x) = limx→c g(x) = 0, then we cannot say anything offhand about limx→c(f(x)/g(x)).
(5) Everything we said (or implied) can be reformulated for one-sided limits.

Continuity theorems. Words ...
(1) If f and g are functions that are both continuous at a point c, then the function f + g is also

continuous at c. Similarly, f − g and f · g are continuous at c. Also, if g(c) 6= 0, then f/g is
continuous at c.

(2) If f and g are both continuous in an interval, then f + g, f − g and f · g are also continuous on the
interval. Similarly for f/g provided g is not zero anywhere on the interval.

(3) The composition theorem for continuous functions states that if g is continuous at c and f is con-
tinuous at g(c), then f ◦ g is continuous at c. The corresponding composition theorem for limits is
not true but almost true: if limx→c g(x) = L and limx→L f(x) = M , then limx→c f(g(x)) = M .

(4) The one-sided analogues of the theorems for sum, difference, product, quotient work, but the one-
sided analogue of the theorem for composition is not in general true.

(5) Each of these theorems at points has a suitable analogue/corollary for continuity (and, with the
exception of composition, for one-sided conitnuity) on intervals.

Three important theorems. Words ...
(1) The pinching theorem states that if f(x) ≤ g(x) ≤ h(x), and limx→c f(x) = limx→c h(x) = L, then

limx→c g(x) = L. A one-sided version of the pinching theorem also holds.
(2) The intermediate-value theorem states that if f is a continuous function, and a < b, and p is between

f(a) and f(b), there exists c ∈ [a, b] such that f(c) = p. Note that we need f to be defined and
continuous on the entire closed interval [a, b].
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(3) The extreme-value theorem states that on a closed bounded interval [a, b], a continuous function
attains its maximum and minimum.

Actions ...
(1) When trying to calculate a limit that’s tricky, you might want to bound it from both sides by things

whose limits you know and are equal. For instance, the function x sin(1/x) taking the limit at 0, or
the function that’s x on rationals and 0 on irrationals, again taking the limit at 0.

(2) We can use the intermediate-value theorem to show that a given equation has a solution in an interval
by calculating the values of the expression at endpoints of the interval and showing that they have
opposite signs.

1. Limit theorems

This section discusses some important limit theorems.

Recall the definition. We say that limx→c f(x) = L (as a two-sided limit) if, for every ε > 0, there exists
δ > 0 such that, for every x such that 0 < |x− c| < δ, we have |f(x)− L| < ε.

Now, that’s quite a mouthful. Let’s interpret it graphically. What it is saying is that: “for every ε”so we
consider this region (L − ε, L + ε), so there are these two horizontal bars at heights L − ε and L + ε. Next
it says, there exists a δ, so there exist these vertical bars at c + δ and c− δ. And what we’re saying is that
if the x-value is trapped between the vertical bars c− δ and c + δ (but is not equal to c), the f(x)-value is
trapped between L− ε and L + ε.

The important thing to note here is that the value of δ depends on the value of ε. As I said last time, we
can think of this as a game, where I am trying to prove to you that the limit limx→c f(x) = L and you are
a skeptic who is trying to catch me out. So you throw εs at me, and challenge me to show that I have a δ
to trap that ε. And if I have a winning strategy, that enables me to find a δ for every ε that you throw at
me, then yes, the limit is equal to L.

1.1. What are limit theorems? And why do we need them?
In the absence of limit theorems, we have two alternatives:
• Use our “intuition” – this is problematic, because while intuition works great for nice functions such

as polynomials, it tsarts failing us as soon as we get to weirder functions.
• Use “first principles,”, i.e., the ε − δ definition of limits every time – this is very tedious even for

experienced mathematicians.
Limit theorems provide a sort of middle ground that avoids the pitfalls at either end. Basically, what

these theorems do is, show, using the ε− δ definition of limits, that certain “intuitive” facts about limits are
always true. Then, we can use these theorems guilt-free without having to wade through a mess of εs and
δs.
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So think of proving a theorem as an investment. It’s like putting money in a savings account. You put
money once, and you keep getting the interest from it. But the first thing you need to do is put in the hard
work of earning and saving the money. And proving the theorems is like doing that hardwork.

1.2. Review of some inequalities involving the absolute value. So, before we plunge into the proofs,
I want to review some facts about the absolute value function that are very important. I’ll stick to two facts.
The first is what is called the triangle inequality, and it goes like this:

|a + b| ≤ |a|+ |b| ∀ a, b ∈ R

Now, equality holds if either a or b is zero, or if they both have the same sign. Equality does not hold if
a and b are of opposite signs. So, you may wonder, why the name triangle inequality? And to understand
this, we need to think about triangles on the real line.

But before we get into that, first, let’s recall what the triangle inequality in geometry states. It says that
the sum of two sides of a triangle is greater than the third side. That’s basically a manifestation of the fact
that straightest is shortest – the straight line path between two points is shorter than a path that involves
two straight lines.

Now, the inequality sign is strict, because in geometry, we don’t use the word triangle if all the three
vertices are collinear. By the way, if all the three vertices are collinear, we call the triangle a degenerate
triangle. Let’s say we included degenerate triangles. Then, the equality case could occur. In fact, it’ll occur
in precisely the case where the single side is between the two more extreme points.

So, here’s how this relates to the statement involving absolute values. Consider the degenerate triangle
with vertices the points 0, a, and a + b on the number line. What are the side lengths? Well, the length of
the side from 0 to a is |a|, the length of the side from a to a + b is |b|, and the length of the side from 0 to
a + b is |a + b|. And so the result we have is:

|a + b| ≤ |a|+ |b|

which is our triangle inequality.
Verbally, what this is saying is that if you travel a distance of a and then travel a distance of b along the

real line, you cannot be more than a + b away from where you started. The farthest you can get is if both
your two pieces of travel were in the same direction.

The other result, which we’ve already used a few times, is that the absolute value of the product of two
real numbers equals the product of their absolute values.

|ab| = |a||b| ∀ a, b ∈ R

1.3. Uniqueness theorem. [Note: We will probably not go over this proof in class in full detail, and you
are not expected to know this proof for any of your tests. However, I strongly suggest that you at least try
to understand this proof temporarily. The ideas involved here are extremely useful for understanding some
of the more advanced limits stuff that we will see in 153.]

The first result that we establish is a theorem on the uniqueness of limits. And the intuition behind this
goes back to our original discussion where I gave you a wrong definition of limit and found that the problem
with that definition was that it gave rise to multiple limits. And we tweaked it and got the correct definition.

So the first thing we need to establish is that if the limit exists, then it is unique.
Okay, can you give an intuitive reason why that should be true?
Well, think back to our discussion on traps. And think back to the wrong definition of limit, and why

sin(1/x) was problematic. The reason was that it was jumping a lot, and our right definition of limits, by
creating traps, avoided that.
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So you can think of what we are doing here as a proof by contradiction. We will show that if there are two
real numbers L 6= M , it cannot be the case that both L and M satisfy the ε− δ definition for limx→c f(x).

Now, this is an example where we want to show that the limit cannot be something. So this is an example
of a situation where you are trying to prove the opposite of a statement. We already wrote down what it
means to say that as x → c, f(x) does not approach L. Let’s recall it: there exists ε > 0 such that for every
δ > 0, there exists x satisfying 0 < |x− c| < δ and |f(x)− L| ≥ ε.

Okay, now let’s take a step back and see what we’re really trying to achieve. Simply put, think about it
as two games. There’s the L-game, which is the game where I’m trying to prove the limit is L. And there’s
the M -game, which is where I’m trying to prove the limit is M . And what is true is that no matter what,
you, the skeptic, have a winning strategy for at least one of the games.

So what you do is to try to trap me with my own trap, literally speaking. Because what I’m claiming is
that for x sufficiently close to c, the function is trapped really close to L, but it’s also trapped really close
to M . So what you need to do is call the bluff on me, by forcing me to get too close to both L and M for
comfort. Basically, what you want to call me out on is the assertion that a function can be trapped in two
places at the same time. And, to cut a long story short, the ε that you stump me with is:

ε =
|L−M |

2
So, you stump me with this ε in the L-game and in the M -game. And suppose I throw back δ1 at you

in the L-game and δ2 at you in the M -game. So I’m claiming that when the x-value comes within δ1 of c,
the function value is trapped with ε of L, and when the x-value comes within δ2 of c, the function value is
trapped within ε of M .

So let δ = min{δ1, δ2}. Then, what we have is that:
if 0 < |x− c| < δ, then |f(x)− L| < ε, and |f(x)−M | < ε.
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So for x in this small region around c, f(x) is within ε of L and within ε of M . But the picture makes
clear that this is not possible, because the ε-disks around L and M don’t meet. The formalism behind this
is the triangle inequality:

|L−M | = |(L− f(x)) + (f(x)−M)| ≤ |L− f(x)|+ |f(x)−M | < 2ε = |L−M |

So, we get |L−M | < |L−M |, a contradiction.

1.4. Limits for sum, difference, product, ratio. Okay, now we’ll state the results for the limits of sums,
differences, scalar multiples, products, and ratios. None of the proofs are in the syllabus, but I’ve sketched
the proof for sums. The book has proofs for all the limits.

Suppose f and g are two functions defined in a neighborhood of the point c. Then, if limx→c f(x) and
limx→c g(x) are well-defined, we have the following:

(1) limx→c(f(x) + g(x)) is defined, and equals the sum of the values limx→c f(x) and limx→c g(x).
(2) limx→c(f(x)− g(x)) is defined, and equals limx→c f(x)− limx→c g(x).
(3) limx→c f(x)g(x) is defined, and equals the product limx→c f(x) limx→c g(x).

The scalar multiples result basically states that if limx→c f(x) exists, and α ∈ R, limx→c αf(x) =
α limx→c f(x).

By the way, a week ago, we defined the notions of sum, difference, and product, of functions. So with
that notation, we can rewrite the results as:

lim
x→c

(f + g)(x) = lim
x→c

f(x) + lim
x→c

g(x)

lim
x→c

(f − g)(x) = lim
x→c

f(x)− lim
x→c

g(x)

lim
x→c

(f · g)(x) = lim
x→c

f(x) lim
x→c

g(x)

A couple of important additional points. The first is that the results I mentioned state a little more than
what is captured in the formulas. The subtlety arises because every limit that we write need not exist.

What the sum result says is that if the two limits limx→c f(x) and limx→c g(x) both exist, the the limit
for f + g exists and is given by the formula. So, the result is a conditional existence result plus a formula.
Note that it may very well be the case that the limit for f + g exists but the individual limits – those for f
and g, do not exist. For instance, if f(x) = 1/x and g(x) = −1/x, then f and g do not have limits at 0, but
f + g does have a limit at 0.

Similarly for the results about difference, product, and scalar multiples.
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1.5. Result for the ratio. For the ratio (also called the quotient), we have the result that if limx→c f(x)
and limx→c g(x) exist, and if limx→c g(x) 6= 0, then we have:

lim
x→c

f(x)
g(x)

=
limx→c f(x)
limx→c g(x)

1.6. Indeterminate form → 0/ → 0 limits. In addition to the previous limit theorems, there are some
important facts that should feel familiar if you have done limit computations.

Suppose limx→c f(x) = limx→c g(x) = 0. Then the quotient limit limx→c f(x)/g(x) has what is called a
0/0 form – more precisely, it is of the form (→ 0)/(→ 0). This is an example of an indeterminate form.
An indeterminate form is a form of a limit that does not allow us to conclude anything specific about the
value of the limit. A limit of the form (→ 0)/(→ 0) may or may not exist. Further, it could “not exist” in
practically all the possible values that limits happen to “not exist” (infinite limits, oscillatory limits, etc.).
(→ 0)/(→ 0) may be finite and nonzero, it may be zero, it may be going to +∞, to −∞, different infinities
from different sides, oscillatory between finite bounds, oscillatory between infinite bounds, etc.

An indeterminate form does not mean that we can throw up our hands. To the contrary, indeterminate
form means that the limit needs more work. This extra work typically involves understanding more about
the nature of the specific functions f and g near the point of approach. For rational functions, we try to
cancel common factors between the numerator and denominator. There are more general approaches such
as trigonometric limits, l’Hopital’s rule and power series, which we will see later in the course.

Intuitively, what matters is: does the numerator go to 0 more quickly, does the denominator go to 0 more
quickly, or do they both go to 0 at roughly the same rate. We will explore this theme in mind-numbing
theme later in 152 and even more in 153.

1.7. Lonely denominator blow-ups: undefined limit. If limx→c f(x) = L 6= 0 and limx→c g(x) = 0,
then limx→c f(x)/g(x) is not defined. In other words, the limit does not exist. When we later study infinity
as a limit, we will consider in more detail whether the (one-sided) limit exists as an infinity. Note that if a
limit is infinite, we still say that the limit “does not exist.”

1.8. One-sided and two-sided limits. So far, in all the situations where we have been saying that the
limit exists, we mean that the two-sided limit exists. Recall that we have that limx→c f(x) = L if f is defined
in an open interval about c (except possibly at c) and if, for every ε > 0, there exists δ > 0 such that for
every x such that 0 < |x− c| < δ, we have |f(x)− L| < ε.

Let’s also recall what it means to say that the left-hand limit exists. We say that limx→c− f(x) = b if f is
defined to the immediate left of c, and if, for every ε > 0, there exists δ > 0 such that for every x such that
0 < c− x < δ, we have |f(x)− b| < ε.

Basically, what’s happening is that now, we need only a one-sided trap for δ, i.e., a trap of the form
(c− δ, c) rather than a trap of the form c− δ, c + δ).

Similarly, we say that limx→c+ = b if, for every ε > 0, there exists δ > 0 such that for every x such that
0 < x− c < δ, we have |f(x)− b| < ε.

Now, it turns out that all the results we proved so far about limits also hold for one-sided limits from
either side. So, for instance, we have the following for left-hand limits.

(1) If the left-hand limit limx→c− f(x) exists, it is unique.
(2) If limx→c− f(x) and limx→c− g(x) exist, then limx→c−(f(x) + g(x)) exists and equals the sum of the

individual limits.
(3) If limx→c− f(x) and limx→c− g(x) exist, then limx→c−(f(x) + g(x)) exists and equals the difference

of the individual limits.
(4) If limx→c− f(x) and limx→c− g(x) exist, then limx→c−(f(x)g(x)) exists and equals the product of

the individual limits.
(5) If limx→c− f(x) exists and α is a real number, then limx→c− αf(x) = α limx→c− f(x).

Analogous results hold for right-hand limits.
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1.9. Infinity as a limit. In the discussion so far, when we said that the limit exists, we meant that it exists
and is finite. And that’s the way it’ll continue to be. Nonetheless, since the book makes some mentions of
infinity, and since you may have seen these concepts when going through intuitive introductions to limits, let
me briefly describe the role of infinity. We will master these definitions formally a little later in the course.
For now, the coverage is (relatively) informal.

When we’re thinking in terms of limits, then we say that the limit is ∞, or +∞, when the number is
getting larger and larger and not bouncing back to very small values. This doesn’t mean it can’t oscillate
– it can. But rather, for every number N you pick, there exists a δ > 0 such that, if 0 < |x − c| < δ, then
f(x) > N . In other words, it eventually gets above any barrier and stays above. And if that’s the case, we
say that the limit is +∞.

For instance, the picture below is of a function that approaches +∞ as x → 0 – because of page-fitting
considerations, the function has been plotted only till x = 0.1 – but the function oscillates. However, each
oscillation is higher than the preceding one.

Similarly, there is the notion of the limit being −∞.
Now, what happens with functions, and the classic example is the function 1/x, but you’ll see this for

other functions, is that the left-hand limit approaches infinity from one direction and the right-hand limit
approaches infinity from the other direction. So in this case, for the function f(x) := 1/x, the left-hand limit
is −∞ and the right-hand limit is +∞. By the way, neither limit exists in the sense that we will use the
word, because neither limit is finite. But a two-sided limit doesn’t even exist as an infinity, because the two
sides are approaching two different infinities.

On the other hand, for the function g(x) := 1/x2, both the left-hand limit and the right-hand limit are
+∞.

And generalizing from these examples, we can see some general rules emerging:
(1) If limx→c f(x) is a positive number and limx→c g(x) = 0, but the approach is from the positive

direction, then f(x)/g(x) →∞ as x → c. Analogous observations apply to negative numbers.
(2) If limx→c f(x) is a positive number and limx→c g(x) = 0, but the approach is from the positive

direction, then f(x)/g(x) →∞ as x → c. Analogous observations apply to negative numbers.
We’ll talk more about infinities as limits, and consider more complicated cases, a little later in the course.

1.10. Proof that limit of sums is sum of limits. [Note: We will probably not go over this proof in
class in full detail, and you are not expected to know this proof for any of your tests. However, I strongly
suggest that you at least try to understand this proof temporarily. The ideas involved here are extremely
useful for understanding some of the more advanced limits stuff that we will see in 153.]

We’ll now discuss how to prove the statement that, as an English phrase, would read: “the sum of the
limits is the limit of the sums”. In other words, we are trying to prove that if limx→c f(x) = L and if
limx→c g(x) = M , then limx→c f(x) + g(x) = L + M .

So the way to think about it is that f comes close to L and g comes close to M , so doesn’t f + g comes
close to L + M? Yes, it does. But to make that precise, what we need to do is to loosen the definition of
what it means to come close.

You’ve probably heard of rounding errors. For instance, you may say that 1.4 rounds off to 1 and 2.3
rounds off to 2. But when you add the two numbers, you get 3.7, and 3.7 rounds off to 4, rather than
1 + 2 = 3.
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So, the upshot is that just because a is close to a′ and b is close to b′, doesn’t necessarily mean that a + b
is just as close to a′ + b′. However, even if it isn’t as close, it is still close. The point is that when you add
things, the margins of error add.

So the way we use this idea is to make sure that our margins of error for the functions f and g are both
so small that when you add them up, you still get a small margin of error.

Let’s now flesh out the proof details. We need to show that if limx→c f(x) exists and limx→c g(x) exists,
then limx→c(f(x) + g(x)) exists. Let’s call L = limx→c f(x) and M = limx→c g(x).

Let’s discuss this. What we need to do is to show that, for every ε > 0, we need to find a δ > 0 such that
if 0 < |x− c| < δ, then |(f(x) + g(x))− (L + M)| < ε. Here’s how we do this.

Since f is continuous, consider the value ε/2. There exists a value δ1 > 0 such that, if 0 < |x − c| < δ1,
we have |f(x)− L| < ε/2. What we’re doing here is using ε/2 as the value of ε for f .

Similarly, for g, we use ε/2 again. So, there exists a value δ2 > 0 such that, if 0 < |x − c| < δ2, we have
|g(x)−M | < ε/2.

Now consider δ = min{δ1, δ2}. Then, if 0 < |x− c| < δ, we have 0 < |x− c| < δ1 and 0 < |x− c| < δ2, so:

|f(x)− L| < ε/2(*)

|g(x)−M | < ε/2(**)

We thus get, using the triangle inequality and (*) and (**):

|(f(x) + g(x))− (L + M)| ≤ |f(x)− L|+ |g(x)−M | < ε/2 + ε/2 = ε

2. Continuity theorems

We now proceed to a discussion of theorems on continuity. Most of these are analogous to corresponding
theorems about limits.

2.1. Recall the definition. It may be worthwhile recalling the definitions of limit and continuity side by
side. Let’s do that.

We say that limx→c f(x) = L if f is defined in an open interval about c (except possibly at c itself) and,
for every ε > 0, there exists δ > 0 such that, for every x satisfying 0 < |x− c| < δ, we have |f(x)− L| < ε.

We say that f is continuous at c if f is defined in an open interval about c (including at the point c) and,
for every ε > 0, there exists δ > 0 such that, for every x satisfying |x− c| < δ, we have |f(x)− f(c)| < ε.

Some differences: for the definition of limit, we do not require the function to be defined at the point c,
but for the definition of continuity, we do. The L that we use for the definition of continuity is the value
f(c). Also, we can drop the 0 < part in the definition of continuity.

2.2. Theorems about continuity. The definition we gave above was for a function being continuous at
a point, and we can use that definition, along with the limit theorems, to prove that continuity at a point
is preserved by sums, scalar multiplies, differences, products, and, if the denominator function is not zero,
ratios. Explicitly (Theorem 2.4.2, Page 84):

If f and g are functions that are both continuous at a point c ∈ R, then:

(1) f + g is continuous at c.
(2) f − g is continuous at c.
(3) f · g is continuous at c.
(4) If g(c) 6= 0, then f/g is continuous at c.

Further, if f is continuous at c, then αf is continuous at c for any real number α.
Why are these statements true? Essentially, they are all immediate corollaries of the corresponding

statements for limits. For instance, if you take for granted the theorem that limx→c(f+g)(x) = limx→c f(x)+
limx→c g(x), then given that f and g are both continuous at c, you can substitute the values and get
limx→c(f + g)(x) = f(c) + g(c) = (f + g)(c). The same proof idea works for differences and scalar multiples.
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2.3. Composition of continuous functions. We’ll next state a result, which is Theorem 2.4.4 of the
book, about the composition of continuous functions. You don’t need to know the proof of this statement.

The results is that if f and g are functions such that g is continuous at c and f is continuous at g(c),
then the composite function f ◦ g is continuous at c. And remember the way the composition works – the
function written on the right is the one that is applied first. So here’s this element c, and we first apply g,
and we get to g(c). Then we apply f , and we get to f(g(c)) = (f ◦ g)(c).

So I hope you see why it is important to require that f is continuous at g(c) and g is continuous at c. In
particular, it does not matter whether f is continuous at c, because the input that is fed into f is not c but
g(c).

2.4. One-sided continuity. In a previous lecture, we defined one-sided continuity. Left-continuity means
that the left-hand limit exists and equals the value of the function at the point. Right-continuity means that
the right-hand limit exists and equals the value of the function at the point.

And, as you might have guessed, the results we stated about sum, difference, scalar multiples, product,
and quotient of functions being continuous extends to one-sided continuity. It turns out, interestingly, that
the results about composition do not necessarily hold in the one-sided sense. In fact, one of your quiz
questions on Friday of the first week was exactly about this issue. The main reason is that, for f ◦ g to have
the required one-sided continuity at c, we need that g(x) approach g(c) from the correct direction.

Some weaker versions can be salvaged: for instance, if f and g are both left-continuous functions, and g
is an increasing function, then f ◦ g is also left-continuous. There are other weaker versions too, which we
will not get into here.

2.5. Continuity theorems also hold on intervals. So far, we have stated the continuity theorems at
individual points. From these, we can deduce continuity theorems on intervals. Specifically, if I is an interval
(of whatever sort), and f and g are continuous functions on I, then:

(1) f + g is continuous on I.
(2) f − g is continuous on I.
(3) f · g is continuous on I.
(4) f/g is continuous at those points of I where it is defined, i.e., where g takes nonzero values.

The interval version of the result for composition is a little trickier, because to deduce the continuity of
f ◦ g, we need f to be continuous, not on the original domain of g, but on the range of g which feeds into
the domain of f . Here is one formulation.

Suppose I and J are intervals in R, f is a continuous function on J , and g is a continuous function on I
such that the range of g is contained in J . Then f ◦ g is a continuous function on I.

2.6. Most functions you’ve seen are continuous. So this is the time to pause and review and think:
“which of the functions that we have seen are continuous, and do we have the tools to make sure?”

Well, with the tedious ε − δ definition of limits, we actually proved that the constant functions are
continuous, and that the function f(x) = x is continuous. And we did this basically by showing that the
limit at any point equals the value at the point. And now, we know that we can multiply things together,
multiply by scalars, and add. And if you think for a moment, you’ll see that that shows that polynomial
functions are continuous.

For instance, the polynomial 2x3 − 3x2 + x + 1 is the sum of the functions that send x to 2x3, −3x2, x,
and 1 respectively. Each of these functions itself is a product of multiple copies of the function sending x to
itself, multiplied by some scalar. And each step of the construction/deconstruction of a polynomial preserves
continuity. So we see why/how polynomial functions are continuous.

Rational functions, which are functions obtained as the ratio of two polynomials, are not necessarily
globally defined, because the denominator may blow up at some point. However, the ratio results that we
have established show that, at all the places where the denominator does not blow up, the rational function
is continuous. Hence, with rational functions, we are in the position that wherever the function is defined,
it is continuous.

Another thing you should know is that the trigonometric functions sin and cos are continuous. And, since
the trigonometric function tan is defined as the ratio of these, tan is again continuous at all the points where
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it is defined – the points where it is not continuous are the points where it is not defined, which are the
points where cos takes the value 0.

2.7. Partying wild with freaky functions. There are two directions of approach on the real line: left
and right. And hence we can talk of the left-hand limit and the right-hand limit. And it is important that
the real line has two directions.

So you’re happy, because there are only two directions of approach, and the function comes in nicely
form both sides – but that’s not really the case. We saw the example of sin(1/x), frolicking back and forth
cheerfully and indifferent to the coming crash at 0. And then in the homework you’ve been plagued by things
like the Dirichlet function that is defined separately on the rationals and irrationals. And what these things
show is that even the functions defined on what appears to be a straight line can show incredible diversity
and jumping up and down.

So let’s think a bit about what can happen when a function is defined around a point but a one-sided
limit is not defined. Here are some possibilities:

(1) As x approaches c, the function oscillates or jumps around, so it doesn’t settle down, but it is still
bounded. Some examples of this are the sin(1/x) function and the Dirichlet function.

(2) As x approaches c, the function heads for +∞. This means that whatever height you set, the function
eventually crosses that height and stays above. For instance, 1/x2, for c = 0, from either side. Or
1/x from the right side.

(3) As x approaches c, the function heads for −∞. For instance, −1/x2, for c = 0. Or 1/x from the left
side.

(4) As x approaches c, the function oscillates between +∞ and some finite lower bound. For instance,

sin2(1/x)/x2, for c = 0.
(5) As x approaches c, the function oscillates between +∞ and −∞. For instance, sin(1/x)/x2, for

c = 0. For instance:

This is just scratching the surface. And to complicate matters further, we could have different behavior
from the left and from the right. So you see that there’s realy a wild party going on here.

3. Three important theorems

3.1. The pinching theorem. This theorem is also called the squeeze theorem or the sandwich theorem.
Here’s what it says:
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If f, g, h are functions defined in a neighborhood of c, with the property that close to c, we have f(x) ≤
g(x) ≤ h(x) for all x, and if limx→c f(x) = limx→c h(x) = L for all x, then we also have limx→c g(x) = L.

Analogous results hold for the left-hand limits and right-hand limits.
Basically, what this says is that if a function is trapped between two functions, both of which are ap-

proaching a particular value, then the function trapped in between also approaches that same value.
Here are some applications of this theorem.

(1) Recall the function in Homework 2: a funcion g defined as g(x) = x for rational values of x and
g(x) = 0 for irrational values of x. We want to show that limx→0 g(x) = 0. We first argue this for
the right-hand limit. On the right, if we define f(x) := 0 and h(x) := x, then f(x) ≤ g(x) ≤ h(x),
and both f and h approach 0 at 0. Hence, g also approaches 0 at 0. On the left, we have h(x) ≤
g(x) ≤ f(x), and again, since both f and h approach 0, so does g.

(2) Another example is the function g(x) := x sin(1/x). This is different from the sin(1/x) example that
we saw earlier, because with this new function, the coefficient x causes a damping in the amplitude
of the oscillations. To show that limx→0 g(x) = 0, we can use the pinching theorem, by squeezing g
between the functions f(x) = x and h(x) = −x (again, the pinching will occur in different ways on
the left and on the right).

Intermediate-value theorem. The intermediate-value theorem says that if f is a continuous function on
a closed interval [a, b], with f(a) = c and f(b) = d, f takes every possible value between c and d. If c < d,
this would mean that the range of f contains [c, d]. If c > d, this would mean that the range of f contains
[d, c].

Note that f may take other values as well – for instance, it could go really high somewhere in between
and then come back down, but what this theorem tells us is that it takes at least all the values between c
and d.

The important thing here is that the function needs to be continuous. And the significance of continuity is
that the function cannot suddenly jump from one place to the other – it has to go through all the intermediate
steps. The graph below, for instance, plots the function f(x) := (x + 1) sgn(x) on the interval [−1, 3], where
we define sgn as the signum functions, which is −1 on negative numbers, 0 at 0, and 1 on positive numbers.
Note that f(−1) = 0 and f(3) = 4, but f does not take the value 1/2 (which is between f(−1) and f(3))
anywhere on its domain.
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Here’s an important caveat. If the function isn’t continuous, we may get wrong conclusions by applying
the intermediate-value theorem.

For instance, consider the function f(x) = 1/x. Then, f(−1) = −1 and f(1) = 1. Hence, a naive
application of the intermediate-value theorem would suggest that there exists x ∈ [−1, 1] such that f(x) = 0.
But this is nonsense – 1/x can never be equal to 0. So, something went wrong in our application of the
intermediate-value theorem. What went wrong? Just the fact that 1/x is not continuous on [−1, 1] – in fact,
it isn’t even defined at 0.

Another wrong application would be to say that since f(−1) = −1 and f(1) = 1, there exists x ∈ [−1, 1]
such that f(x) = 1/2. This is wrong, because the only x for which f(x) = 1/2 is x = 2, which is not in
the interval [−1, 1]. Again, the reason we went astray is that the function f(x) = 1/x is not continuous on
[−1, 1].
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3.2. Justifying the existence of the square root function. One way in which the intermediate-value
theorem gets used, and that is to justify the existence of inverse functions. We’ll discuss this in greater
generality probably toward the end of the course.

Suppose we needed to justify the existence of
√

3. In other words, we needed to show the existence of a
positive number x such that x2 = 3. Here’s how the intermediate-value theorem can be used. Consider the
function f(x) := x2. This function is everywhere continuous. Now, f(1) = 1 and f(2) = 4. Hence, by the
intermediate-value theorem there exists some x ∈ [1, 2] such that f(x) = 3.

3.3. “Solving” equations using the intermediate-value theorem. When you looked at an equation,
your first urge was probably to solve it. And you solved it by manipulating stuff, applying the formula for
the root of a quadratic, etc., etc. You had a toolkit of methods to solve equations, and you tried to faithfully
apply this toolkit.

But there are times when you cannot find precise expressions for the solutions of equations. For instance,
if I write a polynomial equation of degree 5, and ask you to solve it, may be you try a few values and then
give up, but there’s no general formula you can plug in to find the solutions (in fact, mathematicians have
actually proved that general formulas do not exist – a proof you will probably not see unless you choose to
major in mathematics). So, that’s bad news. And similarly, if I write cos x = x and ask you to solve that,
you have no mathematical way of finding a solution.

However, even if we cannot find exact solutions, we may be able to determine whether solutions exist,
and even narrow down the interval in which they exist. And one tool in doing this is the intermediate-value
theorem.

So consider the equation cos x = x. The first thing you do is to take the difference, which in this case is
cos x − x. This is continuous, so the intermediate-value theorem applies, so to show that this difference is
zero somewhere, it is enough to show that there’s some place where it’s positive and some place where it’s
negative. Well, let’s draw the graphs of the functions x and cos x to get a bit if the intuition.

So looking at the graphs, you see that it’s likely that a solution exists somewhere between 0 and π/2,
because that’s where the function x overtakes the function cos x. Let’s try to see this using the intermediate-
value theorem. At 0, we have cos x−x = 1, and at π/2, we have cos x−x = −π/2. So, the function cos x−x
goes from a positive value 1 to a negative value −π/2, which means that at some point in between, the
function must be zero, and that’s the point where cos x = x.

Now, we can actually narrow down the value where cos x = x a little further, by trying to evaluate f(x) for
other values of x. For instance, we see, by evaluation, that f(π/3) = 1/2−π/3 < 0, so the intermediate-value
theorem tells us that f(x) = 0 for some x ∈ [0, π/3]. Next, we try f(π/4) = 1/

√
2 − π/4 < 0, so, in fact,

f(x) = 0 for some x ∈ [0, π/4]. And we can narrow things down still further by checking that f(π/6) > 0,
so in fact, there is a solution to f(x) = 0 for x ∈ [π/6, π/4].

So, we see that we can use the intermediate-value theorem, along with evaluating the function at mutliple
points, to narrow down pretty well where a function is zero. If you’re more interested in these techniques,
you should read more about the bisection method – it is discussed on Page 102 under the header Project 2.6.

3.4. Extreme-value theorem. Another theorem, that you should know, though you will not have the
opportunity to apply it much right now, is the extreme-value theorem. This states that if f is a continuous
real-valued function on a closed interval [a, b], then f attains its maximum and its minimum, and of course,
by the intermediate-value theorem, all the values in betweem. So if M is the maximum and m is the minimum
of f , then the range of f is an interval of the form [m,M ].

Okay, there are many parts to this theorem, so let’s understand it part-by-part. What does it mean to
say that the function attains its maximum? Basically, we mean that there is some value M in the range of f
that is the largest value in the range of f . And similarly, attains its minimum happens when there is some
value in the range of f that is the smallest value in the range of f .

So, may be you’re thinking that every function shoul attain its maximum and minimum. That’s not true.
In fact, a function on an interval stretching to infinity, or a function defined on an open interval, need not
attain a maximum or minimum. For instance, the function 1/x on the interval (0,∞) doesn’t attain either
a maximum or minimum – it tends to (but doesn’t reach) ∞ on one side and tends to (but doesn’t reach) 0
on the other side.
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Also, a discontinuous function defined on a closed interval need not attain a maximum and minimum.
For instance, the function (x + 1) sgn(x) on [−1, 3], which we discussed a little while ago, does not attain a
minimum value because of the open circle at the low point:

So okay, we are somehow using something about continuity – may be it isn’t clear what, but something,
and we’re also using something about closed intervals, to say that there is a maximum and minimum. What
about the next part of the statement, which says that the range is precisely the stuff that’s in between? Well,
everything in the range has to be between the maximum and minimum – that’s the definition of maximum
and minimum. But why does everything between the maximum and minimum have to be in the range?
Well, you can think of that as the intermediate-value theorem in action again.
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COMPOSITION THEOREM FOR LIMITS

MATH 152, SECTION 55 (VIPUL NAIK)

There is a composition theorem for continuous functions: if g is continuous at c and f is continuous at
g(c), then f ◦ g is continuous at c.

We might suspect an analogous composition theorem for limits: if limx→c g(x) = L and limv→L f(v) = M ,
then limx→c f(g(x)) = M .

However, the composition theorem for limits as stated above is not strictly true.
The reason is very subtle, though it is in some sense similar to why composites do not hold in the one-sided

sense. It all has to do with the 0 < in the limit definition, or, the fact that when we say limx→c g(x), we
exclude the behavior at the point c.

Let’s consider this more carefully. If limx→c g(x) = L, then that means that as x → c, then g(x) → L.
Next, we know that as v → L, then f(v) → M . So, why doesn’t it follow that as x → c, f(g(x)) → M?

In words:
x → c implies g(x) → L
and:
v → L implies f(v) → M
Plugging v = g(x), why doesn’t the result follow?
The issue is that the g(x) → L on the right half of the first line differs from the v → L on the left half of

the second line. The former conclusion is valid, for instance, if g(x) is a constant function L. On the other
hand the v → L specifically includes only a straightforward approach from the left or the right.

Thus, we can construct a counterexample to the “composition theorem for limits” with the following
features: (i) g is constant around c with the value L and (ii) f is defined at c but has a removable discontinuity
at c.
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INTRODUCTION TO DERIVATIVES

MATH 152, SECTION 55 (VIPUL NAIK)

Corresponding material in the book: Sections 3.1, 3.2, 3.3, 3.5.
Difficulty level: Moderate if you remember derivatives to at least the AP Calculus level. Otherwise,

hard. Some things are likely to be new.
Covered in class?: Yes, but we’ll go very quickly over most of the stuff that you would have seen at

the AP level, and will focus much more on the conceptual interpretation and the algebraic-verbal-graphical-
numerical nexus.

What students should definitely get: The definition of derivative as a limit. The fact that the left-
hand derivative equals the left-hand limit and the right-hand derivative equals the right-hand limit. Also,
the derivative is the slope of the tangent to the graph of the function. Graphical interpretation of tangents
and normals. Finding equations of tangents and normals. Leibniz and prime notation. The sum rule,
difference rule, product rule, and quotient rule. The chain rule for composition. Differentiation polynomials
and rational functions.

What students should hopefully get: The idea of derivative as an instantaneous rate of change, the
notion of difference quotient and slope of chord, and the fact that the definitions of tangent that we use for
circles don’t apply for general curves. How to find tangents and normals to curves from points outside them.
Subtle points regarding tangent lines.

Executive summary

0.1. Derivatives: basics. Words ...

(1) For a function f , we define the difference quotient between w and x as the quotient (f(w)−f(x))/(w−
x). It is also the slope of the line joining (x, f(x)) and (w, f(w)). This line is called a secant line.
The segment of the line between the points x and w is sometimes termed a chord.

(2) The limit of the difference quotient is defined as the derivative. This is the slope of the tangent line
through that point. In other words, we define f ′(x) := limw→x

f(w)−f(x)
w−x . This can also be defined

as limh→0
f(x+h)−f(x)

h .
(3) If the derivative of f at a point x exists, the function is termed differentiable at x.
(4) If the derivative at a point exists, then the tangent line to the graph of the function exists and its

slope equals the derivative. The tangent line is horizontal if the derivative is zero. Note that if the
derivative exists, then the tangent line cannot be vertical.

(5) Here are some misconceptions about tangent lines: (i) that the tangent line is the line perpendicular
to the radius (this makes sense only for circles) (ii) that the tangent line does not intersect the curve
at any other point (this is true for some curves but not for others) (iii) that any line other than the
tangent line intersects the curve at at least one more point (this is always false – the vertical line
through the point does not intersect the curve elsewhere, but is not the tangent line if the function
is differentiable).

(6) In the Leibniz notation, if y is functionally dependent on x, then ∆y/∆x is the difference quotient –
it is the quotient of the difference between the y-values corresponding to x-values. The limit of this,
which is the derivative, is dy/dx.

(7) The left-hand derivative of f is defined as the left-hand limit for the derivative expression. It is
limh→0−

f(x+h)−f(x)
h . The right-hand derivative is limh→0+

f(x+h)−f(x)
h .

(8) Higher derivatives are obtained by differentiating again and again. The second derivative is the
derivative of the derivative. The nth derivative is the function obtained by differentiating n times.
In prime notation, the second derivative is denoted f ′′, the third derivative f ′′′, and the nth derivative
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for large n as f (n). In the Leibniz notation, the nth derivative of y with respect to x is denoted
dny/dxn.

(9) Derivative of sum equals sum of derivatives. Derivative of difference is difference of derivatives.
Scalar multiples can be pulled out.

(10) We have the product rule for differentiating products: (f · g)′ = f ′ · g + f · g′.
(11) We have the quotient rule for differentiating quotients: (f/g)′ = (g · f ′ − f · g′)/g2.
(12) The derivative of xn with respect to x is nxn−1.
(13) The derivative of sin is cos and the derivative of cos is − sin.
(14) The chain rule says that (f ◦ g)′ = ((f ′ ◦ g) · g′

Actions ...

(1) We can differentiate any polynomial function of x, or a sum of powers (possibly negative powers or
fractional powers), by differentiating each power with respect to x.

(2) We can differentiate any rational function using the quotient rule and our knowledge of how to
differentiate polynomials.

(3) We can find the equation of the tangent line at a point by first finding the derivative, which is the
slope, and then finding the point’s coordinates (which requires evaluating the function) and then
using the point-slope form.

(4) Suppose g and h are everywhere differentiable functions. Suppose f is a function that is g to the left
of a point a and h to the right of the point a, and suppose f(a) = g(a) = h(a). Then, the left-hand
derivative of f at a is g′(a) and the right-hand derivative of f at a is h′(a).

(5) The kth derivative of a polynomial of degree n is a polynomial of degree n− k, if k ≤ n, and is zero
if k > n.

(6) We can often use the sum rule, product rule, etc. to find the values of derivatives of functions
constructed from other functions simply using the values of the functions and their derivatives at
specific points. For instance, (f · g)′ at a specific point c can be determined by knowing f(c), g(c),
f ′(c), and g′(c).

(7) Given a function f with some unknown constants in it (so a function that is not completely known)
we can use information about the value of the function and its derivatives at specific points to
determine those constant parameters.

0.2. Tangents and normals: geometry. Words...

(1) The normal line to a curve at a point is the line perpendicular to the tangent line. Since the tangent
line is the best linear approximation to the curve at the point, the normal line can be thought of as
the line best approximating the perpendicular line to the curve.

(2) The angle of intersection between two curves at a point of intersection is defined as the angle between
the tangent lines to the curves at that point. If the slopes of the tangent lines are m1 and m2, the
angle is π/2 if m1m2 = −1. Otherwise, it is the angle α such that tanα = |m1 −m2|/(|1 + m1m2|).

(3) If the angle between two curves at a point of intersection is π/2, they are termed orthogonal at that
point. If the curves are orthogonal at all points of intersection, they are termed orthogonal curves.

(4) If the angle between two curves at a point of intersection is 0, that means they have the same tangent
line. In this case, we say that the curves touch each other or are tangent to each other.

Actions...

(1) The equation of the normal line to the graph of a function f at the point (x0, f(x0)) is f ′(x0)(y −
f(x0)) + (x− x0) = 0. The slope is −1/f ′(x0).

(2) To find the angle(s) of intersection between two curves, we first find the point(s) of intersection, then
compute the value of derivative (or slope of tangent line) to both curves, and then finally plug that
in the formula for the angle of intersection.

(3) It is also possible to find all tangents to a given curve, or all normals to a given curve, that pass
through a given point not on the curve. To do this, we set up the generic expression for a tangent
line or normal line to the curve, and then plug into that generic expression the specific coordinates
of the point, and solve. For instance, the generic equation for the tangent line to the graph of a
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function f is y − f(x1) = f ′(x1)(x− x1) where (x1, f(x1)) is the point of tangency. Plugging in the
point (x, y) that we know the curve passes through, we can solve for x1.

(4) In many cases, it is possible to determine geometrically the number of tangents/normals passing
through a point outside the curve. Also, in some cases, the algebraic equations may not be directly
solvable, but we may be able to determine the number and approximate location of the solutions.

0.3. Deeper perspectives on derivatives. Words... (these points were all seen in the quiz on Chapter 3)

(1) A continuous function that is everywhere differentiable need not be everywhere continuously differ-
entiable.

(2) If f and g are functions that are both continuously differentiable (i.e., they are differentiable and
their derivatives are continuous functions), then f + g, f − g, f · g, and f ◦ g are all continuously
differentiable.

(3) If f and g are functions that are both k times differentiable (i.e., the kth derivatives of the functions
f and g exist), then f + g, f − g, f · g, and f ◦ g are also k times differentiable.

(4) If f and g are functions that are both k times continuously differentiable (i.e., the kth derivatives
of both functions exist and are continuous) then f + g, f − g, and f · g, and f ◦ g are also k times
continuously differentiable.

(5) If f is k times differentiable, for k ≥ 2, then it is k − 1 times continuously differentiable, i.e., the
(k − 1)th derivative of f is a continuous function.

(6) If a function is infinitely differentiable, i.e., it has kth derivatives for all k, then its kth derivatives
are continuous functions for all k.

1. Bare-bones introduction

1.1. Down and dirty with derivatives. The order in which I’ll do things is to quickly introduce to you
the mathematical formalism for derivatives, which is really quite simple, and give you a quick idea of the
conceptual significance, and we’ll return to the conceptual significance from time to time, as is necessary.

The derivative of a function at a point measures the instantaneous rate of change of the function at the
point. In other words, it measures how quickly the function is changing. Or, it measures the velocity of the
function. These are vague ideas, so let’s take a closer look.

Let’s say I am riding a bicycle on a road, and I encounter a sign saying “speed limit: 30 mph”. Well, that
sign basically says that the speed limit should be 30 mph, but what speed is it refering to? We know that
speed is distance covered divided by time taken, but if I start out from home in the morning, get stuck in a
traffic jam on my way, and then, once the road clears, ride at top speed to get to my destination, I might
have take five hours to just travel five miles. So my speed is 1 mile per hour. But may be I still went over
the speed limit, because may be it was the case that at the point where I crossed the speed limit sign, I was
going really really fast. So, what’s really relevant isn’t my average speed from the moment I began my ride
to the moment I ended, but the speed at the particular instant that I crossed that sign. But how do we
measure the speed at a particular instant?

Well, one thing I could do is may be measure the time it takes me to get from the lamp post just before
that sign to the lamp post just after that sign. So if that distance is a and the time it took me to travel
that distance is b, then the speed is a/b. And that might be a more relevant indicator since it is the speed
in a small interval of time around where I saw that sign. But it still does not tell the entire story, because it
might have happened that I was going pretty fast between the lamp posts, but I slowed down for a fraction
of a second while crossing that sign. So may be I still didn’t technically break the law because I was slow
enough at the instant that I was crossing the sign.

What we’re really trying to measure here is the change in my position, or the distance I travel, divided
by the time, but we’re trying to measure it for a smaller and smaller interval of time around that crucial
time point when I cross the signpost. Smaller and smaller and smaller and smaller... this suggests that a
limit lurks, and indeed it does.

Let’s try to formalize this. Suppose the function giving my position in terms of time is f . So, for a time
t, my position is given by f(t). And let’s say that the point in time when I crossed the sign post was the
point c. That means that at time t = c, I crossed the signpost, which is located at the point f(c).
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Now, let’s say I want to calculate my speed immediately after I cross the sign post. So I pick some t that’s
just a little larger than c, and I look at the speed from time c to time t. What I get is:

f(t)− f(c)
t− c

This gives the average speed from time c to time t. How do we narrow this down to t = c? If we try to
plug in t = c in the formula, we get something of the form 0/0, which is not defined. So, what do we do?

This is where we need the crucial idea – we need the idea of a limit. So, the instantaneous speed just
after crossing the signpost is defined as:

lim
t→c+

f(t)− f(c)
t− c

This is the limit of the average speed over the time interval [c, t], as t approaches c from the right side.
Similarly, the instantaneous speed just before crossing the signpost is:

lim
t→c−

f(c)− f(t)
c− t

= lim
t→c−

f(t)− f(c)
t− c

Notice that both these are taking limits of the same expression, except that one is from the right and one
is from the left. If both limits exist and are equal, then this is the instantaneous speed. And once we’ve
calculated the instantaneous speed, we can figure out whether it is greater than what the signpost capped
speed at.

1.2. Understanding derivatives – formal definition. The derivative of a function f at a point x is
defined as the following limit, if it exists:

f ′(x) := lim
w→x

f(w)− f(x)
w − x

if this limit exists! If the limit exists, then we say that the function f is differentiable at the point x and
the value of the derivative is f ′(x).

The left-hand derivative is defined as the left-hand limit for the above expression:

lim
w→x−

f(w)− f(x)
w − x

The right-hand derivative is defined as the right-hand limit for the above expression:

lim
w→x+

f(w)− f(x)
w − x

The expression whose limit we are trying to take in each of these cases is sometimes called a difference
quotient – it is the quotient between the difference in the function values and the difference in the input
values to the function.

So, in words:

The derivative of f at x = The limit, as w approaches x, of the difference quotient of f between w and x

Now, what I’ve told you so far is about all that you need to know – the basics of the definition of derivative.
But the typical way of thinking about derivatives uses a slightly different formulation of the definition, so
I’ll just talk about that. That’s related to the idea of substituting variables.

1.3. More conventional way of writing derivatives. Recall that limw→x g(w) = limh→0 g(x + h). This
is one of those rules for substitution we use to evaluate some trigonometric limits. And we typically use this
rule when writing down the definition of derivatives. So, with the h→ 0 convention, we define:

f ′(x) := lim
h→0

f(x + h)− f(x)
h

What this is saying is that what we’re trying to measure is the quotient of the difference in the values
of f for a small change in the value of the input for f , near x. And then we’re taking the limit as the
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increment gets smaller and smaller. So, with this notation, the left-hand derivative becomes the above limit
with h approaching 0 from the negative side and the right-hand derivative becomes the above limit with h
approaching 0 from the positive side. In symbols:

LHD of f at x = lim
h→0−

f(x + h)− f(x)
h

and:

RHD of f at x = lim
h→0+

f(x + h)− f(x)
h

1.4. Preview of graphical interpretation of derivatives. Consider the graph of the function f , so we
have a graph of y = f(x). Then, say we’re looking at two points x and w, and we’re interested in the
difference quotient:

f(w)− f(x)
w − x

What is this measuring? Well, the point (x, f(x)) represents the point on the graph with its first coordinate
x, and the point (w, f(w)) represents the point on the graph with its first coordinate w. So, what we’re doing
is taking these two points, and taking the quotient of the difference in their y-coordinates by the difference in
their x-coordinates. And, now this is the time to revive some of your coordinate geometry intuition, because
this is essentially the slope of the line joining the points (x, f(x)) and (w, f(w)). Basically, it is the rise over
the run – the vertical change divided by the horizontal change.

So, one way of remembering this is that:

Difference quotient of f between points x and w = Slope of line joining (x, f(x)) and (w, f(w))
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Also, note that the difference quotient is symmetric in x and w, in the sense that if we interchange the
roles of the two points, the difference quotient is unaffected. So is the slope of the line joining the two points.

Now, let’s try to use this understanding of the difference quotient as the slope of the line joining two points
to understand what the derivative means geometrically. So, here’s some terminology – this line joining two
points is termed a secant line. The line segment between the two points is sometimes called a chord – just
like you might have seen chords and secants for circles, we’re now using the terminology for more general
kinds of curves.

So, what we’re trying to do is understand: as the point w gets closer and close to x, what happens to
the slope of the secant line? Well, the pictures make it clear that what’s happening is that the secant line
is coming closer and closer to a line that just touches the function at the point (x, f(x)) – what is called the
tangent line. So, we get:

Derivative of f at x = Slope of tangent line to graph of f at (x, f(x))
6



1.5. More on the tangent line. I’ll have a lot to say on the tangent line and derivatives – our treatment
of these issues has barely scratched the surface so far. But before proceeding too much, here’s just one very
important point I want to make.

Some of you have done geometry and you’ve seen the concept of tangent lines to circles. You’ll recall that
the tangent line at a point on a circle can be defined in a number of ways: (i) as the line perpendicular to
the line joining the point to the center of the circle (the latter is also called the radial line), and (ii) as the
unique line that intersects the circle at exactly that one point.

Now, it’s obvious that you need to discard definition (i) when thinking about tangent lines to general
curves, such as graphs of functions. That’s because a curve in general has no center. It doesn’t even have
an inside or an outside. So definition (i) doesn’t make sense.

But definition (ii) makes sense, right? Well, it makes sense, but it is wrong. For general curves, it is
wrong. It’s wrong because, first, the tangent line may well intersect the curve at other points, and second,
there may be many non-tangent lines that also intersect the curve at just that one point.

For instance, consider the function f(x) := sinx. We know the graph of this function. Now, our intuition
of the tangent line should say that, at the point x = π/2, the tangent line should be the limit of chords
between π/2 and very close points, and those chords are becoming almost horizontal, so the tangent line
should be horizontal. But – wow! The tangent line intersects the graph of the function at infinitely many
other points. So banish from your mind the idea that the tangent line doesn’t intersect the curve anywhere
else.

And, there are other lines that are very much not tangent lines that intersect the curve at exactly that
one point. For instance, you can make the vertical line through the point (π/2, 1), so that’s the line x = π/2,
and that intersects the curve at exactly one point – but it’s far from the tangent line! And you can make a
lot of other lines – ones that are close to vertical, that intersect the curve at exactly that one point, but are
not tangential.
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So, thinking of the tangent line as the line that intersects the curve at exactly that one point is a flawed
way of thinking about tangent lines. So what’s the right way? Well, one way is to think of it as a limit of
secant lines, which is what we discussed. But if you want a way of thinking that isn’t really limits-based,
think of it as the line best line approximating the curve near the point. It’s the answer to the question: if
we wanted to treat this function as a linear function near the point, what would that linear function look
like? Or, you can go back to the Latin roots and note that tangent comes from touch, so the feeling of just
touching, or just grazing, is the feeling you should have.

1.6. Actual computations of derivatives. Suppose we have f(x) := x2. We want to calculate f ′(2).
How do we do this?

Let’s use the first definition, in terms of w, which gives:

f ′(2) = lim
w→2

w2 − 4
w − 2

= lim
w→2

(w + 2)(w − 2)
w − 2

= lim
w→2

(w + 2) = 4

So, there, we have it, f ′(2) = 4.
Now this is the time to pause and think one level more abstractly. We have a recipe that allows us to

calculate f ′(x) for any specific value of x. But it seems painful to have to do the limit calculation for each
x. So if I now want to find f ′(1), I have to do that calculation again replacing the 2 by 1. So, in order to
save time, let’s try to find f ′(x) for a general value of x.

f ′(x) = lim
w→x

w2 − x2

w − x
= lim

w→x

(w + x)(w − x)
w − x

= lim
w→x

(w + x) = 2x

Just to illustrate, let me use the h→ 0 formulation:

f ′(x) = lim
h→0

(x + h)2 − x2

h
= lim

h→0

h(2x + h)
h

= lim
x→0

(2x + h) = 2x

So good, both of these give the same answer, so we now have a general formula that say that for f(x) = x2,
f ′(x) = 2x.

Note that this says that the function f is differentiable everywhere, which is a pretty strong statement,
and the derivative is itself a continuous function, namely the linear function 2x.

Let’s see what this means graphically. The graph of f(x) := x2 looks like a parabola. It passes through
(0, 0). What the formula tells us is that f ′(0) = 0. Which means that the tangent at 0 is horizontal, which
it surely is. The formula tells us that f ′(1) = 2, so the tangent line at 1 has its y-coordinate rising twice
as fast as its x-coordinate, which is again sort of suggested by the graph. f ′(2) = 4, f ′(3) = 6, and so on.
Which means that the slope of the tangent line increases as x gets larger – again, suggested by the graph
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– it’s getting steeper and steeper. And for x < 0, f ′(x) is negative, which is again pictorially clear because
the slope of the tangent line is negative.

Let’s do one more thing: write down the equation of the tangent line at x = 3. Remember that if a line
has slope m and passes through the point (x0, y0), then the equation of the line is given by:

y − y0 = m(x− x0)
This is called the point-slope form.
So what do we know about the point x = 3? For this point, the value of the function is 9, so one point

that we for sure know is on the tangent line is the point (3, 9). And the tangent line has slope 2(3) = 6. So,
plugging into the point-slope form, we get:

y − 9 = 6(x− 3)
And that’s it – that’s the equation of the line. You can rearrange stuff and rewrite this to get:

6x− y = 9

1.7. Differentiable implies continuous. Important fact: if f is differentiable at the point x, then f is
continuous at the point x. Why? Below is a short proof.

Consider, for h 6= 0:

f(x + h)− f(x) =
f(x + h)− f(x)

h
· h

Now, taking the limit as h→ 0, and using the fact that f is differentiable at x, we get:

lim
h→0

(f(x + h)− f(x)) = lim
h→0

f(x + h)− f(x)
h

· lim
h→0

h

The first limit on the right is f ′(x), and the second limit is 0, so the product is 0, and we get:

lim
h→0

(f(x + h)− f(x)) = 0

Since f(x) is a constant (independent of h) it can be pulled out of the limit, and rearranging, we get:

lim
h→0

f(x + h) = f(x)

Which is precisely what it means to say that f is continuous at x.
What does this mean intuitively? Well, intuitively, for f to be differentiable at x means that the rate of

change at x is finite. But if the function is jumping, or suddenly changing value, or behaving in any of those
odd ways that we saw could occur at discontinuities, then the instantaneous rate of change wouldn’t make
sense. It’s like if you apparate/teleport, you cannot really measure the speed at which you traveled. So, we
can hope for a function to be differentiable at a point only if it’s continuous at the point.

Aside: Differentiability and the ε− δ definition. (Note: This is potentially confusing, so ignore it if it
confuses you). The derivative of f at x = p measures the rate of change of f at c. Suppose the derivative
value is ν = f ′(p). Then, this means that, close to c, the graph looks like a straight line with slope ν and
passing through (p, f(p)).

If it were exactly the straight line, then the strategy for an ε − δ proof would be to pick δ = ε/|ν|. In
practice, since the graph is not exactly a straight line, we need to pick a slightly different (usually smaller) δ
to work. Recall that for f a quadratic function ax2 + bx+ c, we chose δ = min{1, ε/(|a|+ |2ap+ b|)}. In this
case, ν = 2ap + b. However, to make the proof go through, we need to pad an extra |a| in the denominator,
and that extra padding is because the function isn’t quite linear.

1.8. Derivatives of linear and constant functions. You can just check this – we’ll deal more with this
in the next section:

(1) The derivative of a constant function is zero everywhere.
(2) The derivative of a linear function f(x) := ax + b is everywhere equal to a.
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1.9. Handling piecewise definitions. Let’s think about functions defined piecewise. In other words, let
us think about functions that change definition, i.e., that are governed by different definitions on different
parts of the domain. How do we calculate the derivative of such a function?

The first rule to remember is that the derivative of a function at a point depends only on what happens
at the point and very close to the point. So, if the point is contained in an open interval where one definition
rules, then we can just differentiate the function using that definition. On the other hand, if the point is
surrounded, very closely, by points where the function takes different definitions, we need to handle all these
definitions.

Let’s begin with the signum function. Define f(x) = x/|x| for x 6= 0, and define f(0) = 0. So f is constant
at −1 for x < 0, f(0) = 0, and f is constant at 1 for x > 0.

So,what can we say about the derivative of f? Well, think about what’s happening for x = −3, say.
Around x = −3, the function is constant at −1. Yes, it’s going to change its value far in the future, but
that doesn’t affect the derivative. The derivative is a local measurement. So we simply need to calculate the
derivative of the function that’s constant-valued to −1, for x = −3. You can apply the definition and check
that the derivative is 0, which makes sense, because constant functions are unchanging.

Similarly, at the point x = 4, the function is constant at 1 around the point, so the derivative is against
0.

What about the point x = 0? Here, you can see that the function isn’t continuous, because it’s jumping,
so the derivative is not defined. So the derivative of f is the function that is 0 for all x 6= 0, and it isn’t
defined at x = 0.

Let’s look at another function, this time g(x) := |x|. For x < 0, this function is g(x) = −x, and for x > 0,
this function is g(x) = x. The crucial thing to note here is that g is continuous at 0, so both definitions –
the definition g(x) = x and the definition g(x) = −x apply at x = 0.
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For x < 0, for instance, x = −3, we can treat the function as g(x) = −x, and differentiate this function,
What we’ll get is that g′(x) = −1 for x < 0. And for x > 0, we can use g(x) = x, so the derivative, which
we can again calculate, is g′(x) = 1 for all x > 0.

