CLASS QUIZ: NOVEMBER 23: MEMORY LANE

MATH 152, SECTION 55 (VIPUL NAIK)

Your name (print clearly in capital letters): \qquad
(1) For which of the following specifications is there no continuous function satisfying the specifications?
(A) Domain $[0,1]$ and range $[0,1]$
(B) Domain $[0,1]$ and range $(0,1)$
(C) Domain $(0,1)$ and range $[0,1]$
(D) Domain $(0,1)$ and range $(0,1)$
(E) None of the above, i.e., we can get a continuous function for each of the specifications.

Your answer: \qquad
(2) Suppose f and g are continuous functions on \mathbb{R}, such that f is continuously differentiable everywhere and g is continuously differentiable everywhere except at c, where it has a vertical tangent. What can we say is definitely true about $f \circ g$?
(A) It has a vertical tangent at c.
(B) It has a vertical cusp at c.
(C) It has either a vertical tangent or a vertical cusp at c.
(D) It has neither a vertical tangent nor a vertical cusp at c.
(E) We cannot say anything for certain.

Your answer: \qquad
(3) Consider the function $p(x):=x^{2 / 3}(x-1)^{3 / 5}+(x-2)^{7 / 3}(x-5)^{4 / 3}(x-6)^{4 / 5}$. For what values of x does the graph of p have a vertical cusp at $(x, p(x))$?
(A) $x=0$ only.
(B) $x=0$ and $x=5$ only.
(C) $x=5$ and $x=6$ only.
(D) $x=0$ and $x=6$ only.
(E) $x=0, x=5$, and $x=6$.

Your answer: \qquad
(4) Consider the function $f(x):=\left\{\begin{array}{rr}x, & 0 \leq x \leq 1 / 2 \\ x^{2}, & 1 / 2<x \leq 1\end{array}\right.$. What is $f \circ f$?
(A) $x \mapsto\left\{\begin{array}{rr}x, & 0 \leq x \leq 1 / 2 \\ x^{4}, & 1 / 2<x \leq 1\end{array}\right.$
(B) $x \mapsto\left\{\begin{array}{rr}x, & 0 \leq x \leq 1 / 2 \\ x^{2}, & 1 / 2<x \leq 1\end{array}\right.$
$x, \quad 0 \leq x \leq 1 / 2$
(C) $x \mapsto\left\{x^{2}, \quad 1 / 2<\bar{x} \leq 1 / \sqrt{2}\right.$
$x^{4}, \quad 1 / \sqrt{2}<x \leq 1$
(D) $x \mapsto\left\{\begin{aligned} x, & 0 \leq x \leq 1 / \sqrt{2} \\ x^{2}, & 1 / \sqrt{2}<x \leq 1\end{aligned}\right.$
(E) $x \mapsto\left\{\begin{array}{rr}x, & 0 \leq x \leq 1 / \sqrt{2} \\ x^{4}, & 1 / \sqrt{2}<x \leq 1\end{array}\right.$

Your answer: \qquad
(5) Suppose f and g are functions $(0,1)$ to $(0,1)$ that are both right continuous on $(0,1)$. Which of the following is not guaranteed to be right continuous on $(0,1)$?
(A) $f+g$, i.e., the function $x \mapsto f(x)+g(x)$
(B) $f-g$, i.e., the function $x \mapsto f(x)-g(x)$
(C) $f \cdot g$, i.e., the function $x \mapsto f(x) g(x)$
(D) $f \circ g$, i.e., the function $x \mapsto f(g(x))$
(E) None of the above, i.e., they are all guaranteed to be right continuous functions

Your answer: \qquad
(6) For a partition $P=x_{0}<x_{1}<x_{2}<\cdots<x_{n}$ of [$\left.a, b\right]$ (with $x_{0}=a, x_{n}=b$) define the norm $\|P\|$ as the maximum of the values $x_{i}-x_{i-1}$. Which of the following is always true for any continuous function f on $[a, b]$? (5 points)
(A) If P_{1} is a finer partition than P_{2}, then $\left\|P_{2}\right\| \leq\left\|P_{1}\right\|$ (Here, finer means that, as a set, $P_{2} \subseteq P_{1}$, i.e., all the points of P_{2} are also points of P_{1}).
(B) If $\left\|P_{2}\right\| \leq\left\|P_{1}\right\|$, then $L_{f}\left(P_{2}\right) \leq L_{f}\left(P_{1}\right)$ (where L_{f} is the lower sum).
(C) If $\left\|P_{2}\right\| \leq\left\|P_{1}\right\|$, then $U_{f}\left(P_{2}\right) \leq U_{f}\left(P_{1}\right)$ (where U_{f} is the upper sum).
(D) If $\left\|P_{2}\right\| \leq\left\|P_{1}\right\|$, then $L_{f}\left(P_{2}\right) \leq U_{f}\left(P_{1}\right)$.
(E) All of the above.

Your answer: \qquad
(7) A disk of radius r in the $x y$-plane is translated parallel to itself with its center moving in the $y z$-plane along the semicircle $y^{2}+z^{2}=R^{2}, y \geq 0$. The solid thus obtained can be thought of as a cylinder of bent spine with cross sections being disks of radius r along the $x y$-plane and the centers forming a semicircle of radius R in the $y z$-plane, with the z-value ranging from $-R$ to R. What is the volume of this solid?
(A) $2 \pi r^{2} R$
(B) $\pi^{2} r^{2} R$
(C) $2 \pi r R^{2}$
(D) $\pi^{2} r R^{2}$
(E) $\pi^{2} R^{3}$

Your answer: \qquad

