
INTRODUCTION TO DERIVATIVES

MATH 152, SECTION 55 (VIPUL NAIK)

Corresponding material in the book: Sections 3.1, 3.2, 3.3, 3.5.
Difficulty level: Moderate if you remember derivatives to at least the AP Calculus level. Otherwise,

hard. Some things are likely to be new.
Covered in class?: Yes, but we’ll go very quickly over most of the stuff that you would have seen at

the AP level, and will focus much more on the conceptual interpretation and the algebraic-verbal-graphical-
numerical nexus.

What students should definitely get: The definition of derivative as a limit. The fact that the left-
hand derivative equals the left-hand limit and the right-hand derivative equals the right-hand limit. Also,
the derivative is the slope of the tangent to the graph of the function. Graphical interpretation of tangents
and normals. Finding equations of tangents and normals. Leibniz and prime notation. The sum rule,
difference rule, product rule, and quotient rule. The chain rule for composition. Differentiation polynomials
and rational functions.

What students should hopefully get: The idea of derivative as an instantaneous rate of change, the
notion of difference quotient and slope of chord, and the fact that the definitions of tangent that we use for
circles don’t apply for general curves. How to find tangents and normals to curves from points outside them.
Subtle points regarding tangent lines.

Executive summary

0.1. Derivatives: basics. Words ...

(1) For a function f , we define the difference quotient between w and x as the quotient (f(w)−f(x))/(w−
x). It is also the slope of the line joining (x, f(x)) and (w, f(w)). This line is called a secant line.
The segment of the line between the points x and w is sometimes termed a chord.

(2) The limit of the difference quotient is defined as the derivative. This is the slope of the tangent line
through that point. In other words, we define f ′(x) := limw→x

f(w)−f(x)
w−x . This can also be defined

as limh→0
f(x+h)−f(x)

h .
(3) If the derivative of f at a point x exists, the function is termed differentiable at x.
(4) If the derivative at a point exists, then the tangent line to the graph of the function exists and its

slope equals the derivative. The tangent line is horizontal if the derivative is zero. Note that if the
derivative exists, then the tangent line cannot be vertical.

(5) Here are some misconceptions about tangent lines: (i) that the tangent line is the line perpendicular
to the radius (this makes sense only for circles) (ii) that the tangent line does not intersect the curve
at any other point (this is true for some curves but not for others) (iii) that any line other than the
tangent line intersects the curve at at least one more point (this is always false – the vertical line
through the point does not intersect the curve elsewhere, but is not the tangent line if the function
is differentiable).

(6) In the Leibniz notation, if y is functionally dependent on x, then ∆y/∆x is the difference quotient –
it is the quotient of the difference between the y-values corresponding to x-values. The limit of this,
which is the derivative, is dy/dx.

(7) The left-hand derivative of f is defined as the left-hand limit for the derivative expression. It is
limh→0−

f(x+h)−f(x)
h . The right-hand derivative is limh→0+

f(x+h)−f(x)
h .

(8) Higher derivatives are obtained by differentiating again and again. The second derivative is the
derivative of the derivative. The nth derivative is the function obtained by differentiating n times.
In prime notation, the second derivative is denoted f ′′, the third derivative f ′′′, and the nth derivative
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for large n as f (n). In the Leibniz notation, the nth derivative of y with respect to x is denoted
dny/dxn.

(9) Derivative of sum equals sum of derivatives. Derivative of difference is difference of derivatives.
Scalar multiples can be pulled out.

(10) We have the product rule for differentiating products: (f · g)′ = f ′ · g + f · g′.
(11) We have the quotient rule for differentiating quotients: (f/g)′ = (g · f ′ − f · g′)/g2.
(12) The derivative of xn with respect to x is nxn−1.
(13) The derivative of sin is cos and the derivative of cos is − sin.
(14) The chain rule says that (f ◦ g)′ = ((f ′ ◦ g) · g′

Actions ...

(1) We can differentiate any polynomial function of x, or a sum of powers (possibly negative powers or
fractional powers), by differentiating each power with respect to x.

(2) We can differentiate any rational function using the quotient rule and our knowledge of how to
differentiate polynomials.

(3) We can find the equation of the tangent line at a point by first finding the derivative, which is the
slope, and then finding the point’s coordinates (which requires evaluating the function) and then
using the point-slope form.

(4) Suppose g and h are everywhere differentiable functions. Suppose f is a function that is g to the left
of a point a and h to the right of the point a, and suppose f(a) = g(a) = h(a). Then, the left-hand
derivative of f at a is g′(a) and the right-hand derivative of f at a is h′(a).

(5) The kth derivative of a polynomial of degree n is a polynomial of degree n− k, if k ≤ n, and is zero
if k > n.

(6) We can often use the sum rule, product rule, etc. to find the values of derivatives of functions
constructed from other functions simply using the values of the functions and their derivatives at
specific points. For instance, (f · g)′ at a specific point c can be determined by knowing f(c), g(c),
f ′(c), and g′(c).

(7) Given a function f with some unknown constants in it (so a function that is not completely known)
we can use information about the value of the function and its derivatives at specific points to
determine those constant parameters.

0.2. Tangents and normals: geometry. Words...

(1) The normal line to a curve at a point is the line perpendicular to the tangent line. Since the tangent
line is the best linear approximation to the curve at the point, the normal line can be thought of as
the line best approximating the perpendicular line to the curve.

(2) The angle of intersection between two curves at a point of intersection is defined as the angle between
the tangent lines to the curves at that point. If the slopes of the tangent lines are m1 and m2, the
angle is π/2 if m1m2 = −1. Otherwise, it is the angle α such that tanα = |m1 −m2|/(|1 + m1m2|).

(3) If the angle between two curves at a point of intersection is π/2, they are termed orthogonal at that
point. If the curves are orthogonal at all points of intersection, they are termed orthogonal curves.

(4) If the angle between two curves at a point of intersection is 0, that means they have the same tangent
line. In this case, we say that the curves touch each other or are tangent to each other.

Actions...

(1) The equation of the normal line to the graph of a function f at the point (x0, f(x0)) is f ′(x0)(y −
f(x0)) + (x− x0) = 0. The slope is −1/f ′(x0).

(2) To find the angle(s) of intersection between two curves, we first find the point(s) of intersection, then
compute the value of derivative (or slope of tangent line) to both curves, and then finally plug that
in the formula for the angle of intersection.

(3) It is also possible to find all tangents to a given curve, or all normals to a given curve, that pass
through a given point not on the curve. To do this, we set up the generic expression for a tangent
line or normal line to the curve, and then plug into that generic expression the specific coordinates
of the point, and solve. For instance, the generic equation for the tangent line to the graph of a
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function f is y − f(x1) = f ′(x1)(x− x1) where (x1, f(x1)) is the point of tangency. Plugging in the
point (x, y) that we know the curve passes through, we can solve for x1.

(4) In many cases, it is possible to determine geometrically the number of tangents/normals passing
through a point outside the curve. Also, in some cases, the algebraic equations may not be directly
solvable, but we may be able to determine the number and approximate location of the solutions.

0.3. Deeper perspectives on derivatives. Words... (these points were all seen in the quiz on Chapter 3)

(1) A continuous function that is everywhere differentiable need not be everywhere continuously differ-
entiable.

(2) If f and g are functions that are both continuously differentiable (i.e., they are differentiable and
their derivatives are continuous functions), then f + g, f − g, f · g, and f ◦ g are all continuously
differentiable.

(3) If f and g are functions that are both k times differentiable (i.e., the kth derivatives of the functions
f and g exist), then f + g, f − g, f · g, and f ◦ g are also k times differentiable.

(4) If f and g are functions that are both k times continuously differentiable (i.e., the kth derivatives
of both functions exist and are continuous) then f + g, f − g, and f · g, and f ◦ g are also k times
continuously differentiable.