But what about x = 0? The function is continuous at x = 0, so we cannot do the cop-out that we did last
time. So we need to think in terms of left and right: calculate the left-hand derivative and the right-hand
derivative.

Now, the important idea here is that since the definition g(x) = −x also applies at x = 0, the formula
for g′ that we calculated for −x also applies to the left-hand derivative at 0. So the left-hand derivative at
x = 0 is −1, which again you can see from the graph. And the right-hand derivative at x = 0 is +1, because
the g(x) = x definition also applies at x = 0.

So, the function g′ is −1 for x negative, and +1 for x positive, but it isn’t defined for x = 0. However,
the left-hand derivative at 0 is defined – it’s −1. And so is the right-hand derivative – it’s +1.

So, the upshot is: Suppose a function f has a definition f1 to the left of c and a definition f2 to the right
of c, and both definitions give everywhere differentiable functions on all real numbers:

(1) f is differentiable at all points other than c.
(2) If f1(c) = f2(c) and these agree with f(c), then f is continuous at c.
(3) If f is continuous from the left at c, the left-hand derivative at c equals the value of the derivative

f ′1 evaluated at c.
(4) If f is continuous from the right at c, the right-hand derivative at c equals the value of the derivative

f ′2 evaluated at c.
(5) In particular, if f is continuous at c, and f ′1(c) = f ′2(c), then f is differentiable at c.

Here is an example of a picture where the function is continuous but changes direction, so the one-sided
derivatives exist but are not equal:

1.10. Three additional examples.

f(x) := { x2, x ≤ 0
x3, x > 0

Here f1(x) = x2 and f2(x) = x3. Both piece functions are differentiable everywhere. Note that f is
continuous at 0, since f1(0) = f2(0) = 0. The left hand derivative at 0 is f ′1(x) = 2x evaluated at 0, giving
0. The right hand derivative at 0 is f ′2(x) = 3x2 evaluated at 0, giving 0. Since both one-sided derivatives
agree, f is differentiable at 0 and f ′(0) = 0.

Now consider the example:
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f(x) := { x2 + 1, x ≤ 0
x3, x > 0

This function is not continuous at 0 because the two functions x2 +1 and x3 do not agree at 0. Note that
since 0 is included in the left definition, f is left continuous at 0, and f(0) = 1. We can also calculate the
left hand derivative: it is 2x evaluated at 0, which is 2 · 0 = 0.

However, since the function is not continuous from the right at 0, we cannot calculate the right hand
derivative by plugging in the derivative of x3 at 0. In fact, we should not feel the need to do so, because the
function is not right continuous at 0, so there cannot be a right hand derivative.

Finally, consider the example:

f(x) := { x, x ≤ 0
x3, x > 0

This function is continuous at 0, and f(0) = 0. The left hand derivative at 0 is 1 and the right hand
derivative is 3(0)2 = 0. Thus, the function is not differentiable at 0, though it has one-sided derivatives.

1.11. Existence of tangent and existence of derivative. Our discussion basically pointed to the fact
that, for a function f defined around a point x, if the derivative of f at x exists, then there exists a tangent
to the graph of f at the point (x, f(x)) and the slope of that tangent line is f ′(x). There are a few subtleties
related to this:

(1) If both the left-hand derivative and the right-hand derivative at a point are defined, but are not
equal, then the left-hand derivative is the tangent to the graph on the left side and the right-hand
derivative is the tangent to the graph on the right side. There is no single tangent to the whole
graph at the point.

(2) In some cases, the tangent to the curve exists and is vertical. If the tangent exists and is vertical,
then the derivative does not exist. In fact, a vertical tangent is the only situation where the tangent
exists but the derivative does not exist.

An example of this is the function f(x) = x1/3 at the point x = 0. See Page 110 of the book for a more
detailed discussion of this. We will get back to this function (and the general notion of vertical tangent) in
far more gory detail in the near future.

2. Rules for computing derivatives

2.1. Quick recap. Before proceeding further, let’s recall the definition of the derivative.
If f is a function defined around a point x, we define:

f ′(x) := lim
h→0

f(x + h)− f(x)
h

= lim
w→x

f(w)− f(x)
w − x

The left-hand derivative is defined as:

f ′l (x) := lim
h→0−

f(x + h)− f(x)
h

= lim
w→x−

f(w)− f(x)
w − x

The right-hand derivative is defined as:

f ′r(x) := lim
h→0+

f(x + h)− f(x)
h

= lim
w→x+

f(w)− f(x)
w − x

(The subscripts l and r are not standard notation, but are used for simplicity here).
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2.2. Differentiating constant and linear functions. Suppose a function f is constant with constant
value k. We want to show that the derivative of f is zero everywhere. Let’s calculate the derivative of f .

f ′(x) = lim
h→0

f(x + h)− f(x)
h

= lim
h→0

k − k

h
= lim

h→0
0 = 0

So the derivative of a constant function is zero. And this makes sense because the derivative is the rate
of change of the function. And a constant function is unchanging, so its derivative is zero.

Let’s look at the derivative of a linear function f(x) := ax + b. Let’s calculate the derivative:

f ′(x) = lim
h→0

f(x + h)− f(x)
h

= lim
h→0

a(x + h) + b− (ax + b)
h

= lim
h→0

ah

h
= a

So, for the function f(x) = ax + b, the derivative is a constant function whose value is equal to a. And
this makes sense, because the graph of f(x) = ax + b is a straight line with slope a. And now remember
that the derivative of a function equals the slope of the tangent line. But now, what’s the tangent line to a
straight line at a point? It is the line itself. So, the tangent line is the line itself, and its slope is a, which is
what our calculations also show.

Remember that the tangent line is the best linear approximation to the curve, so if the curve is already a
straight line, it coincides with the tangent line to it through any point.

2.3. The sum rule for derivatives. Suppose f and g are functions, both defined around a point x. The
sum rule for derivatives states that if both f and g are differentiable at the point x, then f + g is also
differentiable at the point x, and (f + g)′(x) = f ′(x) + g′(x). In words, the sum of the derivatives equals the
derivative of the sum. This is the first part of Theorem 3.2.3. The proof is given below. It involves very
simple manipulation. (You’re not expected to know this proof, but this should be sort of manipulation that
you eventually are comfortable reading and understanding).

So, what we have is:

(1) f ′(x) = lim
h→0

f(x + h)− f(x)
h

and:

(2) g′(x) = lim
h→0

g(x + h)− g(x)
h

Now, we also have:

(f + g)′(x) = lim
h→0

(f + g)(x + h)− (f + g)(x)
h

= lim
h→0

f(x + h) + g(x + h)− f(x)− g(x)
h

Simplifying further, we get:

(f + g)′(x) = lim
h→0

(f(x + h)− f(x)) + (g(x + h)− g(x))
h

= lim
h→0

[(
f(x + h)− f(x)

h

)
+

(
g(x + h)− g(x)

h

)]
Now, using the fact that the limit of the sum equals the sum of the limits, we can split the limit on the

right to get:

(3) (f + g)′(x) = lim
h→0

f(x + h)− f(x)
h

+ lim
h→0

g(x + h)− g(x)
h

Combining (1), (2), and (3), we obtain that (f + g)′(x) = f ′(x) + g′(x).
On a similar note, if α is a constant, then the derivative of αf is α times the derivative of f . In other

words:

(αf)′(x) = lim
h→0

αf(x + h)− αf(x)
h

= lim
h→0

α(f(x + h)− f(x))
h

= αf ′(x)
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2.4. Global application of these rules. The rule for sums and scalar multiples apply at each point. In
other words, if both f and g are differentiable at a point x, then f +g is differentiable at x and the derivative
of f + g is the sum of the derivatives of f and g at the point x.

An easy corollary of this is that if f and g are everywhere differentiable functions, then f + g is also
everywhere differentiable, and (f + g)′ = f ′+ g′. In other words, what I’ve just done is applied the previous
result at every point. And, so, the function (f + g)′ is the sum of the functions f ′ and g′.

In words, the derivative of the sum is the sum of the derivatives.

2.5. Rule for difference. In a similar way that we handled sums and scalar multiples, we can handle
differences, so we get (f − g)′ = f ′ − g′.

In words, the derivative of the difference is the difference of the derivatives.

2.6. Rule for product. People less seasoned in calculus than you may now expect the rule for products to
be: the derivative of the product is the product of the derivatives. But this is wrong.

The rule for the product is that, if f and g are differentiable at a point x, then the product f · g is also
differentiable at the point x, and:

(f · g)′(x) = f(x) · g′(x) + f ′(x) · g(x)
We won’t bother with a proof of the product rule, but it’s an important result that you should know. In

particular, again, when f and g are defined everywhere, we have:

(f · g)′ = f ′ · g + f · g′

2.7. Rule for reciprocals and quotients. If f is differentiable at a point x, and f(x) 6= 0, then the
function (1/f) is also differentiable at the point x:(

1
f

)′
(x) =

−f ′(x)
(f(x))2

If, at a point x, f and g are both differentiable, and g(x) 6= 0, then:(
f

g

)′
(x) =

g(x)f ′(x)− f(x)g′(x)
(g(x))2

2.8. Formula for differentiating a power. Here’s the formula for differentiating a power function: if
f(x) = xn, then f ′(x) = nxn−1. You can actually prove this formula for positive integer values of n using
induction and the product rule (I’ve got a proof in the addendum at the end of this section). So, for instance,
the derivative of x2 is 2x. The derivative of x5 is 5x4. Basically, what you do is to take the thing in the
exponent and pull it down as a coefficient and subtract 1 from it.

Okay, now there are plenty of things I want you to note here. First, note that the n in the exponent really
should be a constant. So, for instance, we cannot use this rule to differentiate the function xx, because in
this case, the thing in the exponent is itself dependent on x.

The second thing you should note is that you are already familiar with some cases of this formula. For
instance, consider the constant function x0 = 1. The derivative of this is the function 0x0−1 = 0x−1 = 0.
Also, for the function x1 = x, the derivative is 1, which is again something we saw. And for the function x2,
the derivative is 2x1 = 2x, which is what we saw last time.

The third thing you should think about is the scope and applicability of this formula. I just said that when
n is a positive integer, we can show that for f(x) = xn, we have f ′(x) = nxn−1. But in fact, this formula
works not just for positive integers, but for all integers, and not just for all integers, even for non-integer
exponents:

(1) If f(x) = xn, x 6= 0, where n is a negative integer, f ′(x) = nxn−1.
(2) If f(x) = xr, where r is some real number, and x > 0, we have f ′(x) = rxr−1. We will study later

what xr means for arbitrary real r and positive real x.
(3) The above formula also applies for x < 0 where r is a rational number with denominator an odd

integer (that’s necessary to make sense of xr).
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2.9. Computing the derivative of a polynomial. To differentiate a polynomial, what we do is use the
rule for differentiating powers, and the rules for sums and scalar multiples.

For instance, to differentiate the polynomial f(x) := x3 + 2x2 + 5x + 7, what we do is differentiate each
of the pieces. The derivative of the piece x3 is 3x2. The derivative of the piece 2x2 is 4x, the derivative of
the piece 5x is 5, and the derivative of the piece 7 is 0. So, the derivative is f ′(x) = 3x2 + 4x + 5.

Now, the way you do this is you write the polynomial, and with a bit of practice, which you did in high
school, you can differentiate each individual piece mentally. And so you keep writing the derivatives one by
one.

In particular, polynomial functions are everywhere differentiable, and the derivative of a polynomial
function is another polynomial. Moreover, the degree of the derivative is one less than the degree of the
original polynomial.

2.10. Computing the derivative of a rational function. What if we have a rational function Q(x) =
f(x)/g(x)?

Essentially, we use the formula for differentiating a quotient, which gives us:

Q′(x) =
g(x)f ′(x)− f(x)g′(x)

(g(x))2

Since both f and g are polynomials, we know how to differentiate them, so we are effectively done.
For instance, consider Q(x) = x2/(x3 − 1). In this case:

Q′(x) =
(x3 − 1)(2x)− x2(3x2)

(x3 − 1)2
=
−2x− x4

(x3 − 1)2

Note another important thing – since the denominator of Q′ is the square of the denominator of Q, the
points where Q′ is not defined are the same as the point where Q is not defined. Thus, a rational function
is differentiable wherever it is defined.

Addendum: Proof by induction that the derivative of xn is nxn−1. We prove this for n ≥ 1.
Base case for induction: Here, f(x) = x1 = x. We have:

f ′(x) = lim
h→0

(x + h)− x

h
= lim

h→0
1 = 1 = 1x0

Thus, for n = 1, we have f ′(x) = nxn−1 where f(x) = xn.
Induction step: Suppose the result is true for n = k. In other words, suppose it is true that for f(x) := xk,

we have f ′(x) = kxk−1. We want to show that for g(x) := xk+1, we have g′(x) = (k + 1)xk.
Using the product rule for g(x) = xf(x), we have:

g′(x) = 1f(x) + xf ′(x)

Substitutng the expression for f ′(x) from the assumption that the statement is true for k, we get:

g′(x) = 1(xk) + x(kxk−1) = xk = kxk = (k + 1)xk

which is what we need to prove. This completes the induction step, and hence completes the proof.

3. Graphical interpretation of derivatives

3.1. Some review of coordinate geometry. So far, our attention to coordinate geometry has been
minimal: we discussed how to get the equation of the tangent line to the graph of a function at a point using
the point-slope form, wherein we determine the point possibly through function evaluation and we determine
the slope by computing the derivative of the function at the point.

Now, recall that the slope of a line equals tan θ, where θ is the angle that the line makes with the x-axis,
measured counter-clockwise from the x-axis. What are the kind of lines whose slope is not defined? These
are the vertical lines, in which case θ = π/2. Notice that since the slope is not defined, we see that if a
function is differentiable at the point, then the tangent line cannot be vertical.
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The slope of a line equals tan θ, where θ is the angle that that line makes with the x-axis. And for some
of you, thinking of that angle might be geometrically more useful than thinking of the slope as a number.
We will study this in more detail a little later when we study the graphing of functions more intensely.

Caveat: Axes need to be scaled the same way for geometry to work right. When you use a
graphing software such as Mathematica, or a graphing calculator for functions, you’ll often find that the
software or calculator automatically chooses different scalings for the two axes, so as to make the picture
of the graph fit in nicely. If the axes are scaled differently, the geometry described here does not work. In
particular, the derivative is no longer equal to tan θ where θ is the angle with the horizontal; instead, we
have to scale the derivative by the appropriate ratio between the scaling of the axes. Similarly, the angles of
intersection between curves change and the notion of orthogonality is messed up.

However, the notion of tangency of curves discussed below does not get messed up.

3.2. Perpendicular lines, angles between lines. Two lines are said to be orthogonal or perpendicular
if the angle between them is π/2. This means that if one of them makes an angle θ1 with the x-axis and
the other makes an angle θ2 with the x-axis (both angles measured counter-clockwise from the x-axis) then
|θ1 − θ2| = π/2. How do we characterize this in terms of slopes?

Well, we need to take a short detour here and calculate the formula for tan(A−B). Recall that sin(A−B) =
sinA cos B− cos A sinB and cos(A−B) = cos A cos B + sinA sinB. When we take the quotient of these, we
get:

tan(A−B) =
sinA cos B − cos A sinB

cos A cos B + sinA sinB

If both tanA and tan B are defined, this simplifies to:

tan(A−B) =
tanA− tanB

1 + tanA tanB

Now, what would happen if |A− B| is π/2? In this case, tan(A− B) should be undefined, which means
that the denominator on the right side should be 0, which means that tan A tanB = −1.

Translating back to the language of slopes, we obtain that two lines (neither of which is vertical or
horizontal) are perpendicular if the product of their slopes is −1.

More generally, given two lines with slopes m1 and m2, we have the following formula for tan α where α
is the angle of intersection:

tanα =
∣∣∣∣ m1 −m2

1 + m1m2

∣∣∣∣
The absolute value means that we are not bothered about the direction (or orientation or sense) in which

we are measuring the angle (if we care about the direction, we have to specify angle from which line to which
line, measured clockwise or counter-clockwise).

3.3. Normal lines. Given a point on a curve, the normal line to the curve at that point is the line perpen-
dicular to the tangent line to the curve at that point. This normal is the same normal you may have seen in
normal force and other related ideas in classical mechanics.

Now, we know how to calculate the equation of the normal line, if we know the value of the derivative.
let me spell this out with two cases:

(1) If the derivative of a function at x = a is 0, then the tangent line is y = f(a) and the normal line is
x = a.

(2) If the derivative of a function at x = a is m 6= 0, then the tangent line is y − f(a) = m(x − a) and
the normal line is y− f(a) = (−1/m)(x− a). We got the slope of the normal line using the fact that
the product of slopes of two perpendicular lines is −1.

Here is a picture of the usual case where the derivative is nonzero:
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3.4. Angle of intersection of curves. Consider the graphs of the functions f(x) = x and g(x) = x2.
These curves intersect at two points: (0, 0) and (1, 1). We would like to find the angles of intersection
between the curves at these two points.

The angle of intersection between two curves at a given point is the angle between the tangent lines to
the curve at that point. In particular, if α is this angle of intersection, then for α 6= π/2, we have:

tanα =
∣∣∣∣ f ′(a)− g′(a)
1 + f ′(a)g′(a)

∣∣∣∣

If f ′(a)g′(a) = −1, then α = π/2.
So let’s calculate tanα at these two points. At the point (0, 0), we have f ′(0) = 1, g′(0) = 0. Plugging

intot the formula, we obtain tan α = 1, so α = π/4.
What about the point (1, 1)? At this point, f ′(1) = 1 and g′(1) = 2. Thus, we obtain that tanα = 1/3.

So, α is the angle whose tangent is 1/3. We don’t know any particular angle α satisfying this condition, but
by the intermediate-value theorem, we can see that α is somewhere between 0 and π/6. In the 153 course,
we will look at inverse trigonometric functions, and when we do that, we will write α as arctan(1/3). For
now, you can just leave your answer as tanα = 1/3.

3.5. Curves that are tangent and orthogonal at specific points. Here are some pictures of tangent
pairs of curves:
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We say that two curves are tangent at a point if the angle of intersection between the curves at that point
is 0. In other words, the curves share a tangent line. You can think of it as the two curves touching each
other. [Draw pictures to explain]. Note that it could happen that they are kissing each other outward, as in
this picture, or one is crossing the other, as in this picture.

If two curves are tangent at the point, that means that, to the first order of approximation, the curves
behave very similarly close to that point. In other words, the best linear approximation to both curves cloose
to that point is the same.

We say that two curves are perpendicular or orthogonal at a particular point of intersection if their tangent
lines are perpendicular. If two curves are orthogonal at every point of intersection, we say that they are
orthogonal curves. You’ll see more on orthogonal curves in a homework problem.

Here is a graphical illustation of orthogonal curves:
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3.6. Geometric addendum: finding tangents and normals from other points. Given the graph of
a function y = f(x), we can ask, given a point (x0, y0) in the plane (not necessarily on the graph) what
tangents to the graph pass through this point. Similarly, we can ask what normals to the graph pass through
this point.

Here’s the general approach to these questions.
For the tangent line, we assume, say, that the tangent line is tangent at some point (x1, y1). The equation

of the tangent line is then:

y − y1 = f ′(x1)(x− x1)
Since y1 = f(x1), we get:

y − f(x1) = f ′(x1)(x− x1)
Further, we know that the tangent line passes through (x0, y0), so we plugging in, we get:

y0 − f(x1) = f ′(x1)(x0 − x1)
We now have an equation in the variable x1. We solve for x1. Note that when f is some specific function,

both f(x1) and f ′(x1) are expressions in x1 that we can simplify when solving the equation.
In some cases, we may not be able to solve the equation precisely, but can guarantee the existence of a

solution and find a narrow interval containing this solution by using the intermediate value theorem.
A similar approach works for normal lines. We’ll revisit this in the near future.

4. Leibniz notation

4.1. The d/dx notation. Recall what we have done so far: we defined a notation of derivative, and then
introduced a notation, the prime notation, for the derivative. So, if f is a function, the derivative function
is denoted f ′. And this is the function you obtain by differentiating f .

We now talk of a somewhat different notation that has its own advantages. And to understand the
motivation behind this definition, we need to go back to how we think of derivative as the rate of change.

Suppose we have a function f . And, for simplicity, let’s denote y = f(x). So, what we want to do is study
how, as the value of x changes, the value of f(x), which is y, changes. So if for a point x1 we have f(x1) = y1

and for a point x2 we have f(x2) = y2, we want to measure the difference between the y-values (which is
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y2 − y1) and compare it with the difference between the x-values. And the quotient of the difference in the
y-values and the difference in the x-values is what we called the difference quotient:

Difference quotient =
y2 − y1

x2 − x1

And, this is also the slope of the line joining (x1, y1) and (x2, y2).
Now, there’s a slightly different way of writing this, which is typically used when the values of x are fairly

close, and that is using the letter ∆. And that says:

Difference quotient =
∆y

∆x
Here ∆y means “change in” y and ∆x means “change in” x. So, the difference quotient is the ratio of the

change in y to the change in x.
The limiting value of this quotient, as the x-values converge and the y-values converge, is called dy/dx.

This is read “dee y dee x” or “dee y by dee x” and is also called the derivative of y with respect to x.
So, if y = f(x), the function f ′ can also be written as dy/dx.

4.2. Derivative as a function and derivative as a point. The function f ′ can be evaluated at any
point; so for instance, we write f ′(3) to evaluate the derivative at 3. With the dy/dx notation, things are a
little different. To evaluate dy/dx at a particular point, we write something like:

dy

dx
|x=3

The bar followed by the x = 3 means “evaluated at 3”. In particular, it is not correct to write dy/d3.
That doesn’t make sense at all.

4.3. Dependent and independent variable. The Leibniz d/dx notation has a number of advantages over
the prime notation. The first advantage is that instead of thinking in terms of functions, we now think in
terms of two variables – x and y, and the relation between them. The fact that y can be expressed as a
function of x becomes less relevant.

This is important because calculus is meant to address questions like: “When you change x, what happens
to y?” The explicit functional form of y in terms of x is only of secondary interest – what matters is that
we have these two variables measuring the two quantities x and y and we want to determine how changes in
the variable x influence changes in the variable y. We sometimes say that x is the independent variable and
y is the dependent variable – because y depends on x via some (may be known, may be unknown) functional
dependence.

4.4. d/dx as an operator and using it. The great thing about the d/dx notation is that you don’t need
to introduce separate letters to name your function. For instance, we can write:

d

dx
(x2 + 3x + 4)

No need to define f(x) := x2 + 3x + 4 and ask for f ′(x) – we can directly write this stuff down.
This not only makes it easier to write down the first step, it also makes it easier to write and apply the

rules for differentiation.
(1) The sum rule becomes d(u + v)/dx = du/dx + dv/dx.
(2) The product rules becomes d(uv)/dx = u(dv/dx) + v(du/dx).
(3) The scalar multiplication rule becomes d(αu)/dx = α(du/dx).
(4) The difference rule becomes d(u− v)/dx = du/dx− dv/dx.
(5) The quotient rule becomes d((u/v))/dx = (v(du/dx)− u(dv/dx))/v2.

The great thing about this notation is that we can write down partially calculated derivatives in interme-
diate steps, without naming new functions each time we break up the original function. For instance:

d

dx

(
x3 +

√
x + 2

x2 + 1/(x + 1)

)
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We can write down the first step:[
(x2 + 1/(x + 1))

d

dx
(x3 +

√
x + 2)− (x3 +

√
x + 2)

d

dx
(x2 + 1/(x + 1))

]
/(x2 + 1/(x + 1))2

and then simplify the individual parts. If using the function notation, we would have to give names to
both the numerator and denominator functions, but here we don’t have to.

You should think of d/dx as an operator – the differentiation operator – that you can apply to expressions
for functions.

5. Higher derivatives

5.1. Higher derivatives and the multiple prime notation. So far, we defined the derivative of a
function at the point as the rate of change of the function at that point. The second derivative is the rate
of change of the rate of change. In other words, the second derivative measures the rate at which the rate
of change is changing. Or, it measures the rate at which the graph of the function is turning at the point,
because a change in the derivative means a change in the direction of the graph.

So, this is just to remind you that higher derivatives are useful. Now, let’s discuss the notation for higher
derivatives.

In the prime notation, the second derivative of f is denoted f ′′. In other words, f ′′(x) is the derivative
of the function f ′ evaluated at x. The third derivative is denoted f ′′′, the fourth derivative is denoted f ′′′′.
To simplify notation, we have the shorthand f (n) for the nth derivative, where by nth derivative we mean
the function obtained after applying the differentiation operator n times. So the first derivative f ′ can also
be written as f (1), the second derivative f ′′ can also be written as f (2), and so on. Typically, though, for
derivatives up to the third derivative, we put the primes instead of the parenthesis (n) notation.

Well, how do we compute these higher derivatives? Differentiate one step at a time. So, for instance, if
f(x) = x3 − 2x2 + 3, then f ′(x) = 3x2 − 4x, so f ′′(x) = 6x− 4, and f ′′′(x) = 6. The fourth derivative of f
is zero. And all higher derivatives are zero.

Similarly, if f(x) = 1/x, then f ′(x) = −1/x2, f ′′(x) = 2/x3, f ′′′(x) = −6/x4, and so on and so forth.
The first derivative measures the rate of change of the function, or the slope of the tangent line. The

second derivative measures the rate at which the tangent line is turning, or the speed with which the graph
is turning. The third derivative measures the rate at which this rate of turning itself is changing.

So, for the function f(x) = x2, the first derivative is f ′(x) = 2x, and the second derivative is 2. So, the
first derivative is an increasing function, and the second derivative is constant, so the graph of the function
is turning at a constant rate.

(The detailed discussion of the role of derivatives in terms of whether a function is increasing or decreasing
will be carried out later – for now, you should focus on the computational aspects of derivatives).

5.2. Higher derivatives in the Leibniz notation. The Leibniz notation for higher derivatives is a bit
awkward if you haven’t seen it before.

Recall that the first derivative of y with respect to x is denoted dy/dx. Note that what I just called
first derivative is what I have so far been calling derivative – when I just say derivative without an ordinal
qualifier, I mean first derivative. So the first derivative is dy/dx. How would we write the second derivative?

Well, the way of thinking about it is that the first derivative is obtained by applying the d/dx operator to
y, so the second derivative is obtained by applying the d/dx operator to dy/dx. So the second derivative is:

d

dx

(
dy

dx

)
And that’s perfectly correct, but it is long to write, so we can write this in shorthand as:

d2y

(dx)2

Basically, we are (only notationally, not mathematically) multiplying the ds on top and multiplying the
dx’s down below. There’s a further simplification we do with the notation – we omit the parentheses in the
denominator, to get:
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d2y

dx2

This is typically read out as “dee two y dee x two” though some people read it as “dee square y dee x
square”.

And more generally, the nth derivative is given by the shorthand:

dny

dxn

Note that the dxn in the denominator should be thought of as (dx)n – not as d(xn), even though you
omit parentheses.

This is typically read out as “dee n y dee x n”.
So for instance:

d2

dx2

(
x3 + x + 1

)
=

d

dx

(
d(x3 + x + 1)

dx

)
=

d

dx

(
3x2 + 1

)
= 6x

6. Chain rule

6.1. The chain rule: statement and application to polynomials. Now, the rules we have seen so far
allow us to basically differentiate any rational function any number of times without ever using the limit
definition – simply by applying the formulas.

Okay, how would you differentiate h(x) := (x2 + 1)5? Well, in order to apply the formulas, you need to
expand this out first, then use the termwise differentiation strategy. But taking the fifth power of x2 + 1 is
a lot of work. So, we want a strategy to differentiate this without expanding.

This strategy is called the chain rule.
The chain rule states that if y is a function of v and v is a function of x, then:

dy

dx
=

dy

dv

dv

dx
The intuition here may be that we can cancel the dvs – however, that’s not a rigorous reason since these

are not really ratios but limits. But that’s definitely one way to remember the result.
In this case, we have y = (x2 + 1)5. What v can we choose? Well, let’s try v = x2 + 1. Then y = v5. So

we have:

dy

dx
=

d(v5)
dv

d(x2 + 1)
dx

Now, the first term on the right is 5v4 and the second term on the right is 2x, so the answer is:

dy

dx
= (5v4)(2x)

And v = x2 + 1, so plugging that back in, we get:

dy

dx
= 5(x2 + 1)4(2x) = 10x(x2 + 1)4

6.2. Introspection: function composition. What we really did was we had the function h(x) = (x2+1)5,
and we decomposed h into two parts, the function g that sends x to x2 + 1, and the function f that sends v
to v5. What we did was to write h = f ◦ g, for two functions f and g that we can handle easily in terms of
differentiation. Then, we used the chain rule to differentiate h, using what we know about differentiating f
and g.

In functional notation, what the chain rule says equationally is that:

(f ◦ g)′(x) = f ′(g(x))g′(x)
Going back to the y, v terminology, we have v = g(x), and y = f(v). And in that notation, dy/dv =

f ′(v) = f ′(g(x)), while dv/du = g′(x). Which is precisely what we have here.
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Notice that we apply f ′ not to x but to the value g(x), which is what we called v, i.e., the value you get
after applying one function but before applying the other one. But g′ we apply to x.

Another way of writing this is:

d

dx
[f(g(x))] = f ′(g(x)))g′(x)

This is a mix of the Leibniz notation and the prime notation.

6.3. Precise statement of the chain rule. What we said above is the correct equational expression for
the chain rule, but let’s just make the precise statement now with the assumptions.

If f, g are functions such that g is differentiable at x and f is differentiable at g(x), then f◦g is differentiable
at x and:

(f ◦ g)′(x) = f ′(g(x))g′(x)
Again, this statement is at a point, but if the differentiability assumptions hold globally, then the expression

above holds globally as well, in which case we get:

(f ◦ g)′ = (f ′ ◦ g) · g′

The · there denotes the pointwise product of functions.

7. Additional facts and subtleties

Most of these are things you will discover with experience as you do homework problems, but they’re
mentioned here just for handy reference. This is something you might want to read more carefully when you
review these notes at a later stage.

7.1. One-sided versions. The situation with one-sided versions of the results for derivatives is very similar
to that with limits and continuity. For all pointwise combination results, one-sided versions hold. Conceptu-
ally, each result for derivatives depends (in its proof) on the corresponding result for limits. Since the result
on limits has a one-sided version, so does the corresponding result on derivatives. In words:

(1) The left-hand derivative of the sum is the sum of the left-hand derivatives.
(2) The right-hand derivative of the sum is the sum of the right-hand derivatives.
(3) The left-hand derivative of a scalar multiple is the same scalar multiple of the left-hand derivative.
(4) The right-hand derivative of a scalar multiple is the same scalar multiple of the right-hand derivative.
(5) The analogue of the product rule for the left-hand derivative can be obtained if we replace the

derivative in all three places in the product rule with left-hand derivative. Similarly for right-hand
derivative.

(6) Similar to the above for quotient rule.
But – you saw it coming – the naive one-sided analogue of the rule for composites fails, for the same reason

as the one-sided analogue of the composition results for limits and continuity fail. We need the additional
condition that the direction of approach of the intermediate expression is the same as that of the original
domain variable.

7.2. The derivative as a function: is it continuous, differentiable? Suppose f is a function. For
simplicity, we’ll assume the domain of f to be a (possibly infinite) open interval I in R. We’re taking an
open interval to avoid one-sided issues at boundary points. We say that f is differentiable on its domain if
f ′ exists everywhere on I. If f is differentiable, what can we say about the properties of f ′?

Your first instinct may be to say that if f ′ is defined on an open interval, then it should be continuous on
that interval. Indeed, in all the simple examples one can think of, the existence of the derivative on an open
interval implies continuity of the derivative. However, this is not true as a general principle. Some points of
note:

(1) It is possible for the derivative to not be a continuous function. An example is the function g(x) :=

{ x2 sin(1/x), x 6= 0
0, x = 0 . This function is differentiable everywhere, but the derivative at 0 is not the

limit of the derivative near zero.
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(2) However, the derivative of a continuous function, if defined everywhere on an open interval, satisfies
the intermediate value property. This is a fairly hard and not very intuitive theorem called Darboux’s
theorem, and you might see it if you take up the 203-204-205 analysis sequence. In this respect, it
behaves in a manner very similar to a continuous function. In particular, any discontinuities of the
derivative must be of the oscillatory kind on both the left and right side. In particular, if a one-sided
limit exists for the derivative, it equals the value of the derivative.

The proof of (2) is well beyond the scope of this course. You don’t even need to know the precise statement,
and I’m including it here just in order to place the examples you’ve seen in context.

A fun discussion of the fact that derivatives need not be continuous but satisfy the intermediate value
property and the implications of this fact can be found here:

http://www.thebigquestions.com/2010/09/16/speed-math/

7.3. Higher differentiability. We say that a function f on an open interval I is k times differentiable on
I if the kth derivative of f exists at all points of I. We say that f is k times continuously differentiable on
I if the kth derivative of f exists and is continuous on I.

Recall that differentiable implies continuous. Thus, if a function is twice differentiable, i.e., the first
derivative is differentiable function, this implies that the first derivative is a continuous function. We thus
see a chain of implications:

Continuous⇐ Differentiable⇐ Continuously differentiable⇐ Twice differentiable⇐ Twice continuously differentiable← . . .

In general:

k times differentiable⇐ k times continuously differentiable⇐ k + 1 times differentiable
We say that a function f is infinitely differentiable if it is k times differentiable for all k. The above

implications show us that this is equivalent to saying that f is k times continuously differentiable for all k.
A k times continuously differentiable function is sometimes also called a Ck-function. (When k = 0, we get

continuous functions, so continuous functions are sometimes called C0-functions). An infinitely differentiable
function is sometimes also called a C∞-function. We will not use the term in this course, though we will
revisit it in 153 when studying power series, and you’ll probably see it if you do more mathematics courses.

All these containments are strict. Examples along the lines of the xn sin(1/x) constructions can be used
to show this.

7.4. Carrying out higher differentiation. Suppose functions f and g are both k times differentiable.
Are there rules to find the kth derivatives of f + g, f − g, f · g, etc. directly in terms of the kth derivatives
of f and g respectively? For the sum, difference, and scalar multiples, the rules are simple:

(f + g)(k) = f (k) + g(k)

(f − g)(k) = f (k) − g(k)

(αf)(k) = αf (k)

Later on, we’ll see that this bunch of rules can be expressed more briefly by saying that the operation of
differentiating k times is a linear operator.

For products, the rule is more complicated. In fact, the general rule is somewhat like the binomial theorem.
The situation with composites is also tricky. We will revisit both products and composites a little later. For
now, all we care about are existence facts:

• If f and g are k times differentiable on an open I, so are f + g, f − g, and f · g. If g is not zero
anywhere on I, then f/g is also k times differentiable on I.

• Ditto to the above, replacing “k times differentiable” by “k times continuously differentiable.”
• If f and g are functions such that g is k times differentiable on an open interval I and f is k times

differentiable on an open interval J containing the range of g, then f ◦ g is k times differentiable on
I.

• Ditto to the above, replacing “k times differentable” by “k times continuously differentiable”.
24
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7.5. Families of functions closed under differentiation. Suppose F is a collection of functions that is
closed under addition, subtraction and scalar multiplication. We say in this case that F is a vector space of
functions. If, in addition, F contains constant functions and is closed under multiplication, we say that F is
an algebra of functions. (You aren’t responsible for learning this terminology, but it really helps make clear
what we’re going to be talking about shortly).

The vector space generated by a bunch of functions B is basically the set of all functions we can get
starting from B by the processes of addition and scalar multiplication. If B generates a vector space F of
functions, then we say that B is a generating set for F .

For instance, if we consider all the functions 1, x, x2, . . . , xn, . . . , these generate the vector space of all
polynomials: we can get to all polynomials by the processes of addition and scalar multiplication starting
with these functions.

The algebra generated by a bunch B of functions (which we assume includes constant functions) is the
collection of functions A that we obtain by starting with the functions in B and the processes of addition,
subtraction, multiplication, and scalar multiplication.

For instance, the algebra generated by the identity function (the function xmapstox) is the algebra of all
polynomial functions.

The point of all this is as follows:
(1) Suppose B is a bunch of functions and F is the vector space generated by B. Then, if every function in
B is differentiable and the derivative of the function is in F , then every function in F is differentiable
and has derivative in F . As a corollary, every function in F is infinitely differentiable and all its
derivatives lie in F .

(2) Suppose B is a bunch of functions and A is the algebra generated by B. Then, if every function in B is
differentiable and the derivative of the function is in A, then every function in A is differentiable and
the derivative of the function is in A. As a corollary, every function in A is infinitely differentiable
and all its derivatives lie in A.

Let’s illustrate point (2) (which is in some sense the more powerful statement) with the example of
polynomial functions. The single function f(x) := x generates the algebra of all polynomial functions. The
derivative of f is the function 1, which is also in the algebra of all polynomial functions. What point (2)
is saying is that just this simple fact allows us to see that the derivative of any polynomial function is a
polynomial function, and that polynomial functions are infinitely differentiable.

We’ll see a similar trigonometric example in the near future. We’ll also explore this way of thinking more
as the occasion arises.

Another way of thinking of this is that each time we obtain a formula to differentiate a bunch of functions,
we have a technique to differentiate all functions in the algebra generated by that bunch of functions. While
this may seem unremarkable, the analogous statement is not true at all for other kinds of operators such as
indefinite integration.
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TRIGONOMETRIC LIMITS AND DERIVATIVES

MATH 152, SECTION 55 (VIPUL NAIK)

Corresponding material in the book: Section 3.6.
Difficulty level: Easy to moderate, particularly if you remember corresponding stuff from AP level

calculus.
Covered in class?: Yes, but not necessarily all examples.
What students should definitely get: The key trigonometric limits. The key differentiation formulas

for trigonometric functions.
What students should eventually get: Techniques for computing limits and derivatives involving

composites of trigonometric functions with each other and with polynomial and rational functions.

Executive summary

Words ...
(1) The following three important limits form the foundation of trigonometric limits: limx→0(sinx)/x =

1, limx→0(tanx)/x = 1, and limx→0(1− cos x)/x2 = 1/2.
(2) The derivative of sin is cos, the derivative of cos is − sin. The derivative of tan is sec2, the derivative

of cot is − csc2, the derivative of sec is sec · tan, and the derivative of csc is − csc · cot.
(3) The second derivative of any function of the form x 7→ a sinx+b cos x is the negative of that function,

and the fourth derivative is the original function.
Actions ...
(1) Substitution is one trick that we use for trigonometric limits: we translate limx→c to limh→0 where

x = c + h.
(2) Multiplicative splitting, chaining, and stripping are some further tricks that we often use.
(3) For derivatives of functions that involve composites of trigonometric and polynomial functions, we

have to use the chain rule as well as rules for sums, differences, products, and quotients when
simplifying expressions.

1. Some critical trigonometric limits

Sinning by degrees is costly. For all applications of trigonometry to limits and calculus, all angles are
expressed in radians. The radian measurement is the natural measurement for an angle.

1.1. The sinc function. There are many other minor matters related to trigonometric functions that we
need to address, but for now, let’s get back and focus on one very important function – the so-called sinc
function. This function is defined as (sinx)/x for x 6= 0.

Now, the function isn’t defined at x = 0, and it isn’t immediately clear what the limit is. Because when
we just try to substitute the value at 0, we get a 0/0 form. So it seems we need some angel to come and
help us out.

Anyway, here’s what the angel tells us:

lim
x→0

sinx

x
= 1

1.2. Demystifying our angel. For an acute angle θ, sin θ is the vertical height (the y-coordinate of the
point we get after rotating counter-clockwise by an angle of θ from (1, 0) along the unit circle, while θ is the
arc length. You can see, from this picture, that the arc length θ is greater than sin θ. That’s because sin θ
falls straight down while the arc moves both horizontally and vertically. However, and this is the crucial
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point – as θ gets smaller and smaller, you see that the arc length and the vertical line seem to get closer and
closer. And this suggests that, perhaps, as θ tends to zero, sin θ/θ tends to 1.

Now, this is hardly a proof, because two numbers getting really close does not necessarily mean that their
ratio tends to 1. But it is suggestive. So, with this suggestivity, let’s believe that the limit, as x tends to 0,
of the fraction sinx/x is 1.

1.3. The substitution idea. We know that limx→0(sinx)/x = 1. More generally, it is true that if f is
continuous at c and f(c) = 0, then as x → c, we have:

lim
x→c

sin(f(x))
f(x)

= 1

For instance:

lim
x→0

sin(x2)
x2

= 1

Similarly:

lim
x→0

sin(2x)
2x

= 1

and:

lim
x→0

sin(x/2)
x/2

= 1

On the other hand, if we consider the limit:

lim
x→0

sin(x + (π/3))
x + (π/3)

This limit is not 1 – the inner expression does not go to 0 as x goes to 0.

1.4. Chaining limit computations. Let’s consider the computation:

lim
x→0

sin(sinx)
x

This is a special case of a more general limit computation that you have seen in Question 2 of the October
4 quiz. Let’s first do this specific example, and then return to how it relates to that question.

For the specific example, we note that the limit in question involves a composite function. For such
problems, we typically chain the limit by multiplying and dividing by the inner function. We get:

lim
x→0

sin(sinx)
sinx

sinx

x
We now use that the limit of products is the product of limits, and obtain:

lim
x→0

sin(sinx)
sinx

lim
x→0

sinx

x
The second limit is clearly 1. The first limit is also 1, because it is of the form [sin(f(x))]/f(x) where

f(x) → 0.
Now, the quiz question was that if limx→0 g(x)/x = A 6= 0 with g continuous, then what is limx→0 g(g(x))/x?
The same chaining idea applies:

lim
x→0

g(g(x))
x

= lim
x→0

g(g(x))
g(x)

g(x)
x

We again split the limit multiplicatively, and argue that both component limits are A. For one of them,
we have to argue that as x → 0, g(x) → 0 – an argument that we make in a somewhat indirect fashion. Go
back to the quiz solution for more.

2



1.5. Easier chainings. Here are some easier examples:

lim
x→0

sin(mx)
x

= m

Here, we chain via mx.

lim
x→0

sin(mxn)
xn

= m

where n is positive.

1.6. The (1− cos x)/x2 limit. We now show another fundamentally important trigonometric limit:

lim
x→0

1− cos x

x2
=

1
2

We first show how to obtain this limit by multiplying both numerator and denominator by 1 + cos x. We
get:

lim
x→0

1− cos2 x

x2(1 + cos x)

The 1 + cos x in the denominator pulls out by evaluation, and we get:

1
2

lim
x→0

1− cos2 x

x2

We now use 1− cos2 x = sin2 x and get:

1
2

lim
x→0

sin2 x

x2

This becomes:

1
2

lim
x→0

(
sinx

x

)2

The limit of the square is the square of the limit (basically, a special case of the fact that the limit of the
product is the product of the limit, so the inner limit is 1, and we get a 1/2.

We can also obtain this limit using a double angle formula as described below:
The idea here is to use the identity we saw last time, which was that cos 2A = 1−2 sin2 A. So 1−cos 2A =

2 sin2 A. Here A = x/2, so we get:

lim
x→0

2 sin2(x/2)
x2

We can pull the 2 out, and we get sin2(x/2)/x2 inside. Now, the thing with calculating these limits is
that we only know how to calculate the limit of the form sin θ/θ, and here, θ = x/2. So, we rewrite the
denominator as 4(x/2)2, and we pull out the 4, so we get:

1
2

lim
x→0

(
sin(x/2)
(x/2)

)2

Now, using the limit of product equals product of limits meme, we get:

1
2

lim
x→0

sin(x/2)
(x/2)

lim
x→0

sin(x/2)
(x/2)

Now, in both cases, we have x → 0, so x/2 → 0, so both limits are 1, and hence, our final answer is 1/2.
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The tanx/x limit. Let’s now calculate the limit:

lim
x→0

tanx

x
What we do is to write tanx = sinx/ cos x:

lim
x→0

sinx

x cos x
We split this as a product:

lim
x→0

1
cos x

lim
x→0

sinx

x
Both limits are 1, so the overall limit is 1.

1.7. Corollaries. We can now state some easy corollaries of the above results:

lim
x→0

1− cos(mx)
x2

=
m2

2
We obtain by chaining via (mx)2.
Similarly:

lim
x→0

tan(mx)
x

= m

1.8. Substitution that involves translation. There is a substitution of variables trick that we can use
for computing limits. When we were computing limits for rational functions, we never really needed that
trick, primarily because we knew how to handle rational functions anyway. But this trick comes in useful
for trigonometric functions.

The trick is:

lim
x→c

f(x) = lim
h→0

f(c + h)

Similarly:

lim
x→c+

f(x) = lim
h→0+

f(c + h)

and:

lim
x→c−

f(x) = lim
h→0−

f(c + h) = lim
h→0+

f(c− h)

Why is this useful for trigonometric functions? Because for trigonometric functions, the only nontrivial
limit that we know is the one I just told you: limx→0

sin x
x = 1. So, we need to basically use this for any

nontrivial limit that we need to compute. For instance, consider the limit:

lim
x→π/4

sinx− (1/
√

2)
x− π/4

Now, we want to change the thing that’s limiting to h, so we rewrite this as:

lim
h→0

sin(π/4 + h)− (1/
√

2)
h

We simplify the numerator using the sin(A + B) formula, which we know is sinA cos B + cos A sinB, and
we get:

lim
h→0

(1/
√

2)(sin(h) + cos(h)− 1)
h

We take out the 1/
√

2 factor and now try to split the inner limit additively:
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1√
2

(
lim
h→0

sinh

h
− lim

h→0

1− cos h

h

)
The first limit is 1. For the second limit, it can be written as limh→0 h · limh→0(1−cos h)/h2 = 0(1/2) = 0.

So the second limit is 0. Overall, the limit is 1/
√

2.
We’ll see this same calculation a little later when we try to calculate the derivative of the sin function.

2. Stripping: a sneak peek

We will cover this somewhat delicate operation a little later in 153, when students are more mature (in
terms of having seen more kinds of functions) and can handle the issue with the requisite care. But some of
you may be equipped to use this approach to compute trigonometric limits more intuitively and rapidly now.
[NOTE: To my knowledge, this particular intuitive approach to stripping is not found in any high school or
college calculus text and can be considered my own invention, though most people who compute limits on a
regular basis do this all the time.]

To motivate stripping, let us look at a fancy example:

lim
x→0

sin(tan(sinx))
x

This is a composite of three functions, so if we want to chain it, we will chain it as follows:

lim
x→0

sin(tan(sinx))
tan(sinx)

tan(sinx)
sinx

sinx

x

We now split the limit as a product, and we get:

lim
x→0

sin(tan(sinx))
tan(sinx)

lim
x→0

tan(sinx)
sinx

lim
x→0

sinx

x

Now, we argue that each of the inner limits is 1. The final limit is clearly 1. The middle limit is 1 because
the inner function sin x goes to 0. The left most limit is 1 because the inner function tan(sinx) goes to 0.
Thus, the product is 1× 1× 1 which is 1.

If you are convinced, you can further convince yourself that the same principle applies to a much more
convoluted composite:

lim
x→0

sin(sin(tan(sin(tan(tanx)))))
x

However, writing that thing out takes loads of time. Wouldn’t it be nice if we could just strip off those
sins and tans? In fact, we can do that.

The key stripping rule is this: in a multiplicative situation (i.e. there is no addition or subtraction
happening), if we see something like sin(f(x)) or tan(f(x)), and f(x) → 0 in the relevant limit, then we can
strip off the sin or tan. In this sense, both sin and tan are strippable functions. A function g is strippable if
limx→0 g(x)/x = 1.

The reason we can strip off the sin from sin(f(x)) is that we can multiply and divide by f(x), just as we
did in the above examples.

Stripping can be viewed as a special case of the l’Hopital rule as well, but it’s a much quicker shortcut in
the cases where it works.

Thus, in the above examples, we could just have stripped off the sins and tans all the way through.
Here’s another example:

lim
x→0

sin(2 tan(3x))
x

As x → 0, 3x → 0, so 2 tan 3x → 0. Thus, we can strip off the outer sin. We can then strip off the inner
tan as well, since its input 3x goes to 0. We are thus left with:

lim
x→0

2(3x)
x
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Cancel the x and get a 6. We could also do this problem by chaining or the l’Hopital rule, but stripping
is quicker and perhaps more intuitive.

Here’s yet another example:

lim
x→0

sin(x sin(sinx))
x2

As x → 0, x sin(sinx) → 0, so we can strip off the outermost sin and get:

lim
x→0

x sin(sinx)
x2

We cancel a factor of x and get:

lim
x→0

sin(sinx)
x

Two quick sin strips and we get x/x, which becomes 1.
Yet another example:

lim
x→0

sin(ax) tan(bx)
x

where a and b are constants. Since this is a multiplicative situation, and ax → 0 and bx → 0, we can strip
the sin and tan, and get:

lim
x→0

(ax)(bx)
x

This limit becomes 0, because there is a x2 in the numerator and a x in the denominator, and cancellation
of one factor still leaves a x in the numerator.

Here is yet another example:

lim
x→0

sin2(ax)
sin2(bx)

where a, b are nonzero constants. We can pull the square out of the whole expression, strip the sins in
both numerator and denominator, and end up with a2/b2.

When you can’t strip. The kind of situations where we are not allowed to strip are where the expression
sin(f(x)) is not just multiplied but is being added to or subtracted from something else. For instance, in
order to calculate the limit:

lim
x→0

x− sinx

x3

stripping off the sin would be a sin. The intuition behind what is wrong with this will have to wait till
next quarter.

What about 1 − cos(f(x))? If we see something like 1 − cos(f(x)) with f(x) → 0 in the limit, then we
know that it “looks like” f(x)2/2 and we can replace it by f(x)2/2. This can be thought of as a sophisticated
version of stripping. For instance:

lim
x→0

(1− cos(5x2))
x4

Here f(x) = 5x2, so the numerator is like (5x2)2/2, and the limit just becomes 25/2.
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3. Differentiating the trigonometric functions

3.1. Differentiation formulas. The differentiation formulas are as follows:

sin′ = cos
cos′ = − sin
tan′ = sec2

sec′ = sec · tan
cot′ = − csc2

csc′ = − csc · cot

We can obtain all these just from the differentiation formulas for sin and cos, using the quotient rule:

d

dx
[sinx] = cos x

and:

d

dx
[cos x] = sin x

In fact, the differentiation formula for cos can be obtained from that of sin using the chain rule as follows:

d

dx
[cos x] =

d

dx
[sin((π/2)− x)] = − cos((π/2)− x) = − sinx

So, in order to obtain all these formulas, all we need to do is obtain the differentiation formula for sin.
The derivation of this formula is given below. Essentially, it uses the fact that limh→0(sinh)/h = 1:

lim
h→0

sin(x + h)− sinx

h

= lim
h→0

sinx cos h + cos x sinh− sinx

h

=sinx lim
h→0

cos h− 1
h

+ cos x lim
h→0

sinh

h
=sinx · 0 + cos x · 1
= cos x

The fact that (cos h − 1)/h → 0 can be deduced by multipled by 1 + cos h and simplifying. Basically,
cos h− 1 goes to 0 at the rate of h2, and the denominator is only h.

3.2. Graphical interpretation of these derivatives.
The fascinating thing about the sin function is that its derivative looks just like the function – except it’s

shifted over by π/2. Let’s see what this means graphically.
At the point x = 0, the derivative is cos 0 = 1. This means that the tangent is the line y = x. And indeed,

close to the point 0, the sine graph looks a lot like the line y = x. However, there’s an added subtlety that
you may not be able to appreciate right now but will be able to later. The graph of the sine function on
the right of the point 0 falls slightly on the lower side of the y = x line, and the graph to the left of 0 falls
slightly on the upper side of the line. In other words, the curve actually passes from one side of the tangent
line at 0 to the other side.

This is a very unusual situation, because most of the time that you think of tangent lines, the graph of
the function close to the point lies entirely on one side of the tangent line. But here, the graph is crossing
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the tangent line. These kinds of points are called points of inflection, and believe it or not, for a twice
differentiable function, a point of inflection is a point where the second derivative is zero (though there could
be points where the second derivative is zero that are not points of inflection – funny things could happen
with the third derivative). We’ll talk more about inflections later.

Anyway, so at zero, the derivative is 1. What happens as x increases from 0 to π/2? The cosine function
keeps decreasing form 1 to 0. But since the cosine function is positive, the tangent to the sine function is
still upward-sloping, so the sine function is increasing, but the slope of the tangent line is falling. Finally at
x = π/2, the sine function reaches its peak of 1, and its derivative, the cosine function, becomes 0.

So here’s the beautiful things you see, and for which you now have a powerful explanation based on the
derivative:

(1) The points where the sine function attains its maxima and minima are precisely the points where
the cosine function is 0. Namely, these points are odd multiples of π/2. The points where the
cosine function attains its maxima and minima are precisely the points where the sine function is 0.
Namely, these points are the multiples of π.

(2) The regions where the sine function is increasing (respectively, decreasing) are the same as the regions
where the cosine function is positive (respectively, negative). The regions where the cosine function
is increasing (respectively, decreasing) are the same as the regions where the sine function is negative
(respectively, positive).

3.3. We’ve done it! What I’ve given you is the complete toolkit with which you can calcuate any derivative
that involves a mix of trigonometric, polynomial, and rational functions. Let’s consider an example: sin(x2).

How do you think of this function? To evaluate this function at a particular value of x, what you first do is
calculate x2, and then apply the sin function to that. So, you’re doing two operations in sequence, whereby,
you’re feeding the output of one operation as the input of the other. So what you’re doing is essentially
function composition.

Which brings us back to the chain rule. Remember the way the chain rule works? We set v = x2, first
differentiate the function with respect to v, and then multiply by dv/dx. So, we get that the derivative is
(cos(x2)) · 2x.

For composites of trigonometric functions and polynomial, the chain rule is indispensable – if you don’t
want to use the chain rule, there’s no way of calculating the derivative without actually calculating it using
the limit definition. In the case of polynomials and rational functions, the chain rule was a convenience. Now
it’s a necessity.

3.4. Periodicity of the sequence of derivative functions. The derivative of sin is cos. The derivative
of cos is − sin. The derivative of − sin is − cos. The derivative of − cos is sin.

In other words, the sin function equals its fourth derivative. If we consider the sequence of derivative
functions of sin, this sequence has a period of four. (We’ll formally define sequence and period of a sequence
in 153, but you know what this means). Thus, for instance, the 101th derivative of sin is the same as the
first derivative (because the remainder on dividing 101 by 4 is 1) and is thus cos.

[Aside: This is significant in many ways. For instance, when we study antidifferentiation (indefinite
integration) we’ll notice that the above basically tells us that we can keep taking antiderivatives of sin or
cos and still remain sin or cos (up to a plus or minus). This is significant when, for instance, we study
integration by parts. There, we will choose sin or cos as the part to repeatedly integrate precisely because
repeated integration does not increase the complexity of the function.]

3.5. Second derivative same with a minus sign. Also note that for the sin function, the second de-
rivative is the negative of the function. This is also true for the cos function. It is also true of all linear
combinations of sin and cos, i.e., all functions of the form x 7→ a sinx + b cos x where a, b ∈ R.1 For any
function f of this form, f ′′(x) = −f(x).

What’s so special about this fact? This is the reason why trigonometric functions, specifically linear combi-
nations of sin and cos, arise in nature. What happens is that some basic physical/biological/chemical/ecological
law or constraint forces the solution function we have to satisfy the equation f ′′(x) = −ω2f(x) or something

1Formally, this is the vector space of functions generated by sin and cos.
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like that. Now, functions of the above form (with appropriate scaling) pop up naturally. More on this when
we study differential equations.
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DERIVATIVE AS RATE OF CHANGE, IMPLICIT DERIVATIVES: ROUGH
APPROXIMATION OF LECTURE

MATH 152, SECTION 55 (VIPUL NAIK)

Corresponding material in the book: Sections 3.4 and 3.7
Difficulty level: Easy to moderate, since most of these should be familiar to you and there are no new

subtleties being added here.
What students should definitely get: The notion of derivative as a rate of change, handling word

problems that ask for rates of change. The main idea and procedure of implicit differentiation.
What students should hopefully get: The distinction between conceptual and computational, the

significance of implicit differentiation, understanding the relative rates concept and its intuitive relationship
with the chain rule.

Executive summary

Derivative as rate of change. Words...
(1) The derivative of A with respect to B is the rate of change of A with respect to B. Thus, to determine

rates of change of various quantities, we can use the techniques of differentiation.
(2) If there are three linked quantities that are changing together (e.g., different measures for a circle

such as radius, diameter, circumference, area) then we can use the chain rule.
Most of the actions in this case are not more than a direct application of the words.

Implicit differentiation. Words...
(1) Suppose there is a curve in the plane, whose equation cannot be manipulated easily to write one

variable in terms of the other. We can use the technique of implicit differentiation to determine the
derivative, and hence the slope of the tangent line, at different points to the curve.

(2) For a curve where neither variable is expressible as a function of the other, the notion of derivative
still makes sense as long as locally, we can get y as a function of x. For instance, for the circle
x2 + y2 = 1, y is not a function of x, but if we restrict attention to the part of the circle above the
x-axis, then on this restricted region, y is a function of x.

(3) In some cases, even when one variable is expressible as a function of the other, implicit differentiation
is easier to handle as it may involve fewer messy squareroot symbols.

Actions ...
(1) To determine the derivative using implicit differentiation, write down the equations of both curves,

differentiate both sides with respect to x, and simplify using all the differentiation rules, to get
everything in terms of x, y, and dy/dx. Isolate the dy/dx term in terms of x and y, and compute it
at whatever point is needed.

(2) This procedure can be iterated to compute higher order derivatives at specific points on the curve
where the curve locally looks like a function.

1. Conceptual versus computational

Back in the first lecture, I defined the concept of function. A function is some kind of machine that
takes an input and gives an output. And the important thing about functions is that equal inputs give equal
outputs.

The interesting thing about functions is that this way of thinking about functions is a sort of black box,
hands-off approach. If you think of the function as this box machine which sucks in an input from one side
and spits out the output on the other side, we don’t really care how the black box works. It doesn’t matter
what is happening inside, as long as we are guaranteed that equal inputs give equal outputs.
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With this abstract concept of function, we defined the notion of limit, which was the ε− δ definition, and
this definition didn’t really depend on how you compute f . Then we defined the notion of derivative, which
is a particular kind of limit, namely, the limit of the different quotient. And in all this, how to compute
things wasn’t the focus. And simply thinking of things conceptually, we got a lot of insights. We understood
what limits mean and we understood what derivatives mean, and we saw the qualitative significance.

Complementing this conceptual understanding of the concepts of functions, limits, continuity, derivatives,
and differentiation, there is the computational aspect. The computational aspect tells us how, for functions
with specific functional forms or expressions, we can calculate limits and derivatives. And in order to do this,
we use general theorems (limits for sums, differences, ...; derivatives for sums, differences ...) and specific
tricks and formulas.

What you should remember, though, is that just because you cannot compute something, doesn’t mean that
it cannot be understood qualitatively. So, if you encounter a function and there’s no formula to differentiate
it, that’s not the same as saying that it isn’t differentiable. Computation is one tool among many to get a
conceptual understanding of ideas.

This is really important because a lot of the places where you’ll see these mathematical ideas applied are
cases where the functions involved are inherently unknown or unknowable – there aren’t explicit expressions
for them. Still, we want to talk about the broad qualitative properties – is the function continuous? Is it
differentiable? Is it twice differentiable? Is it increasing or decreasing, is it oscillating? Often, we can answer
these qualitative questions without having explicit expressions for the functions.

2. Derivative as a rate of change

Recall that if f is a function, the derivative f ′ is the rate of change of the output of f relative to the
input. Or, if we are thinking of two quantities x and y, where y is functionally dependent on x, then the
rate of change of y with respect to x is dy/dx. That is the limit of the difference quotient ∆y/∆x.

This means that if we want to ask the question: if the rate of change of x is this much, what is the rate
of change of y, we should think of derivatives.

For instance, we know that the area of a circle of radius r is πr2. We may ask the question: what is the
rate of change of the area with respect to the radius? This is the derivative of πr2 with respect to r, and
that turns out to be 2πr.

For instance, if r = 5, the rate of change of the area with respect to the radius is 10π.
Now, suppose the radius is changing at the rate of 5m/hr. That means that every hour, the radius

increases by 5m. What is the rate of increase of the area with respect to time, when the radius is 100m.
Well, here we have three quantities, the area A, the radius r, and the time t. r is a function of t, and
dr/dt = 5m/hr and dA/dr = 2πr. So by the chain rule, we have dA/dt = (dA/dr)(dr/dt = (2πr)(5m/hr).
And since r = 100m, we get 1000πm2/hr.

3. Implicit differentiation

3.1. Introduction. So far, when trying to differentiate one quantity with respect to another quantity, what
we do is to write one as a function of the other, and then differentiate that function. This is all very good
when we have an explicit expression for the function. Sometimes, however, we do not really have a functional
expression for one quantity in terms of the other, but we do know of a relation between the two quantities.

Let’s think of this a little differently. One importance of differentiation is that it allows us to find tangent
lines to curves that arise as the graph of a function. This has some geometric significance, if we are trying
to understand the geometry of a curve that arises as the graph of a function. But what about the curves
that don’t arise from explicit functions? Or, where we don’t have explicit functional expressions?

For instance, let’s look at the circle of radius 1 centered at the origin. This is given by the equation
x2 + y2 = 1. Note that in this case, y is not a function of x, because for many values of x, there are two
values of y. For instance, for x = 0, we have y = 1 and y = −1. For x = 1/2, we have y =

√
3/2 and

y = −
√

3/2. So, y is not a function of x.
However, locally y is still a function of x, in the following sense. If you just restrict yourself to the part

above the x-axis, then you do get y as a function of x. This is the function y :=
√

1− x2 for −1 ≤ x ≤ 1. If
we restrict ourselves to the part below the x-axis, we consider the function y := −

√
1− x2 for −1 ≤ x ≤ 1.
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Now, how do we calculate dy/dx? Well, it depends on whether we are interested in the part above the
x-axis or in the part below the x-axis. For the part above the x-axis, we have the function

√
1− x2, and we

get that the derivative is:

d(
√

1− x2)
dx

=
d(
√

1− x2)
d(1− x2)

d(1− x2)
dx

=
1

2
√

1− x2
· (2x) =

−x√
1− x2

If we are interested in the lower side, we get x/
√

1− x2.
Now, in this case, we have to split into two cases, and do a painful calculation involving differentiating a

square root via the chain rule.
Here’s another way of handling this differentiation, that does not involve a messy square root.
We start with the original expression:

x2 + y2 = 1

This is an identity, which means that it’s true for every point on the curve. When we have an equation
that is identically true, it is legitimate to differentiate both sides and still get an identity. Differentiating
both sides with respect to x, we get:

d(x2)
dx

+
d(y2)
dx

= 0

Simplifying and using the chain rule, we get:

2x + 2y
dy

dx
= 0

We thus get:

dy

dx
=
−x

y

Notice that with this method, we get −x/y, which works in both cases. When y =
√

1− x2, we get
−x/

√
1− x2, and when y = −

√
1− x2, we get x/

√
1− x2. The method that we used is called implicit

differentiation.
So the idea of implicit differentiation is that, instead of writing y = f(x) and then differentiating both

sides, we differentiate the messy mixed-up expression on both sides with respect to x. Next, we use the
various rules (sum rule, difference rule, product rule, quotient rule) to keep splitting things up into smaller
and smaller pieces, and in the final analysis, we get everything in terms of x, y, and dy/dx. Then, we try to
separate dy/dx completely to one side.

Let’s look at another example:

sin(x + y) = xy

So, what we do is differentiate both sides:

d(sin(x + y))
dx

=
d(xy)
dx

Now, how would we handle something like sin(x + y)? It is something in terms of x + y, so we use the
chain rule on the left side, thinking of v = x + y as the intermediate function:

d(sin(x + y))
d(x + y)

d(x + y)
dx

= x
dy

dx
+ y

dx

dx

This simplifies to:

cos(x + y)
[
1 +

dy

dx

]
= x

dy

dx
+ y

Opening up the parentheses, we get:
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cos(x + y) + cos(x + y)
dy

dx
= x

dy

dx
+ y

Now, we move stuff together to one side, to get:

(cos(x + y)− x)
dy

dx
= y − cos(x + y)

And we now isolate dy/dx:

dy

dx
=

y − cos(x + y)
cos(x + y)− x

3.2. Implicit differentiation: understood better. So, in implicit differentiation, what we’re doing is,
instead of thinking of an explicit functional form, we are using a relation that is true for every point in the
curve, then differentiating both sides. Next, we keep trying to simplify the expression we have using the
various rules until we land up with something that just involves x, y, and dy/dx. Till this point, it’s usually
smooth sailing. Now, it may be the case that we can isolate dy/dx and hence get an expression for it in
terms of x and y. If that’s the case, then we’re in good shape.

Note the following key difference: when y is an explicit function of x, then the expression we get for dy/dx
only involves x and does not have the letter y appearing in it. However, in the implicit case, the expression
we get for dy/dx involves both x and y together.

3.3. Higher derivatives using implicit differentiation. We can also use implicit differentiation to com-
pute second derivatives and higher derivatives. Here’s what we do. First, we get the expression for dy/dx.
In other words, we write:

dy

dx
= Some expression in terms of x and y

We now differentiate both sides with respect to x. Again, this differentiation is valid because the above
relation holds as an identity, and not just as an isolated point.

The left side becomes d2y/dx2. For the right side, we again use the same idea: we split as much as possible
using the sum rule, product rule, etc. For the expressions that purely involve x, we differentiate the usual
way. For the expressions that purely involve y, we differentiate with respect to y and multiply by dy/dx.
The upshot is that we get:

d2y

dx2
= Some expression in terms of x, y, and

dy

dx
Now, we plug back the earlier expression for dy/dx in terms of x and y into this expression, and get an

expression for d2y/dx2.
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ROLLE’S, MEAN-VALUE, INCREASE/DECREASE, EXTREME VALUES

MATH 152, SECTION 55 (VIPUL NAIK)

Corresponding material in the book: Sections 4.1-4.4.
Difficulty level: Moderate to hard. While most of these are ideas you have probably seen at the AP

level or equivalent, our treatment of the topics will be somewhat more thorough. Also, this is extemely
important as preparation for the process of graphing a function, which in turn is very important as a general
tool for understanding all kinds of functions.

What students should definitely get: The statements of Rolle’s theorem and the mean value theorem.
The relationship between the signs of one-sided derivatives and whether the function value at a point is greater
or less than the function value to its immediate left or right. The notions of local maximum, local minimum,
point of increase, point of decrease. The definition of critical point. The first derivative test and second
derivative test. The procedure for determining absolute maxima and minima.

What students should hopefully get: The distinction between being positive and being nonnegative;
similarly, the distinction between being negative and being nonpositive. In particular, the fact that even when
difference quotients are strictly positive, the derivative obtained as the limit may be zero. The conceptual
distinction between local extreme values (a local condition) and absolute extreme values.

Executive summary

Words...

(1) If a function f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b),
and f(a) = f(b) = 0, then there exists c ∈ (a, b) such that f ′(c) = 0. This is called Rolle’s theorem
and is a consequence of the extreme-value theorem.

(2) If a function f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b),
then there exists c ∈ (a, b) such that f ′(c) is the difference quotient (f(b) − f(a))/(b − a). This
result is called the mean-value theorem. Geometrically, it says that for any chord, there is a parallel
tangent. Another way of thinking about it is that every difference quotient is equal to a derivative
at some intermediate point.

(3) If f is a function and c is a point such that f(c) ≥ f(x) for x to the immediate left of c, we say
that c is a local maximum from the left. In this case, the left-hand derivative of f at c, if it exists,
is greater than or equal to zero. This is because the difference quotient is greater than or equal to
zero. Local maximum from the right implies that the right-hand derivative (if it exists) is ≤ 0, local
minimum from the left implies that the left-hand derivative (if it exists) is ≤ 0, and local minimum
from the right implies that the right-hand derivative (if it exists) is ≥ 0. Even in the case of strict
local maxima and minima, we still need to retain the equality sign on the derivative because it occurs
as a limit and a limit of positive numbers can still be zero.

(4) If c is a point where f attains a local maximum (i.e., f(c) ≥ f(x) for all x close enough to c on both
sides), then f ′(c), if it exists, is equal to zero. Similarly for local minimum.

(5) A critical point for a function is a point where either the function is not differentiable or the derivative
is zero. All local maxima and local minima must occur at critical points.

(6) If f ′(x) > 0 for all x in the open interval (a, b), f is increasing on (a, b). Further, if f is one-sided
continuous at the endpoint a and/or the endpoint b, then f is increasing on the interval including
that endpoint. Similarly, f ′(x) < 0 implies f decreasing.

(7) If f ′(x) > 0 everywhere except possibly at some isolated points (so that they don’t cluster around
any point) where f is still continuous, then f is increasing everywhere.

(8) If f ′(x) = 0 on an open interval, f is constant on that interval, and it takes the same constant value
at an endpoint where it’s continuous from the appropriate side.
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(9) If f and g are two functions that are both continuous on an interval I and have the same derivative
on the interior of I, then f − g is a constant function.

(10) There is a first derivative test which provides a sufficient (though not necessary) condition for a
local extreme value: it says that if the first derivative is nonnegative (respectively positive) on the
immediate left of a critical point, that gives a strict local maximum (respectively local maximum)
from the left. If the first derivative is negative on the immediate left, we get a strict local minimum
from the left. If the first derivative is positive on the immediate right, we get a strict local minimum
from the right, and if it is negative on the immediate right, we get a strict local maximum from the
right.

The first derivative test is similar to the corresponding “one-sided derivative” test, but is somewhat
stronger for a variety of situations because in many cases, one-sided derivatives are zero, which is
inconclusive, whereas the first derivative test fails us more rarely.

(11) The second derivative test states that if f has a critical point c where it is twice differentiable, then
f ′′(c) > 0 implies that f has a local minimum at c, and f ′′(c) < 0 implies that f has a local maximum
at c.

(12) There are also higher derivative tests that work for critical points c where f ′(c) = 0. These work as
follows: we look for the smallest k such that f (k)(c) 6= 0. If this k is even, then f has a local extreme
value at c, and the nature (max versus min) depends on the sign of f (k)(c) (max if negative, min if
positive). If k is odd, then we have what we’ll see soon is a point of inflection.

(13) To determine absolute maxima/minima, the candidates are: points of discontinuity, boundary points
of domain (whether included in domain or outside the domain; if the latter, then limiting), critical
points (derivative zero or undefined), and limiting cases at ±∞.

(14) To determine absolute maxima and absolute minima, find all candidates (discontinuity, endpoints,
limiting cases, boundary points), evaluate at each, and compare. Note that any absolute maximum
must arise as a local or endpoint maximum. However, instead of first determining which critical
points give local maxima by the derivative tests, we can straightaway compute values everywhere
and compare, if our interest is solely in finding the absolute maximum and minimum.

Actions... (think of examples that you’ve done)

(1) Rolle’s theorem, along with the more sophisticated formulations involving increasing/decreasing,
tell us that there is an intimate relationship between the zeros of a function and the zeros of its
derivative. Specifically, between any two zeros of the function, there is a zero of its derivative. Thus,
if a function has r zeros, the derivative has at least r − 1 zeros, with at least one zero between any
two consecutive zeros of f .

(2) The more sophisticated version tells us that between any two zeros of a differentiable function, the
function must attain a local maximum or local minimum. So, if the function is increasing everywhere
or decreasing everywhere, there is at most one zero.

(3) The mean-value theorem allows us to use bounds on the derivative of a function to bound the overall
variation, or change, in the function. This is because if the derivative cannot exceed some value,
then the difference quotient also cannot exceed that value, which means that the function cannot
change too quickly on average.

(4) To determine regions where a function is increasing and decreasing, we find the derivative and
determine regions where the derivative is positive, zero, and negative.

(5) To determine all the local maxima and local minima of a function, find all the critical points. To
find the critical points, solve f ′ = 0 and also consider, as possible candidates, all the points where
the function changes definition. Although a point where the function changes definition need not be
a critical point, it is a very likely candidate.

1. Rolle’s theorem and mean-value theorem

1.1. Rolle’s theorem. Rolle’s theorem states that if f is a function defined on a closed interval [a, b] such
that the following three conditions hold: (i) f is continuous on [a, b] (ii) f is differentiable on the open
interval (a, b) (iii) f(a) = f(b) = 0, then there exists c ∈ (a, b) such that f ′(c) = 0. (It turns out that the
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condition that both f(a) and f(b) be equal to zero is not necessary – we can weaken it to simply requiring
that f(a) equal f(b). The version stated in the book requires them both to be zero).

Now, I’ll give you a rough sketch of the proof of Rolle’s theorem. One possibility is that f is a constant
function, in which case f ′(c) = 0 for all c ∈ (a, b). If f is nonconstant, then by the extreme-value theorem, f
is either bigger than zero somewhere or smaller than zero somewhere. Assume the former – a similar proof
applies for the latter assumption. In this case, f attains a maximum at some point in (a, b). At this point,
if we try to calculate the left-hand derivative, we see that the left-hand derivative is greater than or equal to
zero. And if we try to calculate the right-hand derivative, we see that the right-hand derivative is less than
or equal to zero. Because the function is differentiable at the point, both the left-hand derivative and the
right-hand derivative must be equal, which means that they must both be equal to zero.

Now, the crucial point here is understanding why the derivative of a function should be zero at a point
where it is maximum. And this is very important for some of the stuff we’ll be seeing in the near future. So
let’s understand more clearly what’s happening.

At a point c where f attains a maximum, two things are happening. First, f(c) ≥ f(x) for x < c. This
forces that the difference quotient that we form between c and x for any x < c is nonnegative. Hence, the
left-hand derivative is the limit of some expression that is nonnegative, so the left-hand derivative itself is
nonnegative.

What happens to the right-hand derivative? Well, in this case, f(x) − f(c) is zero or negative, but
x− c is positive, so the difference quotient is nonpositive, so the limit, which is the right-hand derivative, is
nonpositive. So we have a situation where the left-hand derivative is nonnegative (i.e., positive or zero) and
the right-hand derivative is nonpositive (i.e., negative or zero).

Now, for the function to be differentiable, the left-hand derivative and right-hand derivative must be
equal, so the derivative must be equal to zero.

Here’s another way of thinking about this. Up until the point where the maximum is achieved, the
function must be, at least roughly speaking, going up. (This is not correct strictly speaking, but is useful
at least in simple cases). And then, immediately after that point, the function must be, at least roughly
speaking, going down. So, at that point, it changes from a going up to a going down function, hence at the
point it is oing neither up nor down, so the derivative is zero.

Why is differentiability so important? Well, think of what might happen for a function that has one-sided
derivatives but isn’t differentiable. In that case, it could have a sharp peak – it increases in a straight line,
and then takes a turn and starts decreasing in a straight line.

Also, note that differentiability at the endpoints is not necessary. So, Rolle’s theorem applies for instance
to the function f(x) :=

√
1− x2 on the interval [−1, 1], even though that function is not differentiable at the

two points −1 and 1.

1.2. Mean-value theorem. Here’s what the mean-value theorem states. It states that if f is a function
that is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists
c ∈ (a, b) such that:

f ′(c) =
f(b)− f(a)

b− a
In other words, given any two points such that the function is continuous on the closed interval between

those two points and differentiable on the open interval, then there is a point in the open interval at which
the derivative at the interior point equals the difference quotient between the two endpoints.

In other words, there is a point on the graph in between these two points such that the tangent line at
the point is parallel to the secant line, or chord, joining the points (a, f(a)) and (b, f(b)).

Note that this result has a somewhat similar flavor to the intermediate-value theorem, but it is a different
result.

Please see the book for a description of how the mean-value theorem can be derived from Rolle’s theorem.

Aside: The mean-value theorem can be used to prove Darboux’s theorem. Recall that the deriv-
ative of a differentiable function on an interval need not be continuous on that same interval. However, it
comes very close to being continuous if it is defined everywhere on the interval. Specifically, the derivative
satisfies the intermediate value property, and hence all its discontinuities must be of the oscillatory kind.

3



This result is called Darboux’s theorem. Although the result is not part of the syllabus, it can be deduced
with a little bit of work from the mean-value theorem.

In fact, there are many similar results about derivatives that would become easy if we assumed that the
derivative is continuous, but are true even in general, and the proofs of most of these results relies on the
mean-value theorem. Since we’re not focused on proving theorems, we will not be talking a lot about the
mean-value theorem explicitly, but you should keep in mind that it is at the back of a lot of what we do.

2. Local increase and decrease behavior

We will now try to understand, very clearly, the relationship between the sign of the derivative and the
behavior of the function near a point.

2.1. Larger than stuff on the left. Suppose c is a point and a < c such that f(x) ≤ f(c) for all x ∈ (a, c).
In other words, c is a local maximum from the left. What do I mean by that? I mean that f(c) is larger than
or equal to f of the stuff on the immediate left of it. That doesn’t mean that f(c) is a maximum over the
entire domain of f – it just means it is greater than or equal to stuff on the immediate left.

Now, we claim that, if the left-hand derivative of f at c exists, then it is greater than or equal to 0. How
do we work that out? The left-hand derivative is the limit of the difference quotient:

f(x)− f(c)
x− c

where x → c−. Note that for x close enough to c, (i.e., a < x < c), the numerator is negative or zero, and
the denominator is negative, so the difference quotient is zero or positive. Thus, the limit of this, if it exists,
is zero or positive.

There are three other cases. Let’s just summarize the four cases:
(1) If c is a point that is a local maximum from the left for f , then the left-hand derivative of f at c, if

it exists, is zero or positive.
(2) If c is a point that is a local maximum from the right for f , then the right-hand derivative of f at

c, if it exists, is zero or negative.
(3) If c is a point that is a local minimum from the left for f , then the left-hand derivative of f at c, if

it exists, is zero or negative.
(4) If c is a point that is a local minimum from the right for f , then the right-hand derivative of f at c,

if it exists, is zero or positive.

2.2. Strict maxima and minima. We said that for a function f , a point c is a local maximum from the left
if there exists a < c such that f(x) ≤ f(c) for all x ∈ (a, c). Now, this definition also includes the possibility
that the function is constant just before c.

A related notion is that of a strict local maximum from the left, which means that there exists a < c such
that f(x) < f(c) for all x ∈ (a, c). In other words, f(c) is strictly bigger than f(x) for x to the immediate
left of c.

Similarly, we can define the notions of strict local maximum from the right, strict local minimum from
the left, and strict local minimum from the right.

2.3. Does strict maximum/minimum from the left/right tell us more? Recall that if c is a point
that is a local maximum from the left for f , then the left-hand derivative of f at c, if it exists, is greater
than or equal to zero. What if c is a point that is a strict local maximum from the left for f? Can we say
something more about the left-hand derivative of f at c?

The first thing you might intuitively expect is that that left-hand derivative of f at c should now not just
be greater than or equal to zero, it should be strictly greater than zero. But you would be wrong.

It is true that if c is a strict local maximum from the left for f , then the difference quotients, as x → c−,
are all positive. However, the limit of these difference quotients could still be zero. Another way of thinking
about this is that even if the function is increasing up to the point c, it may happen that the rate of increase
is leveling off to 0. An example is the function x3 at the point 0: 0 is a strict local maximum from the left,
but the derivative at 0 is 0. Here’s a picture:
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Later, we will understand this situation more carefully and it will turn out that we are dealing (in this
case) with what is called a point of inflection.

2.4. Minimum, maximum from both sides. So we have some sign information about the derivative
closely related to how the function at the point compares with the value of the function at nearby points.
Maximum from the left means left-hand derivative is nonnegative, maximum from the right means right-
hand derivative is nonpositive, minimum from the left means left-hand derivative is nonpositive, minimum
from the right means right-hand derivative is nonnegative.

So, let’s piece these together:

(1) A local maximum for the function f is a point c such that f(c) is the maximum possible value for
f(x) in an open interval containing c. Thus, a point of local maximum for f is a point that is both
a local maximum from the left and a local maximum from the right. A strict local maximum for the
function f is a point c such that f(c) is strictly greater than f(x) for all x in some open interval
containing c.

(2) A local minimum for the function f is a point c such that f(c) is the minimum possible value for
f(x) in an open interval containing c. Thus, a point of local minimum for f is a point that is both
a local minimum from the left and a local minimum from the right. A strict local minimum for the
function f is a point c such that f(c) is strictly smaller than f(x) for all x in some open interval
containing c.

What can we say about local maxima and local minima? We can say the following:

(1) At a local maximum, the left-hand derivative (if it exists) is greater than or equal to zero, and the
right-hand derivative (if it exists) is less than or equal to zero. Thus, if the derivative exists at a
point of local maximum, it equals zero. The same applies to strict local maxima.

(2) At a local minimum, the left-hand derivative (if it exists) is less than or equal to zero, and the
right-hand derivative (if it exists) is greater than or equal to zero. Thus, if the derivative exists at
a point of local minimum, it equals zero. The same applies to strict local minima.

Below are two pictures depicting points of local maximum. In the first picture, the left-hand derivative
is positive, the right-hand derivative is negative, and the function is not differentiable at the point of local
maximum.
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In the second picture, the function is differentiable, and the derivative is zero.

2.5. Maximum from the left, minimum from the right. Suppose c is a point such that it is a local
maximum from the left for f and is a local minimum from the right for f . This means that f(c) is greater
than or equal to f(x) for x to the immediate left of c, and f(c) is less than or equal to f(x) for x to the
immediate right of c. In this case, we say that f is non-decreasing at the point c.

In other words, f at c is bigger than or equal to what it is on the left and smaller than or equal to what it
is on the right. Well, in this case, the left-hand derivative is greater than or equal to zero and the right-hand
derivative is greater than or equal to zero. Thus, if f ′(c) exists, we have f ′(c) ≥ 0.

Now consider the case where c is a point that is a local minimum from the left for f and is a local
maximum from the right for f . This means that f(c) is less than or equal to f(x) for x to the immediate
left of c and greater than or equal to f(x) for x to the immediate right of c. In this case, we say that f is
non-increasing at the point c.

In other words, f at c is smaller than what it is on the right and larger than what it is on the left. Well,
in this case, the left-hand derivative is less than or equal to zero and the right-hand derivative is less than
or equal to zero. Thus, if f ′(c) exists, we have f ′(c) ≤ 0.

2.6. Introducing strictness. We said that f is non-decreasing at the point c if f(c) ≥ f(x) for x just to the
left of c and f(c) ≤ f(x) for x just to the right of c. We now consider the strict version of this concept. We
say that f is increasing at the point c if there is an open interval (a, b) containing c such that, for x ∈ (a, b),
f(x) < f(c) if x < c and f(x) > f(c) if x > c. In other words, c is a strict local maximum from the left and
a strict local minimum from the right.

Well, what can we say about the derivative at a point where the function is increasing, rather than just
non-decreasing? We already know that f ′(c), if it exists, is greater than or equal to zero, but we might hope
to say that the derivative f ′(c) is strictly greater than zero. Unfortunately, that is not true.

In other words, a function could be increasing at the point c, in the sense that it is strictly increasing, but
still have derivative 0. For instance, consider the function f(x) := x3. This is increasing everywhere, but at
the point zero, its derivative is zero.
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How can a function be increasing at a point even though its derivative is zero? Well, what happens is
that the derivative was positive before the point, is positive just after the point, and becomes zero just
momentarily. Alternatively, if you think in terms of the derivative as a limit of difference quotients, all the
difference quotients are positive, but the limit is still zero because they get smaller and smaller in magnitude
as you come closer and closer to the point. Another way of thinking of this is that you reduce your car’s
speed to zero for the split second that you cross the STOP line, so as to cimply with the letter of the law
without actually stopping for any interval of time.

Similarly, we can define the notion of a function f being decreasing at a point c. This means that
f(c) < f(x) for x to the immediate left of c and f(c) > f(x) for x to the immediate right of c. As in the
previous case, we can deduce that f ′(c), if it exists, is less than or equal to zero, but it could very well
happen that f ′(c) = 0. An example is f(x) := −x3, at the point x = 0.

2.7. Increasing functions and sign of derivative. Here’s what we did. We first did separate analyses
for what we can conclude about the left-hand derivative and the right-hand derivative of a function based on
how the value of the function at the point compares with the value of the function at points to its immediate
left. We used this to come to some conclusions about the nature of the derivative of a function (if it exists)
at points of local maxima, local minima, and points where the function is nondecreasing and nonincreasing.
Let’s now discuss a converse result.

So far, we have used information about the nature of changes of the function to deduce information about
the sign of the derivative. Now, we want to go the other way around: use information about the sign of the
derivative to deduce information about the behavior of the function. And this is particularly useful because
now that we have a huge toolkit, we can differentiate practically any function that we can write down. This
means that even for functions that we have no idea how to visualize, we can formally differentiate them and
work with the derivative. Thus, if we can relate information about the derivative to information about the
function, we are in good shape.

Remember what we said: if a function is increasing, it is nondecreasing, and if it is nondecreasing, then
the derivative is greater than or equal to zero. Now, a converse for this would mean some condition on the
derivative telling us whether the function is increasing.

Unfortunately, the derivative being zero is very inconclusive. The function could be constant, it could be
a local maximum, it could be a local minimum, it could be increasing, or it could be decreasing. However,
it turns out that if the derivative is strictly positive, then we can conclude that the function is increasing.

Specifically, we have the following chain of implications for a function f defined around a point c and
differentiable at c:

f ′(c) > 0 =⇒ f is increasing at c =⇒ f is nondecreasing at c =⇒ f ′(c) ≥ 0
And each of these implications is strict, in the sense that you cannot proceed backwards with any of them,

becausethere are counterexamples to each possible reverse implication.
Similarly, for a function f defined around a point c and differentiable at c:
f ′(c) < 0 =⇒ f is decreasing at c =⇒ f is nonincreasing at c =⇒ f ′(c) ≤ 0

2.8. Increasing and decreasing functions. A function f is said to be increasing an an interval I (which
may be open, closed, half-open, half-closed, or stretching to infinity) if for any x1 < x2, with both x1 and
x2 in I, we have f(x1) < f(x2). In other words, the larger the input, the larger the output.

A little while ago, we talked of the notion of a function that is increasing at a point, and that was basically
something similar, except that there one of the comparison points was fixed and the other one was restricted
to somewhere close by. For a function to be increasing on an interval means that it is increasing at every
point in the interior of the interval. If the interval has endpoints, then the function attains a strict local
minimum at the left endpoint and a strict local maximum at the right endpoint.

Similarly, we say that f is decreasing on an interval I if, for any x1, x2 ∈ I, with x1 < x2, we have
f(x1) > f(x2). In other words, the larger the input, the smaller the output.

When I do not specify the interval and simply say that a function is increasing (respectively, decreasing),
I mean that the function is increasing (respectively, decreasing) over its entire domain. For functions whose
domain is the set of all real numbers, this means that the function is increasing (respectively, decreasing)
over the set of all real numbers.

7



An example of an increasing function is a function f(x) := ax+ b with a > 0. An example of a decreasing
function is a function f(x) := ax + b with a < 0.

By the way, here’s an interesting and weird example. Consider the function f(x) := 1/x. This function
is not defined at x = 0. So, its domain is a union of two disjoint open intervals: the interval (−∞, 0) and
the interval (0,∞). Now, we see that on each of these intervals, the function is decreasing. In fact, on
the interval (−∞, 0), the function starts out from something close to 0 and then becomes more and more
negative, approaching −∞ as x tends to zero from the left. And then, on the interval (0,∞), the function
is decreasing again, down from +∞ all the way to zero.

But, taken together, is the function decreasing? No, and the reason is that at the point 0, where the
function is undefined, it is undergoing this huge shift – from −∞ to ∞. This fact – that points where the
function is undefined can be points where it jumps from −∞ to +∞ or +∞ to −∞ – is a fact that keeps
coming up. If you remember, this same fact haunted us when we were trying to apply the intermediate-value
theorem to the function 1/x on an interval containing 0.

2.9. The derivative sign condition for increasing/decreasing. We first state the result for open inter-
vals, where it is fairly straightforward. Suppose f is a function defined on an open interval (a, b). Suppose,
further, that f is continuous and differentiable on (a, b), and for every point x ∈ (a, b), f ′(x) > 0. Then, f
is an increasing function on (a, b).

A similar statement for decreasing: If f is a function defined on an interval (a, b). Suppose, further, that
f is continuous and differentiable on (a, b), and for every point x ∈ (a, b), f ′(x) < 0. Then, f is a decreasing
function on (a, b).

The result also holds for open intervals that stretch to ∞ or −∞.
Note that it is important that f should be defined for all values in the interval (a, b), that it should be

continuous on the interval, and that it should be differentiable on the interval. Here are some counterexam-
ples:

(1) Consider the function f(x) := 1/x, defined and differentiable for x 6= 0. Its derivative is f ′(x) :=
−1/x2, which is negative wherever defined. Hence, f is decreasing on any open interval not containing
0. However, it is not decreasing on any open interval containing 0.

(2) Consider the function f(x) := tanx. The derivative of the function is f ′(x) := sec2 x. Note that
f is defined for all x that are not odd multiples of π/2, and the same holds for f ′. Also, note
that f ′(x) > 0 wherever defined, because | sec x| ≥ 1 wherever defined. Thus, the tan function is
increasing on any interval not containing an odd multiple of π/2. But at each odd multiple of π/2,
it slips from +∞ to −∞.

Let us now look at the version for a closed interval.
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Suppose f is a function defined on a closed interval [a, b], which is continuous on [a, b] and differentiable
on (a, b). Then, if f ′(x) > 0 for x ∈ (a, b), then f is increasing on all of [a, b]. Similarly, if f ′(x) < 0 for
x ∈ (a, b), then f is decreasing on all of [a, b].

In other words, we do not need to impose conditions on one-sided derivatives at the endpoints in order to
guarantee that the function is increasing on the entire closed interval.

Finally, if f ′(x) = 0 on the interval (a, b), then f is constant on [a, b].
Some other versions:

(1) The result also applies to half-closed, half-open intervals. So, it may happen that a function f is
continuous on [a, b), differentiable on (a, b), and f ′(x) > 0 for x ∈ (a, b). In this case, f is increasing
on [a, b).

(2) The result also applies to intervals that stretch to infinity in either or both directions.

2.10. Finding where a function is increasing and decreasing. Let’s consider a function f that, for
simplicity, is continuously differentiable on its domain. So, f ′ is a continuous function. We now note that,
in order to find out where f is increasing and decreasing, we need to find out where f ′ is positive, negative
and zero.

Here’s an example, Consider the function f(x) := x3 − 3x2 − 9x + 7. Where is f increasing and where is
it decreasing? In order to find out, we need to differentiate f . The function f ′(x) is equal to 3x2− 6x− 9 =
3(x − 3)(x + 1). By the usual methods, we know that f ′ is positive on (−∞,−1) ∪ (3,∞), negative on
(−1, 3), and zero at −1 and 3. Thus, the function f is increasing on the intervals (−∞,−1] and [3,∞) and
decreasing on the interval [−1, 3].

Note that it is not correct to conclude from the above that f is increasing on the set (−∞,−1] ∪ [3,∞),
although it is increasing on each of the intervals (−∞,−1] and [3,∞) separately. This is because the two
pieces (−∞,−1] and [3,∞) are in some sense independent of each other. In general, the positive derivative
implies increasing conclusions hold on intervals because they are what mathematicians call connected sets,
and not for disjoint unions of intervals. In the case of this specific function, we note that f(−1) = 12 and
f(3) = −20, so the value of the function at the point 3 is smaller than it is at −1. Thus, it is not correct to
think of the function as being increasing on the union of the two intervals.

Similarly, if f is a rational function x2/(x3 − 1), then we get f ′(x) = (−2x − x4)/(x3 − 1)2. Now, in
order to find out where this is positive and where this is negative, we need to factor the numerator and the
denominator. The factorization is:

−x(x + 21/3)(x2 − 21/3x + 22/3)
(x− 1)2(x2 + x + 1)2

The zeros of the numerator are 0 and −21/3 and the zero of the denominator is 1. The quadratic factors
in both the numerator and the denominator are always positive. Also note that there is a minus sign on the
outside.

Hence, f ′ is negative on (1,∞), (0, 1), and (−∞,−21/3), positive on (−21/3, 0), zero on 0 and −21/3, and
undefined at 1. Thus, f is decreasing on [0, 1), (1,∞), and (−∞,−21/3], increasing on [−21/3, 0].

Now, let’s combine this with the information we have about f itself. Note that f is undefined at 1, it
is positive on (1,∞), it is zero at 0, and it is negative on (−∞, 0) ∪ (0, 1). How do we combine this with
information about what’s happening with the derivative?

On the interval (−∞,−21/3), f is negative and decreasing. What’s happening as x → −∞? f tends to
zero (we’ll see why a little later). So, as x goes from −∞ to −21/3, f goes down from 0 to −22/3/3. Then,
as x goes from −21/3 to 0, f is still negative but starts going up from −22/3/3 and reaches 0. In the interval
from 0 to 1, f goes back in the negative direction, from 0 down to −∞. Then, in the interval (1,∞), f goes
emerges from +∞ and goes down to 0 as x → +∞.

So we see that information about the sign of the derivative helps us get a better picture of how the function
behaves, and allows us to better draw the graph of the function – something that we will try to do more of
a short while from now.
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Point-value distinction. We use the term point of local maximum or point of local minimum (or simply
local maximum or local minimum) for the point in the domain, and the term local maximum value for the
value of the function at the point.

3. Determining local extreme values

3.1. Local extreme values and critical points. If f is a function and c is a point in the interior of the
domain of f , then f is said to have a local maximum at c if f(x) ≤ f(c) for all x sufficiently close to c. Here,
sufficiently close means that there exists a < c and b > c such that the statement holds for all x ∈ (a, b).

Similarly, we have the concept of local minimum at c.
The points in the domain at which local maxima and local minima occur are termed the points of local

extrema and the values of the function at these points are termed the local extreme values.
As we discussed last time, if f is differentiable at a point c of local maximum or local minimum, the

derivative of f at c is zero. This suggests that we define a notion.
An interior point c in the domain of a function f is termed a critical point if either f ′(c) = 0 or f ′(c)

does not exist. Thus, all the local extreme values occur at critical points – because at a local maximum or
minimum, either the derivative does not exist, or the derivative equals zero.

Note that not all critical points are points of local maxima and minima. For instance, for the function
f(x) := x3, the point x = 0 is a critical point, but the function does not attain a local maximum or local
minimum at that point. However, critical points give us a small set of points that we need to check against.
Once we have this small set, we can use other methods to determine what precisely is happening at these
points.

3.2. First-derivative test. The first-derivative test basically tries to determine whether something is a
local maximum by looking, not just at the value of the derivative at the point, but also the value of the
derivative close to the point.

Basically, we want to combine the idea of increasing on the left, decreasing on the right to show that
something is a local maximum, and similarly, we combine the idea of decreasing on the left, increasing on
the right to show that something is a local minimum.

The first-derivative test says that if c is a critical point for f and f is continuous at c (Note that f need
not be differentiable at c). if there is a positive number δ such that:

(1) f ′(x) > 0 for all x ∈ (c− δ, c) and f ′(x) < 0 for all x ∈ (c, c + δ), then f(c) is a local maximum, i.e.,
c is a point of local maximum for f .

(2) f ′(x) < 0 for all x ∈ (c− δ, c) and f ′(x) > 0 for all x ∈ (c, c + δ), then f(c) is a local minimum, i.e.,
c is a point of local minimum for f .

(3) f ′(x) keeps constant sign on (c− δ, c) ∪ (c, c + δ), then c is not a point of local maximum/minimum
for f .

Thus, for the function f(x) := x2/(x3− 1), there is a local minimum at −21/3 and a local maximum at 0.
Recall that for the function f(x) := x3, the derivative at zero is zero, so it is a critical point but it is not

a point of local extremum, because the derivative is positive everywhere else.

3.3. What are we essentially doing with the first-derivative test? Why does the first-derivative
test work? Essentially it is an application of the results on increasing and decreasing functions for closed
intervals. What we’re doing is using the information about the derivative from the left to conclude that the
point is a strict local maximum from the left, because the function is increasing up to the point, and is a
strict local maximum from the right, because the function is decreasing down from the point.

3.4. The first-derivative test is sufficient but not necessary. For most of the function that you’ll
see, the first-derivative test will give you a good way of figuring out whether a given critical point is a local
maximum or local minimum. There are, however, situations where the first-derivative test fails to work.
These are situations where the derivative changes sign infinitely often, close to the critical point, so does not
have a constant sign near the critical point. For instance, consider the function f(x) := |x|(2 + sin(1/x)).
This attains a local minimum at the point x = 0, which is a critical point. However, the derivative of the
function oscillates between the positive and negative sign close to zero and doesn’t settle into a single sign
on either side of zero.
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3.5. Second-derivative test. One problem with the first-derivative test is that it requires us to make two
local sign computations over intervals, rather than at points. Discussed here is a variant of the first-derivative
test, called the second-derivative test, that is sometimes easier to use.

Suppose c is a critical point in the interior of the domain of a function f , and f is twice differentiable at c.
Then, if f ′′(c) > 0, c is a point of local minimum, whereas if f ′′(c) < 0, then c is a point of local minimum.

The way this works is as follows: if f ′′(c) > 0, that means that f ′ is (strictly) increasing at c. This means
that f ′ is negative to the immediate left of c and is positive to the immediate right of c. Thus, f attains a
local minimum at c.

Note that the second-derivative test works for critical points where the function is twice-differentiable. In
particular, it does not work for the kind of sharp peak points where the function suddenly changes direction.
On the other hand, since the second-derivative test involves evaluation of the second derivative at only one
point, it may be easier to apply in certain situations than the first-derivative test, which requires reasoning
about the sign of a function over an interval.

4. Finding maxima and minima: a global perspective

4.1. Endpoint maxima and minima. An endpoint maximum is something like a local maximum, except
that it occurs at the endpoint of the domain, so the value of the function at the point needs to be compared
only with the values of the function at points sufficiently close to it on one side (the side that the domain is
in). Similarly, an endpoint minimum is like a local minimum, except that it occurs at the endpoint of the
domain, so the value of the function at the point needs to be compared only with the values of the function
at points sufficiently close to it on one side.

If the endpoint is a left endpoint, then being an endpoint maximum (respectively, minimum) means being
a local maximum (respectively, minimum) from the right. If the endpoint is a right endpoint, then being an
endpoint maximum (respectively, minimum) means being a local maximum (respectively, minimum) from
the left.

4.2. Absolute maxima and minima. We say that a function f has an absolute maximum at a point d
in the domain if f(d) ≥ f(x) for all x in the domain. We say that f has an absolute minimum at a point d
in the domain if f(d) ≤ f(x) for all x in the domain. The corresponding value f(d) is termed the absolute
maximum (respectively, minimum) of f on its domain.

Notice the following very important fact about absolute maxima and minima, which distinguishes them
from local maxima and minima. If an absolute maximum value exists, then the value is unique, even though
it may be attained at multiple points on the domain. Similarly, if an absolute minimum value exists, then
the value is unique, even though it may be attained at multiple points of the domain. Further, assuming
the function to be continuous through the domain, and assuming the domain to be connected (i.e., not
fragmented into intervals) the range of the function is the interval between the absolute minimum value and
the absolute maximum value. This follows from the intermediate value theorem.

For instance, for the cos function, absolute maxima occur at multiples of 2π and absolute minima occur
at odd multiples of π. The absolute maximum value is 1 and the absolute minimum value is −1.
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Just for fun, here’s a picture of a function having lots of local maxima and minima, but all at different
levels. Note that some of the local maximum values are less than some of the local minimum values. This
highlights the extremely local nature of local maxima/minima.

4.3. Where and when do absolute maxima/minima exist? Recall the extreme value theorem from
some time ago. It said that for a continuous function on a closed interval, the function attains its maximum
and minimum. This was basically asserting the existence of absolute maxima and minima for a continuous
function on a closed interval.

Notice that any point of absolute maximum (respectively, minimum) is either an endpoint or is a point
of local maximum (respectively, minimum). We further know that any point of local maximum or minimum
is a critical point. Thus, in order to find all the absolute maxima and minima, a good first step is to find
critical points and endpoints.

Another thing needs to be noted. For some funny functions, it turns out that there is no maximum
or minimum. This could happen for two reasons: first, the function approaches +∞ or −∞, i.e., it gets
arbitrarily large in one direction, somewhere. Second, it might happen that the function approaches some
maximum value but does not attain it on the domain. For instance, the function f(x) = x on the interval
(0, 1) does not attain a maximum or minimum, since these occur at the endpoints, which by design are not
included in the domain.

Thus, the absolute maxima and minima, if they occur, occur at critical points and endpoints. But we
need to further tackle the question of existence. In order to deal with this issue clearly, we need to face up
to something we have avoided so far: limits to infinity.

4.4. Limits at infinity and to infinity. We need to tackle two questions: first, what do we mean by trying
to evaluate limx→∞ f(x) and limx→−∞ f(x), and second, what do we mean by saying limx→c f(x) = ∞ and
limx→c f(x) = −∞.

For both, the basic idea is that for something to approach +∞ means that it eventually crosses every
arbitrarily large number and does not come back down, while approacing −∞ means that it eventually
crosses below every arbitrarily small negative number and does not come back. Formally, we say that:

(1) limx→c f(x) = +∞ if, for every N > 0, there exists δ > 0 such that if 0 < |x− c| < δ, f(x) > N .
(2) limx→c f(x) = −∞ if, for every N > 0, there exists δ > 0 such that if 0 < |x− c| < δ, f(x) < −N .
(3) limx→∞ f(x) = L if, for every ε > 0, there exists N > 0 such that for x > N , |f(x)− L| < ε.
(4) limx→−∞ f(x) = L if, for every ε > 0, there exists N > 0 such that for x < −N , |f(x)− L| < ε.
(5) limx→∞f(x) = ∞ if, for every N > 0, there exists M > 0 such that if x > M , then f(x) > N .
(6) limx→∞ f(x) = −∞ if, for every N > 0, there exists M > 0 such that if x > M , then f(x) < −N .
(7) limx→−∞ f(x) = ∞ if, for every N > 0, there exists M > 0 such that if x < −M , then f(x) > N .
(8) limx→−∞ f(x) = −∞ if, for every N > 0, there exists M > 0 such that if x < −M , then f(x) < −N .

We will consider limits to infinity in much more detail in 153.

4.5. Rules of thumb for figuring out limits at infinity. Here are some rules. Note that each rule also
applies to one-sided limits, and often has to be applied in a one-sided sense because the signs of infinity
being approached from the two sides may be different:

(1) If the numerator approaches a positive number and the denominator approaches zero from the
positive side, then the quotient approaches +∞.
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(2) If the numerator approaches a negative number and the denominator approaches zero from the
positive side, the quotient approaches −∞.

(3) If the numerator approaches a positive number and the denominator approaches zero from the
negative side, the quotient approaches −∞.

(4) If the numerator approaches a negative number and the denominator approaches zero from the
negative side, the quotient approaches +∞.

For instance, for the function f(x) := 1/x2, the numerator approaches (in fact, equals) a positive number,
and the denominator approaches zero from the positive side, so the limit at 0 is +∞.

For the function g(x) := 1/x, as x → 0−, the numerator is positive and the denominator approaches
zero from the negative side, so the quotient approaches −∞. As x → 0+, the numerator is positive and the
denominator approaches zero from the positive side, so the quotient approaches +∞.

Let’s use these ideas to revisit our example of the rational function x2/(x3− 1). Recall that here the only
point where the function is not defined is x = 1. Here, the numerator approaches a positive number (1). As
x → 1−, the denominator approaches 0 from the left, so the quotient approaches −∞, and as x → 1+, the
denominator approaches 0 from the right side, so the quotient approaches +∞. Thus, the left-hand limit is
−∞ and the right-hand limit is +∞. Note that, when the limits are ±∞, we are still allowed to say, and
should say, that the limits do not exist. Infinite does not exist.

Next, we look at rules of thumb that guide us when x →∞. Here are some of these rules:

(1) For a polynomial p of degree one or higher, p(x) → ∞ as x → ∞ if the leading coefficient of p is
positive, and p(x) → −∞ as x →∞ if the leading coefficient of p is negative.

(2) For a polynomial p of degree one or higher, p(x) → ∞ as x → −∞ if the leading coefficient of p
is positive and the degree of p is even, and p(x) → −∞ as x → −∞ if the leading coefficient of p
is positive and the degree of p is odd. When the leading coefficient of p is negative, the signs get
reversed.

(3) For a rational function, the limits as x → ±∞ can be computed by simply looking at the limit of
the quotient of the leading terms in the numerator and the denominator.

(4) For a rational function, if the degree of the denominator is greater than the degree of the numerator,
the value of the rational function approaches 0 as the input goes to ∞ and as the input goes to −∞.
In other words, for such a rational function r, limx→∞ r(x) = limx→−∞ r(x) = 0.

(5) For a rational function, if the degree of the denominator is smaller than the degree of the numerator,
the limit of the rational function, as x →∞, is the infinity with the same sign as the quotient of the
leading coefficients. As x → −∞, it is the infinity with the same sign as the product of (the quotient
of the leading coefficients) and (−1 to the power of the difference of degrees).

(6) For a rational function, if the numerator and the denominator have equal degrees, then the limit as
x →∞, and the limit as x → −∞, are both equal to the quotient of the leading coefficients.

4.6. Strategy for computing absolute maxima and minima. Here’s all the candidates we have to deal
with:

(1) All endpoints in the domain, and the function values at those endpoints.
(2) All critical points in the domain, and the function values at those critical points.
(3) For points not in the domain but in the boundary of the domain, as well as at ±∞ (if the domain

stretches to +∞ and/or −∞), we try to compute the limits.

Here’s what we get, comparing the values:

(1) If, for any of the points where the function isn’t defined, or at ±∞, the limit is +∞, there isn’t any
absolute maximum. If, for any of the points where the function isn’t defined, or at ±∞, the limit is
−∞, there isn’t any absolute minimum.

(2) Consider the values of the function at all the critical points, and the limits at ±∞ and all other
points in the boundary of the domain but not in the domain itself. If the maximum of these is
attained by one of the critical points, that is the absolute maximum. If the maximum is attained
as one of the limits but not at any of the critical points, there is no absolute maximum. Similar
remarks apply for minima.

13



4.7. Other subtle issues. Here are some additional issues:
• When there are only finitely many critical points, endpoints, and limit situations, and we need to

find the absolute maximum or absolute minimum, we do not need to use the derivative tests to figure
out which of them are local maxima, which are local minima, and which are neither. We can simply
compute the values and compare.

• However, as the picture shown a little earlier indicates, just looking at the values does not immediately
tell us whether we have a local maximum, local minimum, or neither. Some lcoal maximum values
may be smaller than some local minimum values.

• If there are infinitely many critical points, endpoints, and limit situations, we may need to think a
little more clearly about what is happening. It may be helpful to use derivative tests and facts about
even, odd, and periodic functions to eliminate or narrow down possibilities.

5. Important fact critical for integration

We noted a little while back that if f is a continuous function on a closed interval [a, b], and its derivative
is zero on the open interval (a, b), then f is constant on [a, b].

This fact has an important corollary, which is critical to the whole setup and process of integration:
If f and g are continuous functions on a closed interval [a, b] and f ′(x) = g′(x) for all
x ∈ (a, b), then f − g is a constant function on [a, b].

We will return to this fact and its implications a little later.

6. Piecewise defined functions

We now consider all the above notions for functions defined piecewise on intervals. As usual, we as-
sume that each of the piece functions is nice enough, which in this case means we assume that it is twice
continuously differentiable.

For functions defined piecewise, we need to spearately consider all the points where the definition changes.
As far as we are concerned, for each point where the definition changes, we have the following possibilities:

• The function is not continuous at this point: In this case, we need to separately consider the left-
hand limit and right-hand limit at the point, and the value at that point, and consider all these as
candidates for the local extreme values.

• The function is continuous but not differentiable at this point: Then it is a critical point, and the
value there might be a candidate for a local extreme value. Whether it is or not depends on the
signs of the one-sided derivatives.

• The function is continuously differentiable at the point, and the derivative is zero: Then again, it is
a critical point.

• The function is continuously differentiable at the point, and the derivative is nonzeor: Then, it is
not a critical point.

We will consider all these in more detail when we study the graphing of functions.
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MAX-MIN PROBLEMS

MATH 152, SECTION 55 (VIPUL NAIK)

Corresponding material in the book: Section 4.5
Difficulty level: Moderate to hard. This is material that you have probably seen at the AP level, but

it is very important and there will be many additional subtleties that you may have glossed over earlier.
What students should definitely get: The basic procedure for converting a verbal or real-world

optimization problem into a mathematical problem seeking absolute maxima and absolute minima, solving
that problem, and reinterpreting the solution in real-world terms.

What students should hopefully get: Important facts about area-perimeter optima. The idea that
the maximum is determined by the minimum, or most binding, constraint. The intuiton of tangency (as
seen in the tapestry problem). The multiple use heuristic. The idea of transforming a function into an
equivalent function that is easier to optimize. The procedure for and subtleties in integer optimization. How
single-variable optimization fits into the broader optimization context.

Executive summary

Words...
(1) In real-world situations, maximization and minimization problems typically involve multiple vari-

ables, multiple constraints on those variables, and some objective function that needs to be maxi-
mized or minimized.

(2) The only thing we know to solve such problems is to reduce everything in terms of one variable.
This is typically done by using up some of the constraints to express the other variables in terms of
that variable.

(3) The problem then typically boils down to a maximization/minimization problem of a function in
a single variable over an interval. We use the usual techniques for understanding this function,
determining the local extreme values, determining the endpoint extreme values, and determining the
absolute extreme values.

Actions... (think of examples; also review the notes on max-min problems)
(1) Extremes sometimes occur at endpoints but these endpoints could correspond to degenerate cases.

For instance, of all the rectangles with given perimeter, the square has the maximum area, and the
minimum occurs in the degenerate case of a rectangle where one side has length zero.

(2) Some constraints on the variables we have are explicitly stated, while others are implicit. Implicit
constraints include such things as nonnegativity constraints. Some of these implicit constraints may
be on variables other than the single variable in terms of which we eventually write everything.

(3) After we have obtained the objective function in terms of one variable, we are in a position to throw
out the other variables. However, before doing so, it is necessary to translate all the constraints into
constraints on the one variable that we now have.

(4) When our intent is to maximize a function, it is sometimes useful to maximize an equivalent function
that is easier to visualize or differentiate. For instance, to maximize

√
f(x) is equivalent to maxi-

mizing f(x) if f(x) is nonnegative. With this way of thinking about equivalent functions, we can
make sure that the actual function that we differentiate is easy to differentiate. The main criterion is
that the two functions should rise and fall together. (Analogous observations apply for minimizing)
Remember, however, that to calculate the value of the maximum/minimum, you should go back to
the original function.

(5) Sometimes, there are other parameters in the maximization/minimization problem that are unknown
constants, and the final solution is expected to be in terms of those constants. In rare cases, the
nature of the function, and hence the nature of maxima and minima, depends on whether those
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constants fall in particular intervals. If you find this to be the case, go back to the original problem
and see whether the real-world situation it came from constrains the constants to one of the intervals.

(6) For some geometrical problems, the maximization/minimization can be done trigonometrically. Here,
we make a clever choice of an angle that controls the shape of the figure and then use the trigonometric
functions of that angle. This could provide alternate insight into maximization.

Smart thoughts for smart people ...
(1) Before getting started on the messy differentiation to find critical points, think about the constraints

and the endpoints. Is it obvious that the function will attain a minimum/maximum at one of the
endpoints? What are the values of the function at the endpoints? (If no endpoints, take limiting
values as you go in one direction of the domain). Is there an intuitive reason to believe that the
function attains its optimal value somewhere in between rather than at an endpoint? Is there some
kind of trade-off to be made? Are there some things that can be said qualitatively about where the
trade-off is likely to occur?

(2) Feel free to convert your function to an equivalent function such that the two functions rise and fall
together. This reduces the burden of messy expressions.

(3) It is useful to remember the fact that the function xp(1− x)q attains a local maximum at p/(p + q).
That’s because this function appears in disguise all the time (e.g., maximizing area of rectangle with
given perimeter, etc.)

(4) A useful idea is that when dividing a resource into two competing uses, and one use is hands-down
better than the other, the best use happens when the entire resource is devoted to the better use.
However, the worst may well happen somewhere in between, because divided resources often perform
even worse than resources devoted wholeheartedly to a bad use. This is seen in perimeter allocation
to boundaries with the objective function being the total area, and area allocation to surfaces with
the objective function being the total volume.

(5) When we want to maximize something subject to a collection of many constraints, the most relevant
constraint is the minimum one. Think of the ladder-through-the-hallway problem, or the truck-
going-under-bridges problem.

1. Motivation and basic terminology

In the previous lecture, we discussed how to compute points and values of absolute maximum and absolute
minimum. Our focus now shifts to using these tools and techniques for real-world (or pseudo-real-world)
optimization problems. Because the techniques we have developed are so limited, we will be very selective
about the nature of the real-world problems that we pick. Nonetheless, we’ll see that even with the modest
machinery we have built, we have ways of effectively understanding and tackling many real-world problems.

1.1. Notion of constraints and objective function. In a typical real-world situation, we usually have
multiple things interacting. Many of these items can be measured quantitatively, i.e., they can be measured
using real numbers. The values of these real numbers may be subjected to further constraints. Those making
decisions may have control over some of the variables. Those making decisions are also tasked with trying to
maximize some kind of utility that is dependent on these variables, or minimize some kind of cost function
that is dependent on these variables. The task is to choose the variables subject to constraints in the manner
that best maximizes that particular utility function or minimizes that particular cost function.

For example, think of money management, something that you might be familiar with. You have a certain
limited amount of money, and there are various things you want to buy with that money. Each thing that
you buy gives you a certain amount of satisfaction; however, for most things, the amount of satisfaction
varies with how much you buy it. The question is: how do you allocate money between the many competing
things in the market so as to get the best deal for yourself? The number of variables in this case is just
the number of different items that you can buy in variable quantities. At a broad level, you may choose to
spend A on food, B on clothing, and C on extra books to study calculus. If the total money quantity with
you is M , then, assuming that you’re not one of those who likes to live on credit, you’ll have the constraints
A + B + C ≤ M .

Now, there are going to be three functions f , g, and h, where f(A) is the happiness that spending A on
food gives you, g(B) is the happiness that spending B on clothing gives you, and h(C) is the happiness (?)
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that spending on extra calculus books gives you. Assuming that happiness is additive, what you want to
maximize is f(A) + g(B) + h(C). Given specific functional forms for f , g, and h, we hope to use the tools
of calculus to tackle this problem.

1.2. The extremes and the middle path. There are two schools of philosophical thought that shall
contend for our attention here: the school that says that extremes are good, and the school that urges you
to follow a middle path – a bit of this and a bit of that. Which of them is right? Depends.

The extremists would say that among the three things: food, clothing, and calculus books, one of them
is the best value for money (for instance, in our case, it may be calculus books). This means that every
additional unit of money that you spend should go on calculus books. Thus suggests that the way you’ll be
“happiest” is if you spend all your money on calculus books.

In reality, however, we know that that isn’t how things work. The problem? We need a bit of food, a bit
of clothing, and a bit of calculus, but beyond a point, more food, clothing and calculus is less helpful. This
is obvious in the case of food – too much food at your disposal means that you either eat more than your
body can handle or throw food away. It is also obvious in the case of clothing. It may not be that obvious
in the case of calculus, but you’ll have to take my word for it that there does come a point after which more
calculus may not be worth it.

So, basically, this is a three-way trade-off game, and we need to figure out where to make the trade-offs
between food, clothing, and calculus. This comes somewhere in between – a local maximum, where shifting
resources from any one sector to any other sector reduces utility.

On the other hand, there are situations where extremes are better. Those are situations where it’s just no
contest between the two options – more of one thing is better than more of the other no matter how much
of either you have. So the extremes could be the best option.

Thus, the maximum could occur at the endpoints, but it could also occur in between, as a local maximum,
where diverting resources a bit in either direction makes things worse.

1.3. Humbler matters: one-variable ambitions. After suggesting that I could help you with managing
money, I have to retreat to humbler ground. All the tools we have developed so far are tools that specifically
deal with one variable – we’ve talked of functions of one variable, and developed concepts of limits, continuity,
and differentiation all in this context. Thus, the kind of budgeting and allocation problems that we encounter
in the real world, that involve a plethora of variables, are simply too hard for us to handle with this machinery.
This is also a reason why you shouldn’t just stop with the 150s, and should go on to study multivariable
calculus, but let’s now talk of what can be done using the one-variable approach.

