CLASS QUIZ: NOVEMBER 11: WHOPPERS

MATH 152, SECTION 55 (VIPUL NAIK)

Your name (print clearly in capital letters): _

- (1) Suppose $g : \mathbb{R} \to \mathbb{R}$ is a continuous function such that $\lim_{x\to 0} g(x)/x^2 = A$ for some constant $A \neq 0$. What is $\lim_{x\to 0} g(g(x))/x^4$?
 - (A) A
 - (B) A^2

(C) A^3

- (D) $A^2g(A)$
- (E) $g(A)/A^2$
- Your answer:
- (2) Which of the following statements is always true? Exact replica of a past question.
 - (A) The range of a continuous nonconstant function on a closed bounded interval (i.e., an interval of the form [a, b]) is a closed bounded interval (i.e., an interval of the form [m, M]).
 - (B) The range of a continuous nonconstant function on an open bounded interval (i.e., an interval of the form (a, b)) is an open bounded interval (i.e., an interval of the form (m, M)).
 - (C) The range of a continuous nonconstant function on a closed interval that may be bounded or unbounded (i.e., an interval of the form [a, b], $[a, \infty)$, $(-\infty, a]$, or $(-\infty, \infty)$) is also a closed interval that may be bounded or unbounded.
 - (D) The range of a continuous nonconstant function on an open interval that may be bounded or unbounded (i.e., an interval of the form $(a, b), (a, \infty), (-\infty, a)$, or $(-\infty, \infty)$), is also an open interval that may be bounded or unbounded.
 - (E) None of the above.

Your answer: _

- (3) Suppose f is a continuously differentiable function on \mathbb{R} and $c \in \mathbb{R}$. Which of the following implications is **false**? Similar to a past question.
 - (A) If f has mirror symmetry about x = c, f' has half turn symmetry about (c, f'(c)).
 - (B) If f has half turn symmetry about (c, f(c)), f' has mirror symmetry about x = c.
 - (C) If f' has mirror symmetry about x = c, f has half turn symmetry about (c, f(c)).
 - (D) If f' has half turn symmetry about (c, f'(c)), f has mirror symmetry about x = c.
 - (E) None of the above, i.e., they are all true.

Your answer:

- (4) Consider the function $f(x) := \{ \begin{array}{cc} x, & 0 \le x \le 1/2 \\ x (1/5), & 1/2 < x \le 1 \end{array}$. Define by $f^{[n]}$ the function obtained by iterating f n times, i.e., the function $f \circ f \circ f \circ \cdots \circ f$ where f occurs n times. What is the smallest n for which $f^{[n]} = f^{[n+1]}$? Similar to a question on the previous midterm.
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4 (E) 5
 - (_) 。
 - Your answer: _____
- (5) With f as in the previous question, what is the set of points in (0, 1) where $f \circ f$ is not continuous? (A) 0.5 only
 - (B) 0.5 and 0.7

- (C) 0.5, 0.7, and 0.9
- (D) 0.7 and 0.9
- (E) 0.9 only

Your answer:

- (6) Consider the graph of the function $f(x) := x \sin(1/(x^2 1))$. What can we say about the vertical and horizontal asymptotes?
 - (A) The graph has vertical asymptotes at x = +1 and x = -1 and horizontal asymptote (in both directions) y = 0.
 - (B) The graph has vertical asymptotes at x = +1 and x = -1 and horizontal asymptote (in both directions) y = 1.
 - (C) The graph has no vertical asymptotes and horizontal asymptote (in both directions) y = 0.
 - (D) The graph has no vertical asymptotes and horizontal asymptote (in both directions) y = 1.
 - (E) The graph has no vertical or horizontal asymptotes.

Your answer:

- (7) Suppose f and g are increasing functions from \mathbb{R} to \mathbb{R} . Which of the following functions is not guaranteed to be an increasing functions from \mathbb{R} to \mathbb{R} ? An exact replica of a past question.
 - (A) f + q
 - (B) $f \cdot g$
 - (C) $f \circ g$
 - (D) All of the above, i.e., none of them is guaranteed to be increasing.
 - (E) None of the above, i.e., they are all guaranteed to be increasing.

Your answer:

- (8) Suppose F and G are continuously differentiable functions on all of \mathbb{R} (i.e., both F' and G' are continuous). Which of the following is **not necessarily true**? Exact replica of a previous question.
 - (A) If F'(x) = G'(x) for all integers x, then F G is a constant function when restricted to integers, i.e., it takes the same value at all integers.
 - (B) If F'(x) = G'(x) for all numbers x that are not integers, then F G is a constant function when restricted to the set of numbers x that are not integers.
 - (C) If F'(x) = G'(x) for all rational numbers x, then F G is a constant function when restricted to the set of rational numbers.
 - (D) If F'(x) = G'(x) for all irrational numbers x, then F G is a constant function when restricted to the set of irrational numbers.
 - (E) None of the above, i.e., they are all necessarily true.

Your answer:

- (9) Consider the four functions $\sin(\sin x)$, $\sin(\cos x)$, $\cos(\sin x)$, and $\cos(\cos x)$. Which of the following statements are true about their periodicity?
 - (A) All four functions are periodic with a period of 2π .
 - (B) All four functions are periodic with a period of π .
 - (C) $\sin(\sin x)$ and $\sin(\cos x)$ have a period of π , whereas $\cos(\sin x)$ and $\cos(\cos x)$ have a period of 2π .
 - (D) $\cos(\sin x)$ and $\cos(\cos x)$ have a period of π , whereas $\sin(\sin x)$ and $\sin(\cos x)$ have a period of 2π .
 - (E) $\sin(\sin x)$ has a period of 2π , the other three functions have a period of π .

Your answer: