CLASS QUIZ: NOVEMBER 16: VOLUME

MATH 152, SECTION 55 (VIPUL NAIK)

Your name (print clearly in capital letters):
(1) Oblique cylinder:Right cylinder:: Last year: 14/16 correct
(A) Rectangle:Square
(B) Parallelogram:Rectangle
(C) Disk:Circle
(D) Triangle:Rectangle
(E) Triangle:Square

Your answer: \qquad
(2) Right circular cone:Right circular cylinder:: Last year: 13/16 correct
(A) Triangle:Square
(B) Rectangle:Square
(C) Isosceles triangle:Equilateral triangle
(D) Isosceles triangle:Rectangle
(E) Isosceles triangle:Square

Your answer: \qquad
(3) Circular disk:Circle:: Last year: 8/16 correct
(A) Hollow cylinder:Solid cylinder
(B) Solid cylinder:Hollow cylinder
(C) Cube:Cuboid (cuboid is a term for rectangular prism)
(D) Cube:Square
(E) Cube:Sphere

Your answer: \qquad
(4) Circular disk:Line segment:: Last year: 14/16 correct
(A) Solid sphere:Circular disk
(B) Circle:Rectangle
(C) Sphere:Cube
(D) Cube:Right circular cylinder
(E) Square:Triangle

Your answer: \qquad
(5) Suppose a filled triangle $A B C$ in the plane is revolved about the side $A B$. Which of the following best describes the solid of revolution thus obtained if both the angles A and B are acute (ignoring issues of boundary inclusion/exclusion)? Last year: 13/16 correct
(A) It is a right circular cone.
(B) It is the union of two right circular cones sharing a common disk as base.
(C) It is the set difference of two right circular cones sharing a common disk as base.
(D) It is the union of two right circular cones sharing a common vertex.
(E) It is the set difference of two right circular cones sharing a common vertex.

Your answer: \qquad
(6) Suppose a filled triangle $A B C$ in the plane is revolved about the side $A B$. Which of the following best describes the solid of revolution thus obtained if the angle A is obtuse (ignoring issues of boundary inclusion/exclusion)? Last year: 9/16 correct
(A) It is a right circular cone.
(B) It is the union of two right circular cones sharing a common disk as base.
(C) It is the set difference of two right circular cones sharing a common disk as base.
(D) It is the union of two right circular cones sharing a common vertex.
(E) It is the set difference of two right circular cones sharing a common vertex.

Your answer: \qquad
(7) What is the volume of the solid of revolution obtained by revolving the filled triangle $A B C$ about the side $A B$, if the length of the base $A B$ is b and the height corresponding to this base is h ? Last year: $10 / 16$ correct
(A) $(1 / 6) \pi b^{3 / 2} h^{3 / 2}$
(B) $(1 / 3) \pi b^{2} h$
(C) $(1 / 3) \pi b h^{2}$
(D) $(2 / 3) \pi b^{2} h$
(E) $(2 / 3) \pi b h^{2}$

Your answer:

For the next two questions, suppose Ω is a region in a plane Π and ℓ is a line on Π such that Ω lies completely on one side of ℓ (in particular, it does not intersect ℓ). Let Γ be the solid of revolution obtained by revolving Ω about ℓ. Suppose further that the intersection of Ω with any line perpendicular to ℓ is either empty or a point or a line segment.
(8) $\left(^{*}\right)$ What is the intersection of Γ with Π (your answer should be always true)? Last year: 6/16 correct
(A) It is precisely Ω.
(B) It is the union of Ω and a translate of Ω along a direction perpendicular to ℓ.
(C) It is the union of Ω and the reflection of Ω about ℓ.
(D) It is either empty or a rectangle whose dimensions depend on Ω.
(E) It is either empty or a circle or an annulus whose inner and outer radius depend on Ω.

Your answer: \qquad
(9) What is the intersection of Γ with a plane perpendicular to ℓ (your answer should be always true)?

Last year: 9/16 correct
(A) It is precisely Ω.
(B) It is the union of Ω and a translate of Ω along a direction perpendicular to ℓ.
(C) It is the union of Ω and the reflection of Ω about ℓ.
(D) It is either empty or a rectangle whose dimensions depend on Ω.
(E) It is either empty or a circle or an annulus whose inner and outer radius depend on Ω.

Your answer: \qquad
(10) (*) Consider a fixed equilateral triangle $A B C$. Now consider, for any point D outside the plane of $A B C$, the solid tetrahedron $A B C D$. This is the solid bounded by the triangles $A B C, B C D, A C D$, and $A B D$. The volume of this solid depends on D. What specific information about D completely determines the volume? Last year: 7/16 correct
(A) The perpendicular distance from D to the plane of the triangle $A B C$.
(B) The minimum of the distances from D to points in the filled triangle $A B C$.
(C) The location of the point E in the plane of triangle $A B C$ that is the foot of the perpendicular from D to $A B C$.
(D) The distance from D to the center of $A B C$ (here, you can take the center as any of the notions of center since $A B C$ is equilateral).
(E) None of the above.

Your answer: \qquad
(11) $\left(^{* *}\right)$ For $r>0$, consider the region $\Omega_{r}(a)$ bounded by the x-axis, the curve $y=x^{-r}$, and the lines $x=1$ and $x=a$ with $a>1$. Let $V_{r}(a)$ be the volume of the region obtained by revolving $\Omega_{r}(a)$ about the x-axis. What is the precise set of values of r for which $\lim _{a \rightarrow \infty} V_{r}(a)$ is finite? Last year: $3 / 16$ correct
(A) All $r>0$
(B) $r>1 / 2$
(C) $r>1$
(D) $r>2$
(E) No value of r

Your answer: \qquad