A priori, you might expect that the one-variable approach can only work when there is only one variable
involved. It’s actually a little more general.

The one-variable approach can be used for situations where we can use some of the constraints to express
all variables in terms of a single variable, wherein the optimization problem simply becomes a problem in
terms of that variable. So, even though the problem has more than one variable, we are able to tackle it as
a one-variable problem. Here is one example.

For instance, consider the following problem: For all the rectangles with diagonal length c, find the
dimensions of the one with the largest area.

To solve this problem, we try to figure out what variables we have control over, and what constraints these
variables satisfy. A rectangle is specified by specifying its length and breadth, i.e., the two side lengths. If
we call these l and b, the goal is to maximize lb. Also, l and b are subject to the constraint l2 + b2 = c2, and
l > 0, b > 0.

The problem is that we have two variables, and we only know how to tackle situations with one variable.
In order to solve the problem, we need to write one of the variables in terms of the other one. Note that the
relation l2 + b2 = c2, along with the fact that l > 0 and b > 0, allows us to write b =

√
c2 − l2. Thus, the

area is given by a function of l, namely:

A(l) := l
√

c2 − l2

Note that
√

c2 − l2 > 0 implies that l < c. Thus, the goal is to maximize this function on the interval
(0, c).

We compute the derivative:
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A′(l) =
√

c2 − l2 − l2√
c2 − l2

Setting A′(l) = 0, we obtain that: √
c2 − l2 =

l√
c2 − l2

Simplifying, we obtain:

l = b = c/
√

2
and thus:

A(l) = c2/2

Thus, the only critical point for the function is at l = c/
√

2. Note that for l < c/
√

2, we have l <
√

c2 − l2,
so the expression for A′(l) is positive, and for l > c/

√
2, the expression is negative. Thus, the point l = c/

√
2

is a point of local maximum.
To determine whether it is a point of absolute maximum, we need to verify that the value of the function

at this point is greater than the limits at the two endpoints. It is easy to see that the limits at both endpoints
are zero, so indeed, we have a local maximum at l = c/

√
2.

Here is an alternative approach, that involves a different way of choosing variables. Let θ be the angle
made by the diagonal with the base of the rectangle. Then, 0 < θ < π/2, and the two sides of the rectangle
have length c cos θ and c sin θ. Thus, the area is given by the function:

f(θ) = c2 sin θ cos θ = (c2/2) sin(2θ)

This attains an absolute maximum at θ = π/4, where 2θ = π/2, so that sin(2θ) = 1. Note that we can solve
the problem in this case even without using calculus, but if you don’t notice that sin θ cos θ = (1/2) sin(2θ),
you can solve the problem the calculus way and obtain that the absolute maximum is at θ = π/4. Thus, the
area is c2/2 and the two side lengths are c/

√
2.

Thus, the maximum occurs for a square.

1.4. Geometrical and visual optimization. In most of the situations that we’ll be dealing with, it is
helpful to draw a figure, label all the lengths and/or angles involved in the figure, and then write down the
various constraints as well as the objective function that needs to be maximized. Then, try to get everything
in terms of one variable, using the constraints, and finally, do the maximization for that variable. The book
gives the following five-point procedure on Page 183:

(1) Draw a representative figure and assign labels to the relevant quantities.
(2) Identify the quantity to be maximized or minimized and find a formula for it.
(3) Express the quantity to be maximized or minimized in terms of a single variable; use the conditions

given in the problem to eliminate the other variable(s).
(4) Determine the domain of the function generated by Step 3.
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(5) Apply the techniques of the preceding sections to find the extreme value(s).

One of the important things in this is to notice that we usually need to maximize the function with the
input variable restricted to a certain domain. Thus, there are often situations where the absolute maximum
or minimum occurs at an endpoint of the domain, i.e., it is an endpoint maximum/minimum.

Here are some examples that you should keep in mind, both in terms of the final results and the methods
we use to get them:

(1) Of all the rectangles with a given perimeter, the square has the largest area. This boils down to
maximizing l((p/2) − l). There is no rectangle with minimum area – the minimum area occurs in
the degenerate rectangle where one of the sides has zero length and the other side has length half the
perimeter. The degenerate rectangle isn’t ordinarily considered a rectangle. Here are pictures of a
collection of rectangles with the same perimeter. It is visually clear that the square has the largest
area.

(2) Conversely, of all the rectangles with a given area, the square has the smallest perimeter. This boils
down to minimizing 2(l + (A/l)). There is no rectangle with the largest perimeter – we can keep
getting longer and thinner rectangles.

(3) Of all the rectangles with a given diagonal length, the square is the one with the largest area.
This boils down to maximizing l

√
c2 − l2. Trigonometrically, it involves maximizing cos θ sin θ. The

minimum again occurs for the degenerate rectangle, hence does not occur for any actual rectangle.
(4) Of all the rectangles with a given diagonal length, the square is the one with the largest perimeter.

This boils down to maximizing l +
√

c2 − l2. Trigonometrically, it involves maximizing cos θ +
sin θ. The minimum again occurs for the degenerate rectangle, hence does not occur for any actual
rectangle.

1.5. Applications to real-world physical situations. We see a common concern that is apparent with
all these maximization/minimization problems. Maximizing the area for a given perimeter, or minimizing
the perimeter for a given area, is a concern that arises when trying to create containers with as little material
used for the boundary as possible. Maximizing the area for a given diagonal length or constraints on lengths
occurs in situations where concerns of space availability and fitting stuff are paramount.

Here are some of the quantities and formulas that are useful:

(1) For a right circular cylinder with base radius r and height h, the total volume (or capacity) is πr2h.
The curved surface area is 2πrh. Each of the disks at the ends has area πr2. Thus, a right circular
cylinder closed at one end has surface area πr(2h + r) and a right circular cylinder closed at both
ends has surface area 2πr(r + h). Based on the situation at hand, we need to figure out which of
these three surface areas is being refered to.

(2) For a right circular cone with base radius r, vertical height h and slant height l, the volume is
(1/3)πr2h. The curved surface area is πrl and the surface area of the base is πr2, so the total surface
area is πr(r + l). Again, we need to figure out, based on the situation, which of the surface areas is
being refered to. Also note that r, h, and l are related by the Pythagorean theorem: l2 = r2 + h2.

(3) For a semicircle of radius r, the area is (1/2)πr2. The length of the curved part is πr and the
length of the straight part (the diameter) is 2r, so the total perimeter is r(π + 2). More generally,
for a sector of the circle bounded by two radii and an arc, where the radii make an angle of θ, the
perimeter is r(2 + θ) and the area is (1/2)θr2.

(4) For a sphere, the surface area is 4πr2 and the volume is (4/3)πr3. For a hemisphere, the surface
area is 3πr2 (2πr2 for the curved part and πr2 for the bounding disk) and the volume is (2/3)πr3.

Here are some important results on optimization in these various examples:
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(1) For a right circular cylinder with volume V , there is no minimum and no maximum for the curved
surface area. This is because for given radius r, the expression for the curved surface area is 2V/r,
which approaches ∞ as r → 0 (smaller and smaller radius, larger and larger height) and approaches
0 as r → ∞ (larger and larger radius, smaller and smaller height). If, however, we have additional
boundary constraints on the radius or height, the maximum/minimum will occur at these boundaries.

(2) For a right circular cylinder with volume V , there is an absolute minimum for the surface area of
the base plus curved part (i.e., only one bounding disk is included). The expression is 2V/r + πr2.
As r → 0 or r → ∞, this expression tends to ∞. The absolute minimum occurs at the point
r = (2V/π)1/3. (see also Example 1 from the book).

(3) For a right circular cylinder with volume V , there is an absolute minimum for the total surface area
(including both disks). The expression is 2V/r + 2πr2. As r → 0 or r → ∞, this tends to infinity.
The absolute minimum occurs at the point r = (V/π)1/3.

2. Important tricks in real-world problems

2.1. The maximum is determined by the tightest constraint. Let me first state this mathematically
(where it’s obvious) and then non-mathematically (where again it’s obvious).

Suppose x is a real number subject to the constraints x ≤ a1, x ≤ a2, and x ≤ a3. What is the maximum
value that x can take? Clearly, it is the minimum among a1, a2, and a3, because that is the tightest, most
limiting constraint on x.

Here are some non-mathematical formulations:
(1) A truck has to go on a highway. As part of its journey, the truck needs to negotiate three underpasses,

with clearances of 10 feet, 9 feet, and 11 feet respectively. What is the maximum possible height of
the truck? (Hint: You want to make sure you don’t get into a problem anywhere).

(2) Hydrogen and oxygen combine in a ratio of 1 : 8 by mass to produce water. Assuming that we have
50 grams of hydrogen and 220 grams of oxygen, what is the maximum possible amount of water that
can be produced from these? (Hint: Limiting reagent).

To repeat: the maximum value that something can take is determined by the tightest of the upper bounds
on it. The importance of this idea cannot be over-emphasized. On the one hand, it is a staple of a whole
branch of graph theory/network theory results called max-min theorems. All of them have the flavor that
the upper end of what’s possibility coincides with the lower end of the constraints. On the other hand, it is
also the whole basis for the theory of least upper bounds and greatest lower bounds that we will see in 153
and that forms the basis for a rigorous study of the reals (which you might see if you proceed to study real
analysis).

2.2. Some random tricks. A real-world optimization problem is not usually given in a ready-to-solve form.
Rather, some decisions and judgments need to be made about the procedure and the general form of the
solution in order to obtain a mathematical setup.

The initial judgment may use general rules: for instance, the rule that straight line paths, where possible,
are shorter than non-straight line paths. Thus, when asked to find a shortest path subject to certain
constraints, we may be able to narrow it down to a straight line path and then do the optimization within
that.

As a somwhat trickier example, consider the following problem, which appears on your homework:
Two hallways, one 8 feet wide and the other 6 feet wide, meet at right angles. Determine the
length of the longest ladder that can be carried horizontally from one hallway to the other.

Here, the significance of horizontally is simply that the ladder cannot be tilted vertically, a strategy that
would enable one to carry a longer ladder. This problem is a hard one because the nature of the constraint is
not clear. How does the width of the hallways constrain the length of the ladder that can be passed through?

We need to role-play the process of carrying the ladder. When a ladder is being carried along a corridor,
it makes the most sense to align the ladder parallel to the walls of the corridor. When the direction of the
corridor changes, the ladder needs to be rotated to align it with the new corridor. We must be able to rotate
the ladder through every angle. This leads to the constraint: for every angle, the ladder must fit in. We
then try to find, for every angle θ, the maximum length of ladder that can fit in at the junction between
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the two corridors. Each of these imposes a constraint on the length of ladder. The most relevant binding
constraint is the minimum of these lengths.

2.3. The intuition of tangency. Let’s now look at another problem that also appears on your homework:

A tapestry 7 feet high hangs on a wall. The lower edge is 9 feet above an observer’s eye.
How far from the wall should the observer stand in order to obtain the most favorable view?
Namely, what distance from the wall maximizes the visual angle of the observer?

Here’s the intuition behind this problem. If you stand right under the tapestry, it seems foreshortened.
If, however, you go very far, then it simply seems small. The quantity that measures how large the tapestry
appears is the visual angle, or the angle between the lines joining your eyes to the top and bottom of the
tapestry. This angle is zero if you are right under the tapestry, and it approaches zero as you go out far from
the tapestry. Where is it maximum? Somewhere in between. But where exactly?

You can find this using calculus – which is what you are expected to do in this homework. But there is
an alternative, related approach that is more geometric.

The main geometric fact used is that the angle subtended by a chord of a circle at any two points on the
circle on the same side of the chord is the same.

Now, consider a circle passing through the two ends of the tapestry. If this circle intersects the horizontal
line of possible locations of your eye at two points P and Q, then by the result I mentioned, the visual angle
at P equals the visual angle at Q. Note that for a very large circle, P is very close to the base of the tapestry
and Q is very far away. This helps explain why small visual angles are achieved both very close and very far
away from the tapestry.

We also see that the smaller the circle, the larger the visual angle. Thus, the goal is to find the smallest
circle passing through the two ends of the tapestry that intersects the horizontal line of possible locations
of the eye. A little thought reveals that this occurs when the circle is tangent to the horizontal line. If you
imagine starting with a very large circle and shrinking it further and further, the circle that is tangent to
the horizontal line is the one at which the circle just leaves the horizontal line. (Having deduced this, it is
possible to determine the precise point using geometry and algebra, without any calculus. You can verify
the answer you obtain using calculus via this method).

Here’s the picture with lots of such circles drawn. Such a system of circles is called a coaxial system of
circles.

Here’s the same picture with just the circle of tangency and another circle drawn:
7



Note: We can use another result of geometry to calculate the distance of the point of tangency from the
foot of the tapestry. Namely, the result says that if P is a point outside a circle, PT is a tangent to the circle
with point of tangency T , and a secant line through P intersects the circle at A and B, then PA ·PB = PT 2.
We can use this to calculate PT as the square root of the product of the distances from the base of the
bottom and top of the tapestry.

2.4. The heuristic of multiple uses. Suppose a resource (such as fencing wire, which plays the role of
perimeter) is to be divided among two alternative uses: say a square fence, and a circular fence. It is a fact
that, of all possible shapes with a given perimeter, the circle encloses the largest area. (This is called the
isoperimetric problem, and although we will not show it, it is useful to remember). In particular, devoting
all the fencing to the circle yields a larger area than devoting all the fencing to the square. (This can be
checked easily by algebra, and the fact that π < 4).

Given this, what is the way of allocating fencing so as to get the maximum and minimum possible total
area? It turns out that for the maximum possible, we allocate all resources to the hands-down better use,
which is in this case the circle. However, for the minimum possible, the strategy is not that of allocating
everything to the square. Why not? It turns out that we can do even worse by providing some fencing to
the square and some fencing to the circle? Why? Because there is some wastage that arises simply from
having two fences. Even though a square is less efficient than a circle, devoting everything to the square is
a little more efficient than devoting mostly to the square and a bit for the circle. A problem of this kind
appears in Homework 5.

In the good old days when everybody farmed, each time a farmer with multiple sons died, his land was
divided among the sons. As a result, fencing costs and wastage kept increasing. One solution to this was
primogeniture laws, which stated that the eldest son was entitled to the land. While not fair, these laws
helped combat the problem of fragmentation of land holdings.

2.5. Integer optimization. A few brief notes on integer optimization may be worthwhile. In many real-
world situations, the possible values that a variable can take are constrained to be integers. For instance:
how many passengers can travel on this vehicle? The optimization here thus requires one to optimize subject
to the integer value constraint on the variables.

It may seem reasonable at first to believe that the best integer solution is the integer closest to the best
real solution. This is not always the case. In fact, computer scientists have shown that even solving systems
of linear equations and inequalities in integer variables has no general-purpose algorithm that runs quickly
(subject to a long-standing conjecture called P 6= NP ). This is despite the fact that the analogous problem
is very easy to solve for real variables.
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The problem here is that the value of a function can change very rapidly between a real number and the
integers closest to it. See, for instance, this picture for a function where the maximum value among values
at integers is not attained at the integer closest to the absolute maximum:

However, it is useful to look at the behavior of a function over all real numbers in order to determine
the integers where it attains maxima and minima. For instance, if we can determine where the function
is increasing and decreasing, we can use this information along with testing some values in order to find
out the maxima and minima. Specifically, what we first do is extend the function to all real numbers (by
considering the definition of the function applied to all real numbers) and find the intervals where the function
is increasing and decreasing as a function with real inputs. Then:

(1) If f is increasing on an interval, then the minimum of f on that interval occurs at the smallest integer
in the interval and the maximum occurs at the largest integer in the interval.

(2) If f is decreasing on an interval, then the minimum of f on that interval occurs at the largest integer
in the interval and the minimum occurs at the smallest integer in the interval.

(3) If we need to find the absolute maximum of f over all integers, we can first break up into intervals
where f is increasing/decreasing, find the maximum over each of those intervals, and finally compare
the values of all these maxima to find which is the largest one.

Here are some simple examples:

(1) Consider a function that is decreasing on (−∞, 1.3] and increasing on [1.3,∞). Then, if viewed as
a function on reals, this function has a unique absolute minimum at 1.3. As a function on integers,
we know that the function is increasing from 2 onwards, so the value for any integer greater than 2
is greater than the value at 2. Similarly, we know that the value at any integer less than 1 is greater
than the value at 1. So, there are two candidates for the absolute minimum among integers: the
values at 1 and 2. We now calculate the values at 1 and 2 and find which one is smaller.

(2) Consider a function that decreases on (−∞,−1.1], increases on [−1.1, 0.1], decreases on [0.1, 0.9],
and then increases on [0.9,∞). On the interval (−∞,−1.1], the minimum among integers is at −2.
On the interval [−1.1, 0.1], the minimum among integers is at −1. On the interval [0.1, 0.9], there
are no integers. On the interval [0.9,∞), the minimum among integers is at 1. Thus, the three
candidates for the point of absolute minimum are −2, −1, and 1.

Note that it is not necessarily true that the integer where the absolute minimum among integers is attained
is the closest integer to the real number where the absolute minimum among real numbers is attained. This
is because the function can change very rapidly between a real number and the closest integer. For certain
special kinds of functions (such as quadratic functions), it is true that the integer for absolute minimum is
the closest integer to the real number for absolute minimum. But this is due to the symmetric nature of
quadratic functions – the graph of a quadratic function with positive leading coefficient is symmetric about
the vertical line through its point of absolute minimum.1

1For negative leading coefficient, the corresponding statement is true if we replace absolute minimum by absolute maximum.
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3. Some notes from social and natural sciences

3.1. An important maximization: Cobb-Douglas, fair share, and kinetics. Let’s now go to a ques-
tion considered by some economists in the early twentieth century. We’ll then talk about how a similar
question comes up in chemical reactions.

Suppose a factory is producing some goods using two kinds of inputs: labor and capital. For a given
production process, if the factory spends L on labor and K on capital, the output of the factory is given
by LaKb, where a and b are positive numbers. The goal of the factory is to maximize output for a given
expenditure (L + K). In other words, if the factory is spending a total E on labor and capital put together,
how should it allocate E between labor and capital to obtain the maximum output?

Since E is fixed, we can choose L as the variable and write K = E − L. We thus get that the output is
La(E − L)b. If we further let x = L/E (the fraction on labor), then the output is given by Ea+bxa(1− x)b.
Thus, in order to maximize output, we need to maximize xa(1− x)b, where x ∈ [0, 1].

A maximization of this sort appears on your homework, and we find there that the absolute maximum
on the interval [0, 1] occurs at the point a/(a + b). Thus, the maximum occurs when L = Ea/(a + b) and
K = Eb/(a+b). Thus, the labor-to-capital expenditure ratio L/K is a/b – the same as the ratio of exponents.

What this result shows is that the ratio of exponents on labor and capital represents the relative contri-
butions of labor and capital to production. Optimization occurs when the allocation of resources is done
according to these relative contributions: a fraction of a/(a+b) to labor and a fraction of b/(a+b) to capital.
In hindsight, this makes intuitive sense: the larger the value of a, the more sense it makes to invest in labor,
because the return on investment in labor is higher. However, after some point, it also makes sense to invest
a bit in capital, otherwise that becomes a bottleneck. The proportion should have something to do with the
ratio of a and b. Mathematically, we have shown that these two proportions in fact coincide.

This raises the question of what determines a and b in the first place. This has something to do with
the nature of the production process. A labor-intensive process would be one where a dominates and a
capital-intensive process would be one where b dominates.

All production functions do not look like the function above. However, it was the argument of Cobb and
Douglas that assuming functions to be of the above form is a useful simplification and many phenomena
of relative allocation of resources to factors of production can be understood this way. In many parts of
economics and the social sciences, people wanting to do a simple analysis often begin by assuming that a
given production function is Cobb-Douglas, in order to get a clear handle on the relative contribution of
different factors.

Another place where a similar formulation pops up is chemical kinetics. Suppose we have a chemical
reaction between two substances A and B, with equation of the form mA + nB → products. The theory of
chemical kinetics suggests that, assuming this reaction is elementary, the rate of forward reaction is given
by kf [A]m[B]n where kf is a constant (with suitable dimensions), [A] is the concentration of A and [B] is
the concentration of B.

Now, the question may be: for a given total concentration, how do you decide the proportions in which
to mix A and B to get the fastest reaction? This is the same problem in a new guise, and it turns out that
the maximum occurs when [A] : [B] = m : n. This is poetic justice, because this is precisely the right ratio
from the stoichiometric viewpoint.

3.2. Frontier curves and optimal allocation. An important concept, which you may first see in eco-
nomics courses, but which also occurs elsewhere, is that of a production possibility frontier or production
possibility curve. Let’s understand these curves in the language of optimization.

Suppose you are running a farm that can produce only two things: wheat and rice. Now, let’s say that
you decide to produce 50, 000 bushels of wheat. Given this constraint, your goal is to produce as much rice as
possible. This is now an optimization problem and you somehow solve it and find out that you can produce
at most 25, 000 bushels of rice if you want to produce 50, 000 bushels of wheat.

Now, if you instead wanted to produce only 40, 000 bushels of wheat, it is possible that you can produce
more – say 40, 000 bushels of rice. Thus, for each quantity of wheat that you choose to produce, there is a
maximum quantity of rice you can produce with the given resources. We can thus define a function that
takes as input the quantity of wheat and outputs the maximum quantity of rice that can be produced
alongside. This is a decreasing function (the more wheat you produce, the less resources you can devote
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to producing rice) and its domain is from 0 to the maximum amount of wheat that you can produce. The
largest value in the domain is the maximum amount of wheat you can produce if you devote all resources to
wheat production, and the value of the function at 0 if the maximum amount of rice you can produce if you
devote all your resources to rice production.

The graph of this function is called the production possibility curve or production possibility frontier. The
important thing to note about this graph is that every point on the graph is an optimal point in some sense
– there is no way to unambiguously improve from any of these points. Any point below a point on the
curve, or on the inside of the curve, is achievable but non-optimal, in the sense that it is possible to increase
the production of one or both the outputs without decreasing the other one. A point above or outside the
production possibility frontier is a point that cannot be achieved, reflecting the reality of scarcity or the
limitations of current technology, depending on your perspective.

3.3. Can spontaneous processes solve optimization problems? First, a little clarification on what
the question means. In all the situations we have seen so far, there is a conscious agent that is using calculus
to find an optimal allocation or optimal value by explicitly considering constraints. But optimization has
been a goal for living creatures and for nature long before the advent of calculus. How did they do it?

For instance, bubbles tend to be spherical in order to minimize their surface area. More generally, the
shapes that soap films can take are minimal surfaces – they minimize surface area. But are bubbles and
soap films solving a complicated optimization problem by choosing a spherical shape? Do we need to posit a
theory of consciousness and calculus ability every time we see such optimization in the physical or biological
world?

No. Physical entities (and most primitive biological entities) are not trying to reach an optimal state –
they simply keep moving around until they hit upon a stable equilibrium, which is locally optimal. In fact,
the same is true for humans interacting in a large market. This point is extremely important.

For instance, here are some crude heuristics:
(1) In the world of physics, the reason why mechanical or physical systems tend to certain “optimal”

configurations is that in these configurations, there are no forces rending them apart or causing them
further change.

(2) In the world of chemistry, materials keep reacting until they reach a configuration where the push
to the reaction in one direction equals the push to reaction in the other direction.

(3) In the world of biology, living creatures explore the space around them till they hit on something
that’s better than the stuff around it.

(4) In the word of economics, each individual keeps making changes in the variables under his/her
economic control until reaching a situation where a change in either direction is not to his/her
advantage.

The upshot is that local optima tend to be places of stability simply because there isn’t a tendency to
deviate either way, not because anybody did calculus. You can think of it like an ant moving along the graph
of a curve and stopping when it gets to a peak and would need to go down both ways.

But this also has a flip side:
• Local optima need not be absolute optima. That was the whole point of our earlier lecture on the

subject! But given their stability, natural systems may stay stuck at these local optima. To get to an
even bigger global optima, a push may be needed. (For instance, activation energy in the context of
a chemical reaction, or the entry of a new competitor in a stagnating and non-innovating industry).

• In some cases, there may be so many different local optima, or the situation may be so shaky, that
there is never any place to settle down at. In some cases, inertia may prevent settling down. This
causes such phenomena as oscillatory and chaotic behavior.
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CONCAVITY, INFLECTIONS, CUSPS, TANGENTS, AND ASYMPTOTES

MATH 152, SECTION 55 (VIPUL NAIK)

Corresponding material in the book: Section 4.6, 4.7.
Difficulty level: Moderate to hard. If you have seen these topics in AP Calculus, then moderate

difficulty; if you haven’t, then hard.
What students should definitely get: The definitions of concave up, concave down, and point of

inflection. The strategies to determine limits at infinity, limits valued at infinity, vertical tangents, cusps,
vertical asymptotes, and horizontal asymptotes.

What students should hopefully get: The intuitive meanings of these concepts, important examples
and boundary cases, the significance of concavity in determining local extrema, the use of higher derivative
tests. Important tricks for calculating limits at infinity.

Executive summary

0.1. Concavity and points of inflection. Words ...

(1) A function is called concave up on an interval if it is continuous and its first derivative is continuous
and increasing on the interval. If the function is twice differentiable, this is equivalent to requiring
that the second derivative be positive except possibly at isolated points, where it can be zero. (Think
x4, whose first derivative, 4x3, is increasing, and the second derivative is positive everywhere except
at 0, where it is zero).

(2) A function is called concave down on an interval if it is continuous and its first derivative is continuous
and decreasing on the interval. If the function is twice differentiable, this is equivalent to requiring
that the second derivative be negative except possibly at isolated points, where it can be zero.

(3) A point of inflection is a point where the sense of concavity of the function changes. A point of
inflection for a function is a point of local extremum for the first derivative.

(4) Geometrically, at a point of inflection, the tangent line to the graph of the function cuts through the
graph.

Actions ...

(1) To determine points of inflection, we first find critical points for the first derivative (which are points
where this derivative is zero or undefined) and then use the first or second derivative test at these
points. Note that these derivative tests are applied to the first derivative, so the first derivative here
is the second derivative and the second derivative here is the third derivative.

(2) In particular, if the second derivative is zero and the third derivative exists and is nonzero, we have
a point of inflection.

(3) A point where the first two derivatives are zero could be a point of local extremum or a point of
inflection. To find out which one it is, we either use sign changes of the derivatives, or we use higher
derivatives.

(4) Most importantly, the second derivative being zero does not automatically imply that we have a
point of inflection.

0.2. Tangents, cusps, and asymptotes. Words...

(1) We say that f has a horizontal asymptote with value L if limx→∞ f(x) = L or limx→−∞ f(x) = L.
Sometimes, both might occur. (In fact, in almost all the examples you have seen, the limits at ±∞,
if finite, are both equal).

(2) We say that f has a vertical asymptote at c if limx→c− f(x) = ±∞ and/or limx→c+ f(x) = ±∞.
Note that in this case, it usually also happens that f ′(x) → ±∞ on the relevant side, with the sign
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the same as that of f(x)’s approach if the approach is from the left and opposite to that of f(x)’s
approach if the approach is from the right. However, this is not a foregone conclusion.

(3) We say that f has a vertical tangent at the point c if f is continuous (and finite) at c and
limx→c f ′(x) = ±∞, with the same sign of infinity from both sides. If f is increasing, this sign
is +∞, and if f is decreasing, this sign is −∞. Geometrically, points of vertical tangent behave a
lot like points of inflection (in the sense that the tangent line cuts through the graph). Think x1/3.

(4) We say that f has a vertical cusp at the point c if f is continuous (and finite) at c and limx→c− f ′(x)
and limx→c+ f ′(x) are infinities of opposite sign. In other words, f takes a sharp about-turn at the
x-value of c. Think x2/3.

(5) We say that f is asymptotic to g if limx→∞ f(x)− g(x) = limx→−∞ f(x)− g(x) = 0. In other words,
the graphs of f and g come progressively closer as |x| becomes larger. (We can also talk of one-sided
asymptoticity, i.e., asymptotic only in the positive direction or only in the negative direction). When
g is a nonconstant linear function, we say that f has an oblique asymptote. Horizontal asymptotes
are a special case, where one of the functions is a constant function.

Actions...
(1) Finding the horizontal asymptotes involves computing limits as the domain value goes to infinity.

Finding the vertical asymptotes involves locating points in the domain, or the boundary of the
domain, where the function limits off to infinity. For both of these, it is useful to remember the
various rules for limits related to infinities.

(2) Remember that for a vertical tangent or vertical cusp at a point, it is necessary that the function
be continuous (and take a finite value). So, we not only need to find the points where the derivative
goes off to infinity, we also need to make sure those are points where the function is continuous.
Thus, for the function f(x) = 1/x, f ′(x) → −∞ on both sides as x → 0, but we do not obtain a
vertical tangent – rather, we obtain a vertical asymptote.

1. Concavity and points of inflection

1.1. Concavity. Concave up means that the derivative of the function (which measures its rate of change)
is itself increasing. Formally, a function f differentiable on an open interval I is termed concave up on I if
f ′ is increasing on I. I hope you remember the definition of an increasing function: it means that for two
points x1, x2 ∈ I, with x1 < x2, we have f ′(x1) < f ′(x2).

Here’s three points:
(1) If f itself is increasing (so that f ′ is positive), then being concave up means that f is increasing at

an increasing rate. In other words, the slope of the tangent line to the graph of f becomes steeper
and steeper (up) as we go from left to right. Here’s a typical picture:

2



(2) If f itself is decreasing (so that f ′ is negative), then being concave up means that f is decreasing
at a decreasing rate. In other words, the slope of the tangent line to the graph is negative, but it is
becoming less and less steep as we go from left to right. Here’s a typical picture:

(3) If f is twice differentiable, i.e., f ′ is differentiable, then we can deduce whether f ′ is increasing by
looking at f ′′. Specifically, if f ′ is continuous on I, and f ′′ > 0 everywhere on I except at a few
isolated points, then f is concave up throughout.

Similarly, if f is differentiable on an open interval I, we say that f is concave down on I if f ′ is decreasing
on the interval I. I hope you remember the definition of a decreasing function: it means that for two points
x1, x2 ∈ I, with x1 < x2, we have f ′(x1) > f ′(x2).

Here’s three points:

(1) If f itself is decreasing (so that f ′ is negative), then being concave down means that f is decreasing
at an increasing rate. In other words, the slope of the tangent line to the graph of f becomes steeper
and steeper (downward) as we go from left to right.

(2) If f itself is increasing (so that f ′ is positive), then being concave down means that f is increasing
at a decreasing rate. In other words, the slope of the tangent line to the graph is positive, but it is
becoming less and less steep as we go from left to right.
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(3) If f is twice differentiable, i.e., f ′ is differentiable, then we can deduce whether f ′ is increasing by
looking at f ′′. Specifically, if f ′ is continuous on I, and f ′′ < 0 everywhere on I except at a few
isolated points, then f is concave down throughout.

1.2. Points of inflection. A point of inflection is a point c in the interior of the domain of a differentiable
function (i.e., the function is defined and differentiable on an open interval containing that point) such that
the function is concave in one sense to the immediate left of c and concave in the other sense to the immediate
right of c.

Another way of thinking of this is that points of inflection of a function are points where the derivative
is increasing to the immediate left and decreasing to the immediate right, or decreasing to the immediate
left and increasing to the immediate right. In other words, it is a point of local maximum or a point of local
minimum for the derivative of the function.

Recall that earlier, we noted that for a point of local maximum or a point of local minimum, either the
derivative is zero or the derivative does not exist. Since everything we’re talking about now is related to f ′,
we have that for a point of inflection, either f ′′ = 0 or f ′′ does not exist.

So the upshot: concave up means the derivative is increasing, concave down means the derivative is
decreasing, point of inflection means the sense in which the derivative is changing changes at the point.

1.3. A point of inflection where the first two derivatives are zero. We now consider one kind of
point of inflection: where the first derivative and the second derivative are both zero. Let’s begin with the
example.

Consider the function f(x) := x3. Recall first that since f is a cubic function, it has odd degree, so as
x → −∞, f(x) → −∞, and as x → ∞, we also have f(x) → ∞. Further, if we compute f ′(x), we get 3x2.
Note that the function 3x2 is positive for x 6= 0, and is 0 at x = 0. So, from our prior discussion of increasing
and decreasing functions, we see that f is increasing on (−∞, 0] and then again on [0,∞). And since the
point 0 is common to the two intervals, f is in fact increasing everywhere on (−∞,∞).

If you remember, this was an important and somewhat weird example because, although f ′(0) = 0, f
does not attain a local extreme value at 0. This is because the derivative of f is positive on both sides of 0.
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This was the picture we had from our earlier analysis. But now, with the concepts of concave up, concave
down, and points of inflection, we can get a better understanding of what’s going on. Specifically, we see
that the second derivative f ′′ is 6x, which is negative for x < 0, zero for x = 0, and positive for x > 0. Thus,
f is concave down for x < 0, x = 0 is a point of inflection, and f is concave up for x > 0.

So, here’s the picture: for x < 0, f is negative, f ′ is positive, and f ′′ is again negative. Thus, the graph
of f is below the x-axis (approaching 0), it is going upward, and it is going up at a decreasing rate. So, as
x → 0, the graph becomes flatter and flatter.

For x > 0, f is positive, f ′ is positive, and f ′′ is again positive. Thus, the graph of f is above the x-axis
(starting from the origin), it is going upward, and it is going up at an increasing rate. The graph starts out
from flat and becomes steeper and steeper.

So, x = 0 is a no sign change point for f ′, which is why it is not a point of local maximum or local
minimum. This is because on both sides of 0, f ′ is positive. What happens is that it is going down from
positive to zero and then up again from zero to positive. But on a related note, because f ′ itself dips down
to zero and then goes back up, the point 0 is a point of local minimum for f ′, so it is a point of inflection
for f .

The main thing you should remember is that when we have a critical point for a function, where the
derivative is zero, but it is neither a point of local maximum nor a point of local minimum, then it is likely
to be a point of inflection. In other words, this idea of something that is increasing (or decreasing) and
momentarily stops in its tracks, is the picture of neither a local maximum nor a local minimum but a point
of inflection.

1.4. Points of inflection where the derivative is not zero.
Let’s review the graph of the sine function. The sine function starts with sin(0) = 0, goes up from 0 to

π/2, where it reaches the value 1, then drops down to 0, drops down further to −1 at 3π/2, and then turns
back up to reach 0 at 2π. And this pattern repeats periodically.
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So far, you’ve taken me on faith about the way the graph curves. But we can now start looking at things
in terms of concave up and concave down.

The derivative of the sin function is the cos function. Let’s graph the cos function. This starts with the
value 1 at x = 0, goes down to zero at x = π/2, dips down to −1 at x = π, goes back up to 0 at x = 3π/2,
and then goes up to 1 at x = 2π.

We see that cos is positive from 0 to π/2, and sin is increasing on that interval. cos is negative from
π/2 to 3π/2, and sin is decreasing on that interval. cos is again positive from 3π/2 to 2π, and sin is again
increasing on that interval.

Next, we want to know where sin is concave up and where it is concave down. And for this, we look at
the second derivative of sin, which is the function − sin. As you know, the graph of this function is the same
as the graph of sin, but flipped about the x-axis. This means that where sin is positive, its second derivative
is negative, and where sin is negative, its second derivative is positive.

So, from the interval between 0 and π, sin is concave down and on the interval between π and 2π, sin is
concave up. Breaking the interval down further, sin is increasing and concave down on (0, π/2), decreasing
and concave down on (π/2, π), decreasing and concave up on (π, 3π/2), and increasing and concave up on
(3π/2, 2π). The behavior repeats periodically.

Now, let’s concentrate on the points of inflection. Note that the sense of concavity changes at multiples
of π – at the point 0, the function changes from concave up to concave down. At the point π, the function
changes from concave down to concave up. Another way of thinking about this is that just before π, the
function is decreasing at an increasing rate – it is becoming progressively steeper. But from π onwards, it
starts decreasing at a decreasing rate, in the sense that it starts becoming less steep. So π is the point where
the way the tangent line is turning starts changing.

1.5. A graphical characterization of inflection points. Inflection points are graphically special because
they are points where the way the tangent line is turning changes sense. There’s a related characterization. If
you draw the tangent line through an inflection point, the tangent line cuts through the curve. Equivalently,
the curve crosses the tangent line. This is opposed to any other point, where the curve locally lies to one
side of the tangent line.

For instance, for the cube function f(x) := x3, the tangent line is the x-axis, and the curve crosses the
x-axis at x = 0. We see something similar for the tangent lines at the points of inflection 0 and π for the sin
function.

1.6. Third and higher derivatives: exploration. (I may not get time to cover this in class).
A while ago, we had developed criteria to determine whether a critical point is a point where a local

extreme value is attained. We discussed two tests that could be used: the first derivative test and the second
derivative test. The first derivative test said that if f ′ changes sign across the critical point, it is a point
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where a local extreme value occurs: a local maximum if the sign change is from positive on the left to
negative on the right, and a local minimum if the sign change is from negative on the left to positive on the
right.

The second derivative test was a test specially suited for functions that are twice differentiable at the
critical point. This test states that if the second derivative at a critical point is negative, the function attains
a local maximum, and if the second derivative is positive, the function attains a local minimum. This leaves
one case open: what happens if the second derivative at the critical point is zero?

In this case, things are inconclusive. We might have a point of local maximum, a point of local minimum,
an inflection point, or none of the above. How do we figure this out? I will give two general principles of
alternation, and then we will look at some examples:

(1) If c is a point of inflection for f ′ and and f ′(c) = 0, then c is a point of local extremum for f . If the
point of inflection is a change from concave up to concave down, we get a local maximum and if the
change is from concave down to concave up, we get a local minimum.

(2) If c is a point of local maximum or minimum for f ′, then c is a point of inflection for f . Local
maximum implies a change from concave up to concave down and local minimum implies a change
from concave down to concave up.

Let’s illustrate this with the function f(x) := x5 and the point c = 0. Let’s also assume you knew nothing
except differentiation and applying the derivative tests. We have f ′(x) = 5x4, f ′′(x) = 20x3, f ′′′(x) = 60x2,
f (4)(x) = 120x, and f (5)(x) = 120. At c = 0, f (5) is the first nonzero derivative.

Now, 0 is a point at which f (4) = 0 and f (5) > 0. Thus, by the second derivative test, 0 is a point of
local minimum for f (3). So, 0 is a point of inflection for f (2), by point (2) above. Thus, 0 is a point of local
minimum for f ′, by point (1) above. Thus, 0 is a point of inflection for f , by point (2) above.

So, the upshot of this is the alternating behavior between derivatives.

1.7. Higher derivative tests. The discussion above gives a practical criterion to simply use evaluation of
derivatives to determine whether a critical point, where a function is infinitely differentiable, is a point of
local maximum, point of local minimum, point of inflection, or none of these.

Suppose f is an infinitely differentiable function around a critical point c for f .. Let k be the smallest
integer for which f (k)(c) 6= 0 and let L be the nonzero value of the kth derivative. Then:

(1) If k is odd, then c is a point of inflection for f and hence neither a point of local maximum nor a
point of local minimum.

(2) If k is even and L > 0, then c is a point of local minimum for f .
(3) If k is even and L < 0, then c is a point of local maximum for f .

For instance, for the power function f(x) := xn, n ≥ 2. 0 is a critical point and f is infinitely differentiable.
In this case, c = 0, k = n, and L = n! > 0. Thus, if n is even, then f does attain a local minimum at 0. if n
is odd, 0 is a point of inflection. In this simple situation, we could have deduced this directly from the first
derivative test – for n even, the first derivative changes sign fron negative to positive at 0, because n− 1 is
odd. For n odd, n− 1 is even, so the first derivative has positive sign on both sides of 0. However, the good
news is that this general method is applicable for other situations where the first derivative test is harder to
apply.

1.8. Notion of concave up and concave down for one-sided differentiable. So far, we have defined
the notion of concave up and concave down on an interval assmuing the function is differentiable everywhere
on the interval. In higher mathematics, a somewhat more general definition is used, and this makes sense
for functions that have one-sided derivatives everywhere.

Note: Please, please, please, please make sure you understand this clearly: we can calculate the left-hand
derivative and right-hand derivative using the formal expressions only after we have checked that the function
is continuous from that side! If there is a piecewise description of the function and it is not continuous from
one side where the definition is changing, then the corresponding one-sided derivative is not, repeat not
defined.

Suppose f is a function on an interval I = (a, b) such that both the left-hand derivative and the right-hand
derivative of f are defined everywhere on I. Note that both one-sided derivatives being defined at every point
in particular means that the function is continuous at each point, and hence on I. However, f need not be
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differentiable at every point, because it is possible that the left-hand derivative and right-hand derivative
differ at different points.

We then say that:

(1) f is concave up if, at every point, the right-hand derivative is greater than or equal to the left-hand
derivative, and both one-sided derivative are increasing functions on R.

(2) f is concave down if, at every point, the right-hand derivative is less than or equal to the left-hand
derivative, and both one-sided derivatives are decreasing functions on R.

For instance, first consider the function f on (0,∞):

f(x) := { x2, 0 < x ≤ 1
x3, 1 < x

Before we proceed further, we check/note that the function is continuous at 1. Indeed it is. Hence, to
calculate the left-hand derivative and right-hand derivative at 1, we can formally differentiate the expressions
at 1. We obtain that the left-hand derivative at 1 is 2 · 1 = 2 and the right-hand derivative at 1 is 3 · 12 = 3.
We thus obtain the following piecewise definitions for the left-hand derivative and right-hand derivative:

LHD of f at x = { 2x, 0 < x ≤ 1
3x2, 1 < x

and:

RHD of f at x = { 2x, 0 < x < 1
3x2, 1 ≤ x

The derivative is undefined at 1. Note that both one-sided derivatives are increasing everywhere, and at
the point 1, where the function is not differentiable, the right-hand derivative is bigger. Thus, the function
is concave up on (0,∞).

Here’s the graph, with dashed lines indicating the one-sided derivatives:

On the other hand, consider the function g on (0,∞):

g(x) := { x3, 0 < x ≤ 1
x2, 1 < x
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The function g is continuous and has one-sided derivatives everywhere. Also note that on the intervals
(0, 1) and (1,∞), g is concave up. However, at the critical point 1 where g′ is undefined, the right-hand
derivative is smaller than the left-hand derivative. Thus, the function is not concave up overall on (0,∞),
because at the critical point, its rate of increase takes a plunge for the worse. Here’s the picture of g:

1.9. Graphical properties of concave functions. Here are some properties of the graphs of functions
that are concave up, which are particularly important in the context of optimization. You should be able to
do suitable role changes and obtain corresponding properties for concave down functions. In all the points
below, f is a continuous function on an interval [a, b] and is concave up on the interior (a, b).

(1) The only possibilities for the increase-decrease behavior of f are: increasing throughout, decreasing
throughout, or decreasing first and then increasing.

(2) In particular, f either has exactly one local minimum or exactly one endpoint minimum, and this
local or endpoint minimum is also the absolute minimum.

(3) Also, f cannot have a local maximum in its interior. It has exactly one endpoint maximum, and this
is also the absolute maximum.

(4) For any two points x1, x2 in the domain of f , the part of the graph of f between (x1, f(x1)) and
(x2, f(x2)) lies below the chord joining the points (x1, f(x1)) and (x2, f(x2)).

(5) If we assume that f is differentiable on (a, b), the tangent line through any point (x, f(x)) for
a < x < b does not intersect the curve at any other point. In the more general notion where f has
one-sided derivatives, both the left and right tangent line satisfy this property.

For concave down functions, the role of minimum and maximum gets interchanged, and in point (3) above,
the graph is now above the chord rather than below.

1.10. Addendum: concave and convex. The book uses the terminology concave up and concave down,
but it’s worth knowing that in much of mathematics as well as applications of mathematics, the term convex
is used for concave up and the term concave is used for concave down. However, there is some confusion
about this since some people use concave for concave up and convex for concave down.
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2. Infinity and asymptotes

2.1. Limits to infinity and vertical asymptotes. We have already discussed what it means to say
limx→c f(x) = +∞, but here’s a friendly reminder. It means that as x comes closer and closer to c (from
either side), f(x) goes above every finite value and does not then come back down. You can similarly
understand what it means to say that limx→c f(x) = −∞. You should also be able to understand the
one-sided versions of these concepts: limx→c− f(x) = ∞, limx→c+ f(x) = ∞, limx→c− f(x) = −∞, and
limx→c+ f(x) = −∞.

Now, here’s a little guesswork question: if limx→c− f(x) = ∞, what can you say about limx→c− f ′(x)?
As a general rule, nothing, but in most of the situations that we see, it turns out that f ′(x) also approaches
+∞1. The reason is easy to see graphically: for f(x) to head to +∞ as x approaches a finite value, f needs
to climb faster and faster and faster.

Similarly, it is usually the case that if limx→c− f(x) = −∞, then limx→c− f ′(x) = −∞. Also, if
limx→c+ f(x) = ∞, then it is likely that limx→c+ f ′(x) = −∞ (because it has to drop very quickly down
from infinity) and if limx→c+ f(x) = −∞, then limx→c+ f ′(x) = ∞ (because it has to rise very quickly back
up from −∞). Again, these things are not always true, but for most of the typical examples you’ll see, they
will be.

Now here’s the meaning of vertical asymptote. If limx→c− f(x) = ±∞ and/or limx→c+ f(x) = ±∞, then
the line x = c is termed a vertical asymptote for f . This is because the graph of f is approaching the vertical
line x = c. In some sense, if we think of f(c) = +∞ or −∞ as the case may be, the vertical line becomes
the tangent line to the curve at that infinite point.

Some of the typical situations worth noting are:

(1) limx→c f(x) = +∞ from both sides. An example of this is the function f(x) = 1/x2 with c = 0. The
vertical asymptote is the y-axis, i.e., the line x = 0. In this case, and in most other representative
examples, limx→c− f ′(x) = +∞, and limx→c+ f ′(x) = −∞.

(2) limx→c f(x) = −∞ from both sides. An example of this is the function f(x) = −1/x2 with c = 0.
The vertical asymptote is the y-axis, i.e., the line x = 0. In this case, and in most other representative
examples, limx→c− f(x) = −∞, and limx→c+ f(x) = +∞.

1More precisely, it turns out that if f ′ is continuous and does approach something, that something must be +∞. However,
there are weird examples where it oscillates
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(3) limx→c− f(x) = ∞ and limx→c+ f(x) = −∞. Examples include f = tan at c = π/2 (vertical
asymptote x = π/2) and f(x) = −1/x at c = 0 (vertical asymptote x = 0). In both these cases, as
in most others, limx→c f ′(x) = +∞.
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(4) limx→c− f(x) = −∞ and limx→c+ f(x) = ∞. Examples include f = cot at c = 0 and f(x) := 1/x at
c = 0. In both these cases, as in most others, limx→c f ′(x) = −∞.

2.2. Horizontal asymptotes. Horizontal asymptotes are horizontal lines that the graph comes closer and
closer to, just as vertical asymptotes are vertical lines that the graph comes closer and closer to.

We saw that vertical asymptotes arose when the range value was approaching ±∞ for a finite limiting
value of the domain. Horizontal asymptotes arise where the domain value approaches ±∞ for a finite limiting
value of the range.

Explicitly, if limx→∞ f(x) = L (with L a finite number), then the line y = L is a horizontal asymptote
for the graph of f , because as x → ∞, the graph comes closer and closer to this horizontal line. Similarly,
if limx→−∞ f(x) = M , then the line y = M is a horizontal asymptote for the graph of f . Thus, a function
whose domain extends to infinity in both directions could have zero, one, or two horizontal asymptotes.
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We will discuss some of the computational aspects of vertical and horizontal asymptotes in the problem
sessions. Later in the lecture, and in the addendum, we look at some computational tips and guidelines over
and above what is there in the book.

2.3. Vertical tangents. A vertical tangent to the graph of a function f occurs at a point (c, f(c)) if f is
continuous but not differentiable at c, and limx→c f ′(x) = +∞ or limx→c f ′(x) = −∞. It is important that
the sign of infinity in the limit is the same from both the left and the right side.

An example is the function f(x) := x1/3 at the point c = 0. The function is continuous at 0. The
derivative functions is (1/3)x−2/3, and the limit of this as x → 0 (from either side) is +∞. Graphically,
what this means is that the tangent is vertical. In this case, the vertical tangent coincides with the y-axis,
because it is attained at the point 0.
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Points of vertical tangent are points of inflection, as we can see from the x1/3 example. Recall that the
horizontal tangent case of the point of inflection was typified by x3, and the general slogan was that the
function slows down for an instant to speed zero. For vertical tangents, we can think of it as the function
speeding up instantaneously to speed infinity before returning to the realm of finite speed.

It is important to note that the situation of a vertical tangent requires that the function itself be defined
and continuous, and hence finite-valued, at the point. Thus, for instance, the function f(x) := 1/x satisfies
limx→0 f ′(x) = −∞ but does not have a vertical tangent at zero because the function is undefined at zero.

2.4. Vertical cusps. A vertical cusp in the graph of f occurs at a point c if f is continuous at c, and both
one-sided limits of f ′ at c are infinities of opposite sign. There are two possibilities:

(1) The left-hand limit of the derivative is +∞ and the right-hand limit of the derivative is −∞. Then,
(c, f(c)) is a point of local maximum. An example is f(x) := −x2/3 and c = 0 What happens in this
situation is the the graph has a sharp peak (picking up to speed infinity) at the point c, after which
it rapidly starts dropping.

(2) The left-hand limit of the derivative is −∞ and the right-hand limit of the derivative is +∞. In this
case we get a local minimum. An example is f(x) := x2/3 and c = 0.

There is a special curve called the astroid curve (I had planned to put this on the homework, but it went on
the chopping block when I needed to trim the homeworks to size), given by the equation x2/3 + y2/3 = a2/3.
This curve is not the graph of a function, since every value of x in (−a, a) has two corresponding values of
y. Nonetheless, the curve is a good illustration of the concept of cusps: there are two vertical cusps at the
points (0, a) and (0,−a) respectively, and two horizontal cusps at the points (a, 0) and (−a, 0) respectively.

Shown below is the astroid curve for a = 1:

Note that for the graph of a function, the only kind of cusp that can occur is a vertical cusp, because
a horizontal or oblique cusp would result in the curve intersecting a vertical line at multiple points, which
would contradict the meaning of a function.

It is important to note that the situation of a vertical cusp requires that the function itself be defined
and continuous, and hence finite-valued, at the point. Thus, for instance, the function f(x) := 1/x2 satisfies
limx→0− f ′(x) = +∞ and limx→0+ f ′(x) = −∞ but does not have a vertical tangent at zero because the
function is undefined at zero.

3. Computational aspects

3.1. Computing limits at infinity: a review. We review the main results that you have probably seen
and add some more:

(1) (→∞)(→∞) =→∞. In other words, if limx→c f(x) = ∞ and limx→c g(x) = ∞, then limx→c f(x)g(x) =
∞. c could be finite or ±∞ here, and we could take one-sided limits instead.
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(2) (→∞)(→ −∞) =→ −∞, and (→ −∞)(→ −∞) =→∞.
(3) (→ a)(→∞) =→∞ if a > 0 and (→ a)(→∞) =→ −∞ if a < 0. Similarly, (→ a)(→ −∞) =→ −∞

if a > 0 and (→ a)(→ −∞) =→∞ if a < 0.
(4) The previous point can be generalized somewhat: (→ ∞), times a function that eventually has a

positive lower bound (even if it keeps oscillating), is also →∞. Analogous results hold for negative
upper bounds.

(5) (→ 0)(→∞) is an indeterminate form: it is not clear what it tends to without doing more work.
(6) (→∞) + (→∞) =→∞.
(7) (→∞) + (→ a) =→∞ where a is finite. More generally, →∞ plus anything that is bounded from

below is also →∞.
(8) (→∞)− (→∞) and (→∞) + (→ −∞) are indeterminate forms.

Apart from this, the main facts you need to remember are that if a > 0, then limx→∞ xa = ∞ and
limx→∞ x−a = limx→−∞ x−a = 0. Note that this holds regardless of whether a is an integer.

When a is an odd integer or a rational number with odd numerator and odd denominator, limx→−∞ xa =
−∞. When a is an even integer or a rational number with even numerator and odd denominator, limx→−∞ xa =
∞.

Also worth noting: limx→0+ x−a = ∞ for a > 0 and limx→0− x−a = limx→−∞ xa, which is computed by
the rule above.

We can use these facts to explain most of the limits involving polynomial and rational functions. Earlier,
we had noted that when calculating the limit of a polynomial, it is enough to calculate the limit of its leading
monomial. Let’s now see why.

Consider the function f(x) := x7−5x5 +3x+2. Then, we can write f(x) = x7
[
1− 5x−2 + 3x−6 + 2x−7

]
.

The expression on the inside is 1 plus various negative powers of x. Each of those negative powers of x goes
to 0 as x →∞. So, we obtain:

lim
x→∞

[1− 5x−2 + 3x−6 + 2x−7] = 1

We also have limx→∞ x7 = ∞. Thus, the limit of the product is ∞.
Let’s now consider an example of a rational function:

9x3 − 3x + 2
103x2 − 17x− 99

Earlier, we had discussed that when computing such limits at ±∞, we can simply calculate thel imits of
the leading terms and ignore the rest. We now have a better understanding of the rationale behind this.
Formally:

lim
x→∞

9x3 − 3x + 2
103x2 − 17x− 99

= lim
x→∞

x3(9− 3x−2 + 2x−3)
x2(103− 17x−1 − 99x−2)

= lim x →∞x lim
x→∞

9− 3x−2 + 2x−3

103− 17x−1 − 99x−2

= lim
x→∞

x · 9
103

= +∞

More generally, we see that if the degree of the numerator is greater than the degree of the denominator,
the fraction approaches ±∞ as x → ±∞, with the sign depending on the signs of the leading coefficients
and the parity (even versus odd) of the exponents.

If the numerator and denominator have equal degree, the limit is a finite number. For x → ±∞, it is
the ratio of the leading coefficients (notice that it is the same on both sides). This is the case where we get
horizontal asymptotes. In this case, the horizontal asymptotes on both ends coincide.

For instance:
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lim
x→−∞

2x2 − 3x + 5
23x2 − x− 1

= lim
x→−∞

x2(2− 3x−1 + 5x−2)
x2(23− x−1 − x−2)

= lim
x→−∞

x2

x2
lim

x→−∞

2− 3x−1 + 5x−2

23− x−1 − x−2

=1 · 2
23

=
2
23

Finally, when the degree of the numerator is less than the degree of the denominator, then the fraction
tends to 0 as x →∞ and also tends to 0 as x → −∞. Thus, in this case, we get the x-axis as the horizontal
asymptote on both sides.

3.2. The 1/x substitution trick.
Consider the limit:

lim
x→∞

x sin(1/x)

This limit cannot be computed by plugging in values, because x → ∞ and 1/x → 0, so sin(1/x) → 0,
and we get the indeterminate form (→ ∞)(→ 0). The approach we use here is to set t = 1/x. As x → ∞,
t → 0+. Since t = 1/x, we get x = 1/t. Plugging in, we get:

lim
t→0+

sin t

t
This limit is 1, as we know well.
Note that with this general substitution, limits to infinity correspond to right-hand limits at 0 for the

reciprocal and limits at −∞ correspond to left-hand limits at 0 for the reciprocal. If there is a two-sided
limit at 0 for the reciprocal, the limits at ±∞ are the same. In fact, in the x sin(1/x) example, the limits at
∞ and −∞ are both 1 since limt→0 sin t/t = 1.

3.3. Difference of square roots. Consider the limit:

lim
x→∞

(
√

x + 1−
√

x)

There are many ways to compute this limit, but the easiest is to use the general 1/x substitution trick.
Let t = 1/x. Then the above limit becomes:

lim
t→0+

√
t + 1− 1√

t

This is an indeterminate form (specifically, a 0/0 form). However, we can do the rationalization trick and
rewrite this as:
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lim
t→0+

t√
t(
√

t + 1 + 1)
The t and

√
t cancel to give a

√
t in the numerator, and we can evaluate and find the limit to be 0.

A similar approach can be used to handle, for instance, a difference of cube roots.

3.4. Combinations of polynomial and trigonometric functions. We illustrate using some examples:
(1) Consider the function f(x) := x + 25 sin x. As x → ∞, this is the sum of a function that tends to

infinity and a function that oscillates. The oscillating component, however, has a finite lower bound,
and hence, limx→∞ f(x) = ∞. Similarly, limx→−∞ f(x) = −∞.

(2) Consider the function f(x) := x sinx. As x → ∞, this is the product of a function that goes to
∞ and a function that oscillates between −1 and 1. The oscillating part causes the sign of the
whole expression to shift, and so as x →∞, f(x) is oscillating with an ever-increasing magnitude of
oscillation. A similar observation holds for x → −∞.

(3) Consider the function f(x) := x(3 + sinx) As x → ∞, this is the product of a function that tends
to ∞ and a function that oscillates between 2 and 4. The important point here is that the latter
oscillation has a positive lower bound, so the product still tends to ∞.

(4) Consider the function f(x) := x sin(1/x). As x →∞, this is the product of a function that tends to
∞ and a function that tends to 0, so it is an indeterminate form. We already discussed above how
this particular indeterminate form can be handled.
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GRAPHING

MATH 152, SECTION 55 (VIPUL NAIK)

Corresponding material in the book: Section 4.8
Difficulty level: Hard.
What students should definitely get: The main concerns in graphing a function, how to figure out

what needs figuring out. It is important for students to go through all the graphing examples in the book
and do more hands-on practice. Transformations of graphs. Quickly graphing constant, linear, quadratic
graphs.

What students should hopefully get: How all the issues of symmetry, concavity, inflections, period-
icity, and derivative signs fit together in the grand scheme of graphing. The qualitative characteristics of
polynomial function and rational function graphs, as well as graphs involving a mix of trigonometric and
polynomial functions.

Weird feature: Ironically, there are very few pictures in this document. The naive explanation is that I
didn’t have time to add many pictures. The more sophisticated explanation is that since the purpose here is
to review how to graph functions, having actual pictures drawn perfectly is counterproductive. Please keep
a paper and pencil handy and sketch pictures as you feel the need.