(5) If f is k times differentiable, for k ≥ 2, then it is k − 1 times continuously differentiable, i.e., the
(k − 1)th derivative of f is a continuous function.

(6) If a function is infinitely differentiable, i.e., it has kth derivatives for all k, then its kth derivatives
are continuous functions for all k.

1. Bare-bones introduction

1.1. Down and dirty with derivatives. The order in which I’ll do things is to quickly introduce to you
the mathematical formalism for derivatives, which is really quite simple, and give you a quick idea of the
conceptual significance, and we’ll return to the conceptual significance from time to time, as is necessary.

The derivative of a function at a point measures the instantaneous rate of change of the function at the
point. In other words, it measures how quickly the function is changing. Or, it measures the velocity of the
function. These are vague ideas, so let’s take a closer look.

Let’s say I am riding a bicycle on a road, and I encounter a sign saying “speed limit: 30 mph”. Well, that
sign basically says that the speed limit should be 30 mph, but what speed is it refering to? We know that
speed is distance covered divided by time taken, but if I start out from home in the morning, get stuck in a
traffic jam on my way, and then, once the road clears, ride at top speed to get to my destination, I might
have take five hours to just travel five miles. So my speed is 1 mile per hour. But may be I still went over
the speed limit, because may be it was the case that at the point where I crossed the speed limit sign, I was
going really really fast. So, what’s really relevant isn’t my average speed from the moment I began my ride
to the moment I ended, but the speed at the particular instant that I crossed that sign. But how do we
measure the speed at a particular instant?

Well, one thing I could do is may be measure the time it takes me to get from the lamp post just before
that sign to the lamp post just after that sign. So if that distance is a and the time it took me to travel
that distance is b, then the speed is a/b. And that might be a more relevant indicator since it is the speed
in a small interval of time around where I saw that sign. But it still does not tell the entire story, because it
might have happened that I was going pretty fast between the lamp posts, but I slowed down for a fraction
of a second while crossing that sign. So may be I still didn’t technically break the law because I was slow
enough at the instant that I was crossing the sign.

What we’re really trying to measure here is the change in my position, or the distance I travel, divided
by the time, but we’re trying to measure it for a smaller and smaller interval of time around that crucial
time point when I cross the signpost. Smaller and smaller and smaller and smaller... this suggests that a
limit lurks, and indeed it does.

Let’s try to formalize this. Suppose the function giving my position in terms of time is f . So, for a time
t, my position is given by f(t). And let’s say that the point in time when I crossed the sign post was the
point c. That means that at time t = c, I crossed the signpost, which is located at the point f(c).
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Now, let’s say I want to calculate my speed immediately after I cross the sign post. So I pick some t that’s
just a little larger than c, and I look at the speed from time c to time t. What I get is:

f(t)− f(c)
t− c

This gives the average speed from time c to time t. How do we narrow this down to t = c? If we try to
plug in t = c in the formula, we get something of the form 0/0, which is not defined. So, what do we do?

This is where we need the crucial idea – we need the idea of a limit. So, the instantaneous speed just
after crossing the signpost is defined as:

lim
t→c+

f(t)− f(c)
t− c

This is the limit of the average speed over the time interval [c, t], as t approaches c from the right side.
Similarly, the instantaneous speed just before crossing the signpost is:

lim
t→c−

f(c)− f(t)
c− t

= lim
t→c−

f(t)− f(c)
t− c

Notice that both these are taking limits of the same expression, except that one is from the right and one
is from the left. If both limits exist and are equal, then this is the instantaneous speed. And once we’ve
calculated the instantaneous speed, we can figure out whether it is greater than what the signpost capped
speed at.

1.2. Understanding derivatives – formal definition. The derivative of a function f at a point x is
defined as the following limit, if it exists:

f ′(x) := lim
w→x

f(w)− f(x)
w − x

if this limit exists! If the limit exists, then we say that the function f is differentiable at the point x and
the value of the derivative is f ′(x).

The left-hand derivative is defined as the left-hand limit for the above expression:

lim
w→x−

f(w)− f(x)
w − x

The right-hand derivative is defined as the right-hand limit for the above expression:

lim
w→x+

f(w)− f(x)
w − x

The expression whose limit we are trying to take in each of these cases is sometimes called a difference
quotient – it is the quotient between the difference in the function values and the difference in the input
values to the function.

So, in words:

The derivative of f at x = The limit, as w approaches x, of the difference quotient of f between w and x

Now, what I’ve told you so far is about all that you need to know – the basics of the definition of derivative.
But the typical way of thinking about derivatives uses a slightly different formulation of the definition, so
I’ll just talk about that. That’s related to the idea of substituting variables.

1.3. More conventional way of writing derivatives. Recall that limw→x g(w) = limh→0 g(x + h). This
is one of those rules for substitution we use to evaluate some trigonometric limits. And we typically use this
rule when writing down the definition of derivatives. So, with the h→ 0 convention, we define:

f ′(x) := lim
h→0

f(x + h)− f(x)
h

What this is saying is that what we’re trying to measure is the quotient of the difference in the values
of f for a small change in the value of the input for f , near x. And then we’re taking the limit as the
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increment gets smaller and smaller. So, with this notation, the left-hand derivative becomes the above limit
with h approaching 0 from the negative side and the right-hand derivative becomes the above limit with h
approaching 0 from the positive side. In symbols:

LHD of f at x = lim
h→0−

f(x + h)− f(x)
h

and:

RHD of f at x = lim
h→0+

f(x + h)− f(x)
h

1.4. Preview of graphical interpretation of derivatives. Consider the graph of the function f , so we
have a graph of y = f(x). Then, say we’re looking at two points x and w, and we’re interested in the
difference quotient:

f(w)− f(x)
w − x

What is this measuring? Well, the point (x, f(x)) represents the point on the graph with its first coordinate
x, and the point (w, f(w)) represents the point on the graph with its first coordinate w. So, what we’re doing
is taking these two points, and taking the quotient of the difference in their y-coordinates by the difference in
their x-coordinates. And, now this is the time to revive some of your coordinate geometry intuition, because
this is essentially the slope of the line joining the points (x, f(x)) and (w, f(w)). Basically, it is the rise over
the run – the vertical change divided by the horizontal change.

So, one way of remembering this is that:

Difference quotient of f between points x and w = Slope of line joining (x, f(x)) and (w, f(w))
5



Also, note that the difference quotient is symmetric in x and w, in the sense that if we interchange the
roles of the two points, the difference quotient is unaffected. So is the slope of the line joining the two points.

Now, let’s try to use this understanding of the difference quotient as the slope of the line joining two points
to understand what the derivative means geometrically. So, here’s some terminology – this line joining two
points is termed a secant line. The line segment between the two points is sometimes called a chord – just
like you might have seen chords and secants for circles, we’re now using the terminology for more general
kinds of curves.

So, what we’re trying to do is understand: as the point w gets closer and close to x, what happens to
the slope of the secant line? Well, the pictures make it clear that what’s happening is that the secant line
is coming closer and closer to a line that just touches the function at the point (x, f(x)) – what is called the
tangent line. So, we get:

Derivative of f at x = Slope of tangent line to graph of f at (x, f(x))
6



1.5. More on the tangent line. I’ll have a lot to say on the tangent line and derivatives – our treatment
of these issues has barely scratched the surface so far. But before proceeding too much, here’s just one very
important point I want to make.

Some of you have done geometry and you’ve seen the concept of tangent lines to circles. You’ll recall that
the tangent line at a point on a circle can be defined in a number of ways: (i) as the line perpendicular to
the line joining the point to the center of the circle (the latter is also called the radial line), and (ii) as the
unique line that intersects the circle at exactly that one point.

Now, it’s obvious that you need to discard definition (i) when thinking about tangent lines to general
curves, such as graphs of functions. That’s because a curve in general has no center. It doesn’t even have
an inside or an outside. So definition (i) doesn’t make sense.

But definition (ii) makes sense, right? Well, it makes sense, but it is wrong. For general curves, it is
wrong. It’s wrong because, first, the tangent line may well intersect the curve at other points, and second,
there may be many non-tangent lines that also intersect the curve at just that one point.

For instance, consider the function f(x) := sinx. We know the graph of this function. Now, our intuition
of the tangent line should say that, at the point x = π/2, the tangent line should be the limit of chords
between π/2 and very close points, and those chords are becoming almost horizontal, so the tangent line
should be horizontal. But – wow! The tangent line intersects the graph of the function at infinitely many
other points. So banish from your mind the idea that the tangent line doesn’t intersect the curve anywhere
else.

And, there are other lines that are very much not tangent lines that intersect the curve at exactly that
one point. For instance, you can make the vertical line through the point (π/2, 1), so that’s the line x = π/2,
and that intersects the curve at exactly one point – but it’s far from the tangent line! And you can make a
lot of other lines – ones that are close to vertical, that intersect the curve at exactly that one point, but are
not tangential.
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So, thinking of the tangent line as the line that intersects the curve at exactly that one point is a flawed
way of thinking about tangent lines. So what’s the right way? Well, one way is to think of it as a limit of
secant lines, which is what we discussed. But if you want a way of thinking that isn’t really limits-based,
think of it as the line best line approximating the curve near the point. It’s the answer to the question: if
we wanted to treat this function as a linear function near the point, what would that linear function look
like? Or, you can go back to the Latin roots and note that tangent comes from touch, so the feeling of just
touching, or just grazing, is the feeling you should have.

1.6. Actual computations of derivatives. Suppose we have f(x) := x2. We want to calculate f ′(2).
How do we do this?

Let’s use the first definition, in terms of w, which gives:

f ′(2) = lim
w→2

w2 − 4
w − 2

= lim
w→2

(w + 2)(w − 2)
w − 2

= lim
w→2

(w + 2) = 4

So, there, we have it, f ′(2) = 4.
Now this is the time to pause and think one level more abstractly. We have a recipe that allows us to

calculate f ′(x) for any specific value of x. But it seems painful to have to do the limit calculation for each
x. So if I now want to find f ′(1), I have to do that calculation again replacing the 2 by 1. So, in order to
save time, let’s try to find f ′(x) for a general value of x.

f ′(x) = lim
w→x

w2 − x2

w − x
= lim

w→x

(w + x)(w − x)
w − x

= lim
w→x

(w + x) = 2x

Just to illustrate, let me use the h→ 0 formulation:

f ′(x) = lim
h→0

(x + h)2 − x2

h
= lim

h→0

h(2x + h)
h

= lim
x→0

(2x + h) = 2x

So good, both of these give the same answer, so we now have a general formula that say that for f(x) = x2,
f ′(x) = 2x.

Note that this says that the function f is differentiable everywhere, which is a pretty strong statement,
and the derivative is itself a continuous function, namely the linear function 2x.

Let’s see what this means graphically. The graph of f(x) := x2 looks like a parabola. It passes through
(0, 0). What the formula tells us is that f ′(0) = 0. Which means that the tangent at 0 is horizontal, which
it surely is. The formula tells us that f ′(1) = 2, so the tangent line at 1 has its y-coordinate rising twice
as fast as its x-coordinate, which is again sort of suggested by the graph. f ′(2) = 4, f ′(3) = 6, and so on.
Which means that the slope of the tangent line increases as x gets larger – again, suggested by the graph
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– it’s getting steeper and steeper. And for x < 0, f ′(x) is negative, which is again pictorially clear because
the slope of the tangent line is negative.

Let’s do one more thing: write down the equation of the tangent line at x = 3. Remember that if a line
has slope m and passes through the point (x0, y0), then the equation of the line is given by:

y − y0 = m(x− x0)
This is called the point-slope form.
So what do we know about the point x = 3? For this point, the value of the function is 9, so one point

that we for sure know is on the tangent line is the point (3, 9). And the tangent line has slope 2(3) = 6. So,
plugging into the point-slope form, we get:

y − 9 = 6(x− 3)
And that’s it – that’s the equation of the line. You can rearrange stuff and rewrite this to get:

6x− y = 9

1.7. Differentiable implies continuous. Important fact: if f is differentiable at the point x, then f is
continuous at the point x. Why? Below is a short proof.

Consider, for h 6= 0:

f(x + h)− f(x) =
f(x + h)− f(x)

h
· h

Now, taking the limit as h→ 0, and using the fact that f is differentiable at x, we get:

lim
h→0

(f(x + h)− f(x)) = lim
h→0

f(x + h)− f(x)
h

· lim
h→0

h

The first limit on the right is f ′(x), and the second limit is 0, so the product is 0, and we get:

lim
h→0

(f(x + h)− f(x)) = 0

Since f(x) is a constant (independent of h) it can be pulled out of the limit, and rearranging, we get:

lim
h→0

f(x + h) = f(x)

Which is precisely what it means to say that f is continuous at x.
What does this mean intuitively? Well, intuitively, for f to be differentiable at x means that the rate of

change at x is finite. But if the function is jumping, or suddenly changing value, or behaving in any of those
odd ways that we saw could occur at discontinuities, then the instantaneous rate of change wouldn’t make
sense. It’s like if you apparate/teleport, you cannot really measure the speed at which you traveled. So, we
can hope for a function to be differentiable at a point only if it’s continuous at the point.

Aside: Differentiability and the ε− δ definition. (Note: This is potentially confusing, so ignore it if it
confuses you). The derivative of f at x = p measures the rate of change of f at c. Suppose the derivative
value is ν = f ′(p). Then, this means that, close to c, the graph looks like a straight line with slope ν and
passing through (p, f(p)).

If it were exactly the straight line, then the strategy for an ε − δ proof would be to pick δ = ε/|ν|. In
practice, since the graph is not exactly a straight line, we need to pick a slightly different (usually smaller) δ
to work. Recall that for f a quadratic function ax2 + bx+ c, we chose δ = min{1, ε/(|a|+ |2ap+ b|)}. In this
case, ν = 2ap + b. However, to make the proof go through, we need to pad an extra |a| in the denominator,
and that extra padding is because the function isn’t quite linear.

1.8. Derivatives of linear and constant functions. You can just check this – we’ll deal more with this
in the next section:

(1) The derivative of a constant function is zero everywhere.
(2) The derivative of a linear function f(x) := ax + b is everywhere equal to a.
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1.9. Handling piecewise definitions. Let’s think about functions defined piecewise. In other words, let
us think about functions that change definition, i.e., that are governed by different definitions on different
parts of the domain. How do we calculate the derivative of such a function?

The first rule to remember is that the derivative of a function at a point depends only on what happens
at the point and very close to the point. So, if the point is contained in an open interval where one definition
rules, then we can just differentiate the function using that definition. On the other hand, if the point is
surrounded, very closely, by points where the function takes different definitions, we need to handle all these
definitions.

Let’s begin with the signum function. Define f(x) = x/|x| for x 6= 0, and define f(0) = 0. So f is constant
at −1 for x < 0, f(0) = 0, and f is constant at 1 for x > 0.

So,what can we say about the derivative of f? Well, think about what’s happening for x = −3, say.
Around x = −3, the function is constant at −1. Yes, it’s going to change its value far in the future, but
that doesn’t affect the derivative. The derivative is a local measurement. So we simply need to calculate the
derivative of the function that’s constant-valued to −1, for x = −3. You can apply the definition and check
that the derivative is 0, which makes sense, because constant functions are unchanging.

Similarly, at the point x = 4, the function is constant at 1 around the point, so the derivative is against
0.

