CLASS QUIZ: NOVEMBER 21: ONE-ONE FUNCTIONS

MATH 152, SECTION 55 (VIPUL NAIK)

Your name (print clearly in capital letters):
(1) For one of these function types for a continuous function from \mathbb{R} to \mathbb{R}, it is possible to also be a one-to-one function. What is that function type? Last year: 15/15 correct
(A) Function whose graph has mirror symmetry about a vertical line.
(B) Function whose graph has half turn symmetry about a point on it.
(C) Periodic function.
(D) Function having a point of local minimum.
(E) Function having a point of local maximum.

Your answer: \qquad
(2) $\left(^{* *}\right)$ Suppose f, g, and h are continuous one-to-one functions whose domain and range are both \mathbb{R}.

What can we say about the functions $f+g, f+h$, and $g+h$? Last year: $2 / 15$ correct
(A) They are all continuous one-to-one functions with domain \mathbb{R} and range \mathbb{R}.
(B) At least two of them are continuous one-to-one functions with domain \mathbb{R} and range \mathbb{R} - however, we cannot say more.
(C) At least one of them is a continuous one-to-one function with domain \mathbb{R} and range \mathbb{R} - however, we cannot say more.
(D) Either all three sums are continuous one-to-one functions whose domain and range are both \mathbb{R}, or none is.
(E) It is possible that none of the sums is a continuous one-to-one function whose domain and range are both \mathbb{R}; it is also possible that one, two, or all the sums are continuous one-to-one functions whose domain and range are both \mathbb{R}.

Your answer: \qquad
(3) ${ }^{(* *)}$ Suppose f is a one-to-one function with domain a closed interval $[a, b]$ and range a closed interval $[c, d]$. Suppose t is a point in (a, b) such that f has left hand derivative l and right-hand derivative r at t, with both l and r nonzero. What is the left hand derivative and right hand derivative to f^{-1} at $f(t)$? Last year: $6 / 15$ correct
(A) The left hand derivative is $1 / l$ and the right hand derivative is $1 / r$.
(B) The left hand derivative is $-1 / l$ and the right hand derivative is $-1 / r$.
(C) The left hand derivative is $1 / r$ and the right hand derivative is $1 / l$.
(D) The left hand derivative is $-1 / r$ and the right hand derivative is $-1 / l$.
(E) The left hand derivative is $1 / l$ and the right hand derivative is $1 / r$ if $l>0$, otherwise the left hand derivative is $1 / r$ and the right hand derivative is $1 / l$.

Your answer: \qquad
(4) $\left(^{* *}\right)$ Which of these functions is one-to-one? Last year: $2 / 15$ correct
(A) $f_{1}(x):=\left\{\begin{aligned} x, & x \text { rational } \\ x^{2}, & x \text { irrational }\end{aligned}\right.$
(B) $f_{2}(x):=\left\{\begin{aligned} x, & x \text { rational } \\ x^{3}, & x \text { irrational }\end{aligned}\right.$
(C) $f_{3}(x):=\left\{\begin{aligned} x, & x \text { rational } \\ 1 /(x-1), & x \text { irrational }\end{aligned}\right.$
(D) All of the above
(E) None of the above

Your answer: \qquad
 What is the correct expression for $\left(f^{-1}\right)^{\prime}(1 / 2)$? Last year: $1 / 15$ correct
(A) It does not exist, since the two-sided derivatives of f at $1 / 2$ do not match.
(B) $\sqrt{2}$
(C) $2 \sqrt{2} / \pi$
(D) $4 / \pi$
(E) $4 /(\sqrt{3} \pi)$

Your answer: \qquad