Executive summary

0.1. Symmetry yet again. Words...

(1) All mathematics is the study of symmetry (well, not all).
(2) One interesting kind of symmetry that we often see in the graph of a function is mirror symmetry

about a vertical line. This means that the graph of the function equals its reflection about the
vertical line. If the vertical line is x = c and the function is f , this is equivalent to asserting that
f(x) = f(2c − x) for all x in the domain, or equivalently, f(c + h) = f(c − h) whenever c + h is in
the domain. In particular, the domain itself must be symmetric about c.

(3) A special case of mirror symmetry is the case of an even function. An even function is a function
with mirror symmetry about the y-axis. In other words, f(x) = f(−x) for all x in the domain.
(Even also implies that the domain should be symmetric about 0).

(4) Another interesting kind of symmetry that we often see in the graph of a function is half-turn
symmetry about a point on the graph. This means that the graph equals the figure obtained by
rotating it by an angle of π about that point. A point (c, d) is a point of half-turn symmetry if
f(x) + f(2c − x) = 2d for all x in the domain. In particular, the domain itself must be symmetric
about c. If f is defined at c, then d = f(c).

(5) A special case of half-turn symmetry is an odd function, which is a function having half-turn sym-
metry about the origin.

(6) Another symmetry is translation symmetry. A function is periodic if there exists h > 0 such that
f(x + h) = f(x) for all x in the domain of the function (in particular, the domain itself should be
invariant under translation by h). If a smallest such h exists, then such an h is termed the period of
f .

(7) A related notion is that of a function with periodic derivative. If f is differentiable for all real
numbers, and f ′ is periodic with period h, then f(x + h) − f(x) is constant. If this constant value
is k, then the graph of f has a two-dimensional translational symmetry by (h, k) and its multiples.

Cute facts...

(1) Constant functions enjoy mirror symmetry about every vertical line and half-turn symmetry about
every point on the graph (can’t get better).
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(2) Nonconstant linear functions enjoy half-turn symmetry about every point on their graph. They do
not enjoy any mirror symmetry because they are everywhere increasing or everywhere decreasing.

(3) Quadratic (nonlinear) functions enjoy mirror symmetry about the line passing through the vertex
(which is the unique absolute maximum/minimum, depending on the sign of the leading coefficient).
They do not enjoy any half-turn symmetry.

(4) Cubic functions enjoy half-turn symmetry about the point of inflection, and no mirror symmetry.
Either the first derivative does not change sign anywhere, or it becomes zero at exactly one point, or
there is exactly one local maximum and one local minimum, symmetric about the point of inflection.

(5) Functions of higher degree do not necessarily have either half-turn symmetry or mirror symmetry.
(6) More generally, we can say the following for sure: a nonconstant polynomial of even degree greater

than zero can have at most one line of mirror symmetry and no point of half-turn symmetry. A
nonconstant polynomial of odd degree greater than one can have at most one point of half-turn
symmetry and no line of mirror symmetry.

(7) If a function is continuously differentiable and the first derivative has only finitely many zeros in
any bounded interval, then the intersection of its graph with any vertical line of mirror symmetry
is a point of local maximum or local minimum. The converse does not hold, i.e., points where local
extreme values are attained do not usually give axes of mirror symmetry.

(8) If a function is twice differentiable and the second derivative has only finitely many zeros in any
bounded interval, then any point of half-turn symmetry is a point of inflection. The converse does
not hold, i.e., points of inflection do not usually give rise to half-turn symmetries.

(9) The sine function is an example of a function where the points of inflection and the points of half-turn
symmetry are the same: the multiples of π. Similarly, the points with vertical axis of symmetry are
the same as the points of local extrema: odd multiples of π/2.

(10) For a periodic function, any translate by a multiple of the period of a point of half-turn symmetry is
again a point of half-turn symmetry. (In fact, any translate by a multiple of half the period is also
a point of half-turn symmetry).

(11) For a periodic function, any translate by a multiple of the period of an axis of mirror symmetry is
also an axis of mirror symmetry. (In fact, translation by multiples of half the period also preserve
mirror symmetry).

(12) A polynomial is an even function iff all its terms have even degree. Such a polynomial is termed
an even polynomial. A polynomial is an odd function iff all its terms have odd degree. Such a
polynomial is termed an odd polynomial.

(13) Also, the derivative of an even function (if it exists) is odd; the derivative of an odd function (if it
exists) is even.

Actions ...
(1) Worried about periodicity? Don’t be worried if you only see polynomials and rational functions.

Trigonometric functions should make you alert. Try to fit in the nicest choices of period. Check if
smaller periods can work (e.g., for sin2, the period is π). Even if the function in and of itself is not
periodic, it might have a periodic derivative or a periodic second derivative. The sum of a linear
function and a periodic function has periodic derivative, and the sum of a quadratic function and a
periodic function has a periodic second derivative.

(2) Want to milk periodicity? Use the fact that for a periodic function, the behavior everywhere is just
the behavior over one period translates over and over again. If the first derivative is periodic, the
increase/decrease behavior is periodic. If the second derivative is periodic, the concave up/down
behavior is periodic.

(3) Worried about even and odd, and half-turn symmetry and mirror symmetry? If you are dealing
with a quadratic polynomial, or a function constructed largely from a quadratic polynomial, you are
probably seeing some kind of mirror symmetry. For cubic polynomials and related constructions,
think half-turn symmetry.

(4) Use also the cues about even and odd polynomials.

0.2. Graphing a function. Actions ...
(1) To graph a function, a useful first step is finding the domain of the function.
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(2) It is useful to find the intercepts and plot a few additional points.
(3) Try to look for symmetry: even, odd, periodic, mirror symmetry, half-turn symmetry, and periodic

derivative.
(4) Compute the derivative. Use that to find the critical points, the local extreme values, and the

intervals where the function increases and decreases.
(5) Compute the second derivative. Use that to find the points of inflection and the intervals where the

function is concave up and concave down.
(6) Look for vertical tangents and vertical cusps. Look for vertical asymptotes and horizontal asymp-

totes. For this, you may need to compute some limits.
(7) Connect the dots formed by the points of interest. Use the information on increase/decrease and

concave up/down to join these points. To make your graph a little better, compute the first derivative
(possibly one-sided) at each of these points and start off your graph appropriately at that point.

Subtler points... (see the “More on graphing” notes for an elaboration of these points; not all of them
were covered in class):

(1) When graphing a function, there may be many steps where you need to do some calculations and
solve equations and you are unable to carry them out effectively. You can skip some of the steps and
come back to them later.

(2) If you cannot solve an equation exactly, try to approximate the locations of roots using the interme-
diate value theorem or other results such as Rolle’s theorem.

(3) In some cases, it is helpful to graph multiple functions together, on the same graph. For instance,
we may be interested in graphing a function and its second and higher derivatives. There are other
examples, such as graphing a function and its translates, or a function and its multiplicative shifts.

(4) A graph can be used to suggest things about a function that are not obvious otherwise. However,
the graph should not be used as conclusive evidence. Rather, the steps used in drawing the graph
should be retraced and used to give an algebraic proof.

(5) We are sometimes interested in sketching curves that are not graphs of functions. This can be
done by locally expressing the curve piecewise as the graph of a function. Or, we could use many
techniques similar to those for graphing functions.

(6) For a function with a piecewise description, we plot each piece within its domain. At the points
where the definition changes, determine the one-sided limits of the function and its first and second
derivatives. Use this to make the appropriate open circles, asymptotes, etc.

1. Graphing in general

The goal of this lecture is to make you more familiar with the tools and techniques that can be used to
graph a function. The book has a list of points that you should keep in mind. The list in the book isn’t
complete – there are a number of additional points that tend to come up for functions of particular kinds,
but it is a good starting point. But in this lecture, we’ll focus on something more than just the techniques –
we’ll focus on the broad picture of why we want to draw graphs and what information about the function we
want the graph to convey. Working from that, we will be able to reconstruct much of the book’s strategy.

1.1. Graphs – utility, sketching and plotting. The graph of a function f on a subset of the real numbers
is the set of points in R2 (the plane) of the form (x, f(x)), where x is in the domain of f . The graph of f gives
a geometric description of f , and it completely determines f . For a given x = x0, f(x0) is the y-coordinate
of the unique point of the graph that is also on the line x = x0.

Graphs are useful because they allow us to see many things about the function at the same time, and
enable us to use our visual instincts to answer questions about the function. It is usually easy to look at the
graph and spot, without precise measurement, phenomena such as periodicity, symmetry, increase, decrease,
discontinuity, change in direction, etc. Thus, the graph of a function, if correctly drawn, is not only equivalent
in information content to the function itself, it makes that information content much more easy to read.

The problem is with the caveat if correctly drawn. The domains of most of the functions we consider
are unions of intervals, so they contain infinitely many points. Plotting the graph in a complete sense would
involve evaluating the function at these infinitely many points. In practice, graph plotting works by dividing
the domain into very small intervals (say, of length 10−3), calculating the values of the function (up to some
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level of accuracy, say 10−4) at the endpoints of the intervals, and then drawing a curve that passes through
all the graph points thus obtained. This last joining step is typically done using straight line segments.1

Unfortunately, although softwares such as Mathematica are good for plotting graphs, we humans would
take too long to do the millions of evaluations necessary to plot graphs. However, we have another asset,
which is our brains. We need to use our brains to find some substitute for plotting the graph that still gives a
reasonable approximation of the graph and captures the qualitative characteristics that make the graph such
an informative representation of the function. The process that we perform is called graph sketching.

A sketch of a graph is good if any information that is visually compelling from the sketch (without
requiring precise measurement) is actually correct for the function. In other words, a good sketch may
mislead people into thinking that f(2) = 2.4 while it is actually 2.5, but it should not make people think
that f is increasing on the interval (2, 3) if it is actually decreasing on the interval.2

1.2. The domain of a function. The domain of a function is easy to determine from its graph. Namely,
the domain is the subset of the x-axis obtained by orthogonally projecting the graph onto the x-axis. In
other words, it is the set of possible x-coordinates of points on the graph.

So, the first step in drawing the graph is finding the domain. We consider two main issues here:
(1) Sometimes, the domain may contain an open interval without containing one or both of the endpoints

of that interval. In other words, there may be points in the boundary of the domain but not in the
domain. In such cases, try to determine the limits (left and/or right, as applicable) of the function
at these boundary points. If finite, we have open circles. If equal to +∞ or −∞, we have vertical
asymptotes.

(2) In cases where the domain of the function stretches to +∞ and/or −∞, determine the limit(s). Any
finite limit thus obtained corresponds to a horizontal asymptote.

Intercepts and a bit of plotting. So that the graph is not completely wrong, it is helpful to make it
realistic using a bit of plotting. The book suggests computing the x-intercepts and the y-intercept.

The x-intercepts are the points where the graph intersects the x-axis, i.e., the points of the form (x, 0)
where f(x) = 0. There may be zero, one, or more than one x-intercepts. The y-intercept is the unique point
where the graph intersects the y-axis, i.e., the point (0, f(0)). Note that if 0 is not in the domain of the
function, then the y-intercept does not make sense.

In addition to finding the intercepts, it may also be useful to do a bit of plotting, e.g., finding f(x) for
some values of x, or finding solutions to f(x) = y for a few values of y. The intercepts are the bare minimum
of plotting. They’re important to compute mainly because the values of the intercepts are visually obvious
and it would be misleading to people viewing the graph if these values were obtained wrong.

1.3. Symmetry/periodicity. Another thing that is visually obvious from the graph is patterns of repeti-
tion. There are two kinds of patterns of repetition that we are interested in:

(1) Periodicity: The existence of h > 0 such that f(x + h) = f(x) for all x in R. Periodicity is
graphically visible – the shape of the graph repeats after an interval of length h. Note that we can
talk of periodicity even for functions that are not defined for all real numbers, as long as it is true
that the domain itself is invariant under the addition of h. For instance, tan has a period of π.

(2) Symmetry: even and odd: An even function (f(x) = f(−x) for all x ∈ R) exhibits a particular kind
of symmetry: symmetry about the y-axis. An odd function (f(x) = −f(−x) for all x ∈ R) exhibits
half-turn symmetry about the origin. Both these properties are geometrically visible. Note that we
can talk of even and odd for functions not defined for all real numbers, as long as the domain is
symmetric about 0. For instance, f(x) := 1/x is odd and f(x) := 1/x2 is even.

There are somewhat more sophisticated versions of this:

1If you have seen computer graphics in the old days where computer memory and processing speed was limited, you would
have seen that computer renderings of geometric figures such as circles was done using small line segments. As we improve the
resolution, the line segments become smaller and smaller until our eyes cannot make out the difference.

2This does raise an interesting point, which is that the reason why sketches seem adequate even when inaccurate is because
of our limited observational power – the correctly plotted graph would not look too different in terms of compelling visual
information, and hence, we find the sketch good enough for our purposes.
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(1) Periodicity with shift: This happens when there exists h > 0 and k ∈ R such that f(x+h) = f(x)+k
for all x ∈ R. Thus, the graph of f repeats after an interval of length h, but it is shifted vertically
by k. Note that the case of shift 0 is precisely the case where f itself is periodic. If f is also
differentiable, this is equivalent to the derivative being periodic.

A function is periodic with shift if and only if it is the sum of a periodic function and a linear
function. The breakup as a sum is unique up to constants. The periodic function part can be thought
of as representing the seasonal trend and the linear function part can be thought of as representing
the secular trend.

(2) Half turn symmetry about axes other than the y-axis.
(3) Mirror symmetry about points other than the origin.

With the exception of periodicity with shift, all the other notions are discussed in detail in the second set
of lecture notes on functions (Functions: A Rapid Review (Part 2)) so we will not repeat that discussion.
Since the mirror symmetry and half turn symmetry material was not covered in class at the time, we’ll take
a short detour in class to cover that material.

1.4. First derivative. The next step in getting a better picture of the function is to use the derivative.
The derivative helps us find the intervals on which the function is increasing and decreasing, the critical
points, and other related phenomena. We shall return in some time to the application of this information to
graph-sketching.

1.5. Second derivative. If the function is twice differentiable (at most points) the second derivative is
another useful tool. We can use the second derivative to find intervals where the function is concave up,
intervals where the function is concave down, and inflection points of the function. Combining this with
information about the first derivative, we can determine intervals where the function is increasing and concave
up (i.e., increasing at an increasing rate), increasing and concave down (i.e., increasing at a decreasing rate),
decreasing and concave up (i.e., decreasing at a decreasing rate), or decreasing and concave down (i.e.,
decreasing at an increasing rate).

1.6. Classifying and understanding points of interest. Some of the cases of interest are:
(1) Point of discontinuity: Separately compute the left-hand limit, right-hand limit and value. If either

one-sided limit is ±∞, we have a vertical asymptote. If a one-sided limit equals the value, the graph
has a closed circle. If a one-sided limit exists but does not equal the value, the graph has an open
circle.

(2) Critical point where the function is continuous and not differentiable: Determine whether the left-
hand derivative and right-hand derivative individually exist. If so, determine the values of these
derivatives. If the left-hand and right-hand derivatives do not exist as finite values, try determining
the left-hand limit and right-hand limit of the derivative. If the limit of the derivative is +∞ from
both sides or −∞ from both sides, we have a vertical tangent at the point. if the limit of the
derivative is +∞ from one side and −∞ from the other side, we have a vertical cusp at the point.
In all cases, determine the value of the function at the point.

(3) Critical points where the derivative of the function is zero: Determine whether this is a point of local
maximum, a point of local minimum, a point of inflection, or none of these. In any case, determine
the value of the function at the point.

(4) Point of inflection: Determine the value of the function as well as the value of the first derivative at
the point. Also, determine whether the graph switches from concave up to concave down or concave
down to concave up at the point.

Critical points, and phenomena related to the first derivative, are usually geometrically compelling, so it
is important to focus on getting them right so as not to paint a misleading picture. The precise location
of points of inflection is less geometrically compelling, except when such a point is also a critical point.
Generally, it is geometrically clear that there exists an inflection point in the interval between two points,
because the graph is concave up at one point and concave down at the other. However, the precise location
of the critical point may be hard to determine. Thus, getting the precise details of inflection points correct
is desirable but not as basic as getting the critical points correct.
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1.7. Sketching the graph. We first plot the points of interest and values (including ±∞, corresponding
to vertical asymptotes), as well as the horizontal asymptotes for points at infinity. Here, points of interest
includes the critical points and inflection points, intercept points, and a few other points added in to get a
preliminary plot. In addition to plotting the graph points (which is the pair (x, f(x)) where x is the point of
interest in the domain), it is also useful to compute the one-sided derivatives at each of the points of interest,
and draw a short segment of the tangent line (or half-line, if only one-sided derivatives exist) corresponding
to that.

Next, we use the increase/decrase and concave up/down information, as well as the tangent half-lines,
to make the portions of the graph between these points of interest. This is the step that involves some
guesswork. The idea is that because we are sure that the main qualitative characteristics (increase versus
decrease, concave up versus concave down) are correct, errors in further shape details are not a big problem.

Since these actual shapes are the result of guesswork, it is particularly important that the issues of
symmetry and periodicity be taken into account while sketching. For a periodic function, it is better to have
a somewhat less accurate shape repeated faithfully in each period than a number of different-looking shapes
in different periods. Similar remarks apply for symmetry and even/odd functions.

The book has a number of worked out examples, and you should go through them. To keep your homework
set of manageable size, I haven’t included graph sketching problems in the portion of the homework to be
submitted. But I have recommended a few graph sketching problems from the book’s exercises and you should
try these (and others if you want) and can check your answer against a graphing calculator or software.

2. Graphing particular functions

Here we discuss various simple classes of functions and how they can be graphed. For functions in these
well behaved classes, we do not need to go through the entire rigmarole for graphing.

2.1. Constant and linear functions. We begin by looking at the constant function f(x) := k. This
function is soporific, because you know the graph of the function is a straight horizontal line, the derivative
of the function is zero everywhere, it is constant everywhere. Every point is a local minimum and a local
maximum in the trivial sense. The limits limx→∞ f(x) and limx→−∞ f(x) are also both equal to k.

Next, we look at the linear function f(x) := ax + b where a 6= 0. This function has graph a straight line.
The tangent line at any point on the graph is the same straight line. The slope of the straight line is a.
If a > 0, the function is increasing everywhere, and if a < 0, the function is decreasing everywhere. The
derivative is the constant a and the second derivative is 0.

If a > 0, then limx→∞ f(x) = +∞ and limx→−∞ f(x) = −∞. If a < 0, then limx→∞ f(x) = −∞ and
limx→−∞ f(x) = +∞.

2.2. Quadratic functions. Consider the function f(x) := ax2 + bx + c, where a 6= 0. This is a quadratic
function. The derivative function f ′(x) is equal to 2ax + b, the second derivative f ′′(x) is the constant
function 2a, and the third derivative is 0 everywhere. In other words, the slope of the tangent line to the
graph of this function is not constant, but it is changing at a constant rate.

The graph of this function is called a parabola. We describe the graph separately for the cases a > 0 and
a < 0.

In the case a > 0, we have limx→∞ f(x) = limx→−∞ f(x) = ∞. The function attains a local as well as
an absolute minimum at the point x = −b/2a, and the value of the minimum is (4ac − b2)/4a. The point
(−b/2a, (4ac− b2)/4a) is termed the vertex of the parabola. f is decreasing on the interval (−∞,−b/2a] and
increasing on the interval [−b/2a,∞). Also, the graph of f is symmetric (i.e., a mirror symmetry) about the
vertical line x = −b/2a.

In the case a < 0, we have limx→∞ f(x) = limx→−∞ f(x) = −∞. The function attains a local as well
as an absolute maximum at the point x = −b/2a, and the value of the maximum is (4ac − b2)/4a. The
point (−b/2a, (4ac− b2)/4a) is termed the vertex of the parabola. The function is increasing on the interval
(−∞,−b/2a] and decreasing on the interval [−b/2a,∞).

Finally, note the following about the existence of zeros, based on cases about the sign of the discriminant
b2 − 4ac:
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(1) Case b2 − 4ac > 0 or b2 > 4ac: In this case, there are two zeros, and they are located symmetrically
about −b/2a. If a > 0, the function f is positive to the left of the smaller root, negative between
the roots, and positive to the right of the larger root. If a < 0, the function f is negative to the left
of the smaller root, positive between the roots, and negative to the right of the larger root.

(2) Case b2− 4ac = 0 or b2 = 4ac: In this case, −b/2a is a zero of multiplicity two. The vertex is thus a
point on the x-axis with the x-axis a tangent line to it. Note that if a > 0, the parabola lies in the
upper half-plane and if a < 0, the parabola lies in the lower half-plane.

(3) Case b2 − 4ac < 0 or b2 < 4ac: In this case there are no zeros. If a > 0, the parabola lies completely
in the upper half-plane, and if a < 0, the parabola lies completely in the lower half-plane.

2.3. Cubic functions. We next look at the case of a cubic polynomial, f(x) := ax3 + bx2 + cx + d, where
a 6= 0. We carry out the discussion assuming a > 0. In case a < 0, maxima and minima get interchanged
and the sign of infinities on limits get flipped.3

So let’s discuss the case a > 0. We have limx→−∞ f(x) = −∞ and limx→∞ f(x) = ∞. Notice that, by
the intermediate-value theorem, the cubic polynomial takes all real values. The derivative of the function is
f ′(x) = 3ax2 +2bx+ c, the second derivative is f ′′(x) = 6ax+2b, the third derivative is f ′′′(x) = 6a and the
fourth derivative is zero. This means that not only is the slope changing, but it is changing at a changing
rate, but the rate at which that rate is changing isn’t changing (yes, you read that right).

We now try to determine where the function has local maxima and minima, and where it is increasing or
decreasing. For this, we need to first find the critical points. The critical points are solutions to f ′(x) = 0.
The discriminant of the quadratic polynomial f ′ is 4b2− 12ac. We make three cases based on the sign of the
discriminant.

(1) 4b2 − 12ac > 0, or b2 > 3ac: In this case, there are two critical points, given by the two solutions to
the quadratic equation. We also see that, since a > 0, f ′ is positive to the left of the smaller root,
negative between the two roots, and positive to the right of the larger root. Thus, f is increasing
from −∞ to the smaller root, decreasing between the two roots, and increasing from the larger root
to ∞. The smaller root is thus a point of local maximum and the larger root is a point of local
minimum.

(2) 4b2 − 12ac = 0, or b2 = 3ac: In this case, there is one critical point, namely −b/3a. The function is
increasing all the way through, so although this is a critical point, it is neither a local maximum nor
a local minimum. In fact, it is a point of inflection, where both the first and the second derivative
become zero.

(3) 4b2 − 12ac < 0, or b2 < 3ac: In this case, the function has no critical points and is increasing all the
way through.

Any cubic polynomial enjoys a half-turn symmetry about the point (−b/3a, f(−b/3a)), i.e., the graph is
invariant under a rotation by π about this point. This center of half-turn symmetry is also the unique point
of inflection for the graph. In the case that b2 > 3ac, the point of half-turn symmetry is the exact midpoint
between the point of local maximum and the point of local minimum.

3Another way of thinking of it is that we can first plot the graph by taking out a minus sign on the whole expression, then
flip it about the x-axis.
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2.4. Polynomials of higher degree. Here are some general guidelines to understanding polynomials of
higher degree:

(1) The limits at ±∞ are determined by whether the polynomial has even or odd degree, and the sign
of the leading coefficient. Positive leading coefficient and even degree mean a limit of +∞ on both
sides. Negative leading coefficient and even degree mean a limit of −∞ on both sides. Positive
leading coefficient and odd degree mean a limit of +∞ as x → ∞ and −∞ as x → −∞. Negative
leading coefficient and odd degree mean a limit of +∞ as x → −∞ and −∞ as x →∞.

(2) The points where the function could potentially change direction are the zeros of the first derivative.
For a polynomial of degree n, there are at most n − 1 of these points. For such a point, we can
use the first-derivative test and/or second-derivative test to determine whether the point is a point
of local maximum, local minimum, or a point of inflection. Note that for polynomial functions, any
critical point must be a point of local maximum, local minimum, or a point of inflection. There are
no other possibilities for polynomial functions, because the number of times the first and/or second
derivative switch sign is finite, hence we cannot construct all those weird counterexamples involving
oscillations when dealing with polynomial functions.

(3) Between any two zeros of the polynomial there exists at least one zero of the derivative (this follows
from Rolle’s theorem). This can help us bound the number of zeros of a polynomial using information
we have about the number of zeros of the derivative of that polynomial.

(4) A polynomial of odd degree takes all real values, and in particular, intersects every horizontal line
at least once.

(5) A polynomial of even degree and positive leading coefficient has an absolute minimum value, and
takes all values greater than or equal to that absolute minimum value at least once. A polynomial
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of even degree and negative leading coefficient has an absolute maximum value, and takes all values
less than or equal to that absolute maximum value at least once.

2.5. Rational functions: the many concerns. A lot of things are going on with rational functions, so
we need to think about them more carefully than we thought about polynomials.

Graphing the function requires putting these pieces together, each of which we have dealt with separately:
(1) Determine where the rational function is positive, negative, zero, and not defined.
(2) At the points where the rational function is not defined, determine the left-hand and right-hand

limits. In most cases, these limits are ±∞. The exceptions are for cases such as the FORGET
function, defined as FORGET (x) = x/x, which is not defined at x = 0, but has a finite limit at that
point. These exceptions only occur in situations where the rational function as originally expressed
is not in reduced form.

(3) Determine the limits of the rational function at ±∞. Note that this depends on how the degrees of
the numerator and denominator compare and the signs of the leading coefficients.

(4) Consider the derivative f ′, and do a similar analysis on the derivative. The regions where the
derivative is positive are the regions where f is increasing. The regions where the derivative is
negative are the regions where f is decreasing.

(5) Consider the second derivative f ′′, and do a similar analysis on this. Use this to find the regions
where f is concave up and the regions where f is concave down.

We combine all of these to draw the graph of f . We can also use all this information to determine where
the function attains its local maxima and local minima.

2.6. Piecewise functions. Let’s now deal with functions that are piecewise polynomial or rational func-
tions. We’ll also use this occasion to discuss general strategies for handling functions with piecewise defini-
tions.

First, we need a clear piecewise definition, i.e., a definition that gives a polynomial or rational function
expression on each part of the domain. The original definition may not be in that form. Here are some
things we need to do:

(1) Whenever the whole expression, or some component of it, is in the absolute value, we make cases
based on whether the expression whose absolute value is being evaluated is positive or negative. The
transitions usually occur either at points where the expression is not defined, or at points where the
absolute value is zero.

(2) Whenever the expression involves something like max{f(x), g(x)}, then we make cases based on
whether f(x) > g(x) or f(x) < g(x). The transition occurs at points where f(x) = g(x) or at points
where one or both of f and g is undefined.

Once we have the definition in piecewise form, we can differentiate, with the rule being to use the formula
for differentiating in each piece where we have the expression. If the function is continuous at the points
where the definition changes, we can use these formal expressions to calculate the left-hand derivative and
right-hand derivative. We can then combine all this information to get a comprehensive picture of the
function.

2.7. A max-of-two-functions example. Note: This or a very similar example appeared in a past home-
work. You might want to revisit that homework problem.

Consider f(x) := max{x − 1, x
x+1}. We first need to get a piecewise description of f . For this, we need

to determine where x − 1 > x/(x + 1) and where x − 1 < x/(x + 1). This reduces to determining where
(x2 − x− 1)/(x + 1) is positive, zero, and negative.

The expression is positive on ((1 +
√

5)/2,∞)∪ (−1, (1−
√

5)/2), negative on ((1−
√

5)/2, (1 +
√

5)/2)∪
(−∞,−1), zero at (1±

√
5)/2, and undefined at −1. Thus, we get that:

f(x) = { x− 1, x ∈ ((1 +
√

5)/2,∞) ∪ (−1, (1−
√

5)/2)
x

x+1 , x ∈ (−∞,−1) ∪ [(1−
√

5)/2, 1 +
√

5/2]

Next, we want to determine the limits of f as x → ±∞. Since the definition for x > (1 +
√

5)/2 is
x − 1, limx→∞ f(x) = limx→∞ x − 1 = ∞. On the other hand, the definition for x < −1 is x/(x + 1), so
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limx→−∞ f(x) = limx→−∞ x/(x+1). This is a rational function where the numerator and denominator have
equal degrees, and the leading coefficients are both 1, so the limit as x → −∞ is 1.

Next, we want to find out the left-hand limit and right-hand limit at the point x = −1. The definition from
the left side is x/(x + 1). The denominator approaches 0 from the left side and the numerator approaches a
negative number, so the quotient approaches +∞. The right-hand limit is limx→−1 x− 1 = −2.

Next, let us try to determine where the function is increasing and decreasing. For this, we need to
differentiate the function on each interval.

On the intervals (−∞,−1) and [(1 −
√

5)/2, (1 +
√

5)/2], f is equal to x/(x + 1). The derivative is thus
1/(x + 1)2, which is positive everywhere, and hence, in particular, on this region. Thus, f is increasing on
(−∞,−1) as well as on [(1 −

√
5)/2, (1 +

√
5)/2]. On the intervals (−1, (1 −

√
5)/2) and (1 +

√
5/2,∞),

f is defined as x − 1. The derivative is 1, so f is increasing on these intervals as well. In fact, since f is
continuous at 1 +

√
5/2, f is increasing on [(1 +

√
5)/2,∞). Combining all this information, we obtain that

f is increasing on (−∞,−1) and on (−1,∞).
We can now understand and graph f better. As x → −∞, f(x) → 1, and as x → −1−, f(x) → +∞.

Thus, on the interval (−∞,−1), f increases from 1 to ∞. Since the right-hand limit at −1 is −2 and the
limit at ∞ is ∞, we see that on the interval (−1,∞), f increases from −2 to ∞. There are two intermediate
points where the definition changes: (1±

√
5)/2. From −1 to (1−

√
5)/2, f increases from −2 to (−1−

√
5)/2

in a straight line. Between (1−
√

5)/2 and (1 +
√

5)/2, f increases from (−1−
√

5)/2 to (−1 +
√

5)/2, but
not in a straight line. From (1 +

√
5)/2 onward, f increases in a straight line again.

The critical points are (1±
√

5)/2. Neither of these is a local minimum or a local maximum. There is no
absolute maximum, because the left-hand limit at −1 is ∞, so the function takes arbitrarily large positive
values.

The function does not take arbitrarily small values. In fact, a lower bound on the function is −2. Despite
this, the function has no absolute minimum, because −2 arises only as the right-hand limit at −1 and not
as the value of the function at any specific point.

Note that more careful graphing of the function would also take into account concavity issues. Here are
the pictures:

2.8. Trigonometric functions. Trigonometric functions are somewhat more difficult to study because,
unlike the case of polynomials and rational functions, there could be infinitely many zeros.
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One technique that is sometimes helpful when dealing with periodic functions is to concentrate on the
behavior in an interval the length of one period, draw conclusions from there, and then use that to determine
what happens everywhere. A very useful fact here is that f is a periodic function with period p, then f ′

(wherever it exists) also has period p. Similarly, the points and values of local maxima, local minima,
absolute maxima and absolute minima all repeat after period p. In particular, in order to find the absolute
maximum or absolute minimum, it suffices to find the absolute maximum or absolute minimum over a closed
interval whose length is one period.

Consider, for instance, the function f(x) := sinx cos x. Since both sin and cos have a period of 2π, f
repeats after 2π (so the period divides 2π). So, it suffices to find maxima and minima over the interval
[0, 2π]. At the endpoints the value is 0. The derivative of the function is cos2 x − sin2 x = cos(2x). For
this to be zero, we need 2x to be an odd multiple of π/2, so x = π/4, 3π/4, 5π/4, 7π/4. We can use the
second-derivative test to see that the points π/4, 5π/4 are points of local maximum and the points 3π/4, 7π/4
are points of local minimum. The value of the local maximum is 1/2 and the value of the local minimum is
−1/2.

(It turns out that the function sin x cos x has a period of π, and can also be thought of as (1/2) sin(2x).)

2.9. Mix of polynomial and trigonometric functions. When the function is a mix involving polynomial
and trigonometric functions, it is not usually periodic, nor is it a polynomial, so we need to do some ad hoc
work.

For instance, consider the function f(x) := x − 2 sinx. The derivative is f ′(x) = 1 − 2 cos x. Note that
although f is not periodic, f ′ is periodic, so in order to find out where f ′ > 0, f ′ = 0, and f ′ < 0, we can
restrict attention to the interval [−π, π].

We have f ′(x) < 0 for x ∈ (−π/3, π/3), f ′(x) = 0 for x ∈ {−π/3, π/3}, and f ′(x) > 0 for x ∈ (π/3, π) ∪
(−π,−π/3).

Translating this by multiples of 2π, we obtain that f ′(x) < 0 for x ∈ (2nπ − π/3, 2nπ + π/3) for n an
integer, f ′(x) = 0 for x ∈ {2nπ − π/3, 2nπ + π/3}, and f ′(x) > 0 at other points. Thus, f keeps shifting
between increasing and decreasing.

On the other hand, for the function f(x) := 2x− sinx, the derivative is f ′(x) = 2− cos x. This is always
positive, so f is increasing.

2.10. Functions involving square roots and fractional powers. For functions involving squareroots or
other fractional powers, we first need to figure out the domain. Then, we use the usual techniques to handle
things.

Consider, for instance, the function:

f(x) :=
√

x +
√

1− x

The domain of this function is the set of values of x for which both
√

x and
√

1− x is defined. This turns
out to be the set [0, 1], since we need both x ≥ 0 and 1− x ≥ 0. We can differentiate f to get:

f ′(x) =
1

2
√

x
− 1

2
√

1− x

Note that although f is defined on the closed interval [0, 1], f ′ is defined on the open interval (0, 1) – it is
not defined at the endpoints. In fact, the right-hand limit at 0 is +∞ and the left-hand limit at 1 is −∞.

Next, we want to determine where f ′(x) = 0. Solving this, we get x = 1/2. Thus, x = 1/2 is a critical
point. We also see that for x < 1/2,

√
x <

√
1− x, so the reciprocal 1/2

√
x is greater than the reciprocal

1/2
√

1− x. Thus, the expression for f ′(x) is greater than 0. On the other hand, to the right of 1/2, f ′(x) < 0.
Thus, f ′ is positive to the left of 1/2 and negative to the right of 1/2, yielding that f is increasing on [0, 1/2]
and decreasing on [1/2, 1]. Thus, f attains a unique absolute maximum at 1/2, with value

√
2.

A more complicated version of the coffee shop problem. Remember the coffee shop problem, where
there are two coffee shops located at points a < b on a two-way street, and our task was to construct the
function that describes distance to the nearest coffee shop. Let’s now look at a somewhat different version,
where the coffee shops are both located off the main street.
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Suppose coffee shop A is located at the point (0, 1) and coffee shop B is located at the point (2, 2), and
our two-way street is the x-axis. The goal is similar to before: write as a piecewise function the distance
from the nearest coffee shop.

Define p(x) as the distance from A and q(x) as the distance from B. Then, we have p(x) =
√

x2 + 1
and q(x) =

√
(x− 2)2 + 4 =

√
x2 − 4x + 8. Our goal is to write down explicitly the function f(x) :=

min{p(x), q(x)}.
In order to do this, we need to consider the function p(x)− q(x) and determine where it is positive, zero

and negative. Define g(x) := p(x)− q(x). Then, for g(x) = 0, we need:

√
x2 + 1 =

√
x2 − 4x + 8

Squaring both sides and simplifying, we obtain that x = 7/4. Since g is continuous, we can see that it has
constant sign to the left of 7/4 (which turns out to be negative, as we see by evaluating at 0) and constant
sign to the right of 7/4 (which turns out to be positive, as we see by evaluating at 2). Thus, our expression
for f is given by:

f(x) = {
√

x2 + 1, x ∈ (−∞, 7/4]√
x2 − 4x + 8, x ∈ (7/4,∞)

We can now use this to calculate f ′. f ′(x) = x/
√

x2 + 1 to the left of 7/4 and (x−2)/
√

x2 − 4x + 8 to the
right of 7/4. At the point 7/4, the left-hand derivative is 7/

√
65 and the right-hand derivative is −1/

√
65.

The function is not differentiable at 7/4.
Next, we want to determine where f ′ > 0, f ′ = 0 and f ′ < 0. For x < 7/4, we see that f ′(x) < 0 for

x ∈ (−∞, 0), f ′(0) = 0, and f ′(x) > 0 for x ∈ (0, 7/4). For x > 7/4, we see that f ′(x) < 0 for x ∈ (7/4, 2),
f ′(2) = 0, and f ′(x) > 0 for x ∈ (2,∞) (this should again be clear by looking at the picture geometrically.
The distance to coffee shop A decreases till we get to the same x-coordinate as A, then it increases. At some
point, B starts becoming closer, whence the distance to B starts decreasing, till we reach the point with the
same x-coordinate as B, and then it starts increasing).

Thus, f is decreasing on (−∞, 0], increasing on [0, 7/4], decreasing on [7/4, 2], and increasing on [2,∞).
The critical points are 0, 7/4, and 2. There are local minima at 0 (with value 1) and 2 (with value 2) and
a local maximum at 7/4 (with value

√
65/4). The limits at ±∞ are both ∞. Thus, there is no absolute

maximum, but the absolute maximum occurs at 0, and it has value 1.
Notice that although the picture here is qualitatively somewhat similar to the case where both coffee

shops are on the x-axis, there are also some small differences – the graph never touches the x-axis, and the
function is differentiable with derivative zero at two of the three critical points.

Here are the pictures:

Hre is the picture zoomed in (note: axes not centered at origin) near the value x = 7/4.
12



3. Subtle issues

3.1. Equation-solving troubles. In some cases, it is not computationally easy to do each of the suggested
steps. For instance, we may not have any known method for solving f(x) = 0 for the given function f .
Similarly, we may not have any known method for solving f ′(x) = 0 or f ′′(x) = 0.

In cases where we do not have exact solutions, what we should do is try to find the number of solutions
and the intervals in which these solutions lie, to as close an approximation as possible. Two useful tools in
this are the intermediate-value theorem and Rolle’s theorem.

For instance, consider the function f(x) := x − cos x. f is an infinitely differentiable function, and its
derivative, 1+sinx, is periodic with period 2π. Thus, the graph of f repeats after 2π, with a vertical upward
shift of 2π. We can further find that f is increasing everywhere, because 1+sinx ≥ 0 for all x, with equality
occurring only at isolated points. f ′′(x) = cos x, so f is concave up on (−π/2, π/2) and its 2π-translates,
and f is concave down on (π/2, 3π/2) and its 2π-translates. The inflection points of f are precisely the odd
multiples of π/2. The x-intercept is −1.We thus have a fairly complete picture of f , except that we do not
know the x-intercept(s).

Although we do not know the x-intercept(s) precisely, we have some qualitative information. First, there
can be at most one x-intercept, because f is increasing on R. The intermediate-value theorem now reveals
that the x-value must be somewhere between 0 (f(0) = −1) and π/2 (f(π/2) = π/2). In other words,
the zero occurs in the segment between the y-intercept and the first inflection point after that. This is
fine for a rough visual guide, but for a more accurate graph, we might like to narrow the location of the
zero further. We can narrow it down further to (π/6, /π/4) using elementary trigonometric computations.
Further narrowing is best done with the aid of a computer.

Note that even if we did not bother about knowing the x-intercept before sketching the graph, our graph
sketch would have been quite okay and would in fact have suggested the location of the x-intercept. This is
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an example of a general principle: Often, even if we are computationally unable to handle all the suggested
steps for graph-sketching, a preliminary sketch based on the steps we could successfully execute gives enough
valuable hints. The moral of the story is to not be discouraged about not executing a few steps and instead
to do as much as possible with the steps already executed, and then seek alternative ways of tackling the
recalcitrant steps.

See also Example 5 in the book.

3.2. Graphing multiple functions together. In many situations, it is necessary to be able to graph
multiple functions together. This is sometimes necessary to compare and contrast these functions. Some
examples include:

(1) Graphing a function and its first, second and higher derivatives together: This is often visually useful
in discerning patterns about the function, and helps with rapid switching between the global and
local behavior of a function.

(2) Graphing a function and another function obtained by scaling or shifting it: For instance, it may be
helpful to graph f(x) and g(x) := f(x + h) on the same graph. This allows for easy visual insight
into how the value of f changes after an interval of length h.

(3) Graphing two functions to determine their intersection points, angles of intersection, etc.
When graphing multiple functions together, the procedure is similar to that when graphing a single

function, but the following additional point needs to be kept in mind: It is important to make sure that any
visually obvious inferences made about the comparison of values of the functions are correct. For instance,
it is important to get right which function is bigger where. The ideal way to do this is to find precisely the
points of intersection – however, that may not be possible because the equation involved cannot be solved.
Nonetheless, try to bound the locations of intersection points in small intervals using the intermediate value
theorem. (Note that for functions obtained as derivatives, we can use Rolle’s theorem and the mean value
theorem.)

3.3. Transformations of functions/graphs. Also, if the two functions are related in terms of a transform,
it is important that the geometric picture suggested by the transform is the correct one. Here are some
examples:

(1) Suppose we have two functions f and g where g(x) := f(x + h). Then, the graph of g should be the
graph of f shifted left by h. If h is negative, it is the graph of f shifted right by −h = |h|.

(2) Suppose we have g(x) := f(x) + C. Then, the graph of g equals the graph of f shifted upward by
C. If C is negative, it is the graph of f shifted downward by −C = |C|.

(3) Suppose g(x) := f(αx). Then, the graph of g should be the graph of f shrunk along the x-dimension
by a factor of α. If α is negative, then this shrinking is a composite of a shrinking by |α| and a flip
about the y-axis.

(4) Suppose g(x) := αf(x). Then the graph of g should be the graph of f expanded along the y-
dimension by a factor of α. If α is negative, this involves an expansion by |α| and a flip about the
x-axis.

3.4. Can a graph be used to prove things about a function? Yes and no. Remember that the way
we drew the graph was using algebraic information about the function. So anything we deduce from the
graph, we could directly deduce from that algebraic information, without drawing the graph.

The importance of graphs is that they suggest good guesses that may not be obvious simply by looking
at the algebra. In other words, they allow visual and spatial intuition to complement the formal, symbolic
intuition of mathematics. However, once the guess is made, it should be possible to justify without resort to
the graph. Such justifications may use theorems such as the intermediate value theorem, Rolle’s theorem,
the extreme value theorem, and the mean value theorem. In cases where things suggested by the graph cannot
be verified algebraically, it is possible that some unstated and unjustified assumption was made while drawing
the graph.

3.5. Sketching curves that are not graphs of functions. Some curves are not in the form of functions,
and cannot be expressed in that form because there are multiple y-values for a given x-value. To sketch such
curves, we follow similar guidelines, but there are some changes:
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(1) There is no clear concept of domain. However, it is still useful to determine the possible x-values for
the curve and the possible y-values for the curve. This allows us to bound the curve in a rectangle
or strip. For instance, consider the curve x4 + y4 = 16. Then, the x-value is in the interval [−2, 2]
and the y-value is in the interval [−2, 2].

(2) We can use the techniques of sketching graphs of functions by breaking the curve down into graphs
of functions. For instance, the curve x4 + y4 = 16 can be broken down as a union of graphs of two
functions: y = (16− x4)1/4 and y = −(16− x4)1/4. We can sketch both graphs using the techniques
of graph-sketching (in fact, it suffices to sketch the first graph and then construct the second graph
as the reflection of the first graph about the x-axis).

(3) In cases where this separation is not easy to do, we can still try to draw the graph using the general
techniques: use implicit differentiation to find the first derivative and second derivative, determine
the critical points, local extreme values, points of inflection, regions of increase and decrease, regions
of concave up and concave down, and so on.

3.6. Piecewise descriptions, absolute values and max/min of two functions. To graph a function
explicitly given in piecewise form, we need to keep in mind the following things:

(1) Within the domain of each definition, plot the graph of the function the usual way.
(2) At the points where the definition changes, determine the one-sided limits, one-sided limits of first

derivatives, and one-sided limits of second derivatives. These points are likely candidates for discon-
tinuity of the function, likely candidates for discontinuity of the derivative, and likely candidates for
discontinuity of the second derivative of the function.

(3) Piece this information together to draw the overall graph. Use open circles, closed circles etc. to
mark clearly the limits at the points of definition changes.

In some cases, it is helpful to draw the graphs of each of the pieces over all real values and then pick out
the requisite pieces from the relevant domains of definition.

If a function is defined as the maximum of two functions or the minimum of two functions, or in terms
of absolute values, then we can first express it as a piecewise function and then graph it. Alternatively, we
can graph both the functions (taking care of the points of intersection) and then use a combination of visual
insight and algebra to graph the maximum and/or minimum of the two functions.

4. Addenda

4.1. Addendum: Plotting graphs using Mathematica. It is possible to plot the graph of a function
using Mathematica. Doing a few such plots can help reinforce your intuition about the shape of graphs.

The Mathematica syntax is:

Plot[f[x],{x,a,b}]

This plots the graph of f(x) for x ∈ [a, b].
For instance:

Plot[x^2,{x,0,1}]

plots the graph of x2 for x ∈ [0, 1].
The command:

Plot[x - Sin[x],{x,-3*Pi,3*Pi}]

plots the graph of the function x− sinx on the interval [−3π, 3π]. Note that it is not possible to graph a
function from −∞ to ∞, so we have to stay content with finite plots.

It is also possible to plot the graphs of multiple functions together. For instance:

Plot[{Sin[x],(Sin[x])^2},{x, -Pi,Pi}]

This plots the graphs of the fnuctions sin and sin2 on the interval [−π, π]. To learn more, see the
Mathematica documentation on the Plot function.

We can also use Mathematica to find where a function is positive, zero, and negative. You can use the
Solve, Reduce, and FindRoot functions in Mathematica:

15



(1) The Solve function only solves equalities, and may not find all solutions. It also uses formal methods,
so may not find the solutions numerically. However, it will give a formal solution saying π instead
of 3.14 . . . , for instance).

(2) The Reduce function is more powerful. It solves both equalities and inequalities, and finds all
solutions. Like Solve, it only works for certain kinds of functions where these analytical and formal
methods can be applied.

(3) The FindRoot function can be used to find points where a function is zero numerically. It is applicable
to functions that involve a mixture of algebra and trigonometry. However, since it uses numerical
methods, it may not give the exactly correct answer (for instance, it may compute 0.998 instead of
1).

For instance, we can do:
Reduce[x^3 - x - 6 > 0,x]

and find that the solution set to this is x > 2.
For something non-algebraic, we can find the roots:

FindRoot[x - Cos[x],{x,1}]

find a solution to cos x = x. Note that Solve and Reduce do not work here because of the mixture of
algebra and trigonometry. See the documentation on Solve, Reduce, and FindRoot.

We can also find the derivative of a function. First, define the function, e.g.:
f[x_] := x - Sin[x]

We can then refer to the derivative of f as f ′ and the second derivative as f ′′. Thus, we can do:
Reduce[{f’’[x] > 0,-Pi < x, x < Pi},x]

This finds all solutions to f ′′(x) > 0 for x in the open interval (−π, π).
These commands allow us to execute most of the computational aspects needed for graph-sketching using

Mathematica.

Addendum: using a graphing software or graphing calculator. When using a graphing software or
graphing calculator to plot the graph of a function, please make sure you zoom in and out enough to make
sure that you are not fooled because of the scale chosen by the calculator. For instance, plotting the graph
of x2 sin(1/x) using a graphing software makes it seem like it crosses the x-axis at only finitely many points.
However, zooming in closer to zero shows a lot of oscillation close to zero, and the more you zoom in, the
more oscillation you see. Thus, it is important to use graphing software as a complement rather than a
substitute for basic mathematical common sense.
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INTEGRATION AND DEFINITE INTEGRAL: INTRODUCTION

MATH 152, SECTION 55 (VIPUL NAIK)

Corresponding material in the book: Section 5.1, 5.2.
Difficulty level: Hard if you have not seen this before. Medium if you have.
What students should definitely get: The definitions of partition, upper sum, and lower sum. A

rough idea of what it means to take finer partitions and how this limiting process can be used to define
integrals.

What students should hopefully get: The intuition behind an integral as an infinite summation; how
it measures cumulative quantities. The intuitive relation with the area of a curve.

Executive summary

Words ...

(1) The definite integral of a continuous (though somewhat weaker conditions also work) function f on
an interval [a, b] is a measure of the signed area between the graph of f and the x-axis. It measures
the total value of the function.

(2) For a partition P of [a, b], the lower sum Lf (P ) adds up, for each subinterval of the partition, the
length of that interval times the minimum value of f over that interval. The upper sum adds up, for
each subinterval of the partition, the length of that interval times the maximum value of f on that
subinterval.

(3) Every lower sum of f is less than or equal to every upper sum of f .
(4) The norm or size of a partition P , denoted ‖P‖, is defined as the maximum of the lengths of its

subintervals.
(5) If P1 is a finer partition than P2, i.e., every interval of P1 is contained in an interval of P2, then the

following three things are true: (a) Lf (P2) ≤ Lf (P1), (b) Uf (P1) ≤ Uf (P2), and (c) ‖P1‖ ≤ ‖P2‖.
(6) If lim‖P‖→0 Lf (P ) = lim‖P‖→0 Uf (P ), then this common limit is termed the integral of f on the

interval [a, b].
(7) We can define

∫ b

a
f(x) dx as above if a < b. If a = b the integral is defined to be 0. If a > b, the

integral is defined as −
∫ a

b
f(x) dx.

(8) A continuous function on [a, b] has an integral on [a, b]. A piecewise continuous function where
one-sided limits exist and are finite at every point is also integrable.

Actions ...

(1) For constant functions, the integral is just the product of the value of the function and the length of
the interval.

(2) Points don’t matter. So, if we change the value of a function at one point while leaving the other
values unaffected, the integral does not change.

(3) A first-cut lower and upper bound on the integral can be obtained using the trivial partition, where
we do not subdivide the interval at all. The upper bound is thus the maximum value times the
length of the interval, and the lower bound is the minimum value times the length of the interval.

(4) The finer the partition, the closer the lower and upper bounds, and the better the approximation we
obtain for the integral.

(5) A very useful kind of partition is a regular partition, which is a partition where all the parts have
the same length. If the integral exists, we can calculate the actual integral as limn→∞ of the upper
sums or the lower sums for a regular partition into n parts.

(6) When a function is increasing on some parts of the interval and decreasing on other parts, it is
useful to choose the partition in such a way that on each piece of the partition, the function is either
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increasing throughout or decreasing throughout. This way, the maximum and minimum occur at the
endpoints in each piece. In particular, try to choose all points of local extrema as points of partition.

1. Motivation and basics

In this lecture, we will introduce some of the ideas behind integration. Integration is a continuous analogue
of summation (or adding things up) with a few additional complications because of the infinitely divisible
nature of the real line.

1.1. Summation: numerically. Suppose we have a real-valued function f defined on all integers. Given
any two integers a < b, we can legitimately ask for the sum of the values of f(n) for all n in the interval [a, b)
(including a, excluding b). This can be interpreted as the total value of f on this interval. This summation
poses no problems because we are adding finitely many real numbers. We could alternatively be interested
in the sum of the values of f(n) for all n in the interval (a, b] (excluding a, including b).

To make things simpler, we introduce a notation for summation. This notation is something we will pick
up again much later, so for now this is just as a temporary device, and not something you need to learn.
The notation is:

b−1∑
n=a

f(n)

This notation means that we add up the values of f(n) for all n starting from n = a and ending at
n = b− 1. In this case, a is the lower limit of the summation, b− 1 is the upper limit of the summation, and
f(n) is the summand.

This is also sometimes written as: ∑
a≤n<b

f(n)

This means that the sum is over all the integers n satisfying a ≤ n < b. The expression a ≤ n < b can be
replaced by any condition that restricts the n to certain integers.

1.2. Summations: graphically. We can think of these summations graphically as areas. For the first
area (the summation on [a, b)), consider the following: for each integer n, draw a rectangle with base on the
x-axis from n to n + 1 and height f(n). The total area above [a, b) is the summation of the values of f(n)
on [a, b). Note that there’s a little caveat: rectangles with negative height are given a negative area.

For the other case ((a, b]), we make the rectangle from n − 1 to n with height f(n), i.e., the rectangle
height is given by the value of the function at the right end of the rectangle.

This suggests some relationship between summations and areas. Here’s one way to think about it. The
area is the sum of the lengths of all the vertical slices of the figure, with each vertical slice length weighed
by how much horizontal length it continues for. Thus, if the vertical length is 3 for a horizontal length of 2
and then 4 for a horizontal length of 1, the total area is (3 ∗ 2) + (4 ∗ 1) = 10.

1.3. Piecewise constant functions: integration. We now try to define a notion of integration for piece-
wise constant functions. What this notion of integration should do is measure the total value of the function,
based on the ideas that we discussed above. Geometrically, it measures the signed area between the graph
of the function and the x-axis, with a negative sign when the graph of the function is below the x-axis.

(1) For each interval [a, b] where the function takes a constant value L, the integral on that interval is
L(b− a).

(2) The overall integral is the sum of the integrals on each of the pieces where it is constant.

This makes sense geometrically – we are breaking the area to be measured into rectangles and then finding
the area of each rectangle as the product of its height L and base length b− a.

For instance, consider the signum function, which is −1 for x negative, 0 at 0, and +1 for x positive. The
integral of this function on the interval [−3, 7] is (−1) ∗ (0− (−3)) + (1) ∗ (7− 0) = −3 + 7 = 4.
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1.4. Extending the idea to other functions. We want to define a notion of integration for a function
over an interval when the function is not piecewise constant, such that:

(1) This notion measures what we intuitively think of as the area between the curve and the x-axis,
with suitable signs: a positive contribution for the regions where the curve is above the x-axis and
a negative contribution for the regions where the curve is below the x-axis.

(2) This notion measures some kind of total value of the function.
(3) If we subdivide the interval into smaller intervals, the integral over the whole interval is the sum of

the integrals over the smaller intervals.
Our goal is to find something that roughly satisfies all these properties. We do, however, need to qualify

the kinds of functions that we are willing to consider, because it is not possible to define a notion of integral
for every function in a consistent and intuitive manner. One thing that seems to be desirable when trying
to integrate is continuity – for a well-defined region to take the area of, the graph of the function should
not randomly jump about. A slightly weaker formulation, piecewise continuity, will also do. Piecewise
continuous means that there are only finitely many points of discontinuity. A piecewise continuous function
can be integrated if it has the property that one-sided limits exist and are finite at all points of discontinuity.
(Some other piecewise continuous functions can be integrated

The way we integrate them is to break the interval into subintervals where the function is continuous,
integrate the function on those subintervals, and then add up the values.

1.5. Points and zero length idea. In the case of finite sums, changing the value at any single point changes
the final sum. However, when dealing with integration, the picture is a little different. The value of the
function at a particular point a makes a very small contribution – in fact a zero contribution, to the integral.
This is because the rectangle corresponding to the interval [a, a] has base length zero. Thus, changing the
value of the function at just one point, without changing it elsewhere, has no effect on the integral. Another
way of saying this is that our sample size, or base of aggregation, is so large, that measurement errors in one
data point have no effect on the final answer.

1.6. Brief note on terminology and notation. If a < b and f is a function defined on [a, b], we use the
notation: ∫ b

a

f(x) dx

Here, f is termed the integrand or the function being integrated, a and b are termed the limits of integration,
with a the lower limit and b the upper limit, x is the variable of integration, and [a, b] is the interval of
integration (also called the domain of integration or region of integration). The answer that we get is termed
the integral of f over [a, b] or the integral of f from a to b. This integral is also sometimes called a definite
integral, to distinguish it from indefinite integrals, that we will encounter later.

As already noted, the value of the function at any one point is irrelevant, so we often do not care much
if the function is not defined at finitely many of the points on [a, b]. Similarly, we do not care whether the
function is defined at the endpoints a and b. As far as integration is concerned, we shall not make very fine
distinctions between the open, closed, left-open right-closed, and right-open left-closed intervals.

We now proceed to make sense of
∫ b

a
f(x) dx. In a later lecture, we will extend the meaning so that we

can interpret
∫ b

a
f(x)dx for a = b and a > b as well.

2. Partitions: technical details begin

2.1. Partitions, upper sums, and lower sums. Consider a closed interval [a, b]. By a partition of [a, b]
we mean a sequence of points x0 < x1 < · · · < xn with a = x0 and b = xn. The nontrivial cases of partitions
are when n ≥ 2. We use the term partition because given the xi, we can divide [a, b] into the parts [x0, x1],
[x1, x2], and so on, right till [xn−1, xn]. The union of these parts is [a, b]. Moreover, two adjacent parts
intersect at a single point, and two non-adjacent parts do not intersect. For our purposes, single points are
too small to matter, as discussed above. So, for our purposes, this is a partition into (almost) disjoint pieces.

The idea behind using partitions is to break up the behavior of the function into smaller intervals, wherein
the variation in the value of the function within each interval is smaller than the overall variation in the

3



value. Thus, if we choose a partition with small enough parts, and find reasonable approximations for the
integral on each part, adding those approximations up should give a reasonable approximation of the overall
area.

2.2. Upper bounds and lower bounds. For the notion of integral to be reasonable, it should be true
that if f(x) ≤ g(x) for all x ∈ [a, b], then the integral of f is less than or equal to the integral of g. Verbally,
if the function gets bigger everywhere on the interval, its total value should also get bigger. Thus, we can try
determining upper and lower bounds on the integral of f by finding functions slightly smaller and slightly
larger than f that we know how to integrate. The integral of f is bounded between those two integrals.

Now, the only kinds of functions that we have already decided how to integrate are the piecewise constant
functions, so we need to find good piecewise constant functions. We do this using the partition.

Suppose P = {x0, x1, . . . , xn} is a partition of the interval [a, b]. Define piecewise constant functions fl and
fu as follows: on each interval (xi−1, xi), fl is constant at the minimum (more precisely infimum) of f over
the interval [xi−1, xi] and fu is constant at the maximum (more precisely supremum) of f over the interval
[xi−1, xi]. So, both fl and fu are piecewise constant functions (define them whatever way you want at the
points xi – as mentioned earlier, the values at individual points do not matter). Note that for continuous
functions, the extreme-value theorem guarantees that the function attains its maximum and minimum over
any closed interval, so we do not need to make fine distinctions between infimum and minimum or between
supremum and maximum.