What about the point x = 0? Here, you can see that the function isn’t continuous, because it’s jumping,
so the derivative is not defined. So the derivative of f is the function that is 0 for all x 6= 0, and it isn’t
defined at x = 0.

Let’s look at another function, this time g(x) := |x|. For x < 0, this function is g(x) = −x, and for x > 0,
this function is g(x) = x. The crucial thing to note here is that g is continuous at 0, so both definitions –
the definition g(x) = x and the definition g(x) = −x apply at x = 0.
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For x < 0, for instance, x = −3, we can treat the function as g(x) = −x, and differentiate this function,
What we’ll get is that g′(x) = −1 for x < 0. And for x > 0, we can use g(x) = x, so the derivative, which
we can again calculate, is g′(x) = 1 for all x > 0.

But what about x = 0? The function is continuous at x = 0, so we cannot do the cop-out that we did last
time. So we need to think in terms of left and right: calculate the left-hand derivative and the right-hand
derivative.

Now, the important idea here is that since the definition g(x) = −x also applies at x = 0, the formula
for g′ that we calculated for −x also applies to the left-hand derivative at 0. So the left-hand derivative at
x = 0 is −1, which again you can see from the graph. And the right-hand derivative at x = 0 is +1, because
the g(x) = x definition also applies at x = 0.

So, the function g′ is −1 for x negative, and +1 for x positive, but it isn’t defined for x = 0. However,
the left-hand derivative at 0 is defined – it’s −1. And so is the right-hand derivative – it’s +1.

So, the upshot is: Suppose a function f has a definition f1 to the left of c and a definition f2 to the right
of c, and both definitions give everywhere differentiable functions on all real numbers:

(1) f is differentiable at all points other than c.
(2) If f1(c) = f2(c) and these agree with f(c), then f is continuous at c.
(3) If f is continuous from the left at c, the left-hand derivative at c equals the value of the derivative

f ′1 evaluated at c.
(4) If f is continuous from the right at c, the right-hand derivative at c equals the value of the derivative

f ′2 evaluated at c.
(5) In particular, if f is continuous at c, and f ′1(c) = f ′2(c), then f is differentiable at c.

Here is an example of a picture where the function is continuous but changes direction, so the one-sided
derivatives exist but are not equal:

1.10. Three additional examples.

f(x) := { x2, x ≤ 0
x3, x > 0

Here f1(x) = x2 and f2(x) = x3. Both piece functions are differentiable everywhere. Note that f is
continuous at 0, since f1(0) = f2(0) = 0. The left hand derivative at 0 is f ′1(x) = 2x evaluated at 0, giving
0. The right hand derivative at 0 is f ′2(x) = 3x2 evaluated at 0, giving 0. Since both one-sided derivatives
agree, f is differentiable at 0 and f ′(0) = 0.

Now consider the example:
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f(x) := { x2 + 1, x ≤ 0
x3, x > 0

This function is not continuous at 0 because the two functions x2 +1 and x3 do not agree at 0. Note that
since 0 is included in the left definition, f is left continuous at 0, and f(0) = 1. We can also calculate the
left hand derivative: it is 2x evaluated at 0, which is 2 · 0 = 0.

However, since the function is not continuous from the right at 0, we cannot calculate the right hand
derivative by plugging in the derivative of x3 at 0. In fact, we should not feel the need to do so, because the
function is not right continuous at 0, so there cannot be a right hand derivative.

Finally, consider the example:

f(x) := { x, x ≤ 0
x3, x > 0

This function is continuous at 0, and f(0) = 0. The left hand derivative at 0 is 1 and the right hand
derivative is 3(0)2 = 0. Thus, the function is not differentiable at 0, though it has one-sided derivatives.

1.11. Existence of tangent and existence of derivative. Our discussion basically pointed to the fact
that, for a function f defined around a point x, if the derivative of f at x exists, then there exists a tangent
to the graph of f at the point (x, f(x)) and the slope of that tangent line is f ′(x). There are a few subtleties
related to this:

(1) If both the left-hand derivative and the right-hand derivative at a point are defined, but are not
equal, then the left-hand derivative is the tangent to the graph on the left side and the right-hand
derivative is the tangent to the graph on the right side. There is no single tangent to the whole
graph at the point.

(2) In some cases, the tangent to the curve exists and is vertical. If the tangent exists and is vertical,
then the derivative does not exist. In fact, a vertical tangent is the only situation where the tangent
exists but the derivative does not exist.

An example of this is the function f(x) = x1/3 at the point x = 0. See Page 110 of the book for a more
detailed discussion of this. We will get back to this function (and the general notion of vertical tangent) in
far more gory detail in the near future.

2. Rules for computing derivatives

2.1. Quick recap. Before proceeding further, let’s recall the definition of the derivative.
If f is a function defined around a point x, we define:

f ′(x) := lim
h→0

f(x + h)− f(x)
h

= lim
w→x

f(w)− f(x)
w − x

The left-hand derivative is defined as:

f ′l (x) := lim
h→0−

f(x + h)− f(x)
h

= lim
w→x−

f(w)− f(x)
w − x

The right-hand derivative is defined as:

f ′r(x) := lim
h→0+

f(x + h)− f(x)
h

= lim
w→x+

f(w)− f(x)
w − x

(The subscripts l and r are not standard notation, but are used for simplicity here).
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2.2. Differentiating constant and linear functions. Suppose a function f is constant with constant
value k. We want to show that the derivative of f is zero everywhere. Let’s calculate the derivative of f .

f ′(x) = lim
h→0

f(x + h)− f(x)
h

= lim
h→0

k − k

h
= lim

h→0
0 = 0

So the derivative of a constant function is zero. And this makes sense because the derivative is the rate
of change of the function. And a constant function is unchanging, so its derivative is zero.

Let’s look at the derivative of a linear function f(x) := ax + b. Let’s calculate the derivative:

f ′(x) = lim
h→0

f(x + h)− f(x)
h

= lim
h→0

a(x + h) + b− (ax + b)
h

= lim
h→0

ah

h
= a

So, for the function f(x) = ax + b, the derivative is a constant function whose value is equal to a. And
this makes sense, because the graph of f(x) = ax + b is a straight line with slope a. And now remember
that the derivative of a function equals the slope of the tangent line. But now, what’s the tangent line to a
straight line at a point? It is the line itself. So, the tangent line is the line itself, and its slope is a, which is
what our calculations also show.

Remember that the tangent line is the best linear approximation to the curve, so if the curve is already a
straight line, it coincides with the tangent line to it through any point.

2.3. The sum rule for derivatives. Suppose f and g are functions, both defined around a point x. The
sum rule for derivatives states that if both f and g are differentiable at the point x, then f + g is also
differentiable at the point x, and (f + g)′(x) = f ′(x) + g′(x). In words, the sum of the derivatives equals the
derivative of the sum. This is the first part of Theorem 3.2.3. The proof is given below. It involves very
simple manipulation. (You’re not expected to know this proof, but this should be sort of manipulation that
you eventually are comfortable reading and understanding).

So, what we have is:

(1) f ′(x) = lim
h→0

f(x + h)− f(x)
h

and:

(2) g′(x) = lim
h→0

g(x + h)− g(x)
h

Now, we also have:

(f + g)′(x) = lim
h→0

(f + g)(x + h)− (f + g)(x)
h

= lim
h→0

f(x + h) + g(x + h)− f(x)− g(x)
h

Simplifying further, we get:

(f + g)′(x) = lim
h→0

(f(x + h)− f(x)) + (g(x + h)− g(x))
h

= lim
h→0

[(
f(x + h)− f(x)

h

)
+

(
g(x + h)− g(x)

h

)]
Now, using the fact that the limit of the sum equals the sum of the limits, we can split the limit on the

right to get:

(3) (f + g)′(x) = lim
h→0

f(x + h)− f(x)
h

+ lim
h→0

g(x + h)− g(x)
h

Combining (1), (2), and (3), we obtain that (f + g)′(x) = f ′(x) + g′(x).
On a similar note, if α is a constant, then the derivative of αf is α times the derivative of f . In other

words:

(αf)′(x) = lim
h→0

αf(x + h)− αf(x)
h

= lim
h→0

α(f(x + h)− f(x))
h

= αf ′(x)
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2.4. Global application of these rules. The rule for sums and scalar multiples apply at each point. In
other words, if both f and g are differentiable at a point x, then f +g is differentiable at x and the derivative
of f + g is the sum of the derivatives of f and g at the point x.

An easy corollary of this is that if f and g are everywhere differentiable functions, then f + g is also
everywhere differentiable, and (f + g)′ = f ′+ g′. In other words, what I’ve just done is applied the previous
result at every point. And, so, the function (f + g)′ is the sum of the functions f ′ and g′.

In words, the derivative of the sum is the sum of the derivatives.

2.5. Rule for difference. In a similar way that we handled sums and scalar multiples, we can handle
differences, so we get (f − g)′ = f ′ − g′.

In words, the derivative of the difference is the difference of the derivatives.

2.6. Rule for product. People less seasoned in calculus than you may now expect the rule for products to
be: the derivative of the product is the product of the derivatives. But this is wrong.

The rule for the product is that, if f and g are differentiable at a point x, then the product f · g is also
differentiable at the point x, and:

(f · g)′(x) = f(x) · g′(x) + f ′(x) · g(x)
We won’t bother with a proof of the product rule, but it’s an important result that you should know. In

particular, again, when f and g are defined everywhere, we have:

(f · g)′ = f ′ · g + f · g′

2.7. Rule for reciprocals and quotients. If f is differentiable at a point x, and f(x) 6= 0, then the
function (1/f) is also differentiable at the point x:(

1
f

)′
(x) =

−f ′(x)
(f(x))2

If, at a point x, f and g are both differentiable, and g(x) 6= 0, then:(
f

g

)′
(x) =

g(x)f ′(x)− f(x)g′(x)
(g(x))2

2.8. Formula for differentiating a power. Here’s the formula for differentiating a power function: if
f(x) = xn, then f ′(x) = nxn−1. You can actually prove this formula for positive integer values of n using
induction and the product rule (I’ve got a proof in the addendum at the end of this section). So, for instance,
the derivative of x2 is 2x. The derivative of x5 is 5x4. Basically, what you do is to take the thing in the
exponent and pull it down as a coefficient and subtract 1 from it.

Okay, now there are plenty of things I want you to note here. First, note that the n in the exponent really
should be a constant. So, for instance, we cannot use this rule to differentiate the function xx, because in
this case, the thing in the exponent is itself dependent on x.

The second thing you should note is that you are already familiar with some cases of this formula. For
instance, consider the constant function x0 = 1. The derivative of this is the function 0x0−1 = 0x−1 = 0.
Also, for the function x1 = x, the derivative is 1, which is again something we saw. And for the function x2,
the derivative is 2x1 = 2x, which is what we saw last time.

The third thing you should think about is the scope and applicability of this formula. I just said that when
n is a positive integer, we can show that for f(x) = xn, we have f ′(x) = nxn−1. But in fact, this formula
works not just for positive integers, but for all integers, and not just for all integers, even for non-integer
exponents:

(1) If f(x) = xn, x 6= 0, where n is a negative integer, f ′(x) = nxn−1.
(2) If f(x) = xr, where r is some real number, and x > 0, we have f ′(x) = rxr−1. We will study later

what xr means for arbitrary real r and positive real x.
(3) The above formula also applies for x < 0 where r is a rational number with denominator an odd

integer (that’s necessary to make sense of xr).
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2.9. Computing the derivative of a polynomial. To differentiate a polynomial, what we do is use the
rule for differentiating powers, and the rules for sums and scalar multiples.

For instance, to differentiate the polynomial f(x) := x3 + 2x2 + 5x + 7, what we do is differentiate each
of the pieces. The derivative of the piece x3 is 3x2. The derivative of the piece 2x2 is 4x, the derivative of
the piece 5x is 5, and the derivative of the piece 7 is 0. So, the derivative is f ′(x) = 3x2 + 4x + 5.

Now, the way you do this is you write the polynomial, and with a bit of practice, which you did in high
school, you can differentiate each individual piece mentally. And so you keep writing the derivatives one by
one.

In particular, polynomial functions are everywhere differentiable, and the derivative of a polynomial
function is another polynomial. Moreover, the degree of the derivative is one less than the degree of the
original polynomial.

2.10. Computing the derivative of a rational function. What if we have a rational function Q(x) =
f(x)/g(x)?

Essentially, we use the formula for differentiating a quotient, which gives us:

Q′(x) =
g(x)f ′(x)− f(x)g′(x)

(g(x))2

Since both f and g are polynomials, we know how to differentiate them, so we are effectively done.
For instance, consider Q(x) = x2/(x3 − 1). In this case:

Q′(x) =
(x3 − 1)(2x)− x2(3x2)

(x3 − 1)2
=
−2x− x4

(x3 − 1)2

Note another important thing – since the denominator of Q′ is the square of the denominator of Q, the
points where Q′ is not defined are the same as the point where Q is not defined. Thus, a rational function
is differentiable wherever it is defined.

Addendum: Proof by induction that the derivative of xn is nxn−1. We prove this for n ≥ 1.
Base case for induction: Here, f(x) = x1 = x. We have:

f ′(x) = lim
h→0

(x + h)− x

h
= lim

h→0
1 = 1 = 1x0

Thus, for n = 1, we have f ′(x) = nxn−1 where f(x) = xn.
Induction step: Suppose the result is true for n = k. In other words, suppose it is true that for f(x) := xk,

we have f ′(x) = kxk−1. We want to show that for g(x) := xk+1, we have g′(x) = (k + 1)xk.
Using the product rule for g(x) = xf(x), we have:

g′(x) = 1f(x) + xf ′(x)

Substitutng the expression for f ′(x) from the assumption that the statement is true for k, we get:

g′(x) = 1(xk) + x(kxk−1) = xk = kxk = (k + 1)xk

which is what we need to prove. This completes the induction step, and hence completes the proof.

3. Graphical interpretation of derivatives

3.1. Some review of coordinate geometry. So far, our attention to coordinate geometry has been
minimal: we discussed how to get the equation of the tangent line to the graph of a function at a point using
the point-slope form, wherein we determine the point possibly through function evaluation and we determine
the slope by computing the derivative of the function at the point.

Now, recall that the slope of a line equals tan θ, where θ is the angle that the line makes with the x-axis,
measured counter-clockwise from the x-axis. What are the kind of lines whose slope is not defined? These
are the vertical lines, in which case θ = π/2. Notice that since the slope is not defined, we see that if a
function is differentiable at the point, then the tangent line cannot be vertical.
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The slope of a line equals tan θ, where θ is the angle that that line makes with the x-axis. And for some
of you, thinking of that angle might be geometrically more useful than thinking of the slope as a number.
We will study this in more detail a little later when we study the graphing of functions more intensely.

Caveat: Axes need to be scaled the same way for geometry to work right. When you use a
graphing software such as Mathematica, or a graphing calculator for functions, you’ll often find that the
software or calculator automatically chooses different scalings for the two axes, so as to make the picture
of the graph fit in nicely. If the axes are scaled differently, the geometry described here does not work. In
particular, the derivative is no longer equal to tan θ where θ is the angle with the horizontal; instead, we
have to scale the derivative by the appropriate ratio between the scaling of the axes. Similarly, the angles of
intersection between curves change and the notion of orthogonality is messed up.

However, the notion of tangency of curves discussed below does not get messed up.