The integral of fl is given by the summation, for 1 ≤ i ≤ n, of the product of (xi−xi−1) and the minimum
value of f over [xi−1, xi]. This value is known as the lower sum of f for the partition P , and it is denoted
Lf (P ). In symbols:

Lf (P ) =
n∑

i=1

(xi − xi−1) ∗ (minimum value for f over [xi−1, xi])

The integral of fu is given by the summation, for 1 ≤ i ≤ n, of the product of (xi − xi−1) and the
maximum value of f over [xi−1, xi]. This value is known as the upper sum of f ofor the partition P , and it
is denoted Uf (P ). For obvious reasons, Lf (P ) ≤ Uf (P ).

Uf (P ) =
n∑

i=1

(xi − xi−1) ∗ (maximum value for f over [xi−1, xi])

2.3. Finer partitions and integral as limiting value. Given two partitions P1 and P2, we say that P2

is finer than P1 if the points of P1 form a subset of the points of P2. In other words, P2 has all the points
of P1 and perhaps more. This means that each interval for the partition P2 is contained in an interval for
the partition P1. The finer the partition, the better in some sense, since the smaller the interval, the more
legitimate the process of approximating by a constant function on that interval.

If P2 is finer than P1, then it turns out that Uf (P2) ≤ Uf (P1) and Lf (P2) ≥ Lf (P1). In other words, the
upper sums get smaller (though not necessarily strictly smaller) and the lower sums get bigger (though not
necessarily strictly bigger) as the partition becomes finer. This can be seen formally as well. The idea is
that when one part is subdivided further, the maximum over the entire part is greater than or equal to the
maximum over each subpart. Thus, after subdivision, we are multiplying potentially smaller numbers with
the same interval lengths, and the overall upper sum thus either remains the same or becomes smaller.

What we hope is that, as the partition gets finer and finer, the lower sums converge upward and the upper
sums converge downward to a particular value, and we can then declare that value to be the integral of the
function. Formally, for a function f on [a, b] and partitions P of [a, b]:

If lim‖P‖→0 Uf (P ) = lim‖P‖→0 Lf (P ), then this common value is termed the integral of f over the interval
[a, b], and is denoted

∫ b

a
f(x) dx.

What precisely does lim‖P‖→0 mean? For P = {x0, x1, x2, . . . , xn}, we define ‖P‖ = max1≤i≤n(xi−xi−1).
In other words, it is the maximum of the lengths of the intervals in the partition P . Sending this limit to
zero means that we are considering partitions that get smaller and smaller in the sense that their largest
part’s size approaches zero.

4



This is a kind of limiting process that you have not seen in the past. So far, you have only seen limits as
one real-valued variable approaches one constant value. But a partition P is not a real number; it is a more
complex collection of information. In order to make sense of limiting to zero, we invent a way of measuring
the size of the partition (by looking at the maximum of the sizes of the parts) and then apply the constraint
that this size needs to go to zero. The limit is being taken over the space of all partitions, which is not a
line.

To make matter simpler, we can restrict attention to what are called regular partitions. A regular partition
is a partition where all the parts have equal size. For an interval [a, b], there is a unique regular partition
with n parts, and in that, each part has size (b−a)/n. Restricted to regular partitions, the above just means
that we are sending n to ∞.

2.4. Integrating the identity function. We illustrate the technique of using partitions to integrate the
function f(x) = x over the interval [0, 1].

We begin by looking at the trivial partition P1 = {0, 1}. This basically means that we do not subdivide
the interval into smaller pieces. For the function f(x) = x, the maximum value over the interval [0, 1] is 1
and the minimum value is 0. Thus, Uf (P1) = 1(1− 0) = 1 and Lf (P1) = 0(1− 0) = 0. Thus, even without
breaking the interval up further, we already know that the integral is somewhere between 0 and 1.

Next, consider P2 = {0, 1/2, 1}. In this case, we have the two intervals [0, 1/2] and [1/2, 1]. On the first
interval, the minimum value is 0 and the maximum value is 1/2. And on the second interval, the minimum
value is 1/2 and the maximum value is 1.

We thus get Lf (P2) = (0)(1/2−0)+(1/2)(1−1/2) = 1/4 and Uf (P2) = (1/2)(1/2−0)+(1)(1−1/2) = 3/4.
Thus, the integral is somewhere between 1/4 and 3/4. We have thus narrowed the value of the integral to
within a smaller interval.

Let us now consider a regular partition into n pieces, i.e., the partition Pn =
{
0, 1

n , 2
n , . . . , n−1

n , 1
}
. In

each interval [(i− 1)/n, i/n], the maximum is i/n and the minimum is (i− 1)/n. Thus, we get:

Lf (Pn) =
n∑

i=1

i− 1
n

(
i

n
− i− 1

n

)
That summation is given by:

Lf (Pn) =
1
n2

n∑
i=1

(i− 1)

The summation inside is the sum of the numbers 0, 1, . . . , n − 1. The summation (which we proved by
induction in the first quarter) is n(n− 1)/2, and we thus get:

Lf (Pn) =
n− 1
2n

=
1
2
− 1

2n
Similarly, we can calculate that:

Uf (Pn) =
n + 1
2n

=
1
2

+
1
2n

As n → ∞, the fraction 1/2n tends to zero, and we obtain that both Lf (Pn) and Uf (Pn) tend to 1/2
(with Lf (Pn) approaching from the left and Uf (Pn) approaching from the right). Thus, the integral of the
identity function on [0, 1] equals 1/2.

More generally, it turns out that the integral
∫ b

a
f(x)dx = (b2 − a2)/2. In a later lecture, we will look at

general ways of finding the integral.

2.5. Brief note: integral of piecewise constant functions. As mentioned earlier, the integral of a
piecewise constant function is given by the sum of the signed areas of the rectangles corresponding to each
interval where it is constant. For instance, consider the function f on [0, 3] such that f(x) = 5 on [0, 1) and
and f(x) = −7 on [1, 3]. Then, the integral of f is given by:

5 ∗ (1− 0) + (−7) ∗ (3− 1) = −9
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For a piecewise constant function, it turns out that we can (almost) choose a partition such that both the
upper and lower sum for the partition equal the value of the integral.

Here’s the rough idea: we can choose a partition such that the function is constant on each part. Thus,
on each of those parts, the maximum and minimum of the function are equal to the constant value, hence
the contributions to both the upper sum and the lower sum are equal.

The problem is that because the partitions use closed intervals, we run into issues at places where the
function changes value. If we used open intervals instead of closed intervals, this problem would not arise
and we would be fine.

3. Additional notes on partitions, norms, and regular partitions

3.1. Norm of a partition and its significance. Recall that we defined the norm ‖P‖ of a partition
P = {x0, x1, x2, . . . , xn} as the largest of the part sizes, i.e., max1≤i≤n |xi − xi−1|. What is the significance
of this norm?

The norm is not important per se, but its main significance is as follows: we want a norm P with the
property that ‖P‖ → 0 forces all the parts to become small. Thus, if instead of the largest of the part sizes,
we took the average part size or the smallest part size, then that norm could be made arbitrarily small while
keeping some of the pieces in the partition very large.

This shifts the question: why do we want a partition where all the parts become small? The intuition
is that the smaller the part, the less the variation (hopefully) in the value of the function within each part.
If we do not shrink everywhere, it may so happen that the portion of the interval where the size is large is
precisely the portion where there is huge variation in the function value, so that the upper and lower sum
estimates are grossly off.

3.2. For wild functions: what can happen with lower and upper sums? When a function is contin-
uous on a closed interval, the integral always exists and is finite. The same holds for piecewise continuous
functions. What happens for a function that is not continuous or even piecewise continuous? What if the
function is discontinuous on a dense subset of the reals? In these cases, the integral does not exist.

If the function is bounded, the lim‖P‖→0 Lf (P ) and lim‖P‖→0 Uf (P ) both exist but they are not equal,
i.e., the first limit is strictly smaller than the second limit. An example is for f the Dirichlet function that
takes the value 1 at rationals and the value 0 at irrationals. Here, on any interval, the maximum value is 1
and the minimum value is 0, hence over any interval [a, b] and any partition P of the interval, Uf (P ) = b−a
and Lf (P ) = 0.

3.3. Finer partitions, norm, and incomparability. We know that if P2 is a finer partition than P1,
then (i) ‖P2‖ ≤ ‖P1‖, (ii) Lf (P2) ≥ Lf (P1), and (iii) Uf (P2) ≤ Uf (P1). In other words, the norm becomes
smaller, the upper sum becomes smaller, and the lower sum becomes larger. However, none of (i), (ii), or (iii)
individually imply that P2 is finer than P1. It is very much possible that two partitions are incomparable (i.e.,
neither is finer than the other). The mathematical jargon for this is that the relation of being finer is a partial
order and not a total order on the collection of all partitions – many pairs of partitions are incomparable.
In contrast, any numerical value associated with a partition has a real value and these numerical values can
be totally ordered.

Despite this, any two partitions always have a common refinement that is finer than both of them.

3.4. Regular partitions. As mentioned, a regular partition of [a, b] into n parts is a partition with n
intervals each of size (b − a)/n. The norm of a regular partition is (b − a)/n. Taking the limit as n → ∞,
we get that the norm goes to 0. The sequence of regular partitions with n parts, with n varying over the
natural numbers, thus is a natural sequence to use when computing integrals using upper and lower sums.

The larger the n, the smaller the norm of a regular partition. However, it is not true that the regular
partition for any larger n is finer. For instance, the partitions of [0, 1] for n = 2 and n = 3 are incomparable.
A partition into n parts is finer than a partition into m parts if m divides n, i.e., n is a multiple of m.
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DEFINITE INTEGRALS, FUNDAMENTAL THEOREM OF CALCULUS,
ANTIDERIVATIVES

MATH 152, SECTION 55 (VIPUL NAIK)

Corresponding material in the book: Section 5.3, 5.4
Difficulty level: Hard.
What students should definitely get: Some results leading to and including the fundamental theorem

of integral calculus, the definition of antiderivative and how to calculate antiderivatives for polynomials and
the sine and cosine functions.

What students should hopefully get: The intuition behind the way differentiation and integration
relate; the concept of indeterminacy up to constants when we integrate. The reason for making assumptions
such as continuity.

Executive summary

0.1. Definite integral, antiderivative, and indefinite integral. Words ..

(1) We have
∫ b

a
f(x) dx +

∫ c

b
f(x) dx =

∫ c

a
f(x) dx.

(2) We say that F is an antiderivative for f if F ′ = f .
(3) For a continuous function f defined on a closed interval [a, b], and for a point c ∈ [a, b], the function

F given by F (x) =
∫ x

c
f(t) dt is an antiderivative for f .

(4) If f is continuous on [a, b] and F is a function continuous on [a, b] such that F ′ = f on (a, b), then∫ b

a
f(x) dx = F (b)− F (a).

(5) The two results above essentially state that differentiation and integration are opposite operations.
(6) For a function f on an interval [a, b], if F and G are antiderivatives, then F −G is constant on [a, b].

Conversely, if F is an antiderivative of f , so is F plus any constant.
(7) The indefinite integral of a function f is the collection of all antiderivatives for the function. This is

typically written by writing one antiderivative plus C, where C is an arbitrary constant. We write∫
f(x) dx for the indefinite integral. Note that there are no upper and lower limits.

(8) Both the definite and the indefinite integral are additive. In other words,
∫

f(x) dx +
∫

g(x) dx =∫
f(x) + g(x) dx. The analogue holds for definite integrals, with limits.

(9) We can also pull constants multiplicatively out of integrals.
Actions ...
(1) To do a definite integral, find any one antiderivative and evaluate it between limits.
(2) An important caveat: when using antiderivatives to do a definite integral, it is important to make

sure that the antiderivative is defined and continuous everywhere on the interval of integration.
(Think of the 1/x3 example).

(3) To do an indefinite integral, find any antiderivative and put a +C.
(4) To find an antiderivative, use the additive splitting and pulling constants out, and the fact that∫

xr dx = xr+1/(r + 1).

0.2. Higher derivatives, multiple integrals, and initial/boundary conditions. Actions ...
(1) The simplest kind of initial value problem (a notion we will encounter again when we study differential

equations) is as follows. The kth derivative of a function is given on the entire domain. Next, the
values of the function and the first k − 1 derivatives are given at a single point of the domain. We
can use this data to find the function. Step by step, we find derivatives of lower orders. First, we
integrate the kth derivative to get that the (k − 1)th derivative is of the form F (x) + C, where C is
unknown. We now use the value of the (k − 1)th derivative at the given point to find C. Now, we
have the (k − 1)th derivative. We proceed now to find the (k − 2)th derivative, and so on.
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(2) Sometimes, we may be interested in finding all functions with a given second derivative f . For this,
we have to perform an indefinite integration twice. The net result will be a general expression of the
form F (x) + C1x + C2, where F is a function with F ′′ = f , and C1 and C2 are arbitrary constants.
In other words, we now have up to constants or linear functions instead of up to constants as our
degree of ambiguity.

(3) More generally, if the kth derivative of a function is given, the function is uniquely determined up to
additive differences of polynomials of degree strictly less than k. The number of free constants that
can take arbitrary real values is k (namely, the coefficients of the polynomial).

(4) This general expression is useful if, instead of an initial value problem, we have a boundary value
problem. Suppose we are given G′′ as a function, and we are given the value of G at two points. We
can then first find the general expression for G as F + C1x + C2. Next, we plug in the values to get
a system of two linear equations, that we solve in order to determine C1 and C2, and hence G.

1. Statements of main results

1.1. The definite integral: recall and more details. Recall from last time that for a continuous (or
piecewise continuous where all discontinuities are jump discontinuities) function f on an open interval [a, b],
the integral of f over the interval [a, b], denoted:∫ b

a

f(x) dx

is a kind of summation for f for all the real numbers from a to b. This integral is also called a definite
integral. The function is often termed the integrand. The number b is termed the upper limit of the
integration, and the number a is termed the lower limit of the integration. The variable x is termed the
variable of integration.

So far, we have made sense of the expression as described above with a < b. We now add in a few details
on how to make sense of two other possibilities:

• If a = b, then, by definition, the integral is defined to be zero.
• If a > b, then, by definition, the integral is defined as the negative of the integral

∫ a

b
f(x) dx.

Now, it makes sense to consider the symbol
∫ b

a
f(x) dx without any ordering conditions on a and b. With

these definitions, we have, for any a, b, c ∈ R:∫ b

a

f(x) dx +
∫ c

b

f(x) dx =
∫ c

a

f(x) dx

1.2. Definite integrals do exist for piecewise continuous functions. It is useful to know the following:
(1) For a continuous function f on a closed and bounded interval [a, b], the integral exists and is finite.

In fact, the integral over the interval [a, b] is bounded from above by (b − a) times the maximum
value of the function and from below by (b− a) times the minimum value of the function. (Both of
these exist by the extreme value theorem).

(2) For a piecewise continuous function f on a closed and bounded interval [a, b] such that all the one-
sided limits exist and are finite at points of discontinuity, the integral exists and is finite. This follows
from the previous part, via the intermediate step of breaking [a, b] into parts such that the restriction
of the function to each part is continuous and extends continuously to the boundary of that part.

1.3. The definite integral and differentiation. There is also a clear relationship between the definite
integral and differentiation. In some sense, the integral and derivative are inverses (opposites) of each other.
Let [a, b] be an interval. Suppose f is a continuous function on [a, b] and c ∈ [a, b] is any number. Define the
following function F on [a, b]:

F (x) :=
∫ x

c

f(t) dt

Note the way the function is defined. t is the variable of integration, and F depends on x in the sense
that the upper limit of the interval of integration is x, whereas the lower limit is fixed at c.
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Continuous functions are integrable, as discussed above, so F turns out to be well-defined.
Further, F is continuous on [a, b], differentiable on (a, b), and has derivative

F ′(x) = f(x) for all x ∈ (a, b)

This is Theorem 5.3.5.

1.4. Concept of antiderivative. Suppose f is continuous on [a, b]. An antiderivative for f , or primitive
for f , or indefinite integral for f , is a function G on [a, b] such that:

• G is continuous on [a, b].
• G′(x) = f(x) for all x ∈ (a, b).

A little while back, we had seen the following result: if F , G are functions on an interval I such that
F ′ = G′ for all points in the interior of I, then F −G is a constant function on I. In other words, F and G
differ by a constant.

Conversely, if F and G are functions on an interval I with F differentiable on the interior of I, and F −G
is constant, then G is also differentiable on I and F ′ = G′ on the interior of I.

Thus, the antiderivative of a function is not unique – we can always add a constant function to one
antiderivative to obtain another antiderivative. However, the antiderivative is unique up to differing by
constants. In other words, any two antiderivatives differ by a constant.

We are now in a position to state the fundamental theorem of calculus.
Suppose f is a continuous function on the interval [a, b]. If G is an antiderivative for f on [a, b], then we

have: ∫ b

a

f(t) dt = G(b)−G(a)

Also, as we already noted, any two antiderivatives differ by a constant, so if we replace G by another
antiderivative, the right side remains the same because both G(a) and G(b) get shifted by the same amount.

For notational convenience, this is sometimes written as:∫ b

a

f(t) dt = [G(t)]ba

Here, the right side is interpreted as the difference between the values of G(t) for t = b and t = a, which
simplifies to G(b)−G(a).

2. Computing antiderivatives and integrals: easy facts

2.1. Computing some antiderivatives. We now compute some common expressions for antiderivatives
of functions.

(1) If f(x) = xr, and r 6= −1, then we can set G(x) = xr+1/(r + 1). The factor of 1/(r + 1) is intended
to cancel the factor of r + 1 that appears as a coefficient when we differentiate xr+1. In particular,
if f(x) = x, G(x) = x2/2, and if f(x) = x2, G(x) = x3/3. Most importantly, if f(x) = 1, then
G(x) = x.

(2) An antiderivative for sin is − cos and an antiderivative for cos is sin. Note the sign differences between
these formulas and those for the derivative. The derivative of sin is cos but the antiderivative of
sin is − cos. The derivative of cos is − sin and the antiderivative of cos is sin. (We will see more
trigonometric antiderivatives later).

2.2. Linearity of the integral. The integral is linear, in the sense of being additive and allowing for the
factoring out of scalars. Specifically:∫ b

a

[f(x) + g(x)] dx =
∫ b

a

f(x) dx +
∫ b

a

g(x) dx

and
3



∫ b

a

αf(x) dx = α

∫ b

a

f(x) dx

Thus, we can pull out scalars and split sums additively when computing integrals, just as we did for
derivatives.

2.3. Linearity of the antiderivative. The linearity of the integral turns out to be closely related to the
linearity of the antiderivative. Of course, it is not precise to say “the” antiderivative, since the antiderivative
is defined only up to differences of constants. What we mean is the following:

(1) If F is an antiderivative for f and G is an antiderivative for g, then F + G is an antiderivative for
f + g.

(2) If F is an antiderivative for f and α is a real number, then αF is an antiderivative for αf .

(These statements are immediate corollaries of the corresponding statements for derivatives).

2.4. General expression for indefinite integral. Once we have computed one antiderivative for the
integral, the general expression for the indefinite integral is obtained by taking that antiderivative and
writing a “+ C” at the end, where C is a freely varying real parameter. What this means is that every
specific choice of numerical value for C gives yet another antiderivative for the original function.

Note that the letter C is used conventionally, but there is nothing special about this latter. If the situation
at hand already uses the letter C in some other context, please use another letter.

For instance: ∫
(x− sinx) dx = (x2/2) + cos x + C

2.5. Getting our hands dirty. We are now in a position to do some straightforward computations of
integrals for polynomials and some basic trigonometric functions. For instance:∫ 1

0

(x2 − x + 1) dx

We can find an antiderivative for this function, by finding antiderivatives for the individual functions x2,
−x, and 1, and then adding up. An antiderivative that works is x3/3 − x2/2 + x. Now, to calculate the
definite integral, we need to calculate the difference between the values of the antiderivative at the upper
and lower limit. We write this as: [

x3

3
− x2

2
+ x

]1

0

Next, we do the calculation: (
1
3
− 1

2
+ 1

)
− (0− 0 + 0) =

5
6

Thus, the value of the definite integral is 5/6.
In other words, the signed area between the graph of the function x2 − x + 1 and the x-axis, between the

x-values 0 and 1, is 5/6.
Some people prefer to split the definite integral as a sum first and then compute antiderivatives for each

piece. The work would then appear as follows:

∫ 1

0

(x2 − x + 1) dx =
∫ 1

0

x2 dx−
∫ 1

0

x dx +
∫ 1

0

1 dx = [x3/3]10 − [x2/2]10 + [x]10 = 1/3− 1/2 + 1 = 5/6

There is no substantive difference in the computations.
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3. Higher derivatives and repeated integration

3.1. Finding all functions with given kth derivative. Suppose the second derivative of a function is
given. What are all the possibilities for the original function? In order to answer this question, we need to
integrate twice. For instance, suppose f ′′(x) = cos x. Then, we know that:

f ′(x) =
∫

cos x dx = (sinx) + C1

where C1 is an arbitrary real number.
Integrating again, we get:

f(x) =
∫

f ′(x) dx =
∫

[(sinx) + C1] dx = (− cos x) + C1x + C2

Here, both C1 and C2 are arbitrary real numbers. Thus, the family of all possible fs that work is described
by two parameters, freely varying over the real numbers.

More generally, if the kth derivative of a function is known, then the original function is known up to
additive difference of a polynomial fo degree at most k − 1. Each coefficient of that polynomial is a freely
varying real parameter, and there are k such coefficients: the constant term, the coefficient of x, and so on
till the coefficient of xk−1.

3.2. Degree of freedom and initial/boundary values. One way of thinking of the preceding material
is that each time we integrate, we introduce one more degree of freedom. Thus, integrating thrice introduces
a total of three degrees of freedom.

In practice, when we are asked to find a function f in the real world, we know the kth derivative of f ,
but we also have information about the values of f at some points. The two typical ways this information
is packaged are:

• Initial value problem packaging: Here, the value of f and all its derivatives, up to the (k − 1)th

derivative, at a single point c are provided, along with the general expression for the kth derivative.
For this kind of problem, we can, at each stage of antidifferentiation, determine the value of the
constant we get, and thus we get a single function at the end.

• Boundary value problem packaging: Here, the value of f at k distinct points is specified. To solve
this kind of problem, we first find the general expression for f with k unknown constants, then use
the values at k distinct points to get a system of k linear equations in k variables, which we then
proceed to solve.

4. Subtle issues/additional notes

4.1. Variable of integration – don’t reuse! When writing something like
∫ b

a
f(t) dt, please remember

that the letter t, which is used locally as a variable of integration, cannot be used outside the expression.

4.2. Definite integral as a size or norm of function. To completely describe a function f on a closed
interval [a, b] requires a lot of work, since it requires specifying the function value at infinitely many points.
On the other hand, the value of the integral of f on [a, b], given by

∫ b

a
f(x) dx, is a single real number. Since

numbers are easier to grasp than functions, we often use the integral of a function on an interval to get an
approximate estimate of its size.

More generally, we are often interested in expressions of the form
∫ b

a
f(x)g(x) dx where g(x) plays the role

of a weighting function. Usually, we have a bunch of two or three functions g and we are interested in the
above integral on [a, b] for each of those gs. We use the collection of two or three numbers we get that way
to say profound things about the function f , even without knowing f directly.

4.3. Linear algebra interpretation of antiderivative. (This material is not necessary for this course,
but is useful for subsequent mathematics – we’ll see it again in 153 and you’ll see more of these ideas if you
take Math 196/199 or advanced courses in the social and/or physical sciences).

Denote by C1 the set of functions on R that are continuously differentiable everywhere. Denote by C0

the set of continuous functions on R.
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First, note that C0 and C1 are both vector spaces over R. Here’s what this means for C0: the sum of two
continuous functions is continuous, and any scalar multiple of a continuous function is continuous. Here’s
what this means for C1: the sum of two continuously differentiable functions is continuously differentiable,
and any scalar multiple of a continuously differentiable function is continuously differentiable.

Differentiation is a linear operator from C1 to C0 in the following sense: first, for any f ∈ C1, f ′ is an
element of C0. Second, we have the rules (f + g)′ = f ′ + g′ and (αf)′ = αf ′. In other words, differentiation
respects the vector space structure.

The kernel of a linear operator is the set of a functions which go to zero. For any linear operator between
vector spaces, the kernel is a subspace.

Our basic result is that the kernel of the differentiation operator is the space of constant functions. Two
elements in a vector space have the same image under a linear operator iff their difference is in the kernel of
that operator. In our context, this translates to the statement that two functions have the same derivative
iff their difference is a constant function.

Our second basic result is that any function in C0 arises as the derivative of something in C1. This
something can be computed using a definite integral.

Thus, the kernel of the differentiation operator is a copy of the real line inside C1, given by the scalar
functions. For any element of C0, the set of elements of C1 which map to it is a line inside C1 parallel to
the line of constant functions.

Instead of looking at functions on the entire real line, we can also restrict attention to functions on an
open interval inside the real line – qualitatively, all our results hold.
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CHAIN RULE, u-SUBSTITUTION, SYMMETRY, MEAN VALUE THEOREM

MATH 152, SECTION 55 (VIPUL NAIK)

Corresponding material in the book: Section 5.6, 5.7, 5.8, 5.9.
Difficulty level: Hard.
What students should definitely get: The idea of using differentiation rules to determine antideriv-

ative, the application of the chain rule to indefinite integration, and the idea of the u-substitution. The
application of the u-substitution to definite integrals, the idea that definite integrals can be computed in
light of certain kinds of symmetry even without computing an antiderivative. Bounding definite integrals
via other definite integrals. The mean value theorem for integrals.

What students should eventually get: A grasp and clear memory of all the rules for computing
definite integrals for functions with a certain kind of symmetry. The subtleties of u-substitutions.

Executive summary

0.1. Reversing the chain rule. Actions ...
(1) The chain rule states that (f ◦ g)′ = (f ′ ◦ g) · g′.
(2) Some integrations require us to reverse the chain rule. For this, we need to realize the integrand that

we have in the form of the right-hand side of the chain rule.
(3) The first step usually is to find the correct function g, which is the inner function of the composition,

then to adjust constants suitably so that the remaining term is g′, and then figure out what f ′ is.
Finally, we find an antiderivative for f ′, which we can call f , and then compute f ◦ g.

(4) A slight variant of this method (which is essentially the same) is the substitution method, where we
identify g just as before, try to spot g′ in the integrand as before, and then put u = g(x) and rewrite
the integral in terms of u.

0.2. u-substitutions and transformations. Words ... (try to recall the numerical formulations)
(1) When doing the u-substitution for definite integrals, we transform the upper and lower limits of

integration by the u-function.
(2) Note that the u-substitution is valid only when the u-function is well-defined on the entire interval

of integration.
(3) The integral of a translate of a function is the integral of a function with the interval of integration

suitably translated.
(4) The integral of a multiplicative transform of a function is the integral of the function with the interval

of integration transformed by the same multiplicative factor, scaled by that multiplicative factor.

0.3. Symmetry and integration. Words ...
(1) If a function is continuous and even, its integral on [−a, 0] equals its integral on [0, a]. More generally,

its integrals on any two segments that are reflections of each other about the origin are equal. As a
corollary, the integral on [−a, a] is twice the integral on [0, a].

(2) If a function is continuous and odd, its integral on [−a, 0] is the negative of its integral on [0, a].
More generally, its integrals on any two segments that are reflections of each other about the origin
are negatives of each other. As a corollary, the integral on [−a, a] is zero.

(3) If a function is continuous and has mirror symmetry about the line x = c, its integral on [c − h, c]
equals its integral on [c, c + h].

(4) If a function is continuous and has half-turn symmetry about (c, f(c)), its integral on any interval of
the form [c− h, c + h] is 2hf(c). Basically, all the variation about f(c) cancels out and the average
value is f(c).
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(5) Suppose f is continuous and periodic with period h and F is an antiderivative of f . The integral of
f over any interval of length h is constant. Thus, F (x + h) − F (x) is the same constant for all x.
(We saw this fact long ago, without proof).

(6) The constant mentioned above is zero iff F is periodic, i.e., f has a periodic antiderivative.
(7) There is thus a well-defined average value of a continuous periodic function on a period. This is also

the average value of the same periodic function on any interval whose length is a nonzero integer
multiple of the period. This is also the limit of the average value over very large intervals.

Actions...
(1) All this even-odd-periodic stuff is useful for trivializing some integral calculations without computing

antiderivatives. This is more than an idle observation, since in a lot of real-world situations, we get
functions that have some obvious symmetry, even though we know very little about the concrete
form of the functions. We use this obvious symmetry to compute the integral.

(2) Even if the whole integrand does not succumb to the lure of symmetry, it may be that the inte-
grand can be written as (something nice and symmetric) + (something computable). The (nice and
symmetric) part is then tackled using the ideas of symmetry, and the computable part is computed.

0.4. Mean-value theorem. Words ...
(1) The average value, or mean value, of a continuous function on an interval is the quotient of the

integral of the function on the interval by the length of the interval.
(2) The mean value theorem for integrals says that a continuous function must attain its mean value

somewhere on the interior of the interval.
(3) For periodic functions, the mean value over any interval whose length is a multiple of the period is

the same. Also, the mean value over a very large interval approaches this value.

1. Philosophical remarks on hardness

1.1. A fundamental asymmetry between differentiation and integration. A little while back in
the course, we saw how to differentiate functions. In order to carry out differentation, we learned how
to differentiate all the basic building block functions (the polynomial functions and the sine and cosine
functions) and then we learned a bunch of rules that allowed us to differentiate any function built from these
elementary functions using either function composition or pointwise combination.

This means that for any function built from the elementary functions, if we know how to write it, we know
how to compute its derivative. The strategy is to keep breaking down the task using the rules for combination
and composition until we get to differentiating the elementary functions, fo which we have formulas.

The analogue is not true for finding antiderivatives. In other words, there is no foolproof procedure to
break down operations such as combination and composition and ultimately reduce the problem to computing
antiderivatives of the basic building blocks. Thus, even though there are formulas for the antiderivatives of
all the basic building blocks, there exist functions constructed from these that do not have antiderivatives
that can be written as elementary functions.

One important point should be made here. Just because the antiderivative of f cannot be expressed as
an elementary function (or, it can but we’re not able to determine that elementary function) does not mean
that the antiderivative does not exist. Rather, it means that the existing pool of functions that we have is
not large enough to contain that function, and we may need to introduce new classes of functions.

1.2. Dealing with failure, getting used to it. Examples of functions that do not have antiderivatives in
the classes of functions we have seen so far include 1/(x2 + 1), 1/

√
x2 + 1, 1/x, and 1/

√
x2 − 1. Later in the

course, we shall introduce new classes of functions, and it turns out that these functions are integrable within
those new classes of functions. (The new classes include logarithmic functions and inverse trigonometric
functions). Functions such as 1/

√
x3 + 2x + 7 cannot be integrated even in this larger collection of functions

– to integrate these functions, we would need to introduce elliptic functions and inverse elliptic functions
which are an analogue of trigonometric and inverse trigonometric functions. We won’t formally introduce
those functions in the 150s, and you probably will not see them ever in a formal way.

Similarly, the functions sin(x2) and (sinx)/x do not have indefinite integrals expressible in our current
vocabulary (the integral of the latter is particularly important and is called the sine integral, even though
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it has no easy expression). When we later introduce the logarithmic function, we will see that 1/ log x has
no antiderivative in the classes of functions we are dealing with, though one of its antiderivatives, called the
logarithmic integral, is extremely important in number theory and in the distribution of prime numbers.

When we later introduce the exponential function, we shall see that e−x2
has no antiderivative expressible

in terms of elementary functions. However, the antiderivative of e−x2
is extremely important in statistics,

since e−x2
corresponds to the shape of the Gaussian or normal distribution (a shape often called a Bell curve)

and its integral measures the area under the curve for such a distribution. The integral is so important in
statistics that there are tables of the values of the definite integral from 0 to a for different numerical values
of a. These tables can be used to calculate the definite integral between any two points. As an interesting
aside, it is true that the integral of e−x2

over the entire real line (a concept we will see later) is
√

π.
In general, the use of antiderivatives and indefinite integration is a powerful tool in performing definite

integration. Recall that if F is an antiderivative for f , then
∫ b

a
f(x) dx = F (b) − F (a). So, to integrate f

between limits, all we need to do is find an antiderivative, evaluate it at the limits, and subtract. However,
there are three problems that we encounter as soon as we start trying this approach for nontrivial functions:

(1) An antiderivative may not even exist within the class of functions that we are familiar with. In other
words, we may need to define and introduce new classes of functions to fit in the antiderivative. This
is not very helpful for computational purposes.

(2) Even if the antiderivative exists, it may require considerable ingenuity to find it. This is because
there is no clear and short step-by-step reductive algorithm to find an antiderivative. This is in sharp
contrast with the situation for derivatives, where we can reduce step by step.

(3) Even if we successfully calculate the antiderivative, it may not be much use to us computationally
if we cannot evaluate the antiderivative at the two endpoints. This is more of a problem when
dealing with functions that involve trigonometric functions (and inverse trigonometric, exponential,
and logarithmic functions – new classes of functions you have been sheltered from so far).

In all these cases, one tool still remains at our disposal – the back-to-basics definition of the definite integral
using upper sums and lower sums. This definition can usually allow us to quickly obtain crude upper bounds
and crude lower bounds. Such bounds are not as good as an exact answer but they may be good enough.

2. Breaking the differentiation code: reverse engineering

2.1. Recalling the rules for differentiation. Our next stop is the rules for differentiation. Broadly, our
strategy for computing antiderivatives is working backward: starting from rules that we know for differentia-
tion and trying to guess what the antiderivative must have been so that differentiating it gives the function
we have at hand.

We have already seen the rules for sums and scalar multiples for differentiation. In technical terminology,
we say that the antiderivative is linear – the antiderivative of the sum is the sum of the antiderivatives, and
the antiderivative of a scalar multiple is the same scalar multiple of the antiderivative (I’m being imprecise
by using the, but you should get the idea).

There are two other rules for differentiation that are somewhat more complicated: the product rule and
the chain rule. In this lecture, we concentrate on the chain rule. The product rule manifests itself in a
technique, called integration by parts, that we will see next quarter.

2.2. The chain rule. Let’s look at the chain rule.

(f ◦ g)′ = (f ′ ◦ g) · g′

Equivalently:

d

dx
[f(g(x))] = f ′(g(x))g′(x)

In order to use the chain rule to integrate a function p, we need to do what’s called pattern matching – we
need to find functions f and g such that we can write p = (f ′ ◦ g) · g′. In some cases, the way the function
is written is reasonably suggestive of what f and g are. In other cases, we need to do a little work. We look
at some examples.

Consider:
3



∫
sin(cos x) sinx dx

Comparing this with the general expression, we see that we should have g(x) = cos x, since cos is the
inner function of the composition in this expression. If g(x) = cos x, then we obtain g′(x) = − sinx. We
notice that the expression we have is sinx, not − sinx, so we put a negative sign on the outside, and obtain:

−
∫

sin(cos x)(− sinx) dx

If g(x) = cos x, then g′(x) = − sinx. Looking again at the pattern we are trying to match, we see
that we must have f ′(t) = sin t. We thus see that a possible candidate for f(t) is − cos t, since that is an
antiderivative for sin. Using the chain rule in reverse, we thus obtain that −(− cos(cos x)) = cos(cos x) is an
antiderivative. The indefinite integral is thus:

cos(cos x) + C

where C is an arbitrary real constant.
It might be worthwhile to differentiate this and check that the derivative we get is the original integrand.
Here is another example. Consider: ∫

(x2 + 1)45x dx

We can perform this integration by first computing (x2 + 1)45 as a polynomial, then multiplying each
term by x, then integrating termwise. However, this is impractical. Instead, we try to use the chain rule.

The composite function of interest is (x2 + 1)45. This is a composite of the function g(x) = x2 + 1 and
the function h(t) = t45. The derivative of g is g′(x) = 2x, which is twice of the expression we have (simply
x). Thus, we need to multiply and divide by 2:

1
2

∫
(x2 + 1)452x dx

Now, we see that f ′(t) = h(t) = t45, so f is an antiderivative for that. We could take f(t) = t46/46. The
overall antiderivative then simplifies to:

1
2

(x2 + 1)46

46
+ C =

(x2 + 1)46

92
+ C

Let’s look at another example: ∫
x3 dx

We already know that an antiderivative for this is x4/4 and the general expression for the indefinite
integral is (x4/4)+C. We now see how this result can be obtained using the chain rule. We write x3 = x2 ·x.
We then set g(x) = x2, and f ′(t) = t (so f(t) = t2/2), so that x2 = f ′(g(x)). We also have g′(x) = 2x, which
is twice of x, so we get:

1
2

∫
(x2) · (2x) dx

The integral is thus:

1
2

(x2)2

2
+ C =

x4

4
+ C

Let us look at one more example: ∫
2x

(x2 + 1)2
dx
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Here, we notice that the derivative of x2 + 1 is 2x. Thus, we set g(x) = x2 + 1. We obtain g′(x) = 2x.
Also, we have f ′(g(x)) = 1/(x2 + 1)2, so f ′(t) = 1/t2. Thus, f(t) is an antiderivative for 1/t2, so we can
set f(t) = −1/t. Plugging these in, we obtain that f(g(x)) = −1/(x2 + 1), so we obtain that the indefinite
integral is:

−1
x2 + 1

+ C

A glimpse into the u-substitution. One drawback of the approach outlined above for reverse-engineering
the chain rule is that we have to do a lot of rough work and this becomes tedious for harder problems. An
alternative way of presenting this, that makes things easier to handle in harder situations, is by using a
substitution. Here, we identify g(x) in the same way as we did earlier, and we then try to write our integral
as: ∫

h(g(x))g′(x) dx

The main difference is that instead of trying to find a priori a function f such that f ′ = h, we instead
postpone that for later. We perform a substitution u = g(x), whereby we replace g′(x)dx with du, and
obtain: ∫

h(u) du

which we now proceed to integrate (which is essentially the same as finding an antiderivative for h, which
is the function we called f). Finally, we substitute in g(x) for u in the expression we obtain.

This seems like more steps. However, the main advantage is that one of the steps that we had to do
as scratch work, namely finding f using the expression we have for f ′, is now done in the open. This is
particularly useful if the function h = f ′ is complicated and integrating it requires many steps.

There is also a slight variant of substitution for definite integrals. We now turn to that.

3. Magic of definite integrals with chain rule

3.1. The u-substitution revisited. Recall the u-substitution, which is a variant of the procedure to reverse
the chain rule, but has the advantage that it breaks our work more clearly into two steps: first find g, then
reduce the problem to a new problem that involves finding the antiderivative for h.

How do we use this to compute a definite integral? We can use the procedure outlined above to compute
an antiderivative in terms of x, and then evaluate it between limits. For instance, consider:∫ π

0

cos(sinx) cos x dx

We first try to compute the antiderivative:∫
cos(sinx) cos x dx

Set u = sinx. Then, the above integral becomes:∫
cos u du

which is sinu. Since u = sinx, we obtain that sin(sinx) is an antiderivative. The definite integral is thus
sin(sinπ)− sin(sin 0) = 0.

There is an alternative way of doing things, which involves changing the limits of integration with each
u-substitution. The idea here is that every time we make a substitution of the form u = g(x), we replace the
lower and upper limits by their images under g. In other words, if the function is being integrated from a to
b, the new function is being integrated from g(a) to g(b). In symbols:∫ b

a

h(g(x))g′(x) dx =
∫ g(b)

g(a)

h(u) du
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The advantage of this is that after we find an antiderivative for h, say f , we do not need to compute the
function f ◦ g, i.e., we do not need to find an antiderivative for the original integrand. We simply evaluate
the new antiderivative between the new limits g(a) and g(b).

The approach has other advantages, namely, in situations where it is difficult or impossible to get explicit
expressions for antiderivatives, but a definite integral can be computed due to symmetry considerations or
for other degenerate reasons. For instance, consider:

∫ π

0

cos(sinx) cos x dx

Set u = sinx. The limits now become sin 0 and sin π, so the integral becomes:

∫ 0

0

cos u du

Note that with this u-substitution method, we do not even need to find an antiderivative for the integrand:
we can straightaway compute that the integral is zero, because the upper and lower limits for integration
coincide.

3.2. Inequalities involving the definite integral. We’ll now review some of the properties of the definite
integral that are discussed in Section 5.8 in the book. We begin with properties 5.8.1 – 5.8.4. These are
fairly straightforward, and are expected from the notion of integral as a total value, or from the formal
definition involving lower and upper sums. Note that by default, all integrals are over intervals of positive
length, taken from left to right, i.e., the lower limit of the integral is strictly smaller than the upper limit of
the integral.

(1) The integral of a nonnegative continuous function is nonnegative. (5.8.1)
(2) The integral of an everywhere positive function is positive. (5.8.2)
(3) If f(x) ≤ g(x) for all x ∈ [a, b], then

∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx. (5.8.3)

(4) If f(x) < g(x) for all x ∈ [a, b], then
∫ b

a
f(x) dx <

∫ b

a
g(x) dx. (5.8.4)

These inequalities give us a new tool for bounding an integral from above and below. We now turn to
that tool.

3.3. Bounding an integral. It is not always possible to find an explicit expression for an antiderivative.
Hence, we cannot always compute the definite integral of a function via the antiderivative route. One strategy
we had for overcoming this was the use of upper and lower sums. These sums, however, can get tedious to
compute. An alternative strategy is to bound the function between two other functions, and hence bound
its integral between the integrals of those two functions.

For instance, consider the integral:

∫ 2

1

dx

x

We consider the function f(x) := x−1 on the interval [1, 2]. Since x ≥ 1, this function is bounded from
above by g(x) := x−1/2, and from below by h(x) := x−3/2. Thus, the integral of f is bounded between the
integrals of g and of h.

An antiderivative for g is 2
√

x, and evaluating it between limits gives 2(
√

2 − 1), which is slightly less
than 0.83. An antiderivative for h is −2/

√
x, and evaluating it between limits gives 2−

√
2, which is slightly

greater than 0.58. Thus, the integral of f is somewhere between 0.58 and 0.83. (the actual value is about
0.693, as you will see later). Note how we were able to get a very reasonable estimate without computing
an antiderivative or using upper and lower sums.
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In fact, upper and lower sums are a special case of this bounding procedure where the two bounding
functions that we choose are piecewise constant functions.

3.4. Other inequalities. Recall the triangle inequality, which states that for any two real numbers x and
y, we have:

|x + y| ≤ |x|+ |y|
This can be generalized to more than two variables. The general form reads as:

|x1 + x2 + · · ·+ xn| ≤ |x1|+ |x2|+ · · ·+ |xn|
Since an integration is an infinite analogue of a sum, the triangle inequality must have an analogue for

integration. This reads as follows: ∣∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)| dx

Note that we already have a geometric intepretation of both sides. The right side is the total unsigned
area between the graph of f and the x-axis from point a to point b. The left side is the magnitude of the
signed area from point a to point b. On the left side, we are adding the areas with signs (leading to possible
cancellations) and then taking the absolute value in the end. On the right side, we are adding the absolute
values to begin with. Thus, there is no scope for cancellation.

4. The beauty of symmetry

4.1. The role of symmetry. Before proceeding to the role of symmetry, we first explore how various
transformations of the real line affect the value of the integral.

First, how does shifting by h affect integration?∫ b

a

f(x + h) dx =
∫ b+h

a+h

f(x) dx

This is an example of the chain rule in action, or the u-substitution. What we did is the following: start
from the left side, and express u = x + h. Then du/dx = 1, and f(x + h) becomes f(u). The limits become
a + h and b + h, so we get: ∫ b

a

f(x + h) dx =
∫ b+h

a+h

f(u) du

Now, however, u is a dummy variable, so we can replace this dummy variable by the dummy variable x.
The term dummy variable is used for a variable that appears as the variable of integration or summation
which hence cannot appear anywhere else. The dummy variable is by nature local to the integration or
summation operation and hence its representing letter can be changed.

Graphically, the area staked out by f between a + h and b + h is the same as the area staked out by
f(x+h) between a and b. This is intuitively clear, because the graph of f(x+h) is obtained from the graph
of f via shifting left by h.

The other kind of operation that is of interest here is the flip-over, namely, sending x to −x. The relevant
identity here is:
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∫ b

a

f(x) dx =
∫ −a

−b

f(−x) dx

This again follows from a u-substitution.
These two basic ideas give us the interesting results we have on even, odd, and periodic functions:
(1) Suppose f is an odd continuous function on the interval [−a, a]. Then, its integral on [−a, a] is 0.

Roughly, this is because the integral on the interval [−a, 0] cancels out the integral on the interval
[0, a], with each f(x) being canceled by the corresponding f(−x).

(2) More generally, if f is a continuous function on [p, q] with half-turn symmetry about ((p+q)/2, f((p+
q)/2)), then the integral of f on [p, q] is (q − p) times the value f((p + q)/2). Intuitively, this is the
average value, and for every deviation above the value, there is a corresponding deviation below the
value on the other side.

(3) Suppose f is an even continuous function on the interval [−a, a]. Then, its integral on [−a, a] is
twice its integral on [0, a]. This is because the picture of the function on [−a, 0] is the same as the
picture on [0, a] (in the reverse order from left to right, but this does not affect area).

(4) More generally, if f enjoys mirror symmetry about x = c, the integral on [c, c+h] equals the integral
on [c− h, c].

(5) If f is a periodic function that is continuous and defined for all real numbers, the integral of f over
any interval of length equal to the period is the same. If f has a periodic antiderivative, then this
integral is zero. If the period is h, and the integral over one period is k, then we can think of k/h as
the long-run average value of f . More on this in the next section and in homework problems.

5. Mean-value theorem for integrals

5.1. Statement of the theorem. This result states that if f is a continuous function on a closed interval
[a, b], then there exists c ∈ (a, b) such that

f(c) =

∫ b

a
f(x) dx

b− a
The right side of this expression is the mean value, or average value, of f on the interval [a, b]. Thus, this

result simply states that a function attains its mean value somewhere on the interval.
Recall the earlier mean-value theorem:
If F is a function that is continuous on [a, b] and differentiable on (a, b), then there exists c ∈ (a, b) such

that:

F ′(c) =
F (b)− F (a)

b− a
We now explain how the mean-value theorem for integrals follows from the (original) mean-value theorem.

The idea is to pick F as an antiderivative for f . Then, F ′ = f , and F satisfies the hypotheses needed to
apply the mean-value theorem for derivatives.

The left side of the (original) mean-value theorem is F ′(c), which equals f(c). The numerator on the
right side is F (b)−F (a), which, by the fundamental theorem of integral calculus, is the same as

∫ b

a
f(x) dx.

Thus, we get the necessary expression for the mean-value theorem for integrals.

5.2. Mean value of periodic functions. For a continuous function defined on all of R, we can define the
mean value of the function over an interval, but it does not make sense to define an overall mean value. For
functions that go off to infinity in either direction, the mean value also goes off to infinity as we shift the
intervals farther and farther off. On the other hand, for functions that are bounded, there is some hope in
talking of a mean value.

One class of functions for which a mean value makes eminent sense are periodic functions. As mentioned
earlier, if f is periodic with period h, the integral of f over any interval of length h is a constant. Call this
constant k. If F is an antiderivative of f , then F can be expressed as the sum of a periodic and a linear
function. The linear part of F has slope k/h. Graphically, F is periodic with shift: the graph of F repeats
after a length of h, but is vertically shifted by k.
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Thus, there is a strong case to declare that the average value of f is k/h. Note that when f has a periodic
antiderivative, then its average value is 0. For instance, sin and cos have average value 0, as we can see from
the fact that they are symmetrically distributed above and below the x-axis.

On the other hand, the sin2 function has positive average value, and its antiderivative has a nontrivial
linear component. We’ll get back to this function in a short while.

For a periodic function f , it is not true that its mean value over every interval is k/h. However, any
deviation from k/h is due to periodic, or seasonal fluctuation. As far as secular trends go, the mean value
is k/h. In particular, if k 6= 0 (so that there is a nontrivial linear component) then, in the limit, as interval
length becomes large, the mean value approaches k/h, even if the interval length is not a multiple of h.
Intuitively, imagine that the period is 1, the average value on an interval of length 1 is k, and we take an
interval of length 29417.3. Of this length, if we just took a sub-interval of length 29417, we would get average
value k. The remaining interval length of 0.3 can upset things. But the integral on this remaining part will
be divided by an interval length of 29417.3, so the deviation it causes will be small. The limit of the average
value over an interval, as the interval length goes to ∞, is k/h.

5.3. The sin2 and cos2 functions.
A brief note on graphing and integrating the sin2 and cos2 functions. Although these functions can be

integrated by a method called integration by parts, we will for now use another approach: the double angle
formula. This states that:

sin2 x = (1− cos(2x))/2
cos2 x = (1 + cos(2x))/2

As a sanity check, note that if we add the right sides, we get 1, as we should.
We can now do graph transformations to plot sin2 x and cos2 x. Note that it is now pictorially clear, even

before we bother with actual integration, that both these functions have an average value of 1/2. This stands
to reason: the sum of sin2 x and cos2 x is 1, and they’re both the same graph shifted over, so on average,
1/2 should belong to sin2 x and the other 1/2 should belong to cos2 x.

We can also formally integrate these functions:

∫
sin2 x dx = (x/2)− (sin(2x))/4 + C∫
cos2 x dx = (x/2) + (sin(2x))/4 + C

We see that the linear part of the antiderivative has slope 1/2, as expected, and the periodic part has
periodicity π, again as expected, since sin2 and cos2 both have a periodicity of π.

Now, what the discussion about the mean value of periodic functions states is that, over a very long
interval, the average value of the sin2 function is almost 1/2, even if the length of the interval is not a
multiples of π.

These formulas for the average value of sin2 and cos2 appear in the context of waves. To calculate the
energy of a wave involves integrating the square of the wave function over an interval. Since the wave function
is of the form A sin(mx + ϕ), a slight generalization of the above calculations shows that the average energy
per unit length of the wave is A2/2. Similarly, if it is a time wave (so A sin(kt + ϕ)) then the average energy
per unit time is A2/2. Note that the value of m doesn’t affect this energy computation at all, because it is
the value of A that affects the average value. (Note: There are different concepts of wave energy, and they
usually do depend on the frequency, but the point here is that if the energy is simply defined as the integral
of the square of the wave function, then the average value does not depend on the frequency).
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6. Fun appendix: statistics application

We will not cover this in class, due to time considerations, but it is suggested you read through this while
attempting the advanced homework problems related to this material.

6.1. The Gini coefficient setup. Recall the setup that we had for the Gini coefficient. We arranged our
huge population in increasing order of income. Then, for x ∈ [0, 1], we defined f(x) as the fraction of the
income earned by the bottom x fraction of the population. With reasonable assumptions and using continuous
approximations, we obtained that f is continuous and increasing, f(0) = 0, f(1) = 1, and f(x) ≤ x for all
x ∈ [0, 1]. These were the observations that were necessary for doing the homework problems.

Another observation that was not necessary for doing the homework problems, but is nonetheless true, is
that about the significance of f ′. f ′(x) measures the fractional contribution of a person at level x (i.e., with
x fraction of the population earning less). More precisely, we have:

f ′(x) =
Income of person at level x

Mean income

The reason why we need to normalize by mean income is that we have normalized things to [0, 1]. Here
are some corollaries:

(1) f ′ is itself increasing, so f is concave up. In other words, people at a higher income level earn more.
(In a degenerate case, f ′ may be constant in an interval, and f linear on that interval. This is when
multiple people earn the same income. Unless otherwise stated, we’ll assume no degeneracy).

(2) There is a c such that f ′(c) = 1. This follows from the mean-value theorem. In other words, there
is a person who earns the mean income.

6.2. Positions of interest. What are all the positions x and values f(x) of interest? Here are some of
them:

(1) The value x such that the person at level x earns the mean income. Mathematically, this means that
f ′(x) = 1. Note that the existence of this value is guaranteed by the mean-value theorem while its
uniqueness is guaranteed by the fact that the function is concave up.

(2) The value 1/2. f ′(1/2) is the median income. f(1/2) is the fraction of total income earned by the
bottom half of the population.

(3) The break-even point, i.e., the value x such that f(x) = 1/2. This is the level x at which the bottom
fraction earns the same total income as the remaining top fraction. The break-even point is always
bigger than 1/2 because of the concave up nature of the function. The income earned at this point
(given by f ′(x)) may also be of interest. The existence of a break-even point is guaranteed by the
intermediate-value theorem and its uniqueness is guaranteed by the fact that f is increasing.

(4) The Pareto point, i.e., the value x such that f(x) = 1 − x. This is greater than 1/2, but less than
the break-even point. The income earned at this point may also be of interest. (You proved the
existence and uniqueness of this point in your homework).
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6.3. Mean versus median? Mode? Looking at the third derivative. Is the mean income greater
than the median income? Equivalently, is the value x for which f ′(x) = 1 greater than 1/2? There is no
clear-cut answer. It turns out that the answer depends on whether the distribution of incomes is skewed
more toward lower incomes or toward higher incomes.

A third statistical concept that comes up is that of the mode. Roughly speaking, the mode is the region
where there is maximum clustering of incomes.

We thus want mathematical tools that will help answer the questions: (a) how can we compare mean and
median? (b) how can we define mode in this situation?

The answer, interestingly, has something to do with the third derivative.

6.4. The first, second and third derivatives. You might remember that, when discussing how to graph
functions to understand them better, one useful technique we discussed was to graph the function as well
as its first and second derivative (and perhaps higher derivatives as well). Let us put this technique to use
here.

Note that the graph of f measures the cumulative income earned by certain fractions of the population.
This is good for some purposes, but for other purposes, we are interested in individual incomes. Though
the graph of f contains this information, it is hidden in that graph. To see the information on individual
incomes better, we consider the graph of f ′.

As discussed above, the first derivative of f , denoted f ′, is the ratio of the income of the person at level x
to the mean income. We know that f ′ is a continuous and increasing function on [0, 1]. We also know that
f ′(0) ≥ 0 and that there is some c ∈ (0, 1) such that f ′(c) = 1. Thus, f ′(0) ≤ 1 and f ′(1) ≥ 1. We cannot
say anything more conclusive.

Thus, f ′ is a continuous increasing function on [0, 1] with 0 ≤ f ′(0) ≤ 1 and f ′(1) ≥ 1. The fact that f ′

is increasing corresponds to the fact that f is concave up. The value f ′(1/2) is the median income, and the
point c where f ′(c) = 1 is the point where the mean income is attained. We can see that the graph of f ′,
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subject to the given constraints, could be of many kinds. In particular, the median may occur before the
mean or it may occur after the mean.

One advantage of drawing the graph of f ′ is that, compared to the graph of f , we can focus more in-depth
on the way f ′ increases. We see that f ′′ measures the rate at which income increases (relative to mean
income) as we move from the poorest to the richest. However, we also see that there are many unanswered
questions. Where is f ′ concave up and concave down? Where does it rise most quickly and where does it
rise most slowly? We see that the answers to these questions depend on f ′′′. In the regions where f ′′′ is
positive, f ′ is concave up, which means that the gain in income by moving to the right increases as we move
to the right. In the regions where f ′′′ is negative, f ′ is concave down, which means that the gain in income
by moving to the right decreases as we move to the right.

We see that if f ′′′ is positive throughout, that means that the relative gain in income for every slight
increase in position goes up as we go from poorer to richer people. This means that the growth of f ′ is
initially sluggish and picks up pace later. Such situations typically correspond to larger values of the mean.

On the other hand, if f ′′′ is negative, that means that the relative gain in income for every slight increase
in position goes down as we go from poorer to richer people. In other words, a small step up in the relative
ranking means more in income gain terms for poor people than the same small step means for rich people. In
this case, the growth of f ′ is sluggish for rich people and large for poor people. These situations correspond
to the mean occurring relatively early.

A final question of interest is about the modal income. What is the income range that most people have?
This corresponds to:

• The parts where the graph of f is closest to linear, i.e.,
• The parts where the graph of f ′ is closest to horizontal, i.e.,
• The parts where the graph of f ′′ attains its minimum values.
• (Probably) the parts where f ′′′ = 0 and f (4)) > 0.

In other words, the modal segment is the segment where people’s income is changing as little as possible
with x.

6.5. The peril of numbers. Before you entered the world of functions and calculus, the only type of
mathematical object you dealt with was a number. But once you entered the world of functions and
calculus, you saw yourself dealing regularly with mathematical objects that were more complicated than
mere numbers: for instance, sets of numbers, functions, collections of functions, points in the plane (which
are ordered pairs of numbers) and so on. Some of these objects are so complicated that it is not possible to
describe them using one or two or three numbers.

For instance, we saw that a partition of the interval [a, b] is given by an increasing finite sequence of
numbers starting at a and ending at b. Unfortunately, the finite sequence may be arbitrarily large. How
do we compare different partitions? We saw two ideas for comparing partitions: (a) The notion of finer
partition, whereby one refines the other. Unfortunately, given two partitions, it isn’t necessary that either
one be finer than the other. (b) The notion of the norm of a partition, which measures the size of the largest
part. We can use the norm to compare two partitions. Unfortunately, a partition with smaller norm may
not always behave like a smaller partition as far as the upper and lower sums of a particular function are
concerned, as you discovered in the midterm.

So, one powerful idea is to use single numbers that measure size for complicated objects and reflect some
underlying reality of those objects that is empirically useful. The drawback with that idea is that when we
look only at that single number, we lose a lot of information about the original object. We may not be able
to answer every question that comes up.

The distribution of incomes is another such complicated construct. It is described, as we saw, by this
function f : [0, 1] → [0, 1]. But a function cannot be described by a single number. So, instead we ask for
single numbers that we can obtain from the function that measure some empirically useful reality about the
function. One such number, which tries to measure the extent of inequality, is the Gini coefficient. But one
problem with the Gini coefficient is that it only measures total inequality, and is not sensitive to inequalities
within subpopulations. For instance, if everybody earns roughly the same income and a few people at the
top earn a much much larger income, the Gini coefficient is close to 1, even though in some sense there is
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not much inequality among most people. In other words, the Gini coefficient is sensitive to huge outliers in
the high-income direction.

That is why it is useful to have a number of different size measures that we can use, and to look at all of
them. For instance, the break-even point and Pareto point are useful single numbers that give some intuition
about the skew in the distribution of incomes. The median income or the level at which the mean is attained
are also useful numbers. When you learn statistics, you will learn many other single numbers that capture
useful information about aggregates and distributions. Keep in mind that for any single measure that you
choose, there will always be examples of distributions where that measure does not seem to capture what
you would like it to intuitively capture.

6.6. Averages and compositional effects. As some fun unwinding, here is a trick question. Suppose you
have two countries A and B. Is it possible that the mean income in both A and B goes down, but the mean
of no individual in either country goes down, and in fact, there are individuals whose mean income goes up?