3.2. Perpendicular lines, angles between lines. Two lines are said to be orthogonal or perpendicular
if the angle between them is π/2. This means that if one of them makes an angle θ1 with the x-axis and
the other makes an angle θ2 with the x-axis (both angles measured counter-clockwise from the x-axis) then
|θ1 − θ2| = π/2. How do we characterize this in terms of slopes?

Well, we need to take a short detour here and calculate the formula for tan(A−B). Recall that sin(A−B) =
sinA cos B− cos A sinB and cos(A−B) = cos A cos B + sinA sinB. When we take the quotient of these, we
get:

tan(A−B) =
sinA cos B − cos A sinB

cos A cos B + sinA sinB

If both tanA and tan B are defined, this simplifies to:

tan(A−B) =
tanA− tanB

1 + tanA tanB

Now, what would happen if |A− B| is π/2? In this case, tan(A− B) should be undefined, which means
that the denominator on the right side should be 0, which means that tan A tanB = −1.

Translating back to the language of slopes, we obtain that two lines (neither of which is vertical or
horizontal) are perpendicular if the product of their slopes is −1.

More generally, given two lines with slopes m1 and m2, we have the following formula for tan α where α
is the angle of intersection:

tanα =
∣∣∣∣ m1 −m2

1 + m1m2

∣∣∣∣
The absolute value means that we are not bothered about the direction (or orientation or sense) in which

we are measuring the angle (if we care about the direction, we have to specify angle from which line to which
line, measured clockwise or counter-clockwise).

3.3. Normal lines. Given a point on a curve, the normal line to the curve at that point is the line perpen-
dicular to the tangent line to the curve at that point. This normal is the same normal you may have seen in
normal force and other related ideas in classical mechanics.

Now, we know how to calculate the equation of the normal line, if we know the value of the derivative.
let me spell this out with two cases:

(1) If the derivative of a function at x = a is 0, then the tangent line is y = f(a) and the normal line is
x = a.

(2) If the derivative of a function at x = a is m 6= 0, then the tangent line is y − f(a) = m(x − a) and
the normal line is y− f(a) = (−1/m)(x− a). We got the slope of the normal line using the fact that
the product of slopes of two perpendicular lines is −1.

Here is a picture of the usual case where the derivative is nonzero:
16



3.4. Angle of intersection of curves. Consider the graphs of the functions f(x) = x and g(x) = x2.
These curves intersect at two points: (0, 0) and (1, 1). We would like to find the angles of intersection
between the curves at these two points.

The angle of intersection between two curves at a given point is the angle between the tangent lines to
the curve at that point. In particular, if α is this angle of intersection, then for α 6= π/2, we have:

tanα =
∣∣∣∣ f ′(a)− g′(a)
1 + f ′(a)g′(a)

∣∣∣∣

If f ′(a)g′(a) = −1, then α = π/2.
So let’s calculate tanα at these two points. At the point (0, 0), we have f ′(0) = 1, g′(0) = 0. Plugging

intot the formula, we obtain tan α = 1, so α = π/4.
What about the point (1, 1)? At this point, f ′(1) = 1 and g′(1) = 2. Thus, we obtain that tanα = 1/3.

So, α is the angle whose tangent is 1/3. We don’t know any particular angle α satisfying this condition, but
by the intermediate-value theorem, we can see that α is somewhere between 0 and π/6. In the 153 course,
we will look at inverse trigonometric functions, and when we do that, we will write α as arctan(1/3). For
now, you can just leave your answer as tanα = 1/3.

3.5. Curves that are tangent and orthogonal at specific points. Here are some pictures of tangent
pairs of curves:
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We say that two curves are tangent at a point if the angle of intersection between the curves at that point
is 0. In other words, the curves share a tangent line. You can think of it as the two curves touching each
other. [Draw pictures to explain]. Note that it could happen that they are kissing each other outward, as in
this picture, or one is crossing the other, as in this picture.

If two curves are tangent at the point, that means that, to the first order of approximation, the curves
behave very similarly close to that point. In other words, the best linear approximation to both curves cloose
to that point is the same.

We say that two curves are perpendicular or orthogonal at a particular point of intersection if their tangent
lines are perpendicular. If two curves are orthogonal at every point of intersection, we say that they are
orthogonal curves. You’ll see more on orthogonal curves in a homework problem.

Here is a graphical illustation of orthogonal curves:
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3.6. Geometric addendum: finding tangents and normals from other points. Given the graph of
a function y = f(x), we can ask, given a point (x0, y0) in the plane (not necessarily on the graph) what
tangents to the graph pass through this point. Similarly, we can ask what normals to the graph pass through
this point.

Here’s the general approach to these questions.
For the tangent line, we assume, say, that the tangent line is tangent at some point (x1, y1). The equation

of the tangent line is then:

y − y1 = f ′(x1)(x− x1)
Since y1 = f(x1), we get:

y − f(x1) = f ′(x1)(x− x1)
Further, we know that the tangent line passes through (x0, y0), so we plugging in, we get:

y0 − f(x1) = f ′(x1)(x0 − x1)
We now have an equation in the variable x1. We solve for x1. Note that when f is some specific function,

both f(x1) and f ′(x1) are expressions in x1 that we can simplify when solving the equation.
In some cases, we may not be able to solve the equation precisely, but can guarantee the existence of a

solution and find a narrow interval containing this solution by using the intermediate value theorem.
A similar approach works for normal lines. We’ll revisit this in the near future.

4. Leibniz notation

4.1. The d/dx notation. Recall what we have done so far: we defined a notation of derivative, and then
introduced a notation, the prime notation, for the derivative. So, if f is a function, the derivative function
is denoted f ′. And this is the function you obtain by differentiating f .

We now talk of a somewhat different notation that has its own advantages. And to understand the
motivation behind this definition, we need to go back to how we think of derivative as the rate of change.

Suppose we have a function f . And, for simplicity, let’s denote y = f(x). So, what we want to do is study
how, as the value of x changes, the value of f(x), which is y, changes. So if for a point x1 we have f(x1) = y1

and for a point x2 we have f(x2) = y2, we want to measure the difference between the y-values (which is
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y2 − y1) and compare it with the difference between the x-values. And the quotient of the difference in the
y-values and the difference in the x-values is what we called the difference quotient:

Difference quotient =
y2 − y1

x2 − x1

And, this is also the slope of the line joining (x1, y1) and (x2, y2).
Now, there’s a slightly different way of writing this, which is typically used when the values of x are fairly

close, and that is using the letter ∆. And that says:

Difference quotient =
∆y

∆x
Here ∆y means “change in” y and ∆x means “change in” x. So, the difference quotient is the ratio of the

change in y to the change in x.
The limiting value of this quotient, as the x-values converge and the y-values converge, is called dy/dx.

This is read “dee y dee x” or “dee y by dee x” and is also called the derivative of y with respect to x.
So, if y = f(x), the function f ′ can also be written as dy/dx.

4.2. Derivative as a function and derivative as a point. The function f ′ can be evaluated at any
point; so for instance, we write f ′(3) to evaluate the derivative at 3. With the dy/dx notation, things are a
little different. To evaluate dy/dx at a particular point, we write something like:

dy

dx
|x=3

The bar followed by the x = 3 means “evaluated at 3”. In particular, it is not correct to write dy/d3.
That doesn’t make sense at all.

4.3. Dependent and independent variable. The Leibniz d/dx notation has a number of advantages over
the prime notation. The first advantage is that instead of thinking in terms of functions, we now think in
terms of two variables – x and y, and the relation between them. The fact that y can be expressed as a
function of x becomes less relevant.

This is important because calculus is meant to address questions like: “When you change x, what happens
to y?” The explicit functional form of y in terms of x is only of secondary interest – what matters is that
we have these two variables measuring the two quantities x and y and we want to determine how changes in
the variable x influence changes in the variable y. We sometimes say that x is the independent variable and
y is the dependent variable – because y depends on x via some (may be known, may be unknown) functional
dependence.

4.4. d/dx as an operator and using it. The great thing about the d/dx notation is that you don’t need
to introduce separate letters to name your function. For instance, we can write:

d

dx
(x2 + 3x + 4)

No need to define f(x) := x2 + 3x + 4 and ask for f ′(x) – we can directly write this stuff down.
This not only makes it easier to write down the first step, it also makes it easier to write and apply the

rules for differentiation.
(1) The sum rule becomes d(u + v)/dx = du/dx + dv/dx.
(2) The product rules becomes d(uv)/dx = u(dv/dx) + v(du/dx).
(3) The scalar multiplication rule becomes d(αu)/dx = α(du/dx).
(4) The difference rule becomes d(u− v)/dx = du/dx− dv/dx.
(5) The quotient rule becomes d((u/v))/dx = (v(du/dx)− u(dv/dx))/v2.

The great thing about this notation is that we can write down partially calculated derivatives in interme-
diate steps, without naming new functions each time we break up the original function. For instance:

d

dx

(
x3 +

√
x + 2

x2 + 1/(x + 1)

)
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We can write down the first step:[
(x2 + 1/(x + 1))

d

dx
(x3 +

√
x + 2)− (x3 +

√
x + 2)

d

dx
(x2 + 1/(x + 1))

]
/(x2 + 1/(x + 1))2

and then simplify the individual parts. If using the function notation, we would have to give names to
both the numerator and denominator functions, but here we don’t have to.

You should think of d/dx as an operator – the differentiation operator – that you can apply to expressions
for functions.

5. Higher derivatives

5.1. Higher derivatives and the multiple prime notation. So far, we defined the derivative of a
function at the point as the rate of change of the function at that point. The second derivative is the rate
of change of the rate of change. In other words, the second derivative measures the rate at which the rate
of change is changing. Or, it measures the rate at which the graph of the function is turning at the point,
because a change in the derivative means a change in the direction of the graph.

So, this is just to remind you that higher derivatives are useful. Now, let’s discuss the notation for higher
derivatives.

In the prime notation, the second derivative of f is denoted f ′′. In other words, f ′′(x) is the derivative
of the function f ′ evaluated at x. The third derivative is denoted f ′′′, the fourth derivative is denoted f ′′′′.
To simplify notation, we have the shorthand f (n) for the nth derivative, where by nth derivative we mean
the function obtained after applying the differentiation operator n times. So the first derivative f ′ can also
be written as f (1), the second derivative f ′′ can also be written as f (2), and so on. Typically, though, for
derivatives up to the third derivative, we put the primes instead of the parenthesis (n) notation.

Well, how do we compute these higher derivatives? Differentiate one step at a time. So, for instance, if
f(x) = x3 − 2x2 + 3, then f ′(x) = 3x2 − 4x, so f ′′(x) = 6x− 4, and f ′′′(x) = 6. The fourth derivative of f
is zero. And all higher derivatives are zero.

Similarly, if f(x) = 1/x, then f ′(x) = −1/x2, f ′′(x) = 2/x3, f ′′′(x) = −6/x4, and so on and so forth.
The first derivative measures the rate of change of the function, or the slope of the tangent line. The

second derivative measures the rate at which the tangent line is turning, or the speed with which the graph
is turning. The third derivative measures the rate at which this rate of turning itself is changing.

So, for the function f(x) = x2, the first derivative is f ′(x) = 2x, and the second derivative is 2. So, the
first derivative is an increasing function, and the second derivative is constant, so the graph of the function
is turning at a constant rate.

(The detailed discussion of the role of derivatives in terms of whether a function is increasing or decreasing
will be carried out later – for now, you should focus on the computational aspects of derivatives).

5.2. Higher derivatives in the Leibniz notation. The Leibniz notation for higher derivatives is a bit
awkward if you haven’t seen it before.

Recall that the first derivative of y with respect to x is denoted dy/dx. Note that what I just called
first derivative is what I have so far been calling derivative – when I just say derivative without an ordinal
qualifier, I mean first derivative. So the first derivative is dy/dx. How would we write the second derivative?

Well, the way of thinking about it is that the first derivative is obtained by applying the d/dx operator to
y, so the second derivative is obtained by applying the d/dx operator to dy/dx. So the second derivative is:

d

dx

(
dy

dx

)
And that’s perfectly correct, but it is long to write, so we can write this in shorthand as:

d2y

(dx)2

Basically, we are (only notationally, not mathematically) multiplying the ds on top and multiplying the
dx’s down below. There’s a further simplification we do with the notation – we omit the parentheses in the
denominator, to get:
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d2y

dx2

This is typically read out as “dee two y dee x two” though some people read it as “dee square y dee x
square”.

And more generally, the nth derivative is given by the shorthand:

dny

dxn

Note that the dxn in the denominator should be thought of as (dx)n – not as d(xn), even though you
omit parentheses.

This is typically read out as “dee n y dee x n”.
So for instance:

d2

dx2

(
x3 + x + 1

)
=

d

dx

(
d(x3 + x + 1)

dx

)
=

d

dx

(
3x2 + 1

)
= 6x

6. Chain rule

6.1. The chain rule: statement and application to polynomials. Now, the rules we have seen so far
allow us to basically differentiate any rational function any number of times without ever using the limit
definition – simply by applying the formulas.

Okay, how would you differentiate h(x) := (x2 + 1)5? Well, in order to apply the formulas, you need to
expand this out first, then use the termwise differentiation strategy. But taking the fifth power of x2 + 1 is
a lot of work. So, we want a strategy to differentiate this without expanding.

This strategy is called the chain rule.
The chain rule states that if y is a function of v and v is a function of x, then:

dy

dx
=

dy

dv

dv

dx
The intuition here may be that we can cancel the dvs – however, that’s not a rigorous reason since these

are not really ratios but limits. But that’s definitely one way to remember the result.
In this case, we have y = (x2 + 1)5. What v can we choose? Well, let’s try v = x2 + 1. Then y = v5. So

we have:

dy

dx
=

d(v5)
dv

d(x2 + 1)
dx

Now, the first term on the right is 5v4 and the second term on the right is 2x, so the answer is:

dy

dx
= (5v4)(2x)

And v = x2 + 1, so plugging that back in, we get:

dy

dx
= 5(x2 + 1)4(2x) = 10x(x2 + 1)4

6.2. Introspection: function composition. What we really did was we had the function h(x) = (x2+1)5,
and we decomposed h into two parts, the function g that sends x to x2 + 1, and the function f that sends v
to v5. What we did was to write h = f ◦ g, for two functions f and g that we can handle easily in terms of
differentiation. Then, we used the chain rule to differentiate h, using what we know about differentiating f
and g.

In functional notation, what the chain rule says equationally is that:

(f ◦ g)′(x) = f ′(g(x))g′(x)
Going back to the y, v terminology, we have v = g(x), and y = f(v). And in that notation, dy/dv =

f ′(v) = f ′(g(x)), while dv/du = g′(x). Which is precisely what we have here.
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Notice that we apply f ′ not to x but to the value g(x), which is what we called v, i.e., the value you get
after applying one function but before applying the other one. But g′ we apply to x.

Another way of writing this is:

d

dx
[f(g(x))] = f ′(g(x)))g′(x)

This is a mix of the Leibniz notation and the prime notation.

6.3. Precise statement of the chain rule. What we said above is the correct equational expression for
the chain rule, but let’s just make the precise statement now with the assumptions.

If f, g are functions such that g is differentiable at x and f is differentiable at g(x), then f◦g is differentiable
at x and:

(f ◦ g)′(x) = f ′(g(x))g′(x)
Again, this statement is at a point, but if the differentiability assumptions hold globally, then the expression

above holds globally as well, in which case we get:

(f ◦ g)′ = (f ′ ◦ g) · g′

The · there denotes the pointwise product of functions.