Yes, it is possible. Suppose the mean income in country A is 100 money units and the mean income in
country B is 400 money units. Imagine that there is a person in country A earning an income of 200 money
units who chooses to migrate to country B and gets her income boosted to 300 money units. Assume that
nobody else migrates, and nobody else’s income changes.

The mean income of country A has gone down, because a person earning above the mean left the country.
The mean income of country B has also goes down, because it just took in a person earning less than the
mean income. The net effect is that both countries see a decline in their mean, but no individual is worse
off – and at least one individual is better off! This is just one reason why group averages and aggregates are
not always reflective of individuals. What we have described here is an example of a compositional effect
– changes in group compositions affecting averages that reflect the opposite of what is happening at the
individual level.

Of course, the group averages might still be useful in their own right, but the statistical error would be to
deduce things about individuals using group averages without taking into account compositional effects and
the fluidity of group boundaries.

Here are some other examples of the same phenomenon:
(1) Inter-sectoral migration: In rapidly industrializing nations such as China, agricultural productivity

and industrial productivity are both rising about 5% per year. Yet, overall productivity is rising
by something like 8% How is this happening? This is because the industrial sector is much more
productive than the agricultural sector. As agricultural productivity increases, less people are needed
in agriculture, and so people move from the (comparatively less productive) agricultural sector to
the (comparatively more productive) industrial sector. This shifting of people from a less productive
to a more productive sector itself causes an increase in productivity independent of the increase in
productivity within each sector. Here, agriculture plays the role of the poorer nation A and industry
plays the role of the richer nation B.

(2) Inter-level migration in calculus: Imagine that one of you, who is doing badly in the 150s, drops down
to the 130s, which are a cakewalk for you. Then, the average mathematical skill of the 150s students
increases, the average mathematical skill of the 130s student increases, yet there may probably be a
net decrease in the overall average mathematical skill of the population, if your mathematical skills
decline after you’re no longer subjected to the rigors of the 150s.
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AREA COMPUTATIONS USING INTEGRATION

MATH 152, SECTION 55 (VIPUL NAIK)

Corresponding material in the book: Section 5.5, 6.1.
Difficulty level: Moderate. The basic computational ideas are of easy to moderate difficulty, but some

of the slicing ideas at the end are somewhat hard.
What students should definitely get: The application of integral to computing areas. The idea of

slicing and integration of slice lengths.

Executive summary

Words ...
(1) We can use integration to determine the area of the region between the graph of a function f and

the x-axis from x = a to x = b: this integral is
∫ b

a
f(x) dx. The integral measures the signed area:

parts where f ≥ 0 make positive contributions and parts where f ≤ 0 make negative contributions.
The magnitude-only area is given as

∫ b

a
|f(x)| dx. The best way of calculating this is to split [a, b]

into sub-intervals such that f has constant sign on each sub-interval, and add up the areas on each
sub-interval.

(2) Given two functions f and g, we can measure the area between f and g between x = a and x = b as∫ b

a
|f(x)− g(x)| dx. For practical purposes, we divide into sub-intervals so that on each sub-interval

one function is bigger than the other. We then use integration to find the magnitude of the area on
each sub-interval and add up. If f and g are both continuous, the points where the functions cross
each other are points where f = g.

(3) Sometimes, we may want to compute areas against the y-axis. The typical strategy for doing this is
to interchange the roles of x and y in the above discussion. In particular, we try to express x as a
function of y.

(4) An alternative strategy for computing areas against the y-axis is to use formulas for computing areas
against the x-axis, and then compute differences of regions.

(5) A general approach for thinking of integration is in terms of slicing and integration. Here, integration
along the x-axis is based on the following idea: divide the region into vertical slices, and then integrate
the lengths of these slices along the horizontal dimension. Regions for which this works best are the
regions called Type I regions. These are the regions for which the intersection with any vertical line
is either empty or a point or a line segment, hence it has a well-defined length.

(6) Correspondingly, integration along the y-axis is based on dividing the region into horizontal slices,
and integrating the lengths of these slices along the vertical dimension. Regions for which this works
best are the regions called Type II regions. These are the regions for which the intersection with any
horizontal line is either empty or a point or a line segment, hence it has a well-defined length.

(7) Generalizing from both of these, we see that our general strategy is to choose two perpendicular
directions in the plane, one being the direction of our slices and the other being the direction of
integration.

Actions ...
(1) In some situations we are directly given functions and/or curves and are asked to find areas. In

others, we are given real-world situations where we need to find areas of regions. Here, we have to
find functions and set up the integration problem as an intermediate step.

(2) In all these situations, it is important to draw the graphs in a reasonably correct way. This brings
us to all the ideas that are contained in graph drawing. Remember, here we may be interested in
simultaneously graphing more than one function. Thus, in addition to being careful about each
function, we should also correctly estimate where one function is bigger than the other, and find
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(approximately or exactly) the intersection points. (Go over the notes on graph-drawing, and some
additional notes on graphing that weren’t completely covered in class).

(3) In some situations, we are asked to find the area(s) of region(s) bounded by the graphs of one, two,
three, or more functions. Here, we first need to sketch the figure. Then, we need to find the interval
of integration, and if necessary, split this interval into sub-intervals, such that on each sub-interval,
we know exactly what integral we need to do. For instance, consider the region between the graphs
of sin, cos, and the x-axis. Basically, the idea is to find, for all the vertical slices, the upper and
lower limits of the slice.

1. Integral and area: against the x-axis

1.1. Definite integral as the signed area between the graph and the x-axis. Suppose f is a contin-
uous function on a closed interval [a, b]. The graph of f forms a curve in the plane R2. Consider the signed
area between this curve and the x-axis. This is the area of the region bounded by the graph, the x-axis, and
the vertical lines x = a and x = b.

The basic result of integration is that this area equals the definite integral∫ b

a

f(x) dx

If f(x) ≥ 0 for all x ∈ [a, b], i.e., if the graph is entirely in the upper half-plane (possibly hitting the
boundary x-axis), then this integral is nonnegative, and its value is the magnitude of the area. If f(x) ≤ 0
for all x ∈ [a, b], i.e., if the graph is entirely in the lower half-plane (possibly hitting the boundary x-axis),
then this integral is zero or negative, and its value is the negative of the magnitude of the area. If the function
has parts where it is positive and parts where it is negative, then the parts where it is positive make positive
contributions and the parts where it is negative make negative contributions.

For instance, consider the function f(x) := 1− x2. We want to find the area between the x-axis and the
graph of the part of this function that is above the x-axis.
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First, note that the graph is above the x-axis on (−1, 1). Thus, in order to find the area, we need to
perform the integration:

∫ 1

−1

(1− x2) dx

We can do this integration by finding an antiderivative and evaluating it between limits. We take x−x3/3
as the antiderivative. Evaluating it between limits gives the value 4/3. Thus, the area of the region we are
interested in is 4/3.

1.2. Measuring unsigned area.
Suppose we want to measure the total area between the graph of the sine curve and the x-axis over one

period, say [0, 2π]. In other words, we want to compute the integral

∫ 2π

0

sinx dx

We know that − cos, which is an antiderivative for sin, also has a period of 2π. Hence, its value between
limits is zero, so the above integral is zero. Thus, the total signed area between the graph of the sine curve
and the x-axis is zero. This makes sense graphically. The positive area between the sine curve and the
x-axis on the interval [0, π] is canceled by a negative area of equal magnitude between the x-axis and the
sine curve on the interval [π, 2π]. Why are the two areas the same? There are plenty of ways of seeing this
geometrically. For instance, we have sin(π + θ) = − sin θ for all angles θ.

Suppose now that, instead of measuring the signed area, we are interested in measuring the unsigned area.
The unsigned area between the graph of a function f and the x-axis on an interval [a, b] is given by

∫ b

a

|f(x)| dx

Equivalently, we break the interval [a, b] into subintervals such that f ≥ 0 or f ≤ 0 on each subinterval.
Then we calculate the magnitude of the integral on each subinterval and add these magnitudes.

In the case of the sine function, we can partition [0, 2π] at π, to get the subintervals [0, π] and [π, 2π]. On
[0, π], the integral is [− cos x]π0 , which simplifies to 2. On [π, 2π], the integral is −2, and its magnitude is 2.
The total magnitude of the integral is thus 2 + 2, and we know that 2 + 2 = 4. Hence, the unsigned area
between the graph of sin and the x-axis on [0, 2π] is 4.
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1.3. Area between two graphs.
Suppose f and g are two continuous functions. To measure the signed area between the graphs of f and

g between the points a and b, we compute the integral

∫ b

a

[f(x)− g(x)] dx

Here, the subintervals where f is bigger than g make positive contributions and the subintervals where g
is bigger than f make negative contributions. If we are interested in the unsigned area, whereby we want
positive contributions regardless of which function is bigger, we consider the integral

∫ b

a

|f(x)− g(x)| dx

To compute this, we break up the interval [a, b] into subintervals based on whether f or g is smaller (the
overtaking can happen at points where f(x) = g(x)). We then compute the integral of f − g (or g − f ,
depending on which is bigger) on each subinterval and add up the magnitudes.

For instance, consider the unsigned area between the graphs of f(x) = 2x/π and g(x) = sinx on the
interval [−π/2, π/2]. We see that f(x) = g(x) at −π/2, 0, π/2. On (−π/2, 0), f(x) > g(x), and on (0, π/2),
g(x) > f(x). Thus, the integral is:

∫ 0

−π/2

(2x/π − sinx) dx +
∫ π/2

0

(sinx− 2x/π) dx
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We can calculate and simplify both these integrals. Note that instead of computing indefinite integrals
for both separately, we can note that the two functions are negatives of each other, so if we compute an
antiderivative for the first, the antiderivative for the second is its negative. We get:

[x2/π + cos x]0−π/2 + [− cos x− x2/π]π/2
0

Both parts are 1 − π/4, and we thus get 2 − π/2. Since π is approximately 3.14, this is approximately
0.43.

Why are the two integrals the same? This can be seen geometrically from the fact that both f and g are
odd, so the picture from −π/2 to 0 is the same as the picture from 0 to π/2, subjected to a half-turn about
the origin. Thus, the magnitude of the two areas is the same.

1.4. Areas bounded by graphs of different functions.
Sometimes, the bounding curves for an area come from different functions. In this case, it makes sense

to split up the interval of integration into subintervals so that we are dealing with only one function in each
subinterval. For instance, consider computing the area of the region between the x-axis and the graphs of
sin and cos on the interval [0, π/2]. On the interval [0, π/4], this is the definite integral of the sin function,
and on the interval [π/4, π/2], this is the definite integral of the cos function. The total area is the sum of
the values of these two definite integrals.

As we can see, both integrals are 1− 1/
√

2, and the total integral is 2−
√

2, which is approximately 0.59.
Why are the two integrals the same? We can see graphically that the two areas being measured are mirror

images of each other about the line x = π/4. This is because for any angle θ, cos(π/2− θ) = sin θ.
For the second midterm, you are responsible only for the material till this point.

2. Area computations as slicing, and other methods

This way of thinking about area computations will turn out to be useful for the subsequent topic, which
is volume computations. It also makes it possible to compute areas of shapes oriented somewhat differently
from before.

2.1. Vertical slicing. So far, the situations where we’ve been computing areas are: area between the graph
of a function and the x-axis, area bounded between graph of a function, the x-axis, and two vertical lines,
area between the graphs of two functions, area bounded by the graphs of two functions and two vertical
lines.

In all these situations, the region Ω whose area we need to compute has the property that the intersection
of Ω with any vertical line is either empty or a line segment. Regions of this kind are sometimes called Type
I regions. For Type I regions, the general formula for the unsigned area is:
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∫
(Length of the line segment as a function of x) dx

This process can be thought of as vertical slicing. We are dividing the area that we want to measure into
vertical slices, and then integrating the length along the perpendicular axis (which is horizontal).

2.2. Horizontal slicing. Horizontal slicing is a lot like vertical slicing, but works for regions where the role
of vertical and horizontal is replaced.

Horizontal slicing works for regions Ω which have the property: the intersection of Ω with any horizontal
line is either empty or a line segment. Regions of this type are sometimes called Type II regions. The
formula for the area of a Type II region is

∫
(Length of the line segment as a function of y) dy

This process can be thought of as horizontal slicing. We are dividing the area that we want to measure
into horizontal slices, and the integrating the length along the perpendicular axis (which is vertical).

Thus, we have seen two processes of breaking up an area into slices: vertical slicing (where we integrate
the lengths along a horizontal axis) and horizontal slicing (where we integrate the lengths along a vertical
axis).

Notice that both these procedures are variants of the same basic procedure: choose two mutually perpen-
dicular directions, such that all lines in one direction have intersection with the region that is either empty
or a line segment. Then, integrate the length of the line segment along the perpendicular direction.

Note also that the extreme case of both these occurs in rectangles. Here, whether we use horizontal or
vertical slicing, we are integrating a constant function.

2.3. Regions whose area can be computed by integration in multiple ways. Consider the region
bounded by the line y = 4, y = x2, and the y-axis. This is both a Type I and a Type II region, so we can
determine its area by vertical slicing as well as by horizontal slicing. Let’s first compute the area by vertical
slicing.
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By vertical slicing, the interval is [0, 2], and the lower and upper functions are x2 and 4 respectively. Thus,
the length of the line segment in each vertical slice is 4− x2. The area is thus:

∫ 2

0

(4− x2) dx = [4x− (x3/3)]20 = 8− 8/3 = 16/3
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We could also integrate using horizontal slicing. For this, we express x in terms of y. We get x =
√

y,
with y ∈ [0, 4]. Measuring the area between this and the y-axis, we get:∫ 4

0

√
y dy = [y3/2/(3/2)]40 = 8/(3/2) = 16/3

When we later introduce the concept of inverse function, we will notice that what we’ve just done is
moved from integrating one function to integrating its inverse function. We’ll also see a relationship between
this and integration by parts next quarter.

3. Areas of regions given by inequalities

Suppose a region of the plane is defined by a set of inequalities. In other words, the region is defined as
the set of all points in the plane that satisfy a given system of inequalities. How do we find its area?

The first step is to identify the bounding lines/curves for this region. The bounding lines are typically
the lines given by the case where equality holds instead of inequality. Once we have found these boundary
curves, we can then try to use horizontal or vertical slicing to determine the area. In some cases, it makes
sense to divide the region into sub-regions so that it is easy to tackle each sub-region separately by slicing.

Another complication is that the boundary curves may not be graphs of functions. Often, they may be
graphs of relations, i.e., the set of points (x, y) satisfying F (x, y) = 0 for some two-variable function F . In
these cases, we try to break it up into functions. We consider some examples.

3.1. The example of the circular disk. Consider the region 1 ≤ x2 + y2 ≤ 2. In other words, we are
looking at the set of points (x, y) such that x2 + y2 ∈ [1, 2]. We easily see graphically that this region is
bounded on the inside by the circle x2 + y2 = 1 and on the outside by x2 + y2 = 2. The region is called a
circular annulus. To find the area of the annulus, we thus need to subtract the area of the disk x2 + y2 ≤ 1
from the area of the disk x2 + y2 ≤ 2.

Now, it so happens that we know formulas for the areas of these disks: they are π and 2π respectively, so
the difference of areas is 2π−π = π. If we did not know these formulas, we would need to break up the circle
into graphs of functions ±

√
r2 − x2. Unfortunately, integrating these functions requires a trigonometric

substitutions, so illustrating this idea would take us too far afield.
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VOLUME COMPUTATIONS USING INTEGRALS

MATH 152, SECTION 55 (VIPUL NAIK)

Corresponding material in the book: Section 6.2, 6.3.
Difficulty level: Hard (degree of hardness depends on your visuo-spatial skills and prior exposure to

these ideas).
What students should definitely get: The basic constructive ideas for volume: cylinders with constant

and varying cross section, surfaces of revolution (disks and washers). The formula and mechanics for the
shell method.

Note: I haven’t included pictures, since these are hard to draw. I suggest that you look at pictures in the
book, which are pretty well done, and of course, pay attention in class.

Executive summary

Words ...
(1) The cross section method for computing volume is an analogue of the two-dimensional area com-

putation method: our slices are replaced by cross sections by planes parallel to a fixed plane, and
the line of integration is a line perpendicular to the planes. One-dimensional slices are replaced by
two-dimensional cross sections.

(2) Suppose Ω is a region in the plane. We can construct a right cylinder with base Ω and height h.
This is obtained by translating Ω in a direction perpendicular to its plane by a length of h. The
cross section of this right cylinder along any plane parallel to the original plane looks like Ω if that
plane is within range. The volume is the product of the area of Ω and the height h. This is also
called the right cylinder with constant cross section Ω.

(3) We can also construct an oblique cylinder. Here, the direction of translation is not perpendicular to
the original plane. The total volume is the product of the area of Ω and the height perpendicular to
Ω. Oblique cylinders are to right cylinders what parallelograms are to rectangles.

(4) More generally, the volume of a solid can be computed using the cross section method. Here, we
choose a direction. We measure areas of cross sections along planes perpendicular to that direction,
and integrate these areas along that direction.

(5) This general approach has another special case that is perhaps as important as right cylinders. These
are the cones (there are right cones and oblique cones). A cone is obtained by taking a region in
a plane and connecting all points in it to a point outside the plane. It is a right cone if that point
is directly above the center of the region. The volume of a cone is 1/3 times the product of the
base area and the height, i.e., the perpendicular distance from the outside point to the plane. In
particular, a cone has one-third the volume of a cylinder of the same base and height.

(6) A solid of revolution is a solid obtained by revolving a region in a plane about a line (called the
axis of revolution). The volume of a solid of revolution can be computed by choosing the axis as the
axis of integration and using the planes of cross section as planes perpendicular to it. These cross
sections are either circular disks or annuli.

(7) The disk method is a special case of the above, where the region between revolved is supported on the
axis of revolution. For instance, consider the region between the x-axis, the graph of a function f ,
and the lines x = a and x = b. The volume of the corresponding solid of revolution is π

∫ b

a
[f(x)]2 dx.

This is because the radius of the cross section disk at x = x0 is |f(x0)|.
(8) The washer method is the more general case where the region need not adhere to the axis of revolution.

For instance, consider two nonnegative functions f, g and suppose 0 ≤ g ≤ f . Consider the region
bounded by the graphs of these two functions and the lines x = a and x = b. The volume of the
corresponding solid of revolution is π

∫ b

a
([f(x)]2 − [g(x)]2) dx. Note that in the more general case
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where the functions cross each other, we may need to split into sub-intervals so that we can apply
the washer method on each sub-interval.

(9) The shell method works for situations where we revolve about the y-axis the region made between
the graph of a function and the x-axis. The formula here is 2π

∫ b

a
xf(x) dx for f nonnegative and 0 <

a < b. If f could be positive or negative, we use 2π
∫ b

a
x|f(x)| dx.. More generally, if we are looking

at the region between the graphs of f and g (vertically) with g ≤ f , we get 2π
∫ b

a
x[f(x)− g(x)] dx.

If we don’t know which one is bigger where, we use 2π
∫ b

a
x|f(x)− g(x)| dx.

Actions ...
(1) To compute the volume using cross sections, we first need to set things up so that we know the cross

section areas as a function of the position of the plane. For this, it is usually necessary to use either
coordinate geometry or basic trigonometry, or a combination.

(2) A solid occurs as a solid of revolution if it has complete rotational symmetry about some axis. In
that case, that axis is the axis of revolution and the original region that we need is obtained by
taking a cross section in any plane containing the axis of revolution and looking at the part of that
cross section that is on one side of the axis of revolution.

(3) For solids of revolution, be particularly wary if the original figure being revolved has parts on both
sides of the axis of revolution. If it is symmetric about the axis of revolution, delete one side.

(4) Be careful about the situations where you have to be sign-sensitive and the situations where you
do not. In the disk method sensitivity to signs is not important. In the washer method and shell
method, it is.

(5) The farther the shape being revolved is from the axis, the greater the volume of the solid of revolution.
(6) The average value point of view is sometimes useful for understanding such situations.

1. Motivation: from area to volume

1.1. What are we trying to do? Our purpose right now is to find formulas for the volumes of various
three-dimensional figures. This is a little like our attempts at finding areas of regions, which we successfully
did, at least for some regions. Wait, what?

The process that we are going through is something whose broad outlines should be familiar to you. Think
back, for instance, to how we dealt with differentiation. We first computed formulas for the derivatives of
a few functions. Then, we considered all the ways that new functions can be created from old functions.
Finally, we found formulas that tackled each way of creating a new function from an old function. Combined
with the knowledge of how to differentiate the basic functions, this allowed us to differentiate any function
given to us using a simple set of rules.

Similarly, when trying to figure out general strategies for finding limits, we started out by computing a
few basic limits, and looking at rules for computing limits of functions created from simpler functions.

We did a similar thing for integration: we learned rules for finding antiderivatives for some basic functions,
and then we learned various processes of combination (something we’re not quite done with yet). The overall
strategy is:

(1) Find out how to deal with basic situations.
(2) Identify the typical ways that basic situations are combined to create more complicated situations.
(3) For each such process of combining basic situations into more complicated situations, identify a way

of reducing the problem for the complicated situation in terms of the basic situations.
We shall consider how to deal with volumes. Our main difficulty in calculating volumes is with step (2)

– we don’t have an understanding of the systemic processes whereby new three-dimensional figures can be
created. Once we do, we can try to find a volume formula for each such process, and use these formulas to
calculate the areas of a number of figures.

1.2. A recapitulation of how we handled area computations. We have so far dealt with two kinds
of area computations. The first is computing areas against the x-axis. Here, we are measuring the area
bounded between a curve and the x-axis, or the area between two curves and two vertical lines.

Let us reflect more carefully on how we can characterize these situations geometrically. In all these
situations, the region Ω that we have has the property that the intersection of Ω with any vertical line is
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either empty or a line segment. Regions of this kind are sometimes called Type I regions. For Type I regions,
the general formula for the unsigned area is:∫

(Length of the line segment as a function of x) dx

This process can be thought of as vertical slicing. We are dividing the area that we want to measure into
vertical slices, and then integrating the length along the perpendicular axis (which is horizontal).

The other procedure that we saw for integration is integration against the y-axis. This kind of integration
works for regions Ω which have the property: the intersection of Ω with any horizontal line is either empty
or a line segment. Regions of this type are sometimes called Type II regions. The formula for the area of a
Type II region is ∫

(Length of the line segment as a function of y) dy

This process can be thought of as horizontal slicing. We are dividing the area that we want to measure
into horizontal slices, and the integrating the length along the perpendicular axis (which is vertical).

Thus, we have seen two processes of breaking up an area into slices: vertical slicing (where we integrate
the lengths along a horizontal axis) and horizontal slicing (where we integrate the lengths along a vertical
axis).

Notice that both these procedures are variants of the same basic procedure: choose two mutually perpen-
dicular directions, such that all lines in one direction have intersection with the region that is either empty
or a line segment. Then, integrate the length of the line segment along the perpendicular direction.

Note also that the extreme case of both these occurs in rectangles. Here, whether we use horizontal or
vertical slicing, we are integrating a constant function.

1.3. How does this general idea carry over to three dimensions? 1 + 1 = 2, but 1 + 1 6= 3. So, the
idea of choosing two mutually perpendicular directions, one for the slices and the other as the direction of
integration, does not work directly for computing volumes. However, it is true that 2 +1 = 3. This suggests
a slightly different strategy to measure the volume of a three-dimensional region Ω: choose a plane π and a
line ` perpendicular to π. Now, measure the areas of the intersection of Ω with regions perpendicular to π,
and integrate this area along `.

In other words, the slices are two-dimensional and parallel to each other, and the direction of the line
along which we integrate is perpendicular to those planes.1

In the forthcoming section, we look at some systemic processes for creating three-dimensional structures
and for slicing them suitably.

Sidenote: Distinction between a disk and a circle. Henceforth, when I refer to a circle, I refer to the
boundary, i.e., the set of points whose distance from the center equals the radius. When I want to talk of the
circle along with the interior region, I will use the term circular disk, or, more briefly, disk. When I want to
simply look at the interior and exclude the boundary, I will use the term interior of the disk or open disk.

I will, however, switch between a circle and its disk easily, hence when I talk about the center, radius, or
diameter of a disk, I am referring to those notions for its boundary circle.

2. Creating three-dimensional structures

2.1. The general concept of a right cylinder. What you may have been told is a cylinder is more
appropriately termed a right circular cylinder. The adjectival qualifier circular indicates that the base is a
circle (more precisely, the boundary is a circle and the base is a circular disk). The term right cylinder, in
general, means something like a right circular cylinder except that the base need not be circular.

Basically, we take a region Ω in the plane with boundary Λ and then translate Ω along a direction
perpendicular to the plane for a fixed length. That fixed length is called the height of the right cylinder.
This gives the (solid) right cylinder with cross section Ω. The curved surface of the cylinder is the boundary

1The reason why we are forced to use 2 + 1 = 3 rather than 1 + 2 = 3 is because the only kind of integration that we have
explicitly dealt with is integration in one variable, i.e., along a line.
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of this, which is obtained by translating Λ in a direction perpendicular to the plane of Ω. The two caps are
the two copies of Ω located at the two ends.

The term cross section here refers to the fact that if we take any plane parallel to the plane of Ω, its
intersection with the right cylinder is a copy of Ω if the plane is located in the relevant region; otherwise it
is empty.

You may have heard the term cross section arising in different contexts. It basically means the intersection
with a given plane. For instance, in biology, when studying things ranging from tree trunks to micro-
organisms and cells, we take cross-sections in various directions.

The right cylinder has a constant cross section. In this sense, it is similar to a rectangle in two dimensions,
which has constant cross sections.

The volume of a right cylinder is given by:

Volume of right cylinder = Area of cross section×Height
Some particular cases of interest:

• When the base cross section is a circular disk, we get a right circular cylinder.
• When the base cross section is a polygon, we get what is often called a prism. In particular, when

the base is a rectangle, we get a rectangular prism.

2.2. Oblique cylinders. A slight variant on right cylinder is oblique cylinder. Oblique cylinders are to
parallelograms what right cylinders are to rectangles. Here is the construction of an oblique cylinder.

Start with a region Ω in a plane π. Now, choose a direction in space that is not parallel to the plane π.
Translate Ω by a length l along this direction. The region traced this way is termed an oblique cylinder.

The volume of an oblique cylinder is given by:

Volume of oblique cylinder = Area of cross section×Height perpendicular to cross section
Equivalently:

Volume of oblique cylinder = Area of cross section× Length l × sin θ

where θ is the angle between the plane π and the direction of translation. In particular, when θ = π/2,
we get a right cylinder.

If we consider cross sections of oblique cylinder parallel to π, each of these cross sections looks like Ω.
However, unlike the right cylinder case, the location of the Ω in the cross section plane keeps changing.

2.3. More oblique than oblique. In fact, it is possible to get eve nmore oblique than oblique – we translate
a shape in a plane along a direction other than the plane, but we keep changing the direction. Thus, each
cross section still has the same shape, but its location changes rather unpredictable. We’ll see some such
situations in a homework/quiz/test.

2.4. Variable cross sections. We next consider a situation where the cross sections are variable. This
is no longer a right cylinder, but we can use the idea mentioned a little while ago – integrating the area
function. Earlier, we multiplied a constant with the height over which that constant was valid. Now, we
integrate a variable function over an interval. Remember, integration is like multiplication where the thing
you’re trying to multiply keeps changing. The important thing is that the area of each cross section should
be something we know how to measure. The general formula is:

Volume =
∫

(Area of cross section perpendicular to x) dx

2.5. Cones. One case of particular importance, where it is useful to remember a general approach as well
as the specific answer, is that of the cone. A cone is defined as follows. Suppose Ω is a region in a plane π
and P is a pont not in π. The cone corresponding to Ω and P is the union of all the line segments joining
P to points in Ω.

Some examples of cones are:
(1) A tetrahedron is a cone where the base is a triangular region.
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(2) A right circular cone is a cone where the base is a circular disk.
(3) A pyramid is a cone where the base is some polygon.

When we set up the cross section integration for the cone, we see that the shape of any cross section
parallel to π is the same as that of Ω, but the size is different. We can use similar triangles to determine the
size. If we define:

α =
Distance from P to cross section

Distance from P to π
Then the linear measurements for the cross section are α times the corresponding linear measurements

for Ω. Since area is two-dimensional, the area of the cross section is α2 times the area of Ω. We now get
that the overall volume is: ∫ h

0

(x/h)2Ar(Ω) dx

Plugging in x = αh, we get: ∫ 1

0

α2Ar(Ω)h dα

We pull out the constants, and get:

Ar(Ω)h
∫ 1

0

α2 dα

The integral now gives 1/3, and we thus get:

Volume of cone =
1
3
Area of base region×Height

Now you understand why you have that 1/3 in the formula for the volume of a cone: (1/3)(πr2)(h).
But not completely. Why 1/3? Well, let’s think back to the two-dimensional analogue of this. What’s a

two-dimensional analogue of a cone? It’s just a triangular region. The analogue of the two-dimensional base
is a one-dimensional line segment. And we remember that:

Area of triangle =
1
2
Length of base line segment×Height

So why do we get 1/2 in the two-dimensional case and 1/3 in the three-dimensional case? Well, you might
guess that we basically get 1/n in the n-dimensional case. And then you go back and look at the proof, and
see that it essentially works this way: ∫ 1

0

αn−1 dα = [αn/n]10 = 1/n

3. Solids of revolution: the disk and washer method

3.1. Definition of solid of revolution. There is another procedure for constructing three-dimensional
figures. Three-dimensional figures constructed this way are called solids of revolution. This is obtained as
follows: we start with a region Ω and a line `. Next, we rotate Ω about the line ` in three dimensions. The
region obtained in this way is termed the solid of revolution of Ω.

For simplicity, we will assume that Ω lies completely to one side of `. We study such surfaces in two steps.
First, we study the special case where one boundary of Ω is along `. After that, we study the case where all
of Ω could lie on one side of `. The method for the first case is termed the disk method and the method for
the second case is termed the washer method.

Aside: The surface of a solid of revolution includes two capping disks. The remaining part of this surface
is the curved surface, and this is often called a surface of revolution. Surfaces of revolution turn out to be
very important in a variety of natural processes.
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3.2. Disk method. Consider the area bounded by the graph of the function y = f(x) and the x-axis
between x = a and x = b (with a < b). Assume, for now, that the graph of f lies completely on the positive
side of the x-axis. So, the picture looks something like Figure 6.2.8 (left) of the book. Revolving this about
the x-axis gives a solid of revolution as shown in fiure 6.2.8 (right) of the book.

We now consider how to apply the method of parallel cross sections to this volume computation. We
consider the axis as the x-axis and the cross sections are thus in the yz-plane. In particular, we see by our
construction that all the cross-sections are disks and the disk for a cross section at x = x0 has radius f(x0)
and area π(f(x0))2. The area is thus: ∫ b

a

π(f(x))2 dx

We can pull the π out of the integral if we want. This is the general formula for calculating the area.
It turns out that the formula is also valid for a function that crosses the x-axis. In this case, the parts

abover the x-axis and the parts below the x-axis are out of phase by π as we revolve them. However, the
overall analysis remains the same, with the radius being |f(x0)| instead of f(x0). Since we are squaring it
anyway, the final answer remains the same.

Here are some particular cases of solids of revolution whose volume can be computed using the disk
method:

(1) The right circular cylinder with radius r and height h can be realized as the solid of revolution for
the region between the x-axis and the graph of a constant function with value r (bounded by vertical
lines) over an interval of length h. The region being rotated is thus a rectangle with dimensions r,
h, and h is the fixed side.

(2) The right circular cone with radius r and height h can be realized as the solid of revolution for the
region between the x-axis and the graph of the function y = rx/h on the interval [0, h] (bounded by
a vertical line at x = h). The region being rotated is thus a right triangle with legs r and h and h
is the fixed side.

We can verify that we get the same answer as usual when we apply the disk method.

3.3. Solids of revolution: the washer method. What if the region being rotated is completely on one
side of the axis of rotation? For instance, imagine a disk far away from the x-axis being revolved about the
x-axis. The corresponding solid is sometimes called a filled torus or solid torus (the boundary of this, which
is a surface obtained by revolving the boundary circle, is usually simply called a torus).

The washer method is a method that allows us to compute the areas of such solids. Again, the idea is to
use parallel cross sections. In this case, the cross sections are not disks, but regions called annuli. Given a
point P and two concentric circles centered at P (in the same plane) with radii r < R, the annulus for these
two radii is the set of points in the bigger disk that are not there in the interior of the smaller disk. Thus,
it is the region between the circles of radii r and R, along with the two boundary circles.

The area of such an annulus is given by π(R2 − r2).
The upshot of this is that the volume of the solid of revolution obtained by revolving the region between

y = g(x) and y = f(x), with 0 ≤ g(x) ≤ f(x), on [a, b], is:∫ b

a

π[(f(x))2 − (g(x))2] dx

If the two functions cross each other, then if we are interested in the unsigned volume, we need to split into
intervals based on which one is bigger where, calculate the volumes of the solids of revolution corresponding
to each interval, and add up. In other words, we need to compute:∫ b

a

π|(f(x))2 − (g(x))2| dx

3.4. Solids of revolution: the tale of the receding axis. The first thing worth noticing about the
volumes of solids of revolution is that the volume is not determined by the area of th region being rotated.
It also depends on the choice of axis. As a general rule, the farther the axis from the region being rotated,
the bigger the volume.
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To understand this, consider the question: given a fixed number h > 0, what can we say about the area
of the annulus of thickness h, i.e., where the outer radius is h more than the inner radius? For fixed h, this
number increases as we increase the two radii. This is because the area is π[(r +h)2− r2] = π(2r +h)h. The
2r + h term increases as r increases.

To give you some intuition about this, here is something that might strike you as visually counterintuitive:
the area of the annulus with inner radius 4 and outer radius 5 equals the area of the disk of radius 3 (since
52 − 42 = 32) even though the former has a much smaller thickness. The smaller thickness is compensated
for (roughly) by the larger circumference.

The calculations that we did for the annulus show that as we move our axis farther and farther from Ω,
the solid of revolution becomes larger and larger in volume. Remember: to calculate the volume of the solid
of revolution, we create slices perpendicular to the axis of revolution, but we are not integrating the length
of these slices; we are integrating the differences of squares of the endpoints of the slices. And this difference
of squares increases as both numbers get bigger, even when the actual difference between them is constant.

3.5. Solids of revolution: when the axis straddles the region. So far, we have considered a situation
where the region being revolved is completely on one side of the axis of revolution.

In the case that the region being revolved is partly on one side and partly on the other side of the solid
of revolution, we must keep the following things in mind:

(1) If the region has mirror symmetry about the axis of revolution, then we can simply delete the half
of the region on one side and consider the solid of revolution for the other half.

(2) Otherwise, in general, we must fold the region being rotated along the axis, i.e., reflect all the stuff
on one side to the other, while keeping the stuff on the other side unchanged. Note that in the case
of mirror symmetry, the reflected material overlaps with the original material. In some cases, such
as the graph of a function about the x-axis, the reflected portion has no area of overlap with the
stuff already there. In yet other cases, part of the reflected region overlaps, and the rest doesn’t.

4. The shell method

4.1. Formula. The shell method applies to situations where we revolve about the y-axis the region made
between a graph y = f(x) and the x-axis. As before, we work with a nonnegative continuous function f on
a closed interval [a, b] with 0 < a < b. Consider the region bounded by the graph of f , the x-axis, and the
vertical lines x = a and x = b. Now, consider the solid of revolution obtained by revolving this region about
the y-axis. The volume of this solid of revolution is given by the formula∫ b

a

2πxf(x) dx = 2π

∫ b

a

xf(x) dx

In the case that the function is not nonnegative throughout, we can use the more general formula:∫ b

a

2πx|f(x)| dx

The best way of doing this is to partition the interval according to the sign of f .

4.2. Slight generalization of this formula. Consider now a slightly more general situation: we are
looking at the region between the graphs of the functions f and g between x = a and x = b. We consider
the solid of revolution obtained by revolving this region about the y-axis. If g ≤ f on [a, b], then the volume
is given by: ∫ b

a

2πx[f(x)− g(x)] dx = 2π

∫ b

a

x[f(x)− g(x)] dx

(Note: We don’t need any conditions on the nonnegativity of f and g here).
If f and g cross each other, we can use the general formula:∫ b

a

2πx|f(x)− g(x)| dx

7



This is best handled by partitioning the interval according to where f is greater and where g is greater.

5. Average value point of view

5.1. Overview. For the various approaches we have seen so far for volume computation, there is an average
value point of view. This can be thought of as a process whereby we compare our actual imperfect solid to a
more perfect solid which is more uniform, and where the volume is given as a simple product. Let’s illustrate
this by beginning with our interpretation of volume as the integral of a variable cross section area.

Here, our ideal figure is a right cylinder, where the cross section area does not change for the cross sections
(more generally, this is also true for oblique cylinders). In these ideal figures, the volume is the product of
the constant cross section area and the height.

The volume in general can be thought of as the product of the average cross section area and the height.
Here, the average cross section area is defined the way we calculate the average value for a function: we
integrate it over the entire interval, and then divide by the length of the interval. In other words, the average
cross section area is defined so that a right cylinder with that cross section and the height of our current
figure has the same volume.

How does the average value point of view help? Computationally, it doesn’t, but it gives us some intuition
as to what kind of answers to expect. This is because, looking at the figure, we have some ideas about the
average value: it must be somewhere between the minimum and the maximum value, for instance. This
provides a reality check on the computations that we do.

5.2. Average value for shell method. Here, the ideal function is a constant function f on [a, b] with
constant value C. Revolving it about the y-axis yields a cylindrical shell with inner radius a, outer radius b,
and height C. The volume is πC(b2 − a2) = πC(b + a)(b − a). The value πC(b + a) = 2πC(b + a)/2 is the
curved surface area of the cylinder whose radius is (b + a)/2, which is the cylinder whose radius is halfway
between the inner and outer radius. We thus see that:

Volume of cylindrical shell = Curved surface area of mid-value cylinder×Difference of outer and inner radii

This is the ideal situation. In the real situation, we define the average curved surface area as:

Average curved surface area =
Volume of solid of revolution

Difference of upper and lower limits
In our notation, the denominator is b − a. Thus, we obtain that the volume of the solid of revolution is

b−a times the average curved surface area. As before, this is not really computationally useful, but it might
give us some intuition.

5.3. Average value for disk method: different notions of average! The average value point can also
be used to understand the disk method.

Recall that the volume of a solid of revolution obtained by revolving about the x-axis the region between
the x-axis and the graph of f from x = a to x = b is given by π

∫ b

a
(f(x))2 dx. Recall that we proved this

formula by taking cross sections perpendicular to the x-axis. The area of a cross section at the value x is
π(f(x))2, because the cross section is a disk of radius |f(x)|.

Under the average value point of view, we are interested in the average value of this cross section area.
There’s a little subtlety in this.

To find the area between the graph of f and the x-axis from x = a to x = b, we perform a simple
integration

∫ b

a
f(x) dx (or

∫ b

a
|f(x)| dx). On the other hand, to find the volume of the solid of revolution, we

perform the integration
∫ b

a
(f(x))2 dx.

In other words, when finding the volume of the solid of revolution, we give a lot more weight to larger
radii – because the radius is being squared. Remember the discussion from last time where we saw that an
annulus with inner and outer radii 4 and 5 has the same area as the disk of radius 3. This is because the
square of a number grows much faster than the number itself.

Our averaging process is also correspondingly biased. When we are calculating the average value in the
ordinary sense, we do

∫ b

a
f(x) dx/(b − a). However, when calculating the average of the areas of the disks,
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we are doing π
∫ b

a
(f(x))2 dx/(b− a). The latter average value is usually not the same as the area of the disk

whose radius is the average radius. Rather, it is usually larger, because taking the squares assigns greater
weight to the bigger radii.2

6. Stock-taking

We have now seen some formulas and general approaches that use the ideas of integration to compute
areas and volumes. Later in the course and/or in later life, you will encounter formulas to do a lot of the other
things you’ve always wanted to do, such as formulas for arc lengths and surface areas. We are not getting
into those formulas right now for two reasons: (i) they require more conceptual apparatus to understand,
(ii) the kind of expressions that you typically get to integrate are expressions that you do not know how to
deal with.

This brings us to one of the things that differentiates (pun!) differentiation from integration. Differen-
tiation was based on a set of rules that we could apply blindly, because for every way of combining and
composing existing functions, we had a corresponding way of breaking down the differentiation problem.
With integration, however, we are in more wild territory, since there are no easy hard-and-fast rules and a
lot depends on creativity and spotting persuasive patterns. This makes integration more fascinating, but it
also means that ever so often, we come across a situation from the real world that boils down to computing
an integral, and we don’t really have an idea how to go about it.

Nonetheless, reducing a geometric problem of volume computation into a purely arithmetic/algebraic
problem of evaluating a definite integral should be seen as a major step forward. Even if we have no clue
about what an antiderivative might be, we can still use the upper sum/lower sum method to approximate
this integral.

7. More computational intuition

7.1. Stretching, shrinking, and scaling. We can use the “solid of revolution” idea to compute the volume
of a sphere. A solid sphere of radius r is obtained by revolving a semicircular region of radius r about its
diameter. The volume formula is thus:

π

∫ r

−r

(r2 − x2) dx

This gives the familiar formula (4π/3)r3.
Note that a sphere is also the solid of revolution of a circular disk about its diameter. As noted earlier,

since a circular disk has mirror symmetry about its diameter, so we can delete one of the semicircular pieces
and still get the same solid of revolution.

Now, let’s think about what happens if, instead of revolving a circular (or semicircular) disk, we revolve
the region enclosed by an ellipse about its major or minor axis. An ellipse oriented along the axes and
centered at the origin is a curve given by the equation:

x2

a2
+

y2

b2
= 1

with a, b positive.
If a > b then the x-axis is the major axis and the y-axis is the minor axis. Note that both the x-axis and

y-axis are axes of mirror symmetry; however, unlike the case of the circle, it is no longer true that every line
through the origin is an axis of mirror symmetry.

Now, we could do the calculations pretty easily to compute the volume of the solid of revolution about
either axis, but let’s give an intuitive explanation that allows us to get at the answer. If we start with a
circle centered at the origin and of radius b and stretch it by a factor of a/b in the x-direction, we get an
ellipse. Clearly, the area of the ellipse is therefore a/b times the area of the circle, hence it is πab. What
about the volume? We note that the axis along which we integrate gets stretched by a factor of a/b. A little
thought now tells us that the answer will be (4π/3)ab2.

2It turns out that the two averages are equal only for a constant function. The inequality being alluded to here indirectly
is known as the arithmeti mean-quadratic mean (AM-QM) inequality or the arithmetic mean-root mean square (AM-RMS)
inequality.
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More generally, we see that:
(1) If the region being revolved is stretched by a factor of λ along the axis of revolution, the volume is

multiplied by a factor of λ.
(2) If the region being revolved is stretch by a factor of µ along the axis of revolution, the volume is

multiplied by a factor of µ2. The square happens because when we revolve, the area contribution in
each slice is proportional to the square of the radius or difference of squares of radius.

Thus, if the same ellipse were revolved about its minor axis, we’d get a volume of (4π/3)a2b.

7.2. Brief mention: Pappus’ theorem. Pappus’ theorem is in a later section of the chapter that we’re
not including in this course, but it’s a theorem worth taking a look at and understanding at least temporarily.
For Exercise 6.3.44 (featuring in Homework 8), Pappus’ theorem gives an alternative solution approach that
is much shorter than the disk and shell methods that we will use to solve the problem. It also tells us what
the answer will be – in this case 2π2a3. The reason it is easier is because for the case of the circle, we know
exactly where the center (centroid) is.
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ONE-ONE FUNCTIONS AND INVERSES

MATH 152, SECTION 55 (VIPUL NAIK)

Corresponding material in the book: Section 7.1.
What students should definitely get: The definition of one-to-one function, the computational and

checking procedures for checking that a function is one-to-one, computing the inverse of such a function, and
relating the derivative of a function to that of its inverse.

What students should hopefully get: The subtleties of domain and range issues, the distinction
between the algebraic and the calculus approaches.

Executive summary

0.1. Vague generalities. Words...
(1) Old hat: Given two sets A and B, a function f : A → B is something that takes inputs in A and

gives outputs in B. The domain of a function is the set of possible inputs, while the range of a
function is the set of possible outputs. The notation f : A → B typically means that the domain of
the function is A. However, the whole of B need not be the range; rather, all we know is that the
range is a subset of B. One way of thinking of functions is that equal inputs give equal outputs.

(2) A function f is one-to-one if f(x1) = f(x2) =⇒ x1 = x2. In other words, unequal inputs give
unequal outputs. Another way of thinking of this is that equal outputs could only arise from equal
inputs. Or, knowledge of the output allows us to determine the input uniquely. One-to-one functions
are also called one-one functions or injective functions.

(3) Suppose f is a function with domain A and range B. If f is one-to-one, there is a unique function g
with domain B and range A such that f(g(x)) = x for all x ∈ B. This function is denoted f−1. We
further have that g is also one-to-one, and that f = g−1. Note that f−1 differs from the reciprocal
function of f .

(4) Suppose f : A → B and g : B → C are one-to-one functions. Then g ◦ f is also one-to-one, and its
inverse is the function f−1 ◦ g−1.

Actions ...
(1) To determine whether a function is one-to-one, solve f(x) = f(a) for x in terms of a. If, for every

a in the domain, the only solution is x = a, the function is one-to-one. If, on the other hand, there
are some values of a for which there is a solution x 6= a, the function is not one-to-one.

(2) To compute the inverse of a one-to-one function, solve f(x) = y and the expression for x in terms of
y is the inverse function.

0.2. In graph terms. Thousand words ...
(1) A picture in a coordinatized plane is the graph of a function if every vertical line intersects the

picture at most once. The vertical lines that intersect it exactly once correspond to the x-values in
the domain. This is known as the vertical line test.

(2) A function is one-to-one if and only if its graph satisfies the horizontal line test: every horizontal
line intersects the graph at most once. The horizontal lines that intersect the graph exactly once
correspond to y-values in the range.

(3) For a one-to-one function, the graph of the inverse function is obtained by reflecting the graph of
the function about the y = x line. In particular, a function equals its own inverse iff its graph is
symmetric about the y = x line.

(4) Many of the results on inverse functions and their properties have graphical interpretations. For
instance, the fact that the derivative of the inverse function is the reciprocal of the derivative cor-
responds to the geometrical fact that reflection about the y = x line inverts slopes of tangent lines.
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Similarly, the results relating increase/decrease and concave up/down for a function and its inverse
function can all be deduced graphically.

0.3. In the real world. Words... (from now on, we restrict ourselves to functions whose domain and range
are both subsets of the real numbers)

(1) An increasing function is one-to-one. A decreasing function is one-to-one.
(2) A continuous function on an interval is one-to-one if and only if it is either increasing throughout

the interval or decreasing throughout the interval.
(3) If the derivative of a continuous function on an interval is of constant sign everywhere, except possibly

at a few isolated points where it is either zero or undefined, then the function is one-to-one on the
interval. Note that we need the function to be continuous everywhere on the interval, even though
it is tolerable for the derivative to be undefined at a few isolated points.

(4) In particular, a one-to-one function cannot have local extreme values.
(5) A continuous one-to-one function is increasing if and only if its inverse function is increasing, and is

decreasing if and only if its inverse function is decreasing.
(6) If f is one-to-one and differentiable at a point a with f ′(a) 6= 0, with f(a) = b, then (f−1)′(b) =

1/f ′(a). This agrees with the previous point and also shows that the rates of relative increase are
inversely proportional.

(7) Two extreme cases of interest are: f ′(a) = 0, f(a) = b. In this case, f has a horizontal tangent at
a and f−1 has a vertical tangent at b. The horizontal tangent is typically also a point of inflection.
It is definitely not a point of local extremum. Similarly, if (f−1)′(b) = 0, then f−1 has a horizontal
tangent at b and f has a vertical tangent at a.

(8) A slight complication occurs when f has one-sided derivatives but is not differentiable. If both one-
sided derivatives of f exist and are nonzero, then both one-sided derivatives of f−1 (at the image
point) exist and are nonzero. When f is increasing, the left hand derivative of f−1 is the reciprocal
of the left hand derivative of f , and the right hand derivative of f−1 is the reciprocal of the right
hand derivative of f . When f is decreasing, the right hand derivative of f−1 is the reciprocal of
the left hand derivative of f , and the left hand derivative of f−1 is the reciprocal of the right hand
derivative of f .

(9) The second derivative of f−1 at f(a) is −f ′′(a)/(f ′(a))3. In particular, the second derivative of the
inverse function at the image point depends on the values of both the first and the second derivatives
of the function at the point.

(10) If f is increasing, the sense of concavity of f−1 is opposite to that of f . If f is decreasing, the sense
of concavity of f−1 is the same as that of f .

Actions ...

(1) For functions on intervals, to check if the function is one-to-one, we can compute the derivative and
check if it has constant sign everywhere except possibly at isolated points.

(2) In order to find (f−1)′ at a particular point, given an explicit description of f , it is not necessary
to find an explicit description of f−1. Rather, it is enough to find f−1 at that particular point and
then calculate the derivative using the above formula. The same is true for (f−1)′′, except that now
we need to compute the values of both f ′ and f ′′.

(3) The idea can be extended somewhat to finding (f−1)′ when f satisfies a differential equation that
expresses f ′(x) in terms of f(x) (with no direct appearance of x).

0.4. In graph terms. Thousand words ...

(1) A picture in a coordinatized plane is the graph of a function if every vertical line intersects the
picture at most once. The vertical lines that intersect it exactly once correspond to the x-values in
the domain. This is known as the vertical line test.

(2) A function is one-to-one if and only if its graph satisfies the horizontal line test: every horizontal
line intersects the graph at most once. The horizontal lines that intersect the graph exactly once
correspond to y-values in the range.
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(3) For a one-to-one function, the graph of the inverse function is obtained by reflecting the graph of
the function about the y = x line. In particular, a function equals its own inverse iff its graph is
symmetric about the y = x line.

(4) Many of the results on inverse functions and their properties have graphical interpretations. For
instance, the fact that the derivative of the inverse function is the reciprocal of the derivative cor-
responds to the geometrical fact that reflection about the y = x line inverts slopes of tangent lines.
Similarly, the results relating increase/decrease and concave up/down for a function and its inverse
function can all be deduced graphically.

1. Warm-up

1.1. What is/was a function? Let’s recall some of the terminology associated with the concept of func-
tions. A function is some thing that allowed you to take certain kind of inputs and spit out certain kinds of
outputs, with the main constraint being that equal inputs give equal outputs.

The set of permissible inputs for a function is called the domain of the function. If the input fed into the
function is in the domain, the fnuction processes it and give an output. If the input is not in the domain,
the function cannot process it. The set of possible values that the function could spit out was called the
range of the function. We think of a function as a black box that takes an input at one end and emits the
output at the other end.

When we say that f : A → B is a function, what we mean is that the domain of f is A (i.e., f takes as
inputs precisely the elements of A) and the range is a subset of B. In other words, the notation f : A → B
does not imply that everything in B is in the range. This is a useful notational convenience because we
would often like to define functions that takes values in some large set (such as the real numbers) without
trying to locate the precise range.

Another thing that we saw long ago is that a function is not the same thing as an expression for the
function. There are two aspects to this:

(1) The same expression could define different functions, depending on the domain where we are con-
sidering the function. For instance, the expression x2 could be considered on the positive reals, on
the negative reals, on the positive integers, on the negative integers, or on the open interval (0, 1).
These are all different functions in the technical sense. To avoid this confusion, we posited that if
the domain is not explicitly specified or otherwise clear from the context, it is taken to be the largest
subset of the real numbers where the expression makes sense (this is the maximal possible domain).

(2) Different expressions could specify the same function. For instance, x2 is the same, as a function, as
2x(x/2), even though the literal expressions are different. Similarly, sin(πx) and 0 are the same as
functions when restricted to the set of integers.

1.2. The role of expressions. There is a fundamental difference between thinking of functions and think-
ing of expressions. When we are thinking of a function, we are thinking of a very specific input-output
relationship, which may be expressed using an algebraic expression, a table of values, or a graph. The
algebraic expression has the advantage of being compact, succinct, and unambiguous, as well as easy to
manipulate for many purposes. The graphical expression allows us to use our visual instincts. The table
method is something we have been giving short shrift for good reason: most of our functions have infinite
domains, and tables just don’t work. If you were taking discrete mathematics rather than calculus, we might
have been using tables instead of graphs because we were dealing with finite domains.

Expressions are useful for a multitude of reasons. With the algebraic expressions, we are able to formally
differentiate the function once, twice, and more times. We can calculate its value, the value of its derivatives,
find the domain, find the critical points, find the points of inflection, etc., all just starting from a compact
formal expression. Another point worth noting is that some of the formal manipulations of expressions can
be done even without having any idea of how the graph of the function looks like.

1.3. Thinking of inverting the function. Equal inputs for a function give equal outputs, but unequal
inputs may give the same output. The extreme example of this is the constant function, whose output is
completely indifferent to the input. But there are other examples. For instance:
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(1) For even functions f , such as the absolute value function, the square function, and the cosine function,
we have the relation f(x) = f(−x). Thus, two different inputs give rise to the same output.

(2) More generally, consider a function f with mirror symmetry about the line x = c. This is a function
whose graph is symmetric about the vertical line x = c. In particular, we have f(c + h) = f(c− h)
for all h. Thus, we have different values of the input giving the same value of the output.

(3) For a periodic function with period h, we have the relation f(x + h) = f(x). Thus, two different
inputs give rise to the same output. The typical examples are trigonometric functions, such as sine
and cosine.

(4) If we have a continuous function with a local maximum or a local minimum, then there are multiple
inputs close to the point of attainment of the local extreme value where the function values are equal.

2. Getting into one-to-one functions

2.1. One-to-one functions. A function f : A → B is termed one-to-one, one-one, or injective if f(x) =
f(y) =⇒ x = y. In other words, it is a function having the property that unequal inputs give unequal
outputs. Equivalently, we can reverse the function in the sense that knowing the output allows us to deduce
the input.

Note that this general definition is set-theoretic, and makes sense for functions between arbitrary sets;
however, in this course, all functions that we consider are between subsets of reals. So, we are looking at
functions f : A → R where A ⊆ R.

Next note: Whether a function is one-to-one depends on what domain we are considering for that function.
For instance, the squaring function is one-to-one on [0,∞) but not on the whole real line. Similarly, the
greatest integer function is one-to-one when restricted to integers but not on the whole real line. The sine
function is one-to-one on the interval (−π/2, π/2) but not on the whole real line. Of course, if we are
just given an expression and asked whether the function corresponding to that expression is one-to-one, we
consider the domain to be the maximum possible subset of the real line.

2.2. The horizontal line test. Consider a function f and now consider the graph of y = f(x). The
horiozontal line test says that f is one-to-one if and only if every horizontal line intersects the graph of
f at most once. Further, the horizontal lines for which the intersection occurs once are precisely those
corresponding to the range. This makes sense, because a horizontal line corresponds to a particular value of
y, and the intersections with the graph correspond to the values x such that f(x) = y.

Remember the vertical line test? This states that a given picture arises as the graph of a function if and
only if its intersection with every vertical line has at most one point. Further, the vertical lines that intersect
it at one point are the vertical lines corresponding to the domain. The rationales behind the vertical line
test and horizontal line test are similar.

2.3. How do we find out if a function is one-to-one? The purely algebraic way. To determine
whether a function is one-to-one, we can use a purely algebraic way – except that it usually doesn’t work.
We pick two letters, x and a, then write f(x) = f(a) and try to solve algebraically to see if we get a solution
with x 6= a. For instance, consider the function f(x) := x2. The general equation would be:
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x2 = a2

This simplifies to:

(x− a)(x + a) = 0
This has two solutions: x = a and x = −a. The two solutions coincide when a = 0 and are distinct

otherwise. Thus, the function is not one-to-one.
Now consider the function f(x) := x3.
The general expression would be:

x3 = a3

This simplifies to:

(x− a)(x2 + ax + a2) = 0
The second quadratic factor has negative discriminant, so has no real solution, and the only solution is

x = a. Thus, the function is one-to-one.
What about something more complicated, such as f(x) := x3 +x? We again set f(x) = f(a) and simplify:

x3 + x = a3 + a

Moving everything to one side:

(x3 − a3) + (x− a) = 0
This simplifies to:

(x− a)(x2 + ax + a2) + (x− a)(1) = 0
We combine terms:

(x− a)(x2 + ax + a2 + 1) = 0
The quadratic factor has negative discriminant, so the only solution is x = a.
This purely algebraic approach works for quadratic and cubic functions, but it starts getting tedious for

more complicated functions. For instance, how do we handle functions such as f(x) := x− sinx? It is hard
to solve:

x− sinx = a− sin a

Even for algebraic functions, the approach could be less tractable when the functions are more complicated.
This suggests that we need to supplement the algebraic approach (with its attendant focus on looking at
points of the domain separately) with the calculus approach (with its attendant focus/stress on moving along
the real line and thinking in terms of limits and continuity). What can the calculus approach tell us that
mere algebra cannot?

2.4. Remember the range computations. It might be useful to draw a parallel and remember a related
generic problem we tackled a while ago. That was the problem of finding the range. The algebraic method of
finding the range of a function f is to set a = f(x) and solve for x. We are not interested in actually finding
a solution – we are interested in determining the conditions on a such that at least one solution exists. For
instance, for linear and quadratic polynomials and rational functions of small degree, this often reduces to a
condition on the discriminant of a quadratic polynomial.

That was the algebraic approach, and it was limited to a small number of functions that were algebraically
tractable. But then we saw the calculus approach, which essentially allowed us to graph any reasonably nice
function. Once we have the entire graph, we can find the range. For a continuous function, this is simply the
interval between the minimum value of the function and the maximum value of the function. This allowed
us to determine the range of a much larger class of functions, particularly those that are continuous and
once or twice differentiable.
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2.5. The calculus interpretation of one-to-one. Consider a continuous function f on a (possibly open,
closed, half-open, half-closed, or infinite) interval I. Continuous means that the function cannot jump about
suddenly. Under what conditions is the function one-to-one? Clearly, if it changes direction somewhere, i.e.,
has a local extreme value, then there are horizontal lines close by that intersect the graph at two points.
Thus, there are no local extreme values. Or, another way of putting this is that the function must either be
increasing throughout the interval or decreasing throughout the interval.