7. Additional facts and subtleties

Most of these are things you will discover with experience as you do homework problems, but they’re
mentioned here just for handy reference. This is something you might want to read more carefully when you
review these notes at a later stage.

7.1. One-sided versions. The situation with one-sided versions of the results for derivatives is very similar
to that with limits and continuity. For all pointwise combination results, one-sided versions hold. Conceptu-
ally, each result for derivatives depends (in its proof) on the corresponding result for limits. Since the result
on limits has a one-sided version, so does the corresponding result on derivatives. In words:

(1) The left-hand derivative of the sum is the sum of the left-hand derivatives.
(2) The right-hand derivative of the sum is the sum of the right-hand derivatives.
(3) The left-hand derivative of a scalar multiple is the same scalar multiple of the left-hand derivative.
(4) The right-hand derivative of a scalar multiple is the same scalar multiple of the right-hand derivative.
(5) The analogue of the product rule for the left-hand derivative can be obtained if we replace the

derivative in all three places in the product rule with left-hand derivative. Similarly for right-hand
derivative.

(6) Similar to the above for quotient rule.
But – you saw it coming – the naive one-sided analogue of the rule for composites fails, for the same reason

as the one-sided analogue of the composition results for limits and continuity fail. We need the additional
condition that the direction of approach of the intermediate expression is the same as that of the original
domain variable.

7.2. The derivative as a function: is it continuous, differentiable? Suppose f is a function. For
simplicity, we’ll assume the domain of f to be a (possibly infinite) open interval I in R. We’re taking an
open interval to avoid one-sided issues at boundary points. We say that f is differentiable on its domain if
f ′ exists everywhere on I. If f is differentiable, what can we say about the properties of f ′?

Your first instinct may be to say that if f ′ is defined on an open interval, then it should be continuous on
that interval. Indeed, in all the simple examples one can think of, the existence of the derivative on an open
interval implies continuity of the derivative. However, this is not true as a general principle. Some points of
note:

(1) It is possible for the derivative to not be a continuous function. An example is the function g(x) :=

{ x2 sin(1/x), x 6= 0
0, x = 0 . This function is differentiable everywhere, but the derivative at 0 is not the

limit of the derivative near zero.
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(2) However, the derivative of a continuous function, if defined everywhere on an open interval, satisfies
the intermediate value property. This is a fairly hard and not very intuitive theorem called Darboux’s
theorem, and you might see it if you take up the 203-204-205 analysis sequence. In this respect, it
behaves in a manner very similar to a continuous function. In particular, any discontinuities of the
derivative must be of the oscillatory kind on both the left and right side. In particular, if a one-sided
limit exists for the derivative, it equals the value of the derivative.

The proof of (2) is well beyond the scope of this course. You don’t even need to know the precise statement,
and I’m including it here just in order to place the examples you’ve seen in context.

A fun discussion of the fact that derivatives need not be continuous but satisfy the intermediate value
property and the implications of this fact can be found here:

http://www.thebigquestions.com/2010/09/16/speed-math/

7.3. Higher differentiability. We say that a function f on an open interval I is k times differentiable on
I if the kth derivative of f exists at all points of I. We say that f is k times continuously differentiable on
I if the kth derivative of f exists and is continuous on I.

Recall that differentiable implies continuous. Thus, if a function is twice differentiable, i.e., the first
derivative is differentiable function, this implies that the first derivative is a continuous function. We thus
see a chain of implications:

Continuous⇐ Differentiable⇐ Continuously differentiable⇐ Twice differentiable⇐ Twice continuously differentiable← . . .

In general:

k times differentiable⇐ k times continuously differentiable⇐ k + 1 times differentiable
We say that a function f is infinitely differentiable if it is k times differentiable for all k. The above

implications show us that this is equivalent to saying that f is k times continuously differentiable for all k.
A k times continuously differentiable function is sometimes also called a Ck-function. (When k = 0, we get

continuous functions, so continuous functions are sometimes called C0-functions). An infinitely differentiable
function is sometimes also called a C∞-function. We will not use the term in this course, though we will
revisit it in 153 when studying power series, and you’ll probably see it if you do more mathematics courses.

All these containments are strict. Examples along the lines of the xn sin(1/x) constructions can be used
to show this.

7.4. Carrying out higher differentiation. Suppose functions f and g are both k times differentiable.
Are there rules to find the kth derivatives of f + g, f − g, f · g, etc. directly in terms of the kth derivatives
of f and g respectively? For the sum, difference, and scalar multiples, the rules are simple:

(f + g)(k) = f (k) + g(k)

(f − g)(k) = f (k) − g(k)

(αf)(k) = αf (k)

Later on, we’ll see that this bunch of rules can be expressed more briefly by saying that the operation of
differentiating k times is a linear operator.

For products, the rule is more complicated. In fact, the general rule is somewhat like the binomial theorem.
The situation with composites is also tricky. We will revisit both products and composites a little later. For
now, all we care about are existence facts:

• If f and g are k times differentiable on an open I, so are f + g, f − g, and f · g. If g is not zero
anywhere on I, then f/g is also k times differentiable on I.

• Ditto to the above, replacing “k times differentiable” by “k times continuously differentiable.”
• If f and g are functions such that g is k times differentiable on an open interval I and f is k times

differentiable on an open interval J containing the range of g, then f ◦ g is k times differentiable on
I.

• Ditto to the above, replacing “k times differentable” by “k times continuously differentiable”.
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7.5. Families of functions closed under differentiation. Suppose F is a collection of functions that is
closed under addition, subtraction and scalar multiplication. We say in this case that F is a vector space of
functions. If, in addition, F contains constant functions and is closed under multiplication, we say that F is
an algebra of functions. (You aren’t responsible for learning this terminology, but it really helps make clear
what we’re going to be talking about shortly).

The vector space generated by a bunch of functions B is basically the set of all functions we can get
starting from B by the processes of addition and scalar multiplication. If B generates a vector space F of
functions, then we say that B is a generating set for F .

For instance, if we consider all the functions 1, x, x2, . . . , xn, . . . , these generate the vector space of all
polynomials: we can get to all polynomials by the processes of addition and scalar multiplication starting
with these functions.

The algebra generated by a bunch B of functions (which we assume includes constant functions) is the
collection of functions A that we obtain by starting with the functions in B and the processes of addition,
subtraction, multiplication, and scalar multiplication.

For instance, the algebra generated by the identity function (the function xmapstox) is the algebra of all
polynomial functions.

The point of all this is as follows:
(1) Suppose B is a bunch of functions and F is the vector space generated by B. Then, if every function in
B is differentiable and the derivative of the function is in F , then every function in F is differentiable
and has derivative in F . As a corollary, every function in F is infinitely differentiable and all its
derivatives lie in F .

(2) Suppose B is a bunch of functions and A is the algebra generated by B. Then, if every function in B is
differentiable and the derivative of the function is in A, then every function in A is differentiable and
the derivative of the function is in A. As a corollary, every function in A is infinitely differentiable
and all its derivatives lie in A.

Let’s illustrate point (2) (which is in some sense the more powerful statement) with the example of
polynomial functions. The single function f(x) := x generates the algebra of all polynomial functions. The
derivative of f is the function 1, which is also in the algebra of all polynomial functions. What point (2)
is saying is that just this simple fact allows us to see that the derivative of any polynomial function is a
polynomial function, and that polynomial functions are infinitely differentiable.

We’ll see a similar trigonometric example in the near future. We’ll also explore this way of thinking more
as the occasion arises.

Another way of thinking of this is that each time we obtain a formula to differentiate a bunch of functions,
we have a technique to differentiate all functions in the algebra generated by that bunch of functions. While
this may seem unremarkable, the analogous statement is not true at all for other kinds of operators such as
indefinite integration.
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