Thus, for a continuous function on an interval, being one-to-one is equivalent to being increasing through-
out or decreasing throughout. If you change direction, you repeat points. Remember that both parts of
the statement: continuous and interval, are needed in order to conclude that a one-to-one function must be
increasing throughout or decreasing throughout. However, the other direction of implication is always true:
a function that is increasing throughout on its domain is one-to-one, and so is a function that is decreasing
throughout on its domain.

Let’s see some counterexamples:
(1) Can you think of a discontinuous function on an interval that is one-to-one but not increasing or

decreasing?
(2) Can you think of a function on a set that is a union of two or more intervals that is continuous on

each piece and is one-to-one but is not increasing or decreasing when viewed on the whole domain?
The problem is that although we can deduce that the function is increasing throughout or decreasing
throughout separately on each of the intervals, we cannot compare across intervals.

2.6. The proof that a continuous function on an interval is one-to-one iff its increasing or
decreasing. Let us now try to prove the statement that a continuous function on an interval is one-to-one
if and only if it is either increasing throughout on the interval or decreasing throughout on the interval.
Note that increasing throughout or decreasing throughout obviously implies one-to-one, so we concentrate
on proving the other direction of implication.

Suppose f is a continuous function on an interval I and there are points x1, x2, x3 with x1 < x2 < x3

and f(x1) < f(x2) > f(x3). Then, suppose M is a number greater than both f(x1) and f(x3) but less
than f(x2). By the intermediate value theorem, there exists x4 ∈ (x1, x2) and x5 ∈ (x2, x3) such that
f(x4) = f(x5) = M . This forces f to not be one-to-one, a contradiction. Thus, we cannot have a situation
where x1 < x2 < x3 but f(x1) < f(x2) > f(x3). A similar argument shows that we cannot have x1 < x2 < x3

but f(x1) > f(x2) < f(x3). This forces f to be increasing throughout or decreasing throughout.
Note that to apply the intermediate value theorem, we applied both the continuity of f and the fact that

the domain is an interval, hence contains [x1, x2] and [x2, x3].

3. A two-way street: inverse functions

3.1. The inverse function. Suppose we have a function f with domain A and range B. If f is one-to-one,
we can define an inverse function g such f ◦ g is the identity map on B. Moreover, this function g is unique.
This function is called the inverse function to f , since it reverses or inverts the action of f . Note that here,
we really do need B to be precisely the range, because we cannot define the function g on points outside the
range.

This function g is denoted as f−1 and is termed the inverse function to f . Note that this is not the same
as the pointwise multiplicative inverse of f , which is the function 1/f(x). The latter may be denoted as
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[f(x)]−1 or as 1/f , as opposed to f−1(x). I might also use the word reciprocal function for the pointwise
multiplicative inverse.

What happens if f is not one-to-one? In this case, there are many different candidates for g that work,
and it is not clear which one to pick. To avoid confusion, we do not talk of the inverse function any more.
For instance, when f is the squaring function on the reals, we could take g to be the positive square root or
the negative squareroot, or to sometimes be the positive squareroot and sometimes the negative squareroot.
For instance, one candidate would be a function that is the positive square root for nonnegative rationals
and the negative square root for positive irrationals.

This is a very rich and deep question that we shall return to later, when we study things such as inverse
trigonometric functions.

3.2. The inverse operation is involutive. The operation of taking the inverse is an involutive operation,
in that it has the following two properties:

(1) (f−1)−1 = f . In other words, if g = f−1, the f = g−1.
(2) (f1 ◦f2)−1 = f−1

2 ◦f−1
1 . In other words, the inverse of the composite is the composite of the inverses,

but the sequence of composition flips over.

You’ll be asked to show this in a forthcoming homework.
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3.3. Finding the inverse function: like finding the range. As we just recalled, to find the range of
a function f , we consider the equation y = f(x) and solve for x in terms of y. When we were trying to
compute the range, our sole purpose was to find the set of y for which there exists at least one value of x
that solves the equation. When our goal is to determine the inverse function, we are interested in the actual
expression for x in terms of y since that is the inverse function.

Note that in this process, we can discard the values of y for which no solution exists. But if we find that
for some y, there are multiple values of x, then we’ve gone down a bad path: the function wasn’t one-to-one,
so we shouldn’t have been trying to find an inverse at all.

3.4. Situations where the algebraic procedure works. It works for nonconstant linear functions. Given
a function y = mx+ c,m 6= 0, we can rewrite x = (y− c)/m. It also works for functions of the form y = xp/q

where both p and q are odd integers. The inverse function to y = xp/q is y = xq/p. And it works for functions
that are obtained by composing such power functions and linear functions. For instance, see Example 3 in
the book.

3.5. Graphical interpretation of inverse function. Suppose g is the inverse function of a one-to-one
function f . For every point (x, y) in the graph of f , we have y = f(x), hence x = g(y). Thus, the point
(y, x) is in the graph of g. In other words, the graph of g is obtained by taking the graph of f and sending
each point to the point obtained by interchanging its coordinates. The coordinate interchange operation is
equivalent to the geometric operation of reflection about the y = x line. Thus, the graph of g is obtained by
reflecting the graph of f about the y = x line. This geometrical interpretation is useful for understanding
the relationship between derivatives.

It also helps us identify a new kind of symmetry that some functions possess. The graph of a function
f is symmetric about the y = x line iff f = f−1. Examples of such functions are y = x, x + y = C for
some constant C, and implicit functions given by p(x) + p(y) = C where p is a one-to-one function from R
to R. For instance, x3 + y3 = 1 is an implicit description of y as a function of x – the explicit description is
y = (1− x3)1/3, and the inverse is exactly what we’d expect.

3.6. The inverse of a continuous function is continuous. From the previous result about reflection, it
should be reasonably intuitive that the inverse of a continuous function is continuous. Proving this using the
ε− δ definition is a nice exercise, but not one that we shall undertake in class. This is Theorem 7.1.7 of the
book, and you are encouraged to read the proof for your understanding and also to refresh your memories
of εs and δs.

There is something qualitative that we can say, though, that will shed some light. Remember that the
general ε − δ definition is not symmetric in the roles of x and f(x). The skeptic starts with choosing an
ε > 0 which determines an open interval around the claimed limit for the f(x)-value. The prover then has
to come up with an interval around the domain value (of radius δ) such that the function value is within the
ε-interval for every input value in the δ-interval. This definition is asymmetric, because we insist that if the
x-value is really close, the f(x)-value is also really close, but we do not insist that if the f(x)-value is really
close, the x-value is also really close.

For one-to-one functions, however, this inherent definitional asymmetry is automatically overcome, be-
cause a given f(x)-value can be realized only by one x-value. This is the reason that, even though the
definition is not inherently symmetrical, the one-to-one nature allows us to show that it is in effect symmet-
ric in the roles of domain and range.

4. Bijective functions and infinite sets

This is a concept you will see in somewhat more detail if you take higher mathematics courses, so I’ll
briefly mention it here.

A function f : A → B is termed a bijection or bijective function from A to B if its range is precisely B
and it is one-one. Bijective functions are the same thing as one-one functions considered as functions to their
range and ignoring the rest of the stuff. The notion of inverse function that we introduced is best viewed in
the context of a bijective function, because the inverse is defined only on the range of the function.

Note that the theorem proved earlier basically states that for a continuous bijective function, the inverse
is also continuous.
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An interesting question now might be: can we define continuous bijective functions between various typical
infinite subsets of R? We note some obvious positive results in this direction:

(1) For the open intervals (a, b) and (c, d), where a < b and c < d are real numbers, there is a linear
bijection between the open intervals. Namely, there is a unique linear function that sends a to c and
b to d, and this function gives a bijection of the intervals in between. We could also pick the linear
map that would send a to d and b to c.

In particular, this bijection is continuous and infinitely differentiable, since it involves only trans-
lation and scaling.

(2) Interestingly, there is a bijection between any finite open interval and an open interval going to
infinity in one or both directions. Since (1) above shows that any two finite open intervals look the
same, we just give one bijection of each kind.

The map x 7→ tanx gives a bijection between the open interval (0, π/2) and the one-sided infinite
open interval (0,∞).

The map x 7→ tanx also gives a bijection between the finite open interval (−π/2, π/2) and the
whole real line.

Thus, for infinite sets, small finite open intervals can be in bijection with larger finite open intervals and
even with infinite open intervals. The fact that a subset of a set can be in bijection with the whole set
perturbed the mathematician Cantor when he first discovered and pondered about it. He eventually went
crazy, but before doing so, made a key observation: being in bijection with a proper subset is a defining
characteristic of infinite sets.

5. A new process and new responsibilities

So far, we have seen the following processes for creating new functions from old:

(1) Pointwise addition, subtraction, multiplication, and division.
(2) Function composition.
(3) Piecing together different definitions (using piecewise definitions).

We have now added a new process: inverting a one-to-one function. Hence, it is our job to now describe
how to do all the things we used to do in the past for new functions created from old functions using this
new process.

5.1. The derivative of a one-to-one function and its inverse. uppose we have a one-to-one function
f on an interval I with inverse function g. The intermediate value theorem tells us that the range of f (and
hence the domain of g) is also an interval. If the domain of f is a closed bounded interval, the extreme value
theorem tell us that the range of f (and hence the domain of g) is also closed and bounded.

Since f is increasing throughout or decreasing throughout, what can we say about its derivative (assuming
it exists everywhere)? If f is differentiable, then:

(1) f is increasing throughout iff f ′ is positive everywhere except possibly at isolated points, where it
can be zero.

(2) f is decreasing throughout iff f ′ is negative everywhere except possibly at isolated points, where it
can be zero.
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Thus, a differentiable f is one-to-one iff f ′ is of constant sign throughout except possibly at isolated
points, where it can be zero. Examples are x3 and x− sinx.

More generally, if f ′ has constant sign everywhere except at isolated points where it is either zero or
undefined, f is one-to-one.

Let us now bring g into the picture. It turns out that the following is true: if f is one-to-one, and g is its
inverse, then if f(a) = b, and f ′(a) exists and is nonzero, then g′(b) = 1/f ′(a). Thus, we have the general
formula:

g′(x) =
1

f ′(f−1(x))

Equivalently:

g′(f(x)) =
1

f ′(x)

This can be seen in three ways:

(1) From first principles: The difference quotient whose limit gives the value of f ′ is the reciprocal of
the difference quotient whose limit gives the value of g′.

(2) Using the chain rule: Use that f ◦ g is the identity map and hence obtain that (f ′ ◦ g) · g′ = 1.
(3) Graphically: We know that the graphs of f and g are reflections of each other about the line y = x,

and the points we are interested in are images of each other under this reflection. The tangent lines
through these points are thus also reflections of each other about y = x. The slopes of these tangent
lines are thus reciprocals of each other.

Let f(a) = b. There are the following cases of interest:

(1) f ′(a) exists and is nonzero. This happens if and only if g′(b) exists and is nonzero, and f ′(a) and
g′(b) are multiplicative inverses of each other. Pictorially, this means that the tangent lines for the
graphs of f and g are neither vertical nor horizontal. f ′(a) is positive iff g′(b) is positive, in which
case both f and g are locally increasing. f ′(a) is negative iff g′(b) is negative.

(2) f ′(a) exists and is equal to zero: In this case, g′(b) is undefined. The graph of f has a horizontal
tangent at the point a, and the graph of g has a vertical tangent. Moreover, we can deduce from
the one-to-one nature of f that the horizontal tangent for f cannot be a local extreme value type –
hence (with suitable further differentiability assumptions) it must be the point of inflection type.1

(3) g′(b) exists and is equal to zero: In this case, f ′(a) is undefined. The remarks of the previous point
apply with the roles of f and g interchanged, as well as the roles of a and b.

(4) Both the left-hand and the right-hand derivative for f exist at a, but they are not equal: In this case,
the left-hand derivative and the right-hand derivative exist for g. Further, if f is increasing, so is g,
in which case the left-hand derivative of g is the multiplicative inverse for the left-hand derivative of
f , and the right-hand derivative of g is the multiplicative inverse of the right-hand derivative of f .
If f is decreasing, so is g, in which case the left-hand derivative of g is the multiplicative inverse of
the right-hand derivative of f , and the right-hand derivative of g is the multiplicative inverse of the
left-hand derivative of f .

Re-read that last point a few times till you understand it. The interplay between one-sidedness and
increase/decrease behavior is extremely important and potentially confusing. Here are some pictures:

1The tangent line cutting through the graph is the typical geometric description of a point of inflection; however, it is not
strictly correct since there do exist weird situations where we have a point that is not a point of inflection but the tangent line
still cuts through the graph. Nonetheless, this is the typical case to keep in mind.
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5.2. Full details of the difference quotient derivation. To understand this proof, it is helpful to recall
that there are two different ways of thinking about functions and about differentiation. The first, which is
the typical way, is to think about a function as a machine that takes in an input and gives out an output.
There is another, slightly different, way of thinking about functions. Here, the focus is not on the function
but on the input and the output. We think of the function as the process relating the input quantity and
the output quantity. For instance, we may think of the position x of a particle as a function of time t. Here,
the output quantity is viewed as a function of the input quantity.

When we switch back and forth between these two ideas of functions, there is a slight abuse of notation.
For instance, when we are trying to write the position of a particle as a function of time, we often use the
same letter x for the position function x(t) and for the actual position variable. This is a bit like saying that
instead of writing a function y = f(x), we write y = y(x). This really is an abuse of notation, but it is an
abuse that comes with some advantages. For instance, in the book’s description of the u-substitution, the
book used the letter u both for the function and the variable name.

Recall now that for a function f , the difference quotient between the input values x1 and x2 is the value:

f(x2)− f(x1)
x2 − x1

If we write y1 = f(x1) and y2 = f(x2), we can rewrite this as:

y2 − y1

x2 − x1

which can be written in shorthand as:

∆y

∆x

With the interpretation as a relationship between quantities, we are interested in the question of how
much a specific change in x-values leads to a change in the y-values. The limit of this is at x = x0 is defined
as the derivative f ′(x0). With this notation, we also see that:
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∆y

∆x
=

1
∆x
∆y

Thus, we see the intuitive reason why, when we pass to the limits, we should get that dy/dx and dx/dy
are multiplicative inverses at any particular pair (x, y).

Let us make this formal. Suppose f is one-to-one. Then, for any a with f ′(a) finite and with f(a) = b,
we have:

f ′(a) = lim
x→a

f(x)− f(a)
x− a

= lim
y→f(a)

y − f(a)
g(y)− a

= lim
y→b

y − b

g(y)− g(b)
=

1
g′(b)

This explains why f ′(a) and g′(b) are multiplicative inverses of each other.
The multiplicative inverse relationship can also be verified using the chain rule. Here, we use the fact that

f ◦ g is the identity map, and apply the chain rule to get:

(f ◦ g)′(b) = f ′(g(b))g′(b) =⇒ 1 = f ′(a)g′(b)

5.3. Higher derivatives. Recall that we can compute higher derivatives as well for various ways of creating
new functions from old. For sums, differences, and scalar multiples, the rule is simple: since differentiation
is a linear operator, the kth derivative of the sum/difference/scalar multiple is the sum/difference/scalar
multiple of the kth derivatives. For products, the kth derivative, as we saw in some quizzes, has a binomial
formula, which we can discover by iteration. In particular, for instance:

(f · g)′ = (f ′ · g) + (f · g′)
(f · g)′′ = (f ′′ · g) + 2(f ′ · g′) + (f · g′′)
(f · g)′′′ = (f ′′′ · g) + 3(f ′′ · g′) + 3(f ′ · g′′) + (f · g′′′)

The story is trickiest for composites, where, in order to compute the second derivative of a composite, we
need to use the chain rule and the product rule. The formula we get, which you saw in a past quiz, was:

(f ◦ g)′′ = (f ′′ ◦ g) · (g′)2 + (f ′ ◦ g) · (g′′)
We have to do something similar to calculate the second derivative of the inverse function. However, this

time we need to use the quotient rule. Note that:

(f−1)′(x) =
1

f ′(f−1(x))
To find the second derivative, we must differentiate both sides and use the quotient rule or equivalently,

the rule for differentiating a reciprocal function. The upshot is that we get:

(f−1)′′(x) =
−f ′′(f−1(x))
(f ′(f−1(x)))3

You’ll be working out the full details of this in a homework problem.
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LOGARITHM, EXPONENTIAL, DERIVATIVE, AND INTEGRAL

MATH 152, SECTION 55 (VIPUL NAIK)

Corresponding material in the book: Section 7.2, 7.3, 7.4.
What students should definitely get: The definition of logarithm as an integral, its key properties.

The differentiation and integration formulas for logarithm and exponential, the key ideas behind combining
these with the chain rule and u-substitution to carry out other integrals.

Executive summary

0.1. Logarithm and exponential: basics.
(1) The natural logarithm is a one-to-one function with domain (0,∞) and range R, and is defined as

ln(x) :=
∫ x

1
(dt/t).

(2) The natural logarithm is an increasing function that is concave down. It satisfies the identities
ln(1) = 0, ln(ab) = ln(a) + ln(b), ln(ar) = r ln a, and ln(1/a) = − ln a.

(3) The limit limx→0 ln(x) is −∞ and the limit limx→∞ ln(x) is +∞. Note that ln goes off to +∞ at ∞
even though its derivative goes to zero as x → +∞.

(4) The derivative of ln(x) is 1/x and the derivative of ln(kx) is also 1/x. The derivative of ln(xr) is
r/x.

(5) The antiderivative of 1/x is ln |x|+C. What this really means is that the antiderivative is ln(−x)+C
when x is negative and ln(x)+C when x is positive. If we consider 1/x on both positive and negative
reals, the constant on the negative side is unrelated to the constant on the positive side.

(6) e is defined as the unique number x such that ln(x) = 1. e is approximately 2.718. In particular, it
is between 2 and 3.

(7) The inverse of the natural logarithm function is denoted exp, and exp(x) is also written as ex. When
x is a rational number, ex = ex (i.e., the two definitions of exponentiation coincide). In particular,
e1 = e, e0 = 1, etc.

(8) The function exp equals its own derivative and hence also its own antiderivative. Further, the
derivative of x 7→ emx is memx. Similarly, the integral of emx is (1/m)emx + C.

(9) We have exp(x + y) = exp(x) exp(y), exp(rx) = (exp(x))r, exp(0) = 1, and exp(−x) = 1/ exp(x).
All of these follow from the corresponding identities for ln.

Actions...
(1) We can calculate ln(x) for given x by using the usual methods of estimating the values of integrals,

applied to the function 1/x. We can also use the known properties of logarithms, as well as approx-
imate ln values for some specific x values, to estimate ln x to a reasonable approximation. For this,
it helps to remember ln 2, ln 3, and ln 5 or ln 10.

(2) Since both ln and exp are one-to-one, we can cancel ln from both sides of an equation and similarly
cancel exp. Technically, we cancel ln by applying exp to both sides, and we cancel exp by applying
ln to both sides.

0.2. Integrations involving logarithms and exponents. Words/actions ...
(1) If the numerator is the derivative of the denominator, the integral is the logarithm of the (absolute

value of) the denominator. In symbols,
∫

g′(x)/g(x) dx = ln |g(x)|+ C.
(2) More generally, whenever we see an expression of the form g′(x)/g(x) inside the integrand, we

should consider the substitution u = ln |g(x)|. Thus,
∫

f(ln |g(x)|)g′(x)/g(x) dx =
∫

f(u) du where
u = ln |g(x)|.

(3)
∫

f(ex)ex dx =
∫

f(u) du where u = ex.
(4)

∫
ex[f(x) + f ′(x)] dx = exf(x) + C.
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(5)
∫

ef(x)f ′(x) dx = ef(x) + C.
(6) Trigonometric integrals:

∫
tanx dx = − ln | cos x| + C, and similar integration formulas for cot, sec

and csc:
∫

cot x dx = ln | sinx| + C,
∫

sec x = ln | sec x + tanx| + C, and
∫

csc x dx = ln | csc x −
cot x|+ C.

1. Logarithms: the adventure begins

1.1. Finding an antiderivative of the reciprocal function. Recall that the process of differentiation
never gave us fundamentally new functions, because the derivatives of all the basic functions that we knew
were expressible in terms of other basic functions, and using the operations of pointwise combination and
composition did not allow us to break ground into new functions. The situation differs somewhat for
integration. We have seen that we often come across functions for which we have no clue as to how to find
an antiderivative. We now discuss how to handle one such function.

This function is the function 1/x, which, for now, we will assume to be a function on (0,∞). We want to
find an antiderivative for this function.

The basic results of integration tell us that one way of defining an antiderivative is by using a definite
integral from a fixed value to x, as long as that fixed value is in the domain. For reasons that are not
immediately obvious, we choose the fixed value (the reference point) as 1. We thus define the following
function:

L(x) :=
∫ x

1

dt

t
Note that this is the unique antiderivative which has the property that its value at 1 is 0. By definition,

L′(x) = 1/x for all x. What further information can we derive about L?

1.2. Using the multiplicative transform. By the u-substitution method, we can readily verify that, for
a, b > 0: ∫ a

1

dt

t
=

∫ ab

b

dt

t

The key thing that is special about 1/x is that the multiplicative factor on the dt part cancels the
multiplicative factor on the t part.

This gives us that:

L(a)− L(1) = L(ab)− L(b)
Since L(1) = 0, we obtain that L is a function satisfying the property:

L(ab) = L(a) + L(b) ∀ a, b > 0
Thus, even though we do not have an explicit description of L, we know that L converts products to sums.

In particular, we also see, for instance, that:

L(an) = nL(a) ∀a > 0, n ∈ Z
In particular, L(1/a) = −L(a).
We can further see that for any rational number r, we have:

L(ar) = rL(a) ∀a > 0, r ∈ Q
In other words, the function L converts products to sums and pulls the exponent into a multiple. We also

know that since L′(x) > 0 for all x > 0, L is continuous and increasing. In particular, we see that L is a
one-to-one map on (0,∞).

What is the range of L? Consider a = 2. Then, L(a) = L(2) > 0. As n →∞, L(an) = nL(a) →∞, and
as n → −∞, L(an) = nL(a) → −∞. Since L is increasing, we can use this to see that limx→∞ L(x) = ∞
and limx→0 L(x) = −∞. Further, by the intermediate value theorem, we see that the range of L is R.

The upshot: L is a continuous increasing one-to-one function from (0,∞) to R that sends 1 to 0 and
converts products to sums.
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1.3. L for (natural) logarithm. The function L that is described above is termed the natural logarithm
function. It is ubiquitous in mathematics, and is denoted ln. Thus, we have the definition:

lnx :=
∫ x

1

dt

t
∀ x > 0

It turns out that this natural logarithm behaves in ways very similar to logarithms to base 10. A quick
primer for those who didn’t live in prehistoric times: in the olden days, when people had to do multiplications
by hand, they used a tool called logarithm tables to do these multiplications. The logarithm tables basically
converted the multiplication problem to an addition problem.

Here is the principle on which the logarithm tables worked. These tables allowed you to, for a given
number x, find the approximate value of r such that 10r = x. This value of r is called log10 x. Then, if you
had to multiply x and y, you first found log10 x and log10 y. It turns out that log10(xy) = log10(x) + log10 y,
because if 10r = x and 10s = y, then 10r+s = xy by properties of exponents. Thus, to find xy, we find log10 x
and log10(y) and add them. Then, there are antilogarithm tables, that allow us to find the antilogarithm of
this sum that we have computed (or basically, raise 10 to the power of that number).

The principle of logarithm tables was later converted to a mechanical device called the slide rule. How
many people have used slide rules? What a slide rule does is use a logarithmic scale, i.e., it places numbers
on a scale in such a way that the distance between the positions of two numbers is determined by their
quotient. So, on a logarithmic scale, the distance between 1 and 10 is the same as the distance between 10
and 100, and also the same as the distance between 0.01 and 0.1. The distance between 3 and 7 is the same
as the distance between 30 and 70. (If you’re interested in pictures of slide rules, do a Google image search.
I haven’t included any picture here because of potential copyright considerations).

A slide rule comprises two logarithmic scales (using the same calibration) but one of them can slide against
each other. We can use the sliding scale to add lengths along the scale, but since the scale is logarithmic,
this ends up multiplying the numbers. You may have heard about how people with an abacus can often
do simple calculations faster than people with a calculator. It turns out that people with a slide rule can
usually do multiplications faster than people with a calculator.1

Logarithmic scales are used in many measurements. Here are some examples:
(1) The Richter magnitude scale measures the intensity of earthquakes. It is calibrated logarithmi-

cally to base 10. An earthquake one point higher on the Richter scale is ten times as intense.
(2) The pH scale in chemistry is a logarithmic scale to measure the concentration of the H+ (more

precisely, H3O
+) ions. It is a negative logarithmic scale to base 10. An increase in the pH value by

1 corresponds to a decrease in the hydronium ion concentration to 1/10 of its original value.
(3) The decibel scale, used for sound levels and other level measurements, is a logarithmic scale where

an increase in 10 points along the scale corresponds to a ten-fold increase in amplitude. Thus, 20dB
is ten times as loud as 10dB.

The natural logarithm function can be thought of as creating a logarithmic scale on the positive reals.
But the question we are concerned with is: what precisely is this scale? How does this compare with the
usual logarithm to base 10? Our hunch is that there should be a number e such that ln(x) is the value r
such that x = er. What must this number e be?

2. The back and forth of things: logarithm and exponential

2.1. In search of e. If such a number e exists, then it must be the unique number x satisfying ln(x) =
1. Further, since ln is an increasing function, we can try locating e between two consecutive integers by
determining ln 2, ln 3, and so on. Actually, we can be more clever.

We can begin by trying to compute ln 2. We could do this using upper and lower sums. We could also
do it by noting that lnx =

∫ x

1
dt/t, and must be located between the antiderivatives of x−1/2 and x−3/2.

We did this approximation a few weeks ago and found that ln 2 is located between 0.58 and 0.83. Further
approximations using either this method or upper and lower sums for partitions yields than ln 2 is between
0.69 and 0.70. We will assume ln 2 ≈ 0.7 for calculations.

1On the other hand, the calculator is a lot more versatile than the slide rule, and is probably faster for computing roots,
multiplying long sequences of numbers, or combinations of multiplication and addition.
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Now that we know ln 2, we do not need to do any more messy work with upper and lower sums. We know
that 2 < 2

√
2 < 3. We also have that ln(2

√
2) = (3/2) ln 2 ≈ 1.05, which is bigger than 1. Thus, ln 3 > 1, so

2 < e < 3. In fact, 2 < e < 2
√

2 ≈ 2.83. We can also calculate, for instance, that the cuberoot of 2 is about
1.26. Thus, ln(2.52) is approximately (4/3)(ln 2) which is approximately 0.93. Thus, we get that e should be
bigger than 2.52. A similar process of successive approximations yields that the value of e is approximately
2.718281828. You should know e to at least three decimal places: 2.718.

Clearly, since ln(e) = 1, we have that ln(ep/q) = p/q for integers p and q, with q 6= 0. It is not clear
a priori what we would mean by the notation er for irrational numbers r, but whatever we may mean, it
should be the case that ln(er) = r. In other words, the function x 7→ ex must be the inverse function of
the one-to-one function ln. The function x 7→ ex is also called the exponentiation function, and sometimes
denoted exp. By the way, the letter e could be thought of as standing for exponentiation, but historically it
is believed to be named after Leonhard Euler, a prolific mathematician who studied the properties both of
the number e and the exponentiation function.

2.2. Logarithms and exponents: some rules. Here are some of the rules:

(1) ln is a one-to-one function from (0,∞) to R and exp is a one-to-one function from R to (0,∞). The
two functions are inverse functions of each other.

(2) ln converts products to sums and exp converts sums to products. In other words, ln(xy) = ln(x) +
ln(y) and exp(x + y) = exp(x) exp(y).

(3) ln(1) = 0 and exp(0) = 1.
(4) ln(1/x) = − lnx and exp(−x) = 1/ exp(x).
(5) ln(xr) = r lnx and exp(rx) = (exp(x))r.
(6) Both exp and ln are continuous and increasing functions.
(7) exp has the x-axis as a horizontal asymptote as x → −∞, while ln has the y-axis as a vertical

asymptote as x → 0.
(8) exp is concave up and ln is concave down.

Here are the graphs:
The logarithm graph, zoomed in for small inputs:

The logarithm graph, zoomed out:
4



The exponential graph:

Here are the logarithm and exponential graphs together, so that we can see that the graphs are reflections
of each other about the y = x line:
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2.3. Numerical shennanigans. In his autobiographical book, Richard Feynmann discusses how he im-
pressed a bunch of mathematicians by being able to calculate natural logarithms of many numbers to one or
two decimal places. However, what he did was hardly impressive. It turns out that remembering the natural
logarithms of a few numbers allows us to compute them approximately for many numbers.

For instance, it is useful to remember that ln(2) ≈ 0.6931, ln(3) ≈ 1.0986, ln(10) ≈ 2.3026, and ln(7) ≈
1.9459. We can now calculate the logarithm values for most integers. How? Using the fact that logarithms
translate multiplication to addition. Thus, ln(4) = 2 ln(2) ≈ 1.3862, while ln(5) = ln(10) − ln(2) ≈ 1.6095.
In fact, we can readily calculate the natural logarithm of any positive integer all of whose prime factors
are among 2, 3, 5, and 7. What about ln(11)? While we cannot calculate this precisely, we can calculate
ln(10) and ln(12) and thus obtain reasonable upper and lower bounds for ln(11). Even better, we know that
ln(120) < 2 ln(11) < ln(125), and since we can calculate both ln(120) and ln(125), we get a pretty small
range for ln(11).

In fact, Feynman was able to impress physicists by doing calculations that essentially relied on only two
facts: ln(2) ≈ 0.7 and ln(10) ≈ 2.3.

If we are able to quickly calculate natural logarithms, a happy corollary of that is that we can quickly
integrate dx/x on intervals.

2.4. Domain and range issues. For domain computations in the past, we used the following basic guide-
lines:

(1) Things in the denominator must be nonzero.
(2) Things with squareroots or even roots must be nonnegative.
(3) Things with squareroots or even roots in the denominator must be positive.

We now add two more criteria:
6



(4) Things under logarithm must be positive.
(5) Things under logarithm of the absolute value must be nonzero.

2.5. Logarithm of the absolute value. The natural logarithm function is defined only for positive reals.
However, we can extend it to a function on all reals by taking the absolute value first, i.e., we look at the
function x 7→ ln(|x|). This is an even function and its graph is obtained by takingthe graph of the logarithm
function and adding its mirror image about the y-axis

It turns out that the derivative of ln(|x|) is 1/x. In particular, we see that ln(|x|) serves as an antiderivative
of 1/x for all nonzero x. This is an improvement on ln(x), which worked only for positive x. However, we
should be careful because the domain of 1/x as well as of ln |x| excludes zero. Hence, the behavior on the
positive and negative side are totally independent of each other. We shall return to this point in a later
lecure.

3. Formulas for derivatives and integrals

3.1. Derivative and integral formulas for logarithms. The main formula that we have, which follows
from our definition of natural logarithm, is the following:

d

dx
(lnx) =

1
x

This is the formula for x > 0. A more general version, for x 6= 0, is:

d

dx
(ln |x|) =

1
x

The corresponding antiderivative formula for x > 0 is:∫
dx

x
= ln(x) + C

In general, the antiderivative formula is: ∫
dx

x
= ln(|x|) + C

However, it should be remembered that this formula is valid only when we are working with x either in
(0,∞) or in (−∞, 0), i.e., we cannot use the formula to cross between the interval (0,∞) and (−∞, 0). In
fact, if we have a function f : R\{0} → R such that f ′(x) = 1/x, then we can guarantee that f(x)− ln(|x|) is
constant on x > 0 and is constant on x < 0. However, these constants may differ. The behavior on the (0,∞)
connected component does not in any way constrain the behavior on the (−∞, 0) connected component.

3.2. The exponential and its derivative and integral formulas. Recall that exp is the inverse of the
ln function. Thus, we can use the rule for differentiating the inverse function to find exp′. We have:

exp′(x) =
1

ln′(expx)
=

1
1

exp(x)

= exp(x)

Thus, we have the remarkable property that the exponential function, i.e., the function x 7→ ex, is its
own derivative. Another way of thinking about this is that the rate of growth of the exponential function is
equal to its value. Note that this also implies that the exponential function is infinitely differentiable and all
higher derivatives equal the same function.

We rewrite the above in Liebniz notation:

d

dx
(ex) = ex

We also note the corresponding statement for indefinite integration:∫
ex dx = ex + C

7



3.3. Some corollaries. Using the above, we obtain the following identities for the logarithm and exponent:

d

dx
(ln(kx)) =

1
x

d

dx
(ln(xr)) =

r

x
d

dx
(emx) = memx∫

emx dx =
1
m

emx + C

Each of these identities can be derived in two ways: either by using the properties of logarithms and
exponents on the inside and then differentiating, or by first differentiating and then simplifying. For instance,
for the second identity, we can either simplify ln(xr) as r ln(x) first and then pull the constant r out before
differentiating, or we can use the chain rule to obtain (1/xr) ·rxr−1. It is gratifying to know that the answers
we obtain both ways are the same.

4. Application to indefinite and definite integration

4.1. The u-substitution: a textbook example. We begin with an easy example:∫ n

√
n

1
x lnx

dx

Here, n is an integer greater than 1.
Believe it or not, this integral actually came up in some asymptotic approximations I was doing some

time ago to figure out whether some numbers have large prime divisors! Let us first look at the indefinite
integral. The substitution u = ln x gives us:∫

1
x lnx

=
∫

du

u
= ln(u) = ln(lnx) + C

Note that we do not need to put absolute values here because on the interval of integration, ln is positive.
Now, we can evaluate between limits:

[ln(lnx)]n√n = ln(lnn)− ln(ln
√

n) = ln
[

lnn

ln
√

n

]
= ln

[
lnn

(1/2) ln n

]
= ln 2

So, the answer is ln 2, which, as we computed earlier, is approximate 0.693. Apparently, this is the rough
heuristic argument for why about 69.3% of the numbers have a prime divisor greater than their squareroot.

4.2. Numerator as derivative of denominator. The gist of this logarithmic substitution can be captured
by the formula: ∫

g′(x)
g(x)

dx = ln |g(x)|+ C

The proof of this proceeds via setting u = g(x). Thus, the general idea when using logarithmic substi-
tutions is to try to obtain the numerator as the derivative of the denominator. For instance, consider the
integral: ∫

x

x2 + 1
dx

Here, the derivative of the denominator is 2x, so we adjust by a factor of 2 to obtain:

1
2

∫
2x

x2 + 1
dx =

1
2

ln(|x2 + 1|) + C

Note that in this case, since x2 + 1 is always positive, the absolute value can be dropped and we get
1
2 )(x2 + 1) + C. Further, this antiderivative is valid over all reals.
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4.3. Trigonometric integrals involving logarithms. Recall so far that we have seen the antiderivatives
of sin, cos, sec2, sec · tan, csc2, and csc · cot. We also used these, along with trigonometric identities, to
compute antiderivatives for sin2, cos2, tan2, and cot2. All these results were obtained as corollaries of the
differentiation formulas.

We now try to obtain a formula to integrate cot. The key idea is to note that:

cot x =
cos x

sinx
Since cos is the derivative of sin, this matches up with the general pattern that we just discussed, and we

obtain that the antiderivative of cot is ln ◦| sin |. In other words:∫
cot x dx = ln | sinx|+ C

Note that cot is undefined at multiples of π, and so any integration of this sort is valid only if the entire
interval of integration lies strictly between two consecutive multiples of π. It is also instructive to graph the
antiderivative of cot.

Here is the graph of cot and its antiderivative on the interval (0, π), where both are defined:

Similarly, we obtain: ∫
tanx dx = − ln | cos x|+ C = ln | sec x|+ C

Here is the picture of tan and − ln | cos | on the interval (−π/2, π/2), where both are defined:

Note that those two expressions are the same because cos and sec are reciprocals of each other.
Let us look at a somewhat harder integral: the integral of the secant function:∫

sec x dx =
∫

sec x(sec x + tanx)
sec x + tanx

dx =
∫

sec2 x + sec x tanx

tanx + sec x
dx

The numerator is the derivative of the denominator, and we obtain:∫
sec x dx = ln | sec x + tanx|+ C
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In a similar vein, we obtain that: ∫
csc x dx = ln | csc x− cot x|+ C

4.4. Domain and range issues. When doing indefinite integration, it is often best to forget about issues
of domain and range and just let the algebraic manipulations flow. However, to interpret the results at the
end, it is important to look at the domain and range issues. Ideally, the antiderivative should be defined and
should make sense on all intervals where the function itself is continuous. Further, if there are points where
the function is continuous but the expression obtained for the antiderivative is not defined, we should try to
obtain the limit at that point.

4.5. An application: integrating the cube of the tangent function. Let us look at an application of
the above: ∫

tan3 x dx

Before we proceed, it is worth remarking how different integration is from differentiation. For differen-
tiation, there was just the formula for differentiating sin and cos, and everything else followed using the
product rule and quotient rule. We still memorized more, but that was mainly to speed things up, not out
of necessity. With integration, on the other hand, we need to have a whole bag of ad hoc tricks that we try
one after the other.

Let us look at this integral. The key thing to do here is to break down tan3 x = tanx · tan2 x. Next, we
use tan2 x = sec2 x− 1, and we have: ∫

tanx sec2 x dx−
∫

tanx dx

The first integral can be quickly calculated using the chain rule or u-substitution, since sec2 x is the
derivative of tanx. The second integral comes from our formula, and we get:

tan2 x

2
+ ln | cos x|+ C

4.6. A fancier formula. Here is a formula that uses the chain rule twice:∫
g′(x)f(ln |g(x)|)

g(x)
dx =

∫
f(u) du

where u = ln(|g(x)|). For instance:∫
2x(ln(x2 + 1))3

x2 + 1
dx =

∫
u3 du

where u = ln(x2 + 1). This further simplifies to:

1
4
[ln(x2 + 1)]4 + C

5. More tricks and techniques

5.1. Logarithmic differentiation. Logarithmic derivatives are both a conceptual and a computational
tool. Currently, we focus on the computational aspects. The idea is to use the same formula that we
obtained earlier, but in reverse:

d

dx
ln(|g(x)|) =

g′(x)
g(x)

Rearranging the terms yields:

g′(x) = g(x)
d

dx
ln(|g(x)|)
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If g is a product of functions g1, g2, . . . , gn, then ln |g(x)| = ln |g1(x)|+ · · ·+ ln |gn(x)|, and we get:

g′(x) = g(x)
[
g′1(x)
g1(x)

+
g′2(x)
g2(x)

+ · · ·+ g′n(x)
gn(x)

]
Note that this expression is not really new and did not really require logarithms. You can in fact convince

yourself that it is just a reformulation of the product rule. When g = g1g2, for instance, this says that:

g′ = g

[
g′1
g1

+
g′2
g2

]
Substituting g = g1g2, this simplifies to the usual product rule. However, the logarithmic formulation has

some conceptual advantages.
For instance, suppose g(x) := x(x− 1)(x− 2). Then, we immediately obtain that:

g′(x)
g(x)

=
1
x

+
1

x− 1
+

1
x− 2

Further, of we have g(x) = g1(x)a1g2(x)a2 . . . gn(x)an , we obtain that:

g′(x)
g(x)

=
a1g

′
1(x)

g1(x)
+

a2g
′
2(x)

g2(x)
+ · · ·+ ang′n(x)

gn(x)
So, if g(x) = x3(x− 1)4(x− 2)5, we obtain that:

g′(x)
g(x)

=
3
x

+
4

x− 1
+

5
x− 2

5.2. Exponentiation tricks. We have already seen basic integration and differentiation identities for the
exponentiation function. There are some ways of combining these identities with the chain rule. I note some
special cases here.

(1) For any function f , the derivative of f(x)ex is (f(x) + f ′(x))ex. Thus, the integral of g(x)ex is
f(x)ex + C where f + f ′ = g.

(2) (1) is particularly useful when integrating polynomial function times ex. This is because we can use
linear algebra to find, for a given polynomial g, the unique polynomial f such that f + f ′ = g.

(3) The integral
∫

f(ex)ex dx is
∫

f(u) du where u = ex.
(4) The integral ef(x)f ′(x) dx is ef(x) + C.

Let us consider an example to illustrate this. Consider the function:

F (x) := (x2 + 5x + 1)ex

The derivative of this, by the product rule, turn out to be ex times the sum of x2+5x+1 and its derivative,
giving:

F ′(x) = (x2 + 7x + 6)ex

Note that this is a new polynomial times ex. An intersting question would be how we could reverse this
procedure, i.e., given g(x)ex where g is a polynomial, how do we find a polynomial f such that the derivaitve
of f(x)ex is g(x)ex? By the product rule, we obtain that:

g(x) = f(x) + f ′(x)
Thus, we need to find the coefficients of f . Let us do this in our concrete case where g(x) = x2 + 7x + 6.
We know that the degree of f ′ is strictly smaller than the degree of f , so f + f ′ has the same degree and

same leading coefficient as f . In this case, this forces f to be a quadratic polynomial of the form x2 +mx+n.
We then get f ′(x) = 2x + m, and we obtain that:

f(x) + f ′(x) = x2 + (m + 2)x + (m + n)
Since we are given that g(x) = x2 + 7x + 6, we can match coefficients and obtain:
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m + 2 = 7, m + n = 6
Solving, we get m = 5, and n = 1, and we get f(x) = x2 + 5x + 1, recovering our original polynomial.
Although the specific procedure involving comparing coefficients does require that we are dealing with

polynomials, the general idea remains true in a broader sense: integrating
∫

g(x)ex is equivalent to finding
a function f such that f + f ′ = g. In some cases, it is easier to think of it as an integration problem, and
in others, it is easier to think of it in terms of the differental equation f + f ′ = g. The idea that these two
apparently different computations measure the same thing is extremely important.
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EXPONENTIATION WITH ARBITRARY BASES, EXPONENTS

MATH 152, SECTION 55 (VIPUL NAIK)

Corresponding material in the book: Section 7.5.
What students should definitely get: The definition of ab, where a > 0 and b is real. The definition of

logarithm to positive base. The method of differentiating functions where the exponent (or base of logarithm)
itself is variable. Key properties of exponents and logarithms.

Executive summary

Words ...
(1) For a > 0 and b real, we define ab := exp(b ln a). This coincides with the usual definition when b is

rational.
(2) All the laws of exponents that we are familiar with for integer and rational exponents continue to

hold. In particular, a0 = 1, ab+c = ab · ac, a1 = a, and abc = (ab)c.
(3) The exponentiation function is continuous in the exponent variable. In particular, for a fixed value

of a > 0, the function x 7→ ax is continuous. When a 6= 1, it is also one-to-one with domain R and
range (0,∞), with inverse function y 7→ (ln y)/(ln a), which is also written as loga(y). In the case
a > 1, it is an increasing function, and in the case a < 1, it is a decreasing function.

(4) The exponentiation function is also continuous in the base variable. In particular, for a fixed value
of b, the function x 7→ xb is continuous. When b 6= 0, it is a one-to-one function with domain and
range both (0,∞), and the inverse function is y 7→ y1/b. In case b > 0, the function is increasing,
and in case b < 0, the function is decreasing.

(5) Actually, we can say something stronger about ab – it is jointly continuous in both variables. This
is hard to describe formally here, but what it approximately means is that if f and g are both
continuous functions, and f takes positive values only, then x 7→ [f(x)]g(x) is also continuous.

(6) The derivative of the function [f(x)]g(x) is [f(x)]g(x) times the derivative of its logarithm, which is
g(x) ln(f(x)). We can further simplify this to obtain the formula:

d

dx

(
[f(x)]g(x)

)
= [f(x)]g(x)

[
g(x)f ′(x)

f(x)
+ g′(x) ln(f(x))

]
(7) Special cases worth noting: the derivative of (f(x))r is r(f(x))r−1f ′(x) and the derivative of ag(x)

is ag(x)g′(x) ln a.
(8) Even further special cases: the derivative of xr is rxr−1 and the derivative of ax is ax ln a.
(9) The antiderivative of xr is xr+1/(r+1)+C (for r 6= −1) and ln |x|+C for r = −1. The antiderivative

of ax is ax/(ln a) + C for a 6= 1 and x + C for a = 1.
(10) The logarithm loga(b) is defined as (ln b)/(ln a). This is called the logarithm of b to base a. Note that

this is defined when a and b are both positive and a 6= 1. This satisfies a bunch of identities, most
of which are direct consequences of identities for the natural logarithm. In particular, loga(bc) =
loga(b)+loga(c), loga(b) logb(c) = loga(c), loga(1) = 0, loga(a) = 1, loga(ar) = r, loga(b) · logb(a) = 1
and so on.

Actions...
(1) We can use the formulas here to differentiate expressions of the form f(x)g(x), and even to differentiate

longer exponent towers (such as xxx

and 22x

).
(2) To solve an integration problem with exponents, it may be most prudent to rewrite ab as exp(b ln a)

and work from there onward using the rules mastered earlier. Similarly, when dealing with relative
logarithms, it may be most prudent to convert all expressions in terms of natural logairthms and
then use the rules mastered earlier.
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1. Review and definitions

1.1. Exponents: what we know. Let us consider the expression ab, with a positive. So far, we have made
sense of this expression in the following cases:

(1) b is a positive integer: In this case, ab is defined as the product of a with itself b times. This definition
is fairly general; in fact, it makes sense even when a < 0.

(2) b is an integer: If b is positive, we use (1). If b = 0, we define ab as 1, and if b < 0, we define ab as
1/a|b|.

(3) b = p/q is rational, p, q integers, q > 0: In this case, ab is defined as the unique positive real number
c such that cq = ap. The existence of such a c was not proved rigorously, but it essentially follows by
an application of the intermediate value theorem. We proceed as follows: we show that the function
x 7→ xq is less than ap for some positive x and greater than ap for some positive x, and hence, by the
intermediate value theorem, it must equal a for some positive x. The uniqueness of this is guaranteed
by the fact that the function x 7→ xq is increasing.

The notion of rational exponent has the added advantage that when the denominator is odd, it can be
extended to the negative numbers as well. Also, note that when b > 0, we define 0b = 0.

So far, exponents satisfy some laws, namely:

a0 = 1
ab+c = ab · ac

a−b =
1
ab

abc = (ab)c

For the rest of this document, where we study arbitrary real exponents b, we restrict ourselves to the
situation where the base a of exponentiation is positive.

1.2. And here’s how mathematicians would think about it. We’re not mathematicians, but since
we’re doing mathematics, it might help to think about the way mathematicians would view this. A math-
ematician would begin by defining positive exponents: things like ab where a is a positive real and b is a
positive integer. Then, the mathematician would observe that ab+c = ab · ac and abc = (ab)c. The math-
ematician would then ask: is there a way of extending the definition to encompass more values of b while
preserving these two laws of exponents? Further, is the way more or less unique or are there multiple different
extensions?

It turns out that there is a way, and it is unique, and it is exactly the way I mentioned above. In other
words, if we want exponentiation to behave such that ab+c = ab · ac and if we have it defined the usual way
for positive integers b, we are forced to define it the usual way for all integers b. Further, we are forced to
define it the way we have defined it for rational numbers b. The rules constrain us.

1.3. Real exponents: continuity the realistic constraint. We now move to the situation involving real
exponents. Unfortunately, the laws of exponents are not enough to force us to a specific definition of ab for
a positive real and b real. However, the laws of exponents, along with continuity in both a and b do turn
out to be enough to force a specific definition of ab. To see this, note that we already have defined ab for b
rational, and the rationals are dense in the reals, so to figure out the answer ab for a real value of b, we take
rationals c closer and closer to b and consider the limit of ac.

For instance, to figure out 2
√

2, we look at 2, 21.4, 21.41, and so on. Each of these is well-defined, because
in each case, the exponent is a rational number. Thus, 21.4 is the unique positive solution to x5 = 27, and
21.41 is the unique positive solution to x100 = 2141.

However, we would ideally like a clearer description that does not involve this approximation procedure.
It turns out that the exponentiation function (obtained as the inverse function to the natural logarithm
function) works out.

We define:
2



ab := exp(b ln a) = eb ln a

Note that I use the exp notation because I want to emphasize that exp is just the inverse function to ln;
it does not have an a priori meaning as exponentation. Note that this definition coincides with the usual
definition for positive integer exponents, because ab = a · a · · · · · a b times, and thus we get:

ln(ab) = b ln a

Applying exp to both sides gives:

ab = exp(b ln a)
Similarly, we can show that the definition ab := exp(b ln a) coincides with the usual definition we have

for negative integer exponents and for all rational exponents. Thus, this new definition extends the old
definition.

Next, we can use the properties of exponents and logarithms to verify:
(1) With this new definition, the general laws for exponents listed above continue to hold.
(2) Under this new definition of exponent, ab is continuous in each variable. In other words, for any

fixed a, it is a continuous function of b, and for a fixed b, it is a continuous function of a. Actually,
something stronger holds; it is jointly continuous in the two variables. However, joint continuity is
a concept that is based on ideas of multivariable calculus, and hence beyond our scope.

(3) For a fixed a 6= 1, the function x 7→ ax is a one-to-one function from R to (0,∞). When a > 1 the
function is increasing, and when a < 1, the function is decreasing.

(4) For a fixed b 6= 0, the function is a one-to-one function from (0,∞) to (0,∞). When b > 0, it is an
increasing function, and when b < 0, it is a decreasing function.

2. More perspective: exponents, logarithms, and radicals

2.1. Addition, multiplication, and exponentiation. The inverse operation corresponding to addition
is subtraction, and the inverse operation corresponding to multiplication is division. What is the inverse
operation corresponding to exponentiation? The answer turns out to be tricky, because there are a couple
of nice things about addition and multiplication that are no longer true for exponentiation:

(1) Addition and multiplication are both commutative: We have the remarkable fact that a + b = b + a
and ab = ba for any a and b. On the other hand, exponentiation is not commutative. In fact, as we
might see some time later, for every a ∈ (0,∞), there exist at most two values of b ∈ (0,∞) such
that ab = ba, and one of those two values is a. For instance, the only numbers b for which 2b = b2

are b = 2 and b = 4.
(2) Addition and multiplication are both associative: We have the remarkable fact that a + (b + c) =

(a + b) + c and a(bc) = (ab)c. On the other hand, exponentiation is not associative, i.e., it is not
true in general that a(bc) = (ab)c. This is because (ab)c = abc, and so the equality would give that
bc = bc, which is very rare.

The noncommutativity of exponentiation would mean that there are two notions of inverse operation: a
left inverse operation and a right inverse operation. The nonassociativity would mean that these inverse
operations behave very differently from subtraction and division, and the analogy cannot be stretched too
far.

2.2. Radicals and logarithms. There are two kinds of inverse operations to the ab operation. The first is
to find solutions x to the equation:

xb = c

Such a solution is a bth root or bth radical of c, and is given by:

x = c1/b

It is also denoted as:
3



x = b√c

Note that as per our general discussion of the ab function, we see that this is well-defined and unique if
b 6= 0.

The other kind of inverse operation we may want is to solve the equation:

ax = c

To solve this, we need to use the definition:

exp(x ln a) = c

Taking ln both sides, we obtain:

x ln a = ln c

Thus, we get that if a 6= 1:

x =
ln c

ln a

Note that the uniqueness of x corresponds to the fact, observed earlier, that for fixed a, the map x 7→ ax

is one-to-one.
This solution x is also written as:

x = loga c

This is often read as logarithm of c to base a. The map c 7→ loga(c) is called taking logarithms to base a.
As shown above, it is equivalent to taking natural logarithms and dividing by ln a.

The upshot is that we define:

loga(c) :=
ln c

ln a

where a, c are both positive and a 6= 1. In particular, logarithms cannot be taken to base 1. Taking
logarithms to base 1 is like division by zero, a forbidden operation.

2.3. Properties of logarithms. We have the following notable properties of logarithms, where we assume
that all elements appearing in the base of the logarithm are positive and not equal to 1, and all elements
whose logarithm is being taken are positive:

loga(bc) = loga(b) + loga(c)
loga(bc) = c loga(b)

loga(1/b) = − loga(b)
loga(1) = 0
loga(a) = 1

loga(ar) = r

log1/a(b) = − loga(b)

loga(b) logb(c) = loga(c)

logb(a) =
1

loga(b)

All of these follow from the definition and the corresponding properties of ln, which follow from its
definition as the antiderivative of the reciprocal function.
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2.4. Absolute and relative: natural bases and the bases for their naturality. We can think of
logarithm to a given base as measuring a relative logarithm. The natural logarithm is the logarithm to
base e, which is the natural logarithm, in that the base e is the natural choice for a base. This behavior of
logarithms is very similar to, for instance, the behavior of refractive indices for pairs of media through which
light travels. For any pair of media, we can define a refractive index of the pair, but the natural base with
respect to which we measure refractive index is vacuum. Natural logarithms play the role of vacuum: the
natural base choice.

There are two other common choices of base for logarithms. One is base 10, which has no sound mathe-
matical reason. The reason for taking logarithms to base 10 is because it is easy to compute the logarithm
of any number by writing it in scientific notation using a table of logarithm values for numbers from 1 to
10. This allows us to use logarithms to base 10 as a convenient tool for multiplication, a convenience that
seems to have been rendered moot in recent times with the proliferation of calculators.

The second natural choice of base for logarithms, which we will talk about next time, is logarithms to
base 2. These come up for three reasons, listed below. We will return to some of these reasons in more detail
when we study exponential growth and decay next quarter.

(1) Halving and doubling are operations to which humans relate easily. We measure and record the
half-life of radioactive substances, talk of the time it takes for a country to double its GDP, and
routinely hear campaign rhetoric and promotional NGO material that talks of doubling and halving
arbitrary indicators. The reason is not that 2 has any special mathematical or real-world significance
(or plausibility, in the case of politicians and NGOs) but rather, that it is easy for people to (believe
they) understand. It’s a lot less exciting to make a campaign promise to multiply the number of tax
breaks or subsidies or scholarships by e, even though e > 2.

(2) The second reason is perhaps more legitimate. In computer science algorithms, it is customary
to use divide-and-conquer strategies that work by breaking a problem up into two roughly equal
subproblems, and solving both of them separately. The amount of time and resources needed to solve
problems using such strategies typically involves a logarithm to base 2, since that is the number of
times you need to keep dividing the problem into two equal parts until you get to problems of size
1. Thus, logarithms to base 2 frequently pop up in measuring the time and space requirements of
algorithms. Similarly, in psychology and the study of human cognition and information processing,
logarithms to base 2 play a role if we hypothesize that humans perform complex tasks by using
divide-and-conquer strategies.

(3) The third reason has to do with biology, more specifically with the reproduction strategies of some
unicellular organisms. These organisms divide into two organisms. This form of asexual reproduction
is termed binary fission. Other reproduction strategies or behaviors may also be associated with
logarithms to base 2 or 3, because of the discrete nature of numbers of offspring and number of
parents.

One way of thinking about this is that logarithms to base 2 are more natural when working with finite,
discrete problems while logarithms to base e are more common when dealing with continuous processes.

3. Applications to differentiation and integration

3.1. Differentiating functions with variables in the exponent. We are now in a position to discuss
the general procedure for differentiation the function f(x)g(x), where f is a positive-valued function and g is
a real-valued function.

To differentiate, note that:

f(x)g(x) = exp(g(x) ln(f(x)))

We use logarithmic differentation and simplify to get:

(fg)′(x) = (fg)(x)
d

dx
[g(x) ln(f(x))]

This can further be simplified using the product rule:
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(fg)′(x) = (f(x))g(x)

[
g′(x) ln(f(x)) +

g(x)f ′(x)
f(x)

]
Two special cases are worth noting:
(1) The case where g(x) is a constant function with value r. In this case, the derivative just becomes

rf(x)r−1f ′(x). An even further special case is where g(x) := r and f(x) := x, in which case we
obtain rxr−1. This is the familiar rule for differentiating power functions that we saw, but now, we
have established this rule for all real exponents, not just for the rational ones.

(2) The case where f(x) is a constant function with value a. In this case, the derivative is ag(x)g′(x) ln a.
In the further special case where g(x) = x, we obtain ax ln a. In other words, the derivative of ax

with respect to x is ax ln a.

3.2. Key special case formula summary.
d

dx
(xr) = rxr−1

d

dx
(ax) = ax ln a∫

xr dx = { xr+1/(r + 1) + C, r 6= −1
ln |x|+ C, r = −1∫

ax dx = {
ax

ln a + C, a 6= 1
x + C, a = 1

Note: We don’t need to put the |x| in the ln antiderivative if the exponent is irrational because xr isn’t
even defined for irrational exponents, so lnx + C is a valid answer for irrational exponents.

3.3. Differentiating logarithms where both pieces are functions. Consider:

d

dx

[
logf(x)(g(x))

]
To carry out this differentiate, we first rewrite the logarithm as a quotient of natural logarithms:

d

dx

[
ln(g(x))
ln(f(x))

]
Note that the base of the logarithm has its ln in the denominator.
We now use the quotient rule and get:

ln(f(x))g′(x)/g(x)− ln(g(x))f ′(x)/f(x)
(ln(f(x)))2

4. Fun miscellanea

4.1. Dimension and sense of proportion. [This is optional – will cover only if I have time.]
When you double the lengths, the areas become four times their original value, and the volumes become

eight times their original value. More generally, when you scale lengths by a factor of λ, the areas get scaled
by a factor of λ2, and the volumes gets scaled by a factor of λ3.

The exponent of 2 occurs because area is two-dimensional and the exponent of 3 occurs because volume
is three-dimensional.

Suppose there is a certain physical quantity such that, when we scale lengths by a factor of λ 6= 1, that
quantity scales by a factor of µ. What is the dimension of that quantity? It is the value d such that λd = µ.
With our new understanding of logarithms, we can write:

d := logλ(µ) =
lnµ

lnλ
When we put it this bleakly, it does not seem a foregone conclusion that d must be a positive integer. In

fact, there is a whole range of physical objects that have positive measure in fractal dimension, i.e., there
are quantities that we associate with them whose dimension is not an integer. For instance, there are certain
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sets such as Cantor sets that we design in such a way that when we triple the lengths, the size of those
objects doubles. Thus, the dimension of such an object is:

ln 2
ln 3

≈ 0.7
1.1

≈ 0.63

Similarly, there are sets with the property that when you double lengths they increase by a factor of three
times. The dimension of such sets is:

ln 3
ln 2

≈ 1.1
0.7

≈ 1.57
